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Whether you are a student seeking a thorough grounding in statistics or a professional researcher aiming to streamline your data analysis workflow, the book offers a comprehensive and practical guide to leveraging the combined power of statistics and Mathematica for data-driven decision-making and scientific discovery. By the end of the book, readers will have gained a deep understanding of statistical concepts and the proficiency to apply them effectively using Mathematica.

Most books on statistics tend to either be overly theoretical or present computational algorithms without enough mathematical background. The present work adopts a strategy that lies somewhere in the middle of these two directions. The computational statistics books present statistics methods to readers to carry out calculations manually or develop these algorithms on their own. This is obviously unrealistic for a typical introductory statistics course, which discusses a wide range of statistics strategies. By bridging the gap between theoretical principles and practical implementation, this book empowers learners to unlock the full potential of statistics in their pursuit of excellence in various domains.

Students studying engineering, operations research, data science, and mathematics at the undergraduate and graduate levels might find this book helpful. We have provided manually solved examples and examples solved using codes. We tried to provide proofs as simply as possible so that any reader with a background in calculus could easily follow them. In fact, the only prerequisites for engaging with the material are some basic programming experience and a fundamental understanding of mathematical notation. This ensures that learners from various backgrounds can dive into the world of statistics with confidence, using code as their guiding light to master the subject matter effectively.

The book takes a refreshingly code-centric approach. Nearly all the concepts we introduce are accompanied by illustrative code examples, lending practicality and tangibility to the learning experience. Even the figures in the book are generated using these code examples, emphasizing the code-first methodology. In order to ensure accessibility and ease of understanding, we have deliberately crafted the code examples in a simple format, prioritizing readability over efficiency and generality. In line with our instructional philosophy, each code example serves a dual purpose: not only does it demonstrate a specific statistical point but also simultaneously introduces and reinforces Mathematica programming concepts. Readers will learn how to leverage of Mathematica to perform complex statistical calculations, simulate data, and create visual representations of their findings.

The text covers topics like descriptive statistics, probability distributions, multivariate statistics, sampling theory, estimation theory, decision theory, hypothesis testing, and various inferential techniques, showcasing how Mathematica can handle sophisticated statistical models with ease. As readers progress through the book, they will find themselves empowered to explore a wide range of statistical techniques, from classical approaches to modern methodologies.

iii To my mother iv Preface Statistics provides us with the means to make sense of data, uncover patterns, and draw meaningful conclusions from seemingly complex information. It has applications in a wide range of disciplines, including science, engineering, finance, social sciences, and many others. Meanwhile, Mathematica, a powerful computational software system, has been a fundamental tool for solving mathematical problems, performing symbolic calculations, and visualizing mathematical concepts. Bringing these two realms together opens up new possibilities for both novices and seasoned practitioners. By harnessing the capabilities of Mathematica, statisticians can handle large datasets, conduct sophisticated analyses, and communicate their findings more effectively.

In writing this book, our primary objective was to create a resource that would facilitate a comprehensive understanding of the fundamental concepts of statistics, essential for mastering the intricacies of machine learning, data science, and artificial intelligence. A central focus of this book is to introduce the reader to Mathematica, leveraging it as a powerful computational tool to bolster their statistical prowess. Not only does the book cater to beginners in the field, but it also aims to serve as a reference for seasoned data scientists, machine-learning practitioners, bio-statisticians, finance professionals, or engineers, who either possess prior knowledge of statistics or seek to fill gaps in their understanding.

There are several reasons why one might choose Mathematica for statistics:

• Comprehensive functionality: Mathematica provides a wide range of built-in statistical functions and capabilities. It can handle various statistical calculations, probability distributions, hypothesis testing, regression analysis, and more. This extensive functionality makes it a versatile tool for statisticians and data analysts. • Symbolic computation: Mathematica is known for its strong symbolic computation capabilities. This allows users to work with mathematical expressions and perform symbolic manipulations, which can be particularly useful for theoretical statistical work and advanced modeling. This unique feature empowers users to perform analytical derivations, evaluate complex integrals, and solve differential equations involving statistical models. Such integration not only streamlines the workflow but also enhances the precision and rigor of statistical analyses. • Data visualization: The software includes powerful data visualization tools that enable users to create informative plots and graphs to understand and present statistical results effectively. Utilizing built-in functions and interactive tools, Mathematica enables users to create a wide array of visually appealing charts, graphs, and plots. From simple histograms and scatter plots to 3D visualizations, users can efficiently present complex data patterns and relationships. • Interactivity and dynamic interface: Mathematica has a dynamic and interactive interface that allows users to manipulate variables and parameters in real-time. This can be beneficial for exploring statistical concepts and conducting sensitivity analyses. • Documentation and support: Mathematica is well-documented, and Wolfram Research, the company behind Mathematica, provides extensive resources and support to users. There are numerous tutorials, examples, and community forums to help users learn and troubleshoot any issues. • Integration with other areas: Mathematica is not limited to statistics; it is a general-purpose computational platform. This means it can seamlessly integrate statistical analysis with other mathematical, engineering, or scientific computations within the same environment. • Ease of use: For those familiar with the Mathematica language, performing statistical analyses can be straightforward and efficient. The language is designed to be expressive and readable, allowing users to perform complex tasks with concise code. With interactive notebooks, users can document and share their statistical workflows, promoting collaboration and reproducibility.

UNIT 1.1 BASIC CONCEPTS

Mathematica is a computer algebra system that performs numeric, symbolic, and graphical computations. Although Mathematica can be used as a programming language, its high-level structure is more appropriate for performing sophisticated operations through the use of built-in functions. For example, Mathematica can find limits, derivatives, integrals, and determinants, as well as plot the graph of functions and perform symbolic computations. The number of built-in functions in Mathematica is enormous. Our goals in this introductory chapter are modest. Namely, we introduce a small subset of Mathematica commands necessary to explore Mathematica discussed in this book.

Notebooks

A notebook is a document that allows us to interact with Mathematica. Each notebook is divided up into a sequence of individual units called cells, each containing a specific type of information such as text, graphics, input, or output. Text cells contain information to be read by the user but contain no executable Mathematica commands. The following cell, displaying In[1] 2 20 , is an example of an input cell containing executable Mathematica commands. Mathematica computes the value of 2 20 and the results of the calculation are displayed as Out [1]:1048576 in an output cell. When we create a new cell, the default cell type is an input cell. Suppose instead, we want to create a text cell. To do this, use the mouse to click on an area where we want to create a new cell and a horizontal line will appear. Then from the Format menu, select Style and then Text. A new text cell will then be created as soon as we begin typing. We can experiment with creating other types of cells by selecting a cell style of our choice, after first choosing Format and Style from the menu.

Palettes

A palette is similar to a set of calculator buttons, providing shortcuts to entering commands and symbols into a notebook. The name of a useful palette is "Basic Math Assistant Input" and it can be found by selecting the Palettes menu and then Basic Math Assistant. After opening Basic Math Assistant, drag it to the right side of the screen and resize the notebook, if necessary, so that both the notebook and palette are visible in non-overlapping windows. To demonstrate the usefulness of palettes, suppose we wish to calculate √804609. The Mathematica command for computing the square root of n is Sqrt [n]. The following input cell was created by typing in the information exclusively from the keyboard.

Input Sqrt[804609] Output 897

A quicker and more natural way of entering √804609 can be accomplished by clicking on the square root button √□ in the palette and then entering 804609.

Input √(804609) Output 897

Packages

Note that, many of Mathematica functions are available at startup, but additional specialized functions are available from add-in packages. You can load a built-in or installed package in two ways, with the Needs[ ] function or with the symbols <<. The package name has quotation marks if you use the Needs[ ] function, but does not has a mark with <<. Package names are always indicated with a backward apostrophe at the end of the name, `.

Input

Needs["PackageName`"] Input <<PackageName`
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Help with Mathematica

There are four important tricks to keep in mind to help with Mathematica:

1-If you want to know something about a Mathematica function or procedure, just type ? followed by a Mathematica command name, and then enter the cell to get information on that command.

Input ?FactorInteger

After you press Enter, Mathematica responds:

Output FactorInteger[n] gives a list of the prime factors of the integer n, together with their exponents.

2-Mathematica also can finish typing a command for you if you provide the first few letters. Here is how it works: After typing a few letters choose Complete Selection from the Edit menu. If more than one completion is possible, you will be presented with a pop-up menu containing all of the options. Just click on the appropriate choice.

3-If you know the name of a command but have forgotten the syntax for its arguments, type the command name in an input cell, then choose Make Template from the Edit menu. Mathematica will paste a template into the input cell showing the syntax for the simplest form of the command. For example, if you typed Plot, and then choose Make Template, the input cell would look like this:

Input Plot[f,{x,xmin, xmax}]
4-The Wolfram Documentation is the most useful feature imaginable; learn to use it and use it often. Go to the Help menu and choose Wolfram Documentation. A window will appear displaying the documentation home page.

Document the Code

When you write programs in the Wolfram Language, there are various ways to document your code. As always, by far the best thing is to write clear code and to name the objects you define as explicitly as possible. Sometimes, however, you may want to add some "commentary text" to your code, to make it easier to understand. You can add such text at any point in your code simply by enclosing it in matching (* *). Notice that in the Wolfram Language, "comments" enclosed in (* *) can be nested in any way.

(* text *) a comment that can be inserted anywhere in Wolfram Language code.

Mathematica Examples 1.1

Input

If[a>b,(*then*)p,(*else*)q] Output If[a>b,p,q]

Arithmetic Operations

Mathematica can be thought of as a sophisticated calculator, able to perform exact as well as approximate arithmetic computations. You can always control grouping the arithmetic computations by explicitly using parentheses. The following list summarizes the Mathematica symbols used for addition, subtraction, multiplication, division, and powers.

x+y+z gives the sum of three numbers.

x*y*z, x×y×z, or x y z represents a product of terms.

x-y is equivalent to x + (-1 * y).

x^y gives x to the power y.

x/y is equivalent to x y^-1. The precedence of common operators is generally defined so that "higher-level" operations are performed first. For simple expressions, operations are typically ordered from highest to lowest in order: 1. Parenthesization, 2. Factorial, 3. Exponentiation, 4. Multiplication and division, 5. Addition and subtraction. Consider the expression 3×7+2^2. This expression has a value (3×7)+(2^2)=25.

Mathematica

Mathematica has several built-in constants. The three most commonly used constants are π, e, and i. You can find each of these constants on the Basic Math Assistant palette. Some built-in constants are listed below.

I

(𝑖 = √(-1)).

E (2.71828).

Pi (𝜋 = 3.14159).

Relational and Logical Operators

Relational and logical operators are instrumental in program flow control. They are used in Mathematica to test various conditions involving variables and expressions. The relational operators are listed below. 

Elementary Functions

In the following, we discuss some of the more commonly used functions Mathematica offers. The Wolfram Language has nearly 6000 built-in functions. All have names in which each word starts with a capital letter. Remember that the argument of a function must be contained within square brackets, [ ]. Arguments to functions are always separated by commas.

Common Functions

Log [z] gives the natural logarithm of z (logarithm to base 𝑒).

Log[b,z]

gives the logarithm to base b.

Exp[z]

gives the exponential of z.

Sqrt[z] or √z

gives the square root of z.

N[expr]

gives the numerical value of expr.

Abs[z]

gives the absolute value of the real or complex number z.

Floor [x] gives the greatest integer less than or equal to x.

Trigonometric Functions

Sin [z] gives the sine of z.

Cos[z]

gives the cosine of z.

Tan[z]

gives the tangent of z.

Hyperbolic Functions

Sinh[z]

gives the hyperbolic sine of z.

Cosh[z]

gives the hyperbolic cosine of z.

Tanh[z]

gives the hyperbolic tangent of z.

Numerical Functions

IntegerPart [x] integer part of x.
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FractionalPart [x] fractional part of x.

Round [x] integer x closest to x. 

Max

Re[z]

the real part Re z.

Im[z]

the imaginary part Im z.

Conjugate[z]

the complex conjugate z * .

Combinatorial Functions

n!

factorial n(n -1)(n -2) … × 2 × 1.

n!! double factorial n(n -2)(n -4) … × 3 × 1.

Binomial[n,m] binomial coefficient ( n m ) = (n!) (m!(n-m)!)
.

Multinomial[n₁,n₂,...] multinomial coefficient (n₁ + n₂+. . . )/(n₁! n₂!. . . ).

Mathematica Examples 1.4

Sum and Product Functions

Sums and products are of fundamental importance in mathematics, and Mathematica makes their computation simple. Unlike other computer languages, initialization is automatic and the syntax is easy to apply, particularly if the Basic Math Assistant Input palette is used. Any symbol may be used as the index of summation. Negative increments are permitted wherever an increment is used.

Sum[f,{i,imax}]

evaluates the ∑ f gives the indefinite integral ∫ f d x.

Integrate[f,{x,xmin,xmax}]

gives the definite integral ∫ f d x Mathematica has many functions for transforming algebraic expressions. The following list summarizes them.

Simplify[expr]

performs a sequence of algebraic and other transformations on expr and returns the simplest form it finds.

Expand[expr]

expands out products and positive integer powers in expr.

Factor [expr] factors a polynomial over the integers.

Together [expr] puts terms in a sum over a common denominator, and cancels factors in the result.

ExpandAll[expr]

expands out all products and integer powers in any part of expr.

FunctionExpand [expr] tries to expand out special and certain other functions in expr when possible reducing compound arguments to simpler ones.

Reduce [expr,vars] reduces the statement expr by solving equations or inequalities for vars and eliminating quantifiers.

Mathematica Examples 1.9

Input Simplify[Sin [x] Input FunctionExpand[Sin [24 Degree]] Output -(1/8) Sqrt [3] (-1 -Sqrt [START_REF] Tukey | Exploratory Data Analysis[END_REF]) -1/4 Sqrt[1/2 (5 -Sqrt [START_REF] Tukey | Exploratory Data Analysis[END_REF])]

Solving Equations

Solutions of general algebraic equations may be found using the Solve command. Solve always tries to give you explicit formulas for the solutions to equations. However, it is a basic mathematical result that, for sufficiently complicated equations, explicit algebraic formulas in terms of radicals cannot be given. If you have an algebraic equation in one variable, and the highest power of the variable is at most four, then the Wolfram Language can always give you formulas for the solutions. However, if the highest power is five or more, it may be mathematically impossible to give explicit algebraic formulas for all the solutions.

You can also use the Wolfram Language to solve sets of simultaneous equations. You simply give the list of equations and specify the list of variables to solve for. Not all algebraic equations are solvable by Mathematica, even if theoretical solutions exist. If Mathematica is unable to solve an equation, it will represent the solution in a symbolic form. For the most part, such solutions are useless, and a numerical approximation is more appropriate. Numerical approximations are obtained with the command NSolve.

Solve [lhs==rhs,x] solve an equation for x.

Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] solve a set of simultaneous equations for x, y, …. Eliminate[{lhs1==rhs1,lhs2==rhs2,…},{x,…}] eliminate x, … in a set of simultaneous equations.

Reduce[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}]

give a set of simplified equations, including all possible solutions.

NSolve [expr,vars] attempts to find numerical approximations to the solutions of the system expr of equations or inequalities for the variables vars. Out [n] is a global object that is assigned to be the value produced on the n th output line. 2-Although Mathematica is a powerful calculating tool, it has its limits. Sometimes it will happen that the calculations you tell Mathematica to do are too complicated or may be the output produced is too long. In these cases, Mathematica could be calculating for too long to get an output so you might want to stop these calculations. To abort a calculation: go to "Kernel" and select "Abort evaluation". It can take long to abort a calculation. If the computer does not respond an alternative is to close down the Kernel. By doing this you do not lose the data displayed in your notebooks, but you do lose all the results obtained so far from the Kernel, so in case you are running a series of calculations, you would have to start again. To close down the Kernel: go to "Kernel" and select "Quit Kernel" and then "Local". Closing down the Kernel is not a practice that is done only when you want to stop a calculation. Sometimes, when you have been using Mathematica for a long time you forget about the definitions and calculations that you have done before (you might have defined values for variables or functions, for example). Those definitions can clash with the calculations you are doing, so you might want to close down the Kernel and start your new calculations from scratch. In general, it is a good idea to close down the Kernel after you have finished with a series of calculations so that when you move to a different problem your new calculations do not interact with the previous ones.

Mathematica
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VARIABLES AND FUNCTIONS

When you perform long calculations, it is often convenient to give names to your intermediate results. Just as in standard mathematics, or other computer languages, you can do this by introducing named variables. It is very important to realize that the values you assign to variables are permanent. Once you have assigned a value to a particular variable, the value will be kept until you explicitly remove it. The value will, of course, disappear if you start a whole new Wolfram Language session.

x=value assign a value to the variable x.

x=y=value assign a value to both x and y.

x=.or Clear [x] remove any value assigned to x. {x,y}={value₁,value₂} assign different values to x and y. In Mathematica, one can substitute an expression with another using rules. In particular one can substitute a variable with a value without assigning the value to the variable.

lhs:=rhs assigns rhs to be the delayed value of lhs. rhs is maintained in an unevaluated form.

When lhs appears, it is replaced by rhs, evaluated afresh each time.

expr/.rules applies a rule or list of rules in an attempt to transform each subpart of an expression expr.

lhs->rhs or lhs->rhs represents a rule that transforms lhs to rhs. There are many functions that are built into the Wolfram Language. Here we discuss how you can add your own simple functions to the Wolfram Language. As a first example, consider adding a function called f which squares its argument. The Wolfram Language command to define this function is f [x]:=x^2. The names like f that you use for functions in the Wolfram Language are just symbols. Because of this, you should make sure to avoid using names that begin with capital letters, to prevent confusion with built-in Wolfram Language functions. You should also make sure that you have not used the names for anything else earlier in your session.

Mathematica

f [x]=value definition for a specific expression x.

f[x_]=value

definition for any expression, referred to as x.

Clear[f]

clear all definitions for f.

Function [x,body] is a pure function with a single formal parameter x. Function[{x_1,x_2,…},body] is a pure function with a list of formal parameters.

Map[f,expr] or f/@expr applies f to each element on the first level in expr.

Map[f,expr,levelspec]

applies f to parts of expr specified by levelspec. The character _ (referred to as "blank") on the left-hand side is very important. One can define functions of several variables. Here is a simple example defining 𝑓(𝑥, 𝑦) = √𝑥 2 + 𝑦 2 .

Mathematica Examples 1.16
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Input f[x_,y_]:=Sqrt[x^2+y^2] Input f [3,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF] Output 5

Some Notes

1-There are four kinds of bracketing used in the Wolfram Language. Each kind of bracketing has a very different meaning.

(term) parentheses for grouping.

f [x] square brackets for functions.

{a,b,c} curly braces for lists.

v[[i]]

double brackets for indexing (Part[v,i]). 2-Compound expression expr₁;expr₂;expr₃ do several operations and give the result of the last one. 3-Particularly when you write procedural programs in the Wolfram Language, you will often need to modify the value of a particular variable repeatedly. You can always do this by constructing the new value and explicitly performing an assignment such as x=value. The Wolfram Language, however, provides special notations for incrementing the values of variables, and for some other common cases. i++ increment the value of i, by 1 returning the old value of i.

i-decrement the value of i, by 1 returning the old value of i.

++i pre-increment i, returning the new value of i.

--i pre-decrement i, returning the new value of i.

i+=di add di to the value of i and returns the new value of i.

i-=di

subtract di from i and returns the new value of i.

x*=c multiply x by c.

x/=c divide x by c. It is clear that when we defined y=x+2 then y takes the value of x+2 and this will be assigned to y. No matter if x changes its value, the value of y remains the same. In other words, y is independent of x. But in y:=x+2, y is dependent on x, and when x changes, the value of y changes too. Namely using := then y is a function with variable x. Finally, the equality == is used to compare: 

Mathematica

Mathematica

LISTS

Lists are extremely important objects. In doing calculations, it is often convenient to collect together several objects and treat them as a single entity. Lists give you a way to make collections of objects. Lists are sequences of Mathematica objects separated by commas and enclosed by curly brackets. A list such as {3,5,1} is a collection of three objects. But in many ways, you can treat the whole list as a single object. You can, for example, do arithmetic on the whole list at once, or assign the whole list to be the value of a variable.

Defining your own lists is easy. You can, for example, type them in full, like this: The functions for obtaining elements of lists are

Input oddList = {81,

First[list]

the first element.

Last[list]

the last element.

Part[list,n] or list[[n]]

the nth element.

Part[list,-n] or list[[-n]]

the nth element from the end. Part[list,{n1,n2,...}] or list[[{n1,n2,...}]] the list of the n1th, n2th, ... elements.

Take[list,n]

the list of the first n elements.

Take[list,-n]

the list of the last n elements.

Take [list,{m,n}] the list of the mth through nth elements.

Rest[list]

list without the first element.

Most[list]

list without the last element.

Drop[list,n]

list without the first n elements.

Drop[list,-n]

list without the last n elements.

Drop[list,{m,n}]

list without the mth through nth elements.

Mathematica Examples 1.22

Input

First sort the elements of list into canonical order.

Union[list]

give a sorted version of list, in which all duplicated elements have been dropped.

Reverse[list]

reverse the order of the elements in list.

RotateLeft[list]

cycle the elements in list one position to the left. cycle the elements in list n positions to the left.

RotateRight[list]

cycle the elements in list one position to the right.

RotateRight[list,n]

cycle the elements in list n positions to the right.

Permutations[list]

generate a list of all possible permutations of the elements in list.

Partition [list,n] partition list into nonoverlapping sublists of length n.

Partition [list,n,d] generate sublists with offset d.

Split[list]

split list into sublists consisting of runs of identical elements.

Transpose [list] transpose the first two levels in list.

Flatten [list] flatten out nested lists.

Flatten[list,n]

flatten out the top n levels.

FlattenAt [list,i] flatten out a sublist that appears as the ith element of list. 

Vectors

Mathematica has many functions for generating vectors. The following list summarizes them.

{e₁,e₂,...} is a list of elements.

Range[n]

create the list {1,2,3, … , n}.

Range [n₁,n₂] create the list {n₁, n₁ + 1, … , n₂}.

Range [n₁,n₂,dn] create the list {n₁, n₁ + dn, … , n₂}.

Table[f,{i,n}]

build a length-n vector by evaluating f with i = 1,2, … , n.

Length[list]

give the number of elements in list.

List[ [i]] or Part [list,i] give the i th element in the vector list.

Mathematica Examples 1.25

Input 

Cross[a,b]

cross product of two vectors (also input as a × b).

Norm[v]

Euclidean norm of a vector v.

Normalize[v]

gives the normalized form of a vector v.

Orthogonalize [{v₁,v₂,…}]

gives an orthonormal basis found by orthogonalizing the vectors v i . Table [f,{i,m},{j,n}] build an m × n matrix by evaluating f with i ranging from 1 to m and j ranging.

Mathematica

List[ [i,j]] or Part [list,i,j] give the i, j th element in the matrix list.

DiagonalMatrix[list]

generate a square matrix with the elements in list on the main.

Dimensions[list]

give the dimensions of a matrix represented by list.

Column[list]

display the elements of list in a column. 

Inverse[m]

matrix inverse m.

MatrixPower[m,n]

gives the n th power of a matrix m.

Det[m]

Determinant m.

Tr[m]

Trace m.

Transpose[m]

Transpose m. generates a list of length n, with elements f [i].

Mathematica

Array[f,n,r] generates a list using the index origin r.

Array[f,n,{a,b}] generates a list using n values from a to b.

Array[f,{n1,n2,...}] generates an n 1 × n 2 × … array of nested lists, with elements f[i 1 , i 2 , . . . ].

Mathematica Examples 1.28

Input Array[f,10] Output {f [1],f [2],f [3],f [START_REF] Chambers | Graphical Methods for Data Analysis[END_REF],f [START_REF] Tukey | Exploratory Data Analysis[END_REF],f [START_REF] Weiss | Introductory Statistics[END_REF],f [START_REF] Mann | Introductory Statistics[END_REF],f [START_REF] Mendenhall | Introduction to probability and statistics[END_REF],f [START_REF] Spiegel | Schaum's Outline of Theory and Problems of Statistics[END_REF],f [10]} Input Array[f,{3,2}] Output {{f [1,1],f [1,2]},{f [2,1],f [2,2]},{f [3,1],f [3,2]}}

Layout & Tables

Print [expr] prints expr as output.

MatrixForm[list]

prints with the elements of list arranged in a regular array.

TableForm[list]

prints with the elements of list arranged in an array of rectangular cells.

Grid[{{expr11,expr12,...},{expr21,expr22,. ..},...}] is an object that formats with the expr ij arranged in a twodimensional grid.

Row[expr1,expr2,...]

is an object that formats with the expr i arranged in a row, potentially extending over several lines.

Row[list,s]

inserts s as a separator between successive elements.

Column[expr1,expr2,...]

is an object that formats with the expr i arranged in a column, with expr 1 above expr 2 , etc.

Multicolumn[list,cols]

is an object that formats with the elements of list arranged in a grid with the indicated number of columns.

Multicolumn[list,{rows,Automatic}]

formats as a grid with the indicated number of rows. 

Mathematica

2D AND 3D GRAPHING

The graph of a function offers tremendous insight into the behavior of the function and can be of great value in the solution of problems in mathematics. One of the outstanding features of Mathematica is its graphing capabilities. Mathematica contains functions for 2D and 3D graphing of functions, lists, and arrays of data.

Basic Plotting

Plot [f,{x,xmin,xmax}] plot f as a function of x from x min to x max .

Plot[{f1,f2,...},{x,xmin,xmax}}] plot several functions together.

When the Wolfram Language plots a graph for you, it has to make many choices. It has to work out what the scales should be, where the function should be sampled, how the axes should be drawn, and so on. Most of the time, the Wolfram Language will probably make pretty good choices. However, if you want to get the very best possible pictures for your particular purposes, you may have to help the Wolfram Language in making some of its choices.

There is a general mechanism for specifying "options" in Wolfram Language functions. Each option has a definite name. As the last argument to a function like Plot, you can include a sequence of rules of the form name->value, to specify the values for various options. Any option for which you do not give an explicit rule is taken to have its "default" value. 

Some options for Plot function are

ListLinePlot[list]

join the points with lines.

ListPlot3D[array]

generates a three-dimensional plot of a surface representing an array of height values.

ListPlot3D[{{x₁,y₁,z₁},{x₂,y₂,z₂},...}] generates a plot of the surface with heights z i at positions x i , y i .

ListPlot3D[{data1,data2,...}] plots the surfaces corresponding to each of the data i .

ListPointPlot3D[array]

generates a 3D scatter plot of points with a 2D array of height values. ListPointPlot3D[{{x₁,y₁,z₁},{x₂,y₂,z₂},...}] generates a 3D scatter plot of points with coordinates 

CONTROL STRUCTURE

Most programming languages use control structures to control the flow of a program. The control structures include decision-making and loops. Decision-making is done by applying different conditions in the program. If the conditions are true, the statements following the condition are executed. The values in a condition are compared by using the comparison operators. The loops are used to run a set of statements several times until a condition is met. If the condition is true, the loop is executed. If the condition becomes false, the loop is terminated, and the control passes to the next statement that follows the loop block.

Conditional Statements

Programmers often need to check the status of a computed intermediate result to branch apply f to expr n times.

FixedPoint[f,expr]

start with expr, and apply f repeatedly until the result no longer changes.

NestList[f,expr,n]

gives a list of the results of applying f to expr 0 through n times.

While[test,body]

evaluate body repetitively, so long as test is. For[start,test,incr,body] executes start, then repeatedly evaluates body and incr until test fails to give True.

Break[] exits the nearest enclosing Do, For, or While. The format of Module is Module[{var1, var2, ...}, body], where var1, var2, ... are the variables we localize, and body is the body of the function. The value returned by Module is the value returned by the last operator in the body (unless an explicit Return[] statement is used within the body of Module. In this case, the argument of Return[arg] is returned). In particular, if one places the semicolon after this last operator, nothing (Null) is returned. As a variant, it is acceptable to initialize the local variables in the place of the declaration, with some global values: Module[{var1 = value1, var2, ...}, body]. However, one local variable (say, the one "just initialized" cannot be used in the initialization of another local variable inside the declaration list. The following would be a mistake: Module[{var1 = value1, var2 = var1, ...}, body]. Moreover, this will not result in an error, but just the global value for the symbol var1 would be used in this example for the var2 initialization (this is even more dangerous since no error message is generated and thus we don't see the problem.) In this case, it would be better to do initialization in steps: Module[{var1=value1,var2,...}, var2=var1;body], that is, include the initialization of part of the variables in the body of Module. One can use Return[value] statement to return a value from anywhere within the Module. In this case, the rest of the code (if any) inside Module is slipped, and the result value is returned.

Mathematica Examples 1.38

To show how this is done, the following code is an example of a module which will simulate a single gambler playing the game until the goal is achieved or the money is gone. There are several things to notice in this example. First, this is the same thing we have done in the past to define a function. That is, we have a function name GamblersRuin with three input variables, a, c, and p. The operator:= is used to start the definition. Secondly, the function involves the Mathematica command Module. This just tells Mathematica to perform all the commands in the module (like a subroutine in Fortran or a method in C++). There are some special features we need to understand in the Module command. The Module command has two arguments. The first argument is a list of all the local variables that will only be used inside the module. In the above example, the local variable list is {ranval,var1,var2,var3}. These variables are only used in the module and are cleared once the module has been executed. The second argument is all the commands that will be executed each time the module is called. There are some assignment commands at the beginning that are used to make things cleaner. The module uses temporary variables so that the values of the input variables are not overwritten when the module executes.

Mathematica

The last command is added to our list of input lines to return a result from the work done by the Module. Without this we would never get any results from out calculation. Any recognized variable type or structure within Mathematica can be returned by a Module. In this example, the returned value is the result of testing two variables in the code for equality. The code fragment var1==var2 tests to determine if the variables, var1 and var2, are equal. If the two variables are equal, then the line outputs True and if they are not equal, the line outputs False.

Again, all but the last command must be ended by a semicolon. This is to make sure that the commands are separated in the execution. Commands separated by blank spaces will be considered as terms to be multiplied together. Leaving out the semicolon will give rise to lots of error messages, wrong results or both.

Modules in Mathematica allow one to treat the names as local. When one uses Block then the names are global, but the values are local.

Block[{x,y,...},body] evaluate expr using local values for x,y, ....

Block[{x=x0,y=y0,...},body]

assign initial values to x,y; and evaluate ... as above.

Block[] is automatically used to localize values of iterators in iteration constructs such as Do, Sum, and Table .  Block[] may be used to pack several expressions into one unity. There are two general types of methods within descriptive statistics: graphical and numerical summaries. In this chapter, we will discuss the first of these types-representing a data set using visual techniques. Over the years it has been found that tables and graphs are particularly useful ways of presenting data, often revealing important features such as the range, the degree of concentration, and the symmetry of the data. Any good statistical analysis of data should always begin with plotting the data. In this chapter, we present some common graphical and tabular ways for presenting data. Many visual techniques may already be familiar to you: frequency distribution tables, histograms, polygons, pie charts, bar graphs, scatterplots, and the like. Here we focus on a selected few of these techniques that are most useful and relevant to probability and inferential statistics.

Mathematica Examples 1.42

Frequency Distributions

Definition (Population):

A population is the set of all measurements of interest to the investigator.

Definition (Sample):

A sample is a subset of measurements selected from the population of interest (Figure 2.1).

Graphical Summaries Numerical Summaries Estimation

Testing of Hypothesis

Statistics Descriptive Statistics

Presenting.

Organizing.

Summarizing Data.

Inferential Statistics

Drawing conclusions about a population bases on data observed in a sample.
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Let us consider the following example.

Example 2.1

In the following The largest weight is 176 lb and the smallest weight is 119 lb, so that the range is 176 -119 = 57 lb. If five class intervals are used, the class-interval size is 57/5 = 11 approximately; if 20 class intervals are used, the classinterval size is 57/20 = 3 approximately. One convenient choice for the class-interval size is 5 lb. Also, it is convenient to choose the class marks (midpoint) as 120, 125, 130, 135, . . . lb. Thus, the class intervals can be taken as 118-122, 123-127, 128-132, . .. With this choice the class boundaries are 117.5, 122.5, 127.5, . .. , which do not coincide with the observed data. The required frequency distribution is shown in Table 2.2. The data used to construct a histogram are generated via a function 𝑚 𝑖 that counts the number of observations that fall into each of the disjoint categories (bins). Thus, if we let 𝑛 be the total number of observations and 𝑘 be the total number of bins, the histogram data 𝑚 𝑖 meet the following conditions:

𝑛 = ∑ 𝑚 𝑖 𝑘 𝑖=1 .
(2.1) There is no best number of bins, and different bin sizes can reveal different features of the data. The ideal number of bins may be determined or estimated by formula: number of bins = 1 + 3.3 log 𝑛 ,

(2.2) or by the square-root choice formula: number of bins = √𝑛.

(2.3) • Graphic representation of relative-frequency distributions can be obtained from the histogram or frequency polygon simply by changing the vertical scale from frequency to relative frequency, keeping exactly the same diagram. The resulting graphs are called relative-frequency histograms (or percentage histograms) and relative-frequency polygons (or percentage polygons), respectively. (See, for example, Figure 2.2, which uses data from Table 2.2) • From the histogram we should be able to identify the center (i.e., the location) of the data, spread of the data, skewness of the data, presence of outliers, presence of multiple modes in the data, and whether the data can be capped with a bell-shaped curve. These properties provide indications of the proper distributional model for the data. • A sample histogram provides valuable information about the population histogram, the graph that describes the distribution of the entire population. Remember, though, that different samples from the same population will produce different histograms, even if you use the same class boundaries. However, you can expect that the sample and population histograms will be similar. As you add more data to the sample, the two histograms become more alike. 

Cumulative-Frequency Distributions and Ogives

Cumulative-Frequency Distributions and Ogives

• The total frequency of all values less than the upper-class boundary of a given class interval is called the cumulative frequency up to and including that class interval. • A table presenting such cumulative frequencies is called a cumulative distribution.

• A graph showing the cumulative frequency less than any upper-class boundary plotted against the upperclass boundary is called a cumulative-frequency polygon or ogive. • For some purposes, it is desirable to consider a cumulative-frequency distribution of all values greater than or equal to the lower-class boundary of each class interval.

Relative Cumulative-Frequency Distributions and Percentage Ogives

• The relative cumulative frequency, or percentage cumulative frequency, is the cumulative frequency divided by the total frequency. • If the relative cumulative frequencies are used in cumulative-frequency table, in place of cumulative frequencies, the results are called relative cumulative-frequency distributions (or percentage cumulative distributions) and relative cumulative-frequency polygons (or percentage ogives), respectively. (See, for example, Figure 2.3) 

Frequency Curves and Smoothed Ogives

• Collected data can usually be considered as belonging to a sample drawn from a large population. Since so many observations are available in the population, it is theoretically possible (for continuous data) to choose class intervals very small and still have sizable numbers of observations falling within each class. Thus, one would expect the frequency polygon or relative-frequency polygon for a large population to have so many small, broken line segments that they closely approximate curves, which we call frequency curves or relativefrequency curves, respectively (see Figure 2.4). • It is reasonable to expect that such theoretical curves can be approximated by smoothing the frequency polygons or relative-frequency polygons of the sample, the approximation improving as the sample size is increased. For this reason, a frequency curve is sometimes called a smoothed frequency polygon. • The advantage of using smooth curves to identify distribution shapes is that we need not worry about minor differences in shape. Instead, we can concentrate on overall patterns, which, in turn, allows us to classify most distributions by designating relatively few shapes. • In a similar manner, smoothed ogives are obtained by smoothing the cumulative-frequency polygons, or ogives. It is usually easier to smooth an ogive than a frequency polygon (see Figure 2.4). Frequency curves arising in practice take on certain characteristic shapes, (as shown in Figure 2.5).

1. Symmetrical or bell-shaped curves: These curves have a central peak and are perfectly symmetrical on either side of it. They are commonly observed in natural phenomena. 2. Skewed to the left: These curves have a long tail on the left side and a shorter tail on the right side. This is also known as a negative skew and is often observed in situations where there are a few extreme values that drag the mean towards the left. 3. Skewed to the right: These curves have a long tail on the right side and a shorter tail on the left side. This is also known as a positive skew and is often observed in situations where there are a few extreme values that drag the mean towards the right. 4. Uniformly distributed: These curves have a constant frequency across the entire range. They are often observed in situations where all outcomes are equally likely. 5. J-shaped: These curves have a low frequency at the beginning, followed by a sharp increase and then a gradual decrease. They are often observed in situations where there is a low probability of occurrence initially, followed by a higher probability at a certain point. 6. A U-shaped frequency curve: These curves have a high frequency at the beginning and end, with a dip or a trough in the middle. 7. Bimodal frequency curve: These curves have two distinct peaks, indicating two different groups or populations within the data. 8. Multimodal frequency curve: These curves have more than two distinct peaks, indicating multiple groups or populations within the data.

It is not necessary for a distribution to precisely exhibit one of these specific shapes in order to take the name: it need only approximate the shape, especially if the data set is small. gives a pseudorandom variate from the symbolic distribution dist.

RandomVariate[dist,n]

gives a list of n pseudorandom variates from the symbolic distribution dist.

RandomVariate[dist,{n1,n2,…}]

gives an n1× n2×… array of pseudorandom variates from the symbolic distribution dist.

Gather[list]

gathers the elements of list into sublists of identical elements.

GatherBy[list,f]

gathers into sublists each set of elements in list that gives the same value when f is applied.

DeleteDuplicates[list]

deletes all duplicates from list. TakeLargest [list,n] gives the n numerically largest elements in list, sorted in descending order.

TakeLargest[list → prop,n]

gives the property prop for the n largest elements in list. TakeLargest [n] represents an operator form of TakeLargest that can be applied to an expression.

TakeSmallest[list,n]

gives the n numerically smallest elements in list, sorted in ascending order.

TakeSmallest[list → prop,n]

gives the property prop for the n smallest elements in list. TakeSmallest [n] represents an operator form of TakeSmallest that can be applied to an expression.

Ordering[list]

gives the positions in list at which each successive element of Sort[list] appears. Ordering [list,n] gives the positions in list at which the first n elements of Sort[list] appear.

Ordering[list,-n]

gives the positions of the last n elements of Sort [list]. Ordering [list,n,p] gives positions in list of elements of Sort[list,p]. sorts the elements of list into canonical order. Sort [list,p] sorts using the ordering function p.

Order and Grouping Data

SortBy[list,f]

sorts the elements of list in the order defined by applying f to each of them. SortBy[list,{f1,f2,…}] breaks ties by successively using the values obtained from the fi. SortBy [list,f,p] sorts the elements of list using the function p to compare the results of applying f to each element. SortBy [f] represents an operator form of SortBy that can be applied to an expression.

UNIT 3.3 COUNT STATISTICS AND FREQUENCY DISTRIBUTIONS

Count statistics refer to the analysis of data that consists of counts or frequencies of events or occurrences. In Mathematica, count statistics can be analyzed using a variety of built-in functions, including Count, Tally, and BinCounts. These functions can be used to generate frequency tables and visualize count data.

Tally[list]

tallies the elements in list, listing all distinct elements together with their multiplicities.

BinLists gives an array of lists where the first index corresponds to x bins, the second to y, and so on. gives an array of counts where the first index corresponds to x bins, the second to y, and so on. 

Input

(* The code is generating a list of integers data and then using the Tally function to count the number of occurrences of each unique element in the list. The resulting list tally will have pairs of elements, where the first element corresponds to a unique value in data and the second element corresponds to the count of how many times that value appears. This code is useful for generating a formatted frequency table for a small dataset, such as when manually inspecting the frequency distribution of a sample. It is similar to using the Counts function, but with the difference that Tally returns a list of pairs instead of an association object.

Additionally, Tally can be useful when the frequency counts need to be sorted according to some criterion, such as when displaying the most common values first: *) data={1,2,3,3,3,4,4,5,5}; Input (* This code is generating a list of 100 random integers between 0 and 1. Then, the Counts function is applied to this list to count the number of occurrences of each unique element. Since there are only two possible values in the list (0 and 1), the resulting association object will have keys of 0 and 1, each with a corresponding count of how many times it appears in the list. This code is useful for generating a frequency Input (* This code generates a list of random real numbers between 0 and 10 and then creating two different plots based on the data. The first plot shows the binned data using the BinLists function, which splits the data into bins defined by the bins list. The second plot shows the count data using the BinCounts function, which counts the number of data points in each bin defined by bins. Note that, RandomReal chooses reals with a uniform probability distribution: *) data=RandomReal [10,100]; bins=Range[0, (* This code generates a list of 1000 random numbers sampled from a normal distribution with mean 0 and standard deviation 1 using the RandomVariate function.

Then it defines the bin specification as a list of cut-off points. The BinCounts function is then used to count the number of values that fall into each bin, based on the binSpec list, and stores the counts in the binCounts list. [i]][ [1]]],"-", ToString[ranges[ [i]][ [2]]]}]},{i,1,Length[ranges]}]; gives a list of bins and histogram heights of the values {xi,yi,…}. HistogramList […,bspec] gives a list of bins and histogram heights with bins specified by bspec.

HistogramList[…,bspec,hspec]

gives a list of bins and histogram heights with bin heights computed according to the specification hspec.

Remarks:

• HistogramList produces a list of bin delimiters {b1,b2,…} for each dimension and a depth-array of values for each bin. • For 2D data, the output has the form {{{bx1,bx2,…},{by1,…}},{{v1,1,v1,2,…},{v2,1,…},…}} where vi,j is the value corresponding to the bin [bxi,bxi+1)×[byj,byj+1). 

TableForm[ Table[ {Row[partitionbins[[i]],","],counts1[[i]],counts2[[i]],counts3[[i]]}, {i,1,Length[counts1]} ],
TableAlignments->Center, TableHeadings->{None,{"Bin Interval","Count","PDF","CDF"}} ] plots histograms for multiple datasets datai.

Remarks:

• The following bin specifications bpsec can be given: 
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• Possible named binning methods include:

"Sturges" compute the number of bins based on the length of data "Scott" asymptotically minimize the mean square error "FreedmanDiaconis" twice the interquartile range divided by the cube root of sample size "Knuth" balance likelihood and prior probability of a piecewise uniform model "Wand" one-level recursive approximate Wand binning plots 3D histograms for multiple datasets datai.

Remarks:

• The following bin specifications bpsec can be given: In this chapter, we will discuss the first of these types-measures of central tendency. 

n use n

Measures of

Other Measures

Descriptive statistic

Measures of symmetry, such as skewness and kurtosis, provide information about the shape of the distribution of the data. These measures can help to identify departures from normality.

Measures of dispersion, such as the variance and standard deviation, provide information about the spread or variability of the data. These measures are useful for identifying outliers or unusual observations.

Measures of central tendency, such as the mean, median, and mode, provide a single value that represents the typical or central value of the data. These measures are useful for understanding the overall pattern of the data and can be used to compare different datasets.

CHAPTER 4

DESCRIPTIVE STATISTICS: MEASURES OF CENTRAL TENDENCY 109

Mean

An average is a value that is typical, or representative, of a set of data. Since such typical values tend to lie centrally within a set of data arranged according to magnitude, averages are also called measures of central tendency. Several types of measures of central tendency can be defined, such as the arithmetic mean, median, mode, geometric mean, harmonic mean, root mean square, trimmed mean, winsorized mean, quartiles, deciles, and percentiles. Each has advantages and disadvantages, depending on the data and the intended purpose.

Definition (The Arithmetic Mean):

The arithmetic mean, or briefly the mean, of a set of 𝑁 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is denoted by 𝑣̅ and is defined as If the numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝐾 occur with frequencies 𝑓 1 , 𝑓 2 , 𝑓 3 , . . . , 𝑓 𝐾 , (grouped data), the arithmetic mean is Sometimes we associate with the numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝐾 certain weighting factors (or weights) 𝑤 1 , 𝑤 2 , … , 𝑤 𝐾 , depending on the significance or importance attached to the numbers. This can be helpful when we want some values 110 to contribute to the mean more than others. A common example of this is weighting academic exams to give a final grade. If you have three exams and a final exam, and we give each of the three exams 20% weight and the final exam 40% weight of the final grade. The mean for a set of weighted numbers is given by, (a) If 𝑣 1 , 𝑣 2 , 𝑣 3 , . .. are successive class marks, their common difference will for this case be equal to 𝑐, so that 𝑣 2 = 𝑣 1 + 𝑐, 𝑣 3 = 𝑣 2 + 𝑐 = 𝑣 1 + 2𝑐 and in general 𝑣 𝑗 = 𝑣 1 + (𝑗 -1)𝑐. Then any two class marks 𝑣 𝑝 and 𝑣 𝑞 will differ by

𝑣̅ = 𝑣 1 + 𝑣 2 + ⋯ + 𝑣 𝑁 𝑁 = ∑ 𝑣 𝑗 𝑁 𝑗=1 𝑁 . ( 4 
𝑣̅ = 𝑓 1 𝑣 1 + 𝑓 2 𝑣 2 + ⋯ + 𝑓 𝐾 𝑣 𝐾 𝑓 1 + 𝑓 2 + ⋯ + 𝑓 𝐾 = ∑ 𝑓 𝑗 𝑣 𝑗 𝐾 𝑗=1 ∑ 𝑓 𝑗 𝐾 𝑗=1 = ∑ 𝑓 𝑗 𝑣 𝑗 𝐾 𝑗=1 𝑁 , ( 4 
𝑣 𝑝 -𝑣 𝑞 = [𝑣 1 + (𝑝 -1)𝑐] -[𝑣 1 + (𝑞 -1)𝑐] = (𝑝 -𝑞)𝑐,
which is a multiple of 𝑐. 114

Solution

First method

The median is that weight for which half the total frequency (40/2 = 20) lies above it and half lies below it. Now the sum of the first three class frequencies is 3 + 5 + 9 = 17. Thus, to give the desired 20, we require three more of the 12 cases in the fourth class. Since the fourth-class interval, 145-153, actually corresponds to weights 144.5 to 153.5, the median must lie 3/12 of the way between 144.5 and 153.5; that is, the median is 144.5 + 3 12 (153.5 -144.5) = 146.8 lb.

Second method

Since the sum of the first three and first four class frequencies are 3 + 5 + 9 = 17 and 3 + 5 + 9 + 12 = 29, respectively, it is clear that the median lies in the fourth class, which is, therefore, the median class. Then 𝐿 1 = 144. 

= 146.8 lb.

Remarks:

• The mean and median are both useful statistics for describing the central tendency of a data set. The mean makes use of all the data values and is affected by extreme values that are much larger or smaller than the others; the median makes use of only one or two of the middle values and is thus not affected by extreme values. Which of them is more useful depends on what one is trying to learn from the data. • When your median is very different from your mean, that means you have a skewed dataset with outliers.

• The relationship between the median and mean can provide valuable information about the shape of a frequency distribution. Specifically, the positioning of the median and mean can provide insight into the skewness of the distribution. In a symmetric frequency curve, where the data is evenly distributed around the center, the median and mean will be located at the same point. This is because the median represents the center of the data, and the mean is calculated as the sum of all the data points divided by the number of data points, resulting in a value that is also at the center of the data. In contrast, for a right-skewed frequency distribution, the mean will be greater than the median. This occurs because the long tail of the distribution is pulling the mean in that direction, while the median is less affected by extreme values. In this case, the median is a better measure of central tendency than the mean, as it is less influenced by outliers. Figure 4.4 shows the relative positions of the mean and median for the symmetric and skewed to the right frequency curves. For symmetrical curves, the mean and median coincide. 

Mode

Definition (The Mode): The mode of a set of numbers is that value which occurs with the greatest frequency. For instance, the set of numbers 2, 4, 7, 8, 8, 8, 10, 10, 11, 12 and 18 has mode 8, however, the set of numbers 2, 3, 8, 11, 12, 14, and 16 has no mode. Set 1, 2, 3, 3, 3, 5, 5, 8, 8, 8, and 9 has two modes, 3 and 8.

Remarks:

• The mode may not exist, and even if it does exist it may not be unique. When no value occurs more than once, there is no mode. • If no single value occurs most frequently, then all the values that occur at the highest frequency are called modal values. When two values occur with an equal amount of frequency, then the dataset is considered bimodal. • A distribution having only one mode is called unimodal. • In the case of grouped data where a frequency curve has been constructed to fit the data, the mode will be the value (or values) of 𝑣 corresponding to the maximum point (or points) on the curve. This value of 𝑣 is sometimes denoted by 𝑣 ̂. • The mode is not unduly affected by extreme values, that is, values that are extremely high or extremely low.

For example, if we are given the following set of observations: 1,1,1,1,1,2,2,100. The mean of the given set of data values is 13.625 which is clearly not representative of the above data values. However, the mode which is equal to 1 is clearly representative of a typical value from the above data set. This is one advantage of the mode compared to the mean. • From a frequency distribution or histogram, the mode can be obtained from the formula 

Mode = 𝐿 + 𝑓 1 -𝑓 0 (𝑓 1 -𝑓 0 ) + (𝑓 1 -𝑓 2 ) ℎ, (4.10 

Geometric Mean

The geometric mean is a mean or average that uses the product of the values of a finite set of real numbers to indicate a central tendency (as opposed to the arithmetic mean, which uses the sum of the values).

Definition (The Geometric Mean 𝑮):

The geometric mean 𝐺 of a set of 𝑁 positive numbers 𝑣 1 , 𝑣 

𝐺 = √𝑣 1 𝑣 2 𝑣 3 . . . 𝑣 𝑁 𝑁 = (𝑣 1 𝑣 2 𝑣 3 . . . 𝑣 𝑁 ) 1 𝑁 = 𝑒 ln(𝑣 1 𝑣 2 𝑣 3 ...𝑣 𝑁 ) 1 𝑁 = 𝑒 1 𝑁 ln(𝑣 1 𝑣 2 𝑣 3 ...𝑣 𝑁 )
= 𝑒 = 𝑁 is the total frequency, then the weighted geometric mean is log 𝐺 = log(𝑣 .

𝐺 = √𝑣 1 𝑓 1 𝑣 2 𝑓 2 … 𝑣 𝐾 𝑓 𝐾 𝑁 , (4.14 

∎

Remark:

• One limitation of the geometric mean is that it cannot be used with negative numbers, as the 𝑛th root of a negative number is not defined. • The geometric mean is useful in data normalization, where it is used to scale data to a common baseline. For example, if you have a set of data with values that span several orders of magnitude, you can use the geometric mean to calculate a "typical" value for the data set, which can then be used to scale the data to a more manageable range. One typically divides each data point by the geometric mean of the entire dataset. This has the effect of scaling the data so that it is centered around 1. • The geometric mean is useful also in situations where the data exhibits exponential growth or decay, such as in population growth or radioactive decay.

Harmonic Mean

Definition (The Harmonic Mean 𝑯): The harmonic mean 𝐻 of a set of 𝑁 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is the reciprocal of the arithmetic mean of the reciprocals of the numbers:

𝐻 = 1 1 𝑁 ∑ 1 𝑣 𝑗 𝑁 𝑗=1
.

(4.16) Hence, the harmonic mean is calculated by dividing the number of observations by the sum of their reciprocals.

𝐻 = 𝑁

∑ 1 𝑣 𝑗 𝑁 𝑗=1
.

(4.17)

For instance, the harmonic mean of the numbers 2, 4, and 8 is 𝐻 = 

Remarks:

• The harmonic mean is useful when dealing with rates or ratios, where the data has an inverse relationship. For example, when calculating the average speed of a journey where the distance and time taken are known, the harmonic mean can be used to give a more accurate measure than the arithmetic mean. If a vehicle travels a certain distance 𝑑 outbound at a speed 𝑥 (e.g. 60 km/h) and returns the same distance at a speed 𝑦 (e.g. 20 km/h), then its average speed is the harmonic mean of 𝑥 and 𝑦 (30 km/h), not the arithmetic mean (40 km/h),

Average speed for the entire journey = Total distance traveled Sum of time for each segment

= 2𝑑 𝑑 𝑥 + 𝑑 𝑦 = 2 1 𝑥 + 1 𝑦 .
• The geometric mean of a set of positive numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is less than or equal to their arithmetic mean but is greater than or equal to their harmonic mean. In symbols,
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𝐻 ≤ 𝐺 ≤ 𝑣. ̅ (4.18) The equality signs hold only if all the numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 are identical. For example, the set 2, 4, 8 has an arithmetic mean 4.67, geometric mean 4, and harmonic mean 3.43.

Root Mean Square

Definition (The Root Mean Square (RMS) or Quadratic Mean): The RMS is calculated by taking the square root of the average of the squares of a set of values. The RMS of a set of numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is defined by

RMS = √ 𝑣 2 ̅̅̅ = √ ∑ 𝑣 𝑗 2 𝑁 𝑗=1 𝑁 . (4.19)
For instance, the RMS of the set 1, 3, 4, 5, and 7 is RMS = √ 1 2 +3 2 +4 2 +5 2 +7 2 5 = 4.47.

Remarks:

• The RMS takes into account the magnitude of both positive and negative values. This property makes the RMS particularly useful in situations where both positive and negative values are present. This is because when you square a negative number, the result is positive. So, when you calculate the average of the squares of a set of values and then take the square root of that average, the negative values contribute just as much to the result as the positive values. This means that the RMS provides a more complete picture of the overall magnitude of a set of values. • The RMS can be used to calculate the standard deviation of a set of values. Specifically, the standard deviation is equal to the RMS of the deviations from the mean.

Truncated Mean or Trimmed Mean

Definition (The Trimmed Mean): Trimmed mean is a statistical measure that is calculated by first removing a certain percentage of the largest and smallest values from a dataset and then taking the arithmetic mean of the remaining values. The percentage of values that are trimmed is typically between 5% and 25%.

Remarks:

• One advantage of using trimmed mean is that it is less affected by outliers than the standard arithmetic mean. This is because the extreme values are removed before calculating the mean, which reduces the impact of outliers on the final result. • The truncated mean uses more information from the data set than the median, but unless the underlying data set is symmetric, the truncated mean of a sample is unlikely to produce an unbiased estimator for either the mean or the median.

Here are the steps to calculate the trimmed mean:

• Decide on the total percentage of values to be trimmed. This is typically denoted as '𝑝' and is usually between 5% and 25%. For example, if you decide to trim a total 10% of values, 𝑝 would be 0.1. • Sort the dataset in ascending or descending order, depending on your preference.

• Calculate the number of values to be trimmed on each end of the dataset. This can be done using the formula: number of values to be trimmed on each end = 𝑁 × (𝑝/2) where 𝑁 is the total number of values in the dataset. Round this number to the nearest integer.

CHAPTER 4 DESCRIPTIVE STATISTICS: MEASURES OF CENTRAL TENDENCY
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• Remove the calculated number of values from each end of the dataset. For example, if the dataset contains 20 values, and you decided to trim a total 10%, (i.e., 5% from each side) then you would remove 1 value from each end, leaving 18 values in the trimmed dataset. • Calculate the arithmetic mean of the remaining values in the trimmed dataset. This is your trimmed mean.

Example 4.4

Find the totally 40% trimmed mean for the dataset {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Solution

• 𝑝 = 0.4. The number of values to be trimmed on each end is: number of values to be trimmed on each end = 𝑁 × (𝑝/2) = 10 × 0.2 = 2. • Remove 2 values from each end of the dataset, leaving: 3, 4, 5, 6, 7, 8.

• The trimmed mean is then calculated as the arithmetic mean of these values: trimmed mean = (3 + 4 + 5 + 6 + 7 + 8)/6 = 5.5. • So, the trimmed mean of this dataset, with 40% of values trimmed, is 5.5.

Winsorized Mean

Definition (The Winsorized Mean):

The Winsorized mean is a statistical method used to reduce the influence of extreme values (outliers) on the calculation of the mean. Instead of completely removing the outliers, the Winsorized mean replaces them with the nearest non-outlying value.

Remarks:

• Winsorized mean has several advantages over other methods, such as the mean or median. It is less sensitive to outliers and can provide a more accurate representation of the data. • The winsorized mean includes modifying data points, while the trimmed mean involves removing data points.

It is common for the winsorized mean and trimmed mean to be close or sometimes equal in value to each other.

Here are the steps to calculate Winsorized mean:

• Sort the dataset in ascending order.

• Decide on the percentage of values to be trimmed from each tail of the dataset. For example, if you decide to trim 10% from each tail, then the top and bottom 10% of values will be replaced. • Calculate the number of values to be trimmed from each tail of the dataset. This can be done by multiplying the percentage to be trimmed by the total number of observations in the dataset and then rounding to the nearest integer. For example, if you have a dataset of 100 observations and you decide to trim 10% from each tail, you will need to trim 10 values from each tail. 
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• The two smallest and two largest data points-20% of the 20 data points-will be replaced with their next closest value. • Thus, the new data set is as follows : 7, 7, 7, 8, 11, 14, 18, 23, 23, 27, 35, 40, 49, 50, 55, 60, 61, 61, 61, 61. The winsorized mean is 33.9.

Quartiles, Deciles, and percentiles

• If a set of data is arranged in order of magnitude, the middle value (or arithmetic mean of the two middle values) that divides the set into two equal parts is the median. • By extending this idea, quartiles, deciles, and percentiles divide a dataset into equal parts based on their rank or order. 

•
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To calculate quartiles, there is no universal agreement on selecting quartile values.

Method 1

• Use the median to divide the ordered data set into two halves. 1-If there is an odd number of data points in the original ordered data set, do not include the median (the central value in the ordered list) in either half. 2-If there is an even number of data points in the original ordered data set, split this data set exactly in half.

• The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data.

Method 2

• Use the median to divide the ordered data set into two halves. 1-If there are an odd number of data points in the original ordered data set, include the median (the central value in the ordered list) in both halves. 2-If there are an even number of data points in the original ordered data set, split this data set exactly in half. • The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data.

Here are the steps to calculate quartiles using the Tukey method:

• Sort the data in ascending order.

• Calculate the median of the entire dataset, which represents the 50th percentile. This is 𝑄 2 , the second quartile. • Divide the data into two halves: the lower half (below 𝑄 2 ) and the upper half (above 𝑄 2 ).

• Calculate the median of the lower half, which is 𝑄 1 , the first quartile.

• Calculate the median of the upper half, which is 𝑄 3 , the third quartile.

Here is an example calculation of quartiles using the Tukey method: Example 4. [START_REF] Weiss | Introductory Statistics[END_REF] Find the quartiles for the dataset {2, 5, 1, 8, 4, 7, 3, 6}.

Solution

• Sort the data in ascending order: {1, 2, 3, 4, 5, 6, 7, 8}

• Calculate the median of the entire dataset: 𝑄 2 = 4.5

• Divide the data into two halves: {1, 2, 3, 4} (lower half) and {5, 6, 7, 8} (upper half)

• Calculate the median of the lower half: 𝑄 1 = 2.5

• Calculate the median of the upper half: 𝑄 3 = 6.5

• Therefore, the quartiles for this dataset are 𝑄 1 = 2.5, 𝑄 2 = 4.5, and 𝑄 3 = 6.5.

To calculate deciles, you can follow the following steps:

• Sort the data in ascending order from smallest to largest.

• Count the number of data points, denoted as "𝑛".

• The decile formulas are 𝐷(𝑥) = (𝑛+1)𝑥

10

, where 𝑥 is the value of the decile that needs to be calculated and ranges from 1 to 9 and 𝑛 is the total number of observations in that data set. 

Solution

The steps required are as follows: 1. Arrange the data in increasing order. This gives [START_REF] Larsen | Introduction to Mathematical Statistics and Its Applications[END_REF][START_REF] Hogg | Introduction to Mathematical Statistics[END_REF]27,[START_REF] Speegle | Probability, Statistics, and Data[END_REF][START_REF] Hui | Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics[END_REF][START_REF] Hui | Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics[END_REF][START_REF] Hui | Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics[END_REF]33,[START_REF] Unpingco | Python for Probability, Statistics, and Machine Learning[END_REF][START_REF] Unpingco | Python for Probability, Statistics, and Machine Learning[END_REF]42,45,51,54,55,55,56,57,59, 62, 63, 72, 80. 2. Identify the total number of points. Here, 𝑛 = 23 3. Apply the decile formula to calculate the position of the required data point. 𝐷(1) = (𝑛 + 1)/10 = 2.4.

This implies the value of the 2.4th data point has to be determined. This will lie between the scores in the 2nd and 3rd positions. In other words, the 2.4th data is 0.4 of the way between the scores 24 and 

Five-Number Summary and the Box Plot

An outlier may result from transposing digits when recording a measurement, from incorrectly reading an instrument dial, from a broken piece of equipment, or from other problems. Even when there are no recording errors, a data set may contain one or more measurements that, for one reason or another, are very different from the others in the set. These outliers can cause a distortion in commonly used numerical measures such as mean and standard deviation. In fact, outliers may themselves contain important information not shared with the other measurements in the set. Therefore, isolating outliers, if they are present, is an important first step in analyzing a data set. The box plot and five-number summary are designed exactly for this purpose.

The median and the upper and lower quartiles divide the data into four sets, each containing an equal number of measurements. If we add the largest number (Max) and the smallest number (Min) in the data set to this group, we will have a set of numbers that give insight into the spread, central tendency, and outliers in the data.

The five-number summary consists of the following numerical measures:

(Min, 𝑄 1 , Median, 𝑄 3 , Max).

• The median (𝑄 2 ) represents the center of the dataset. It divides the data into two equal halves, with 50% of the observations below and 50% above it. It is robust to outliers. • The range, calculated as the difference between the maximum and minimum values, gives an idea of the overall spread of the data. • The interquartile range (IQR), calculated as the difference between the third and first quartiles (𝑄 3 -𝑄 1 ), represents the spread of the middle 50% of the data and is resistant to outliers.

The box plot, also known as the box-and-whisker plot, is a graphical representation of the five-number summary. A box plot is a useful tool for identifying outliers, comparing distributions, and identifying trends in data.

• The median is represented by the vertical line in the box plot.

• The first quartile (𝑄 1 ) is represented by the left end of the box.

• The third quartile (𝑄 3 ) is represented by the right end of the box.

• The interquartile range (IQR) is the distance between 𝑄 1 and 𝑄 3 . It is a measure of the spread of data.

• The whiskers extend from the box to the minimum and maximum values.
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Detecting Outliers

Outliers are observations that are beyond the:

• Lower fence: 𝑄 1 -1.5 (IQR)

• Upper fence: 𝑄 3 + 1.5 (IQR)

The upper and lower fences are shown in Figure 4.7, but they are not usually drawn on the box plot. Any measurement beyond the upper or lower fence is an outlier; the rest of the measurements, inside the fences, are not unusual. Finally, the box plot marks the range of the data set using "whiskers" to connect the smallest and largest measurements (excluding outliers) to the box.

Here are some examples of how box plots can be used:

• One of the significant advantages of the box plot is its ability to identify potential outliers in the dataset.

Outliers are data points that lie significantly above or below the whiskers of the plot. By indicating these extreme values, the box plot highlights the presence of unusual or influential observations. • Box plots are highly effective for comparing distributions across different groups or categories. By placing multiple box plots side by side, it becomes easier to identify differences in central tendency, spread, and variability between the groups. This comparative aspect is particularly useful in exploratory data analysis and hypothesis testing. 

LOCATION STATISTICS

The Wolfram Language's descriptive statistics functions operate both on explicit data and on symbolic representations of statistical distributions, making it a valuable tool for data analysis and exploratory data science tasks.

Mean[list]

gives the statistical mean of the elements in list.

Mean[dist]

gives the mean of the distribution dist.

Median[list]

gives the median of the elements in list.

Median[dist]

gives the median of the distribution dist.

Commonest[list]

gives a list of the elements that are the most common in list.

Commonest[list,n]

gives a list of the n most common elements in list. gives the mean when a fraction f1 of the smallest elements and a fraction f2 of the largest elements are removed.

Mathematica Examples

TrimmedMean[list]

gives the 5% trimmed mean TrimmedMean[list,0.05].

TrimmedMean[dist,…]

gives the trimmed mean of a univariate distribution dist. The first method involves manually trimming a percentage of the extreme values from the data set using built-in Mathematica functions, while the second method uses the built-in "TrimmedMean" function. The manual trimming approach may be useful in cases where more control over the trimming process is required. The code first defines a data set, "data", containing a series of integer values. It then sets the trimming percentage, "p", to 0.2, indicating that 20% of the extreme values from each end of the data set should be removed. The code then calculates the length of the data set, "n", and the number of values to trim,"numToTrim", using the rounding function "Round". The data set is then sorted in ascending order using the "Sort" function, and the extreme values are trimmed using the "Take" function to create a new data set, "trimmedData". Finally, the trimmed mean is calculated using the "Mean" function on the "trimmedData" data set: *) gives the mean when the fraction f1 of the smallest elements and the fraction f2 of the largest elements are replaced by the remaining extreme values.

WinsorizedMean[list]

gives the 5% winsorized mean WinsorizedMean[list,0.05].

WinsorizedMean[dist,…]

gives the winsorized mean of a univariate distribution dist. Input (* The code is calculating the winsorized mean of a data set using two different methods. The first method involves manually trimming a percentage of the extreme values from the data set using built-in Mathematica functions, while the second method uses the built-in "WinsorizedMean" function. The manual trimming approach may be useful in cases where more control over the trimming process is required. In this code, we first define the dataset using a list called data. Then, we define the trimming percentage using a variable called trim. The number of values to be trimmed from both ends of the distribution is calculated using the Ceiling function, and stored in a variable called n. We then sort the data using the Sort function and replace the outliers with the next largest or smallest non-outlying value using a combination of Input (* The code generates a random set of 500 real numbers between-10 and 10 and stores them in the variable "data". The "ArgMin" function is then used to find the value of "p" that minimizes the sum of the square root of the distance between each element in "data" and "p". This effectively finds the value of "p" that is closest to the median of "data". The result is stored in the variable "result". Finally, the code 141 calls the "SpatialMedian" function on "data", which returns the spatial median of the dataset. The spatial median is a generalization of the median to higherdimensional spaces: *)

data=RandomReal[{-10,10},500]; result=ArgMin[ Sum[ Sqrt[(data[[i]]-p)^2], {i,1,Length[data]} ], p ] SpatialMedian[data] Output -0.563169 Output -0.561731
Input (* The code generates a random set of 500 two-dimensional points with coordinates between-10 and 10 and stores them in the variable "data". The "ArgMin" function is then used to find the point (x, y) that minimizes the sum of the Euclidean distances between each point in "data" and the point (x, y). This effectively finds the point that is closest to the geometric median of "data". The result is stored in the variable "result". Finally, the code calls the "SpatialMedian" function on "data", which returns the spatial median of the dataset: *) gives the harmonic mean of the values in list.

data=RandomReal[{-10,10},{500,2}]; result=ArgMin[ Total[Sqrt[Total[(Transpose[data]-{x,y})^2]]], {x,y} ] SpatialMedian[data] Output {-0.

GeometricMean[list]

gives the geometric mean of the values in list. gives the root mean square of values in list.

Mathematica

RootMeanSquare[dist]

gives the root mean square of the distribution dist. gives a list of the 1/4, 1/2 and 3/4 quantiles of the distribution dist.

Mathematica

Quantile[list,q]

gives the q ^(th) quantile of list.

Quantile[list,{q1,q2,…}]
gives a list of quantiles q1, q2, …. Quantile[list,q,{{a,b},{c,d}}] uses the quantile definition specified by parameters a, b, c, d.

Quantile[dist,q]

gives a quantile of the distribution dist. PlotStyle->Purple, Ticks->{{{Q1,"Q1",{0,.01}},{Q2,"Q2",{0,.01}},{Q3,"Q3",{0,. makes a chart with box-and-whisker symbol for each datai. BoxWhiskerChart[{{data1,data2,…},…},…] makes a box-and-whisker chart from multiple groups of datasets {data1,data2,…}.

Mathematica

BoxWhiskerChart draws a box-and-whisker summary of the distribution of values in each datai. See the following figure

The following box-and-whisker specifications bwspec can be given:

"Notched" median confidence interval notch "Outliers" outlier markers "Median" median marker "Basic" box-and-whisker only "Mean" mean marker "Diamond" mean confidence interval diamond {{elem1,val11,…},…} box-and-whisker element specification {"name",{elem1,val11,…},…} named bwspec with element modifica For instance, the range of the set 1, 3, 3, 5, 5, 5, 8, 10, 14 is 14 -1 = 13.

Remarks:

1-The range is a straightforward way to measure the variability of a dataset. It tells us how much the data is spread out from the minimum value to the maximum value. A larger range indicates greater variability or diversity in the dataset, while a smaller range indicates less variability dataset. 2-One limitation of the range is that it only considers the two extreme values in the dataset -the maximum and minimum values. It doesn't consider the distribution of the remaining values, which can be important in understanding the overall shape of the data. 3-Hence, the range may not accurately reflect the spread of the central portion of the data. 4-It is important to note that the range is sensitive to outliers, which are extreme values that are far from the rest of the data. Outliers can distort the range and make it less informative, so it is often useful to complement the range with other measures of dispersion, such as the interquartile range or the standard deviation. there is much more variation, or dispersion, in (a) than in (b). In fact, (b) consists mainly of 8's and 9's. Since the range indicates no difference between the sets, it is not a very good measure of dispersion in this case (where extreme values are present, the range is generally a poor measure of dispersion). An improvement is achieved by throwing out the extreme cases, 3 and 18. Then for set (a) the range is 15 -5 = 10, while for set (b) the range is 9 -8 = 1, clearly showing that (a) has greater dispersion than (b). However, this is not the way the range is defined. The 10-90 percentile range were designed to improve on the range by eliminating extreme cases.

𝟏𝟎-𝟗𝟎

Semi-Interquartile Range

Definition (The Semi-Interquartile Range): The semi-interquartile range, or quartile deviation, of a set of data is denoted by 𝑄 and is defined by

𝑄 = 𝑄 3 -𝑄 1 2 , (6.
2) where 𝑄 1 and 𝑄 3 are the first and third quartiles for the data.

For instance, let us consider the semi-interquartile range of the set 6, 47, 49, 15, 43, 41, 7, 39, 43, 41, 36 (or 6, 7, 15, 36, 39, 41, 41, 43, 43, 47, 49). The rank of the median is 6, which means there are five points on each side. Then we need to split the lower half of the data in two again to find the lower quartile. The lower quartile will be the point of rank (5 + 1)/2 = 3. The result is 𝑄 1 = 15. The second half must also be split in two to find the value of the upper 166 quartile. The rank of the upper quartile will be 6 + 3 = 9. So 𝑄 3 = 43. The interquartile range will be 𝑄 3 -𝑄 1 = 28. The semi-interquartile range is 14 and the range is 49 -6 = 43.

Remarks:

• In some cases, it may be more appropriate to use the full interquartile range (i.e., the difference between the first and third quartiles) instead of the semi-interquartile range. This is particularly true when the data is symmetric or when there are no extreme values. • It is important to note that, the semi-interquartile range is a measure of the spread of the middle 50% of a dataset. The 10-90 percentile range, on the other hand, is a measure of the spread of the middle 80% of a dataset. Hence, the semi-interquartile range is more resistant to outliers than the 10 -90 percentile range, but it is less precise. The 10 -90 percentile range is more precise than the semi-interquartile range, but it is less resistant to outliers.

Mean Absolute Deviation

Definition (The Mean Absolute Deviation): The mean absolute deviation, or average deviation, of a set of 𝑁 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is abbreviated (MD) and is defined by

Mean deviation (MD) = ∑ |𝑣 𝑗 -𝑣̅ | 𝑁 𝑗=1 𝑁 , (6.
3) where 𝑣̅ is the arithmetic mean of the numbers and |𝑣 𝑗 -𝑣̅ | is the absolute value of the deviation of 𝑣 𝑗 from 𝑣̅ . Simply, it is the average distance between each data point and the mean of the dataset (see Figure 6.1).

For instance, the mean deviation of the set 2, 3, 6, 8, 11 is is that it is a minimum when 𝑎 is the median (i.e., the mean deviation about the median is a minimum). Find the mean deviation for the data in the frequency distribution (Table 6.1), where 𝑥̅ = 10.80. 

Standard Deviation

In contrast to the range, the standard deviation considers all the observations. Roughly speaking, the standard deviation measures variation by indicating how far, on average, the observations are from the mean. For a data set with a large amount of variation, the observations will, on average, be far from the mean; so the standard deviation will be large. For a data set with a small amount of variation, the observations will, on average, be close to the mean; so the standard deviation will be small.

Definition (The Standard Deviation of a Population):

(a) The standard deviation of a set of 𝑁 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is denoted by 𝑆 and is defined by

𝑆 = √ ∑ (𝑣 𝑗 -𝑣̅ ) 2 𝑁 𝑗=1
𝑁 . (6.5.1) Thus 𝑆 is sometimes called, the root-mean-square deviation (see Figure 6 
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Sometimes the standard deviation of a sample's data is defined with 𝑁 -1 replacing 𝑁 in the denominators of the expressions in (6.5) and (6.6) because the resulting value represents a better estimate of the standard deviation of a population from which the sample is taken (we will discuss this point in detail in Chapter 18). For large values of 𝑁 (certainly 𝑁 > 30), there is practically no difference between the two definitions.

Definition (The Standard Deviation for Sample):

(a) The standard deviation of a set of 𝑁 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is denoted by 𝑆 and is defined by = 𝑁. This form is useful for grouped data.

𝑆 = √ ∑ (𝑣 𝑗 -𝑣̅ ) 2 𝑁 𝑗=1 𝑁 -1 . ( 6 

Example 6.2

Find the standard deviation for the data in the frequency distribution (Table 6.2), where 𝑥̅ = 10.8. 

Variance

Variance is a measure of the spread of data points around the mean. Variance is a useful tool for understanding and comparing data sets. For example, if you have two data sets with the same mean, but different variances, you can tell that the data points in one data set are more spread out than the data points in the other data set.

Definition (The Variance):

The variance of a set of data is defined as the square of the standard deviation and is thus given by 𝑆 2 in (6.5) and (6.6).

For instance, the variances of the data set 3, 4, 6, 7, 10 is 6 (the mean is (3 + 4 + 6 + 7 + 10)/5 = 6 and 𝑆 2 = ((-3) 2 + (-2) 2 + (0) 2 + (1) 2 + (4) 2 ))/5 = 6).

When it is necessary to distinguish the standard deviation of a population from the standard deviation of a sample drawn from this population, we often use the symbol 𝑆 for the latter and 𝜎 for the former. Thus 𝑆 2 and 𝜎 2 would represent the sample variance and population variance, respectively. ∎ Remarks:

1. The standard deviation can be defined as

𝑆 = √ ∑ (𝑣 𝑗 -𝑎) 2 𝑁 𝑗=1 𝑁 , (6.12 
) where 𝑎 is an average besides the arithmetic mean.

2. Suppose that two sets consisting of 𝑁 1 and 𝑁 2 numbers have variances given by 𝑆 1 2 and 𝑆 2 2 , respectively, and have the same mean. Then the combined variance or pooled variance of both sets is given by (c) The mean of the combined sets is Remarks:

𝑆 2 = 𝑁 1 𝑆 1 2 + 𝑁 2 𝑆 2 2 𝑁 1 + 𝑁 2 . ( 6 
1-The actual value of the CV is independent of the unit in which the measurement has been taken, so it is a dimensionless number. 2-Relative dispersion or coefficient of variation is a useful measure because it allows us to compare the variability of datasets that have different units of measurement or different scales. For example, if we are comparing the variability of salaries in two different countries, we may find that the standard deviation of salaries is much higher in one country than in the other. However, this may not necessarily mean that the salaries in one country are more variable than the other, as the mean salary may also be much higher in that country. By calculating the relative dispersion, we can compare the variability of the two datasets in a way that takes into account their different scales. 3-Hence, for comparison between data sets with different units or widely different means, one should use the coefficient of variation instead of the standard deviation. 4-A disadvantage of the coefficient of variation is that it fails to be useful when 𝑣̅ is close to zero.

For example, in the following, we will take the values given as randomly chosen from a larger population of values.

1-The data set [100, 100, 100] has constant values. Its standard deviation is 0 and average is 100, giving the coefficient of variation as 0/100 = 0. 2-The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10/100 = 0.1. 3-The data set [1,[START_REF] Tukey | Exploratory Data Analysis[END_REF][START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Mendenhall | Introduction to probability and statistics[END_REF]10,[START_REF] Rotondi | Probability, Statistics and Simulation: With Application Programs Written in R[END_REF]65,88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9/27.9 = 1.18.

Definition (The Standardized Variable):

The variable that measures the deviation from the mean in units of the standard deviation is called a standardized variable, is a dimensionless quantity and is given by

𝑧 = 𝑣 -𝑣̅ 𝑆 . (6.16)
Definition (The Standard Scores): If the deviations from the mean are given in units of the standard deviation, they are said to be expressed in standard units, or standard scores.

Example 6.4

A student received a grade of 84 on a final examination in mathematics for which the mean grade was 76 and the standard deviation was 10. On the final examination in physics, for which the mean grade was 82 and the standard deviation was 16, she received a grade of 90. In which subject was her relative standing higher?

Solution

The standardized variable 𝑧 = 𝑣-𝑣 ̅ 𝑆 measures the deviation of 𝑣 from the mean 𝑣̅ in terms of standard deviation 𝑆. For mathematics, 𝑧 = 0.8; for physics, 𝑧 = 0.5. Thus, the student had a grade 0.8 of a standard deviation above the mean in mathematics, but only 0.5 of a standard deviation above the mean in physics. Thus, her relative standing was higher in mathematics.

Trimmed and Winsorized Variance

One limitation of variance is that it can be affected by outliers or extreme values in the dataset. In such cases, alternative measures such as trimmed variance or winsorized variance may be more appropriate.

Definition (The Trimmed Variance):

In trimmed variance, a certain percentage of the data points at the very top and very bottom of the distribution are trimmed or removed. For example, a 10% trimmed variance would remove the top 10% and bottom 10% of the data points.

Definition (The Winsorized Variance):

In Winsorized variance, a certain percentage of the data points at the very top and very bottom of the distribution are replaced by the value of the nearest data point that is not trimmed. For example, a 10% Winsorized variance would replace the top 10% and bottom 10% of the data points with the value of the 10th and 90th percentiles, respectively. 𝑁 , (6.17) called the 𝑟th moment. The first moment with 𝑟 = 1 is the arithmetic mean 𝑣̅ .

Moments, Skewness, and Kurtosis

The 𝑟th moment about the mean 𝑣̅ is defined as

𝑚 𝑟 = ∑ (𝑣 𝑗 -𝑣̅ ) 𝑟 𝑁 𝑗=1 𝑁 . (6.18) If 𝑟 = 1, then 𝑚 1 = 0. If 𝑟 = 2, then 𝑚 2 = 𝑆 2 , the variance.
The 𝑟th moment about any origin 𝐴 is defined as

𝑚 𝑟 ′ = ∑ (𝑣 𝑗 -𝐴) 𝑟 𝑁 𝑗=1 𝑁 . ( 6 

.19)

If 𝐴 = 0, (6.19) reduces to equation (6.17 If 𝑣 1 , 𝑣 We have

𝑚 𝑟 = 1 𝑁 ∑ 𝑓 𝑗 (𝑑 𝑗 + 𝐴 -𝑣̅ ) 𝑟 𝐾 𝑗=1 = 1 𝑁 ∑ 𝑓 𝑗 (𝑑 𝑗 -𝑚 1 ′ ) 𝑟 𝐾 𝑗=1 = 1 𝑁 ∑ 𝑓 𝑗 (𝑑 𝑗 𝑟 -𝐶 𝑟 1 𝑑 𝑗 𝑟-1 𝑚 1 ′ + 𝐶 𝑟 2 𝑑 𝑗 𝑟-2 𝑚 1 ′ 2 -𝐶 𝑟 3 𝑑 𝑗 𝑟-3 𝑚 1 ′ 3 + ⋯ + (-1) 𝑟 𝑚 1 ′ 𝑟 ) 𝐾 𝑗=1 = ∑ ( 1 𝑁 𝑓 𝑗 𝑑 𝑗 𝑟 -𝐶 𝑟 1 1 𝑁 𝑓 𝑗 𝑑 𝑗 𝑟-1 𝑚 1 ′ + 𝐶 𝑟 2 1 𝑁 𝑓 𝑗 𝑑 𝑗 𝑟-2 𝑚 1 ′ 2 -𝐶 𝑟 3 1 𝑁 𝑓 𝑗 𝑑 𝑗 𝑟-3 𝑚 1 ′ 3 + ⋯ + (-1) 𝑟 1 𝑁 𝑓 𝑗 𝑚 1 ′ 𝑟 ) 𝐾 𝑗=1 = 𝑚 𝑟 ′ -𝐶 𝑟 1 𝑚 𝑟-1 ′ 𝑚 1 ′ + 𝐶 𝑟 2 𝑚 𝑟-2 ′ 𝑚 1 ′ 2 -⋯ + (-1) 𝑟 𝑚 1 ′ 𝑟 .
In particular, on putting 𝑟 = 2, 3 and 4, we get (6.21).

∎

The coding method can also be used to provide a short method for computing moments. This method uses the fact that 𝑣 𝑗 = 𝐴 + 𝑐𝑢 𝑗 , (The class intervals have equal size 𝑐, 𝑑 𝑗 = 𝑐𝑢 𝑗 , where 𝑢 𝑗 = 0, ± 1, ± 2, ± 3, . ..), so that from equation (6.20.3) we have

𝑚 𝑟 ′ = ∑ 𝑓 𝑗 (𝑣 𝑗 -𝐴) 𝑟 𝐾 𝑗=1 𝑁 = ∑ 𝑓 𝑗 (𝑐𝑢 𝑗 ) 𝑟 𝐾 𝑗=1 𝑁 = 𝑐 𝑟 ∑ 𝑓 𝑗 𝑢 𝑗 𝑟 𝐾 𝑗=1 𝑁 , (6.22 
) which can be used to find 𝑚 𝑟 by applying equations (6.21).

To avoid particular units, we can define the dimensionless moments about the mean as

𝑎 𝑟 = 𝑚 𝑟 𝑆 𝑟 = 𝑚 𝑟 ( √ 𝑚 2 ) 𝑟 = 𝑚 𝑟 √𝑚 2
𝑟 , (6.23) where 𝑆 = √ 𝑚 2 is the standard deviation. Since 𝑚 1 = 0 and 𝑚 2 = 𝑆 2 , we have 𝑎 1 = 0 and 𝑎 2 = 1. Moments about mean are:
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𝑚 1 = 0, 𝑚 2 = 𝑚 2 ′ -𝑚 1 ′2 = 2, 𝑚 3 = 𝑚 3 ′ -3𝑚 1 ′ 𝑚 2 ′ + 2𝑚 1 ′3 = 0, 𝑚 4 = 𝑚 4 ′ -4𝑚 1 ′ 𝑚 3 ′ + 6𝑚 1 ′2 𝑚 2 ′ -3𝑚 1 ′4 = 11.

Skewness

Definition (The Skewness): Skewness is the degree of asymmetry, or departure from symmetry, of a distribution.

Remember, if the frequency curve (smoothed frequency polygon) of a distribution has a longer tail to the right of the central maximum than to the left, the distribution is said to be skewed to the right, or to have positive skewness. If the reverse is true, it is said to be skewed to the left, or to have negative skewness.

For skewed distributions, the mean tends to lie on the same side of the mode as the longer tail. Thus, a measure of the asymmetry is supplied by the difference: mean-mode. This can be made dimensionless if we divide it by a measure of dispersion, such as the standard deviation, leading to the definition (6.27) From (6.27) we observe that S 𝐾 = 0, if 𝑄 3 -𝑄 2 = 𝑄 2 -𝑄 1 . This implies that for a symmetrical distribution (S 𝐾 = 0), median is equidistant from the upper and lower quartiles. Moreover, skewness is positive if:

𝑄 3 -𝑄 2 > 𝑄 2 -𝑄 1 ⇒ 𝑄 3 + 𝑄 1 > 2𝑄 2 ,
(6.28) and skewness is negative if

𝑄 3 -𝑄 2 < 𝑄 2 -𝑄 1 ⇒ 𝑄 3 + 𝑄 1 < 2𝑄 2 .
(6.29) We know that for two real positive numbers 𝑎 and 𝑏 (i.e., 𝑎 > 0 and 𝑏 > 0), the moduls value of the difference (𝑎-𝑏) is always less than or equal to the modules value of the sum (𝑎 + 𝑏), i.e.,

|𝑎 -𝑏| ≤ |𝑎 + 𝑏| ⇒ |

𝑎 -𝑏 𝑎 + 𝑏 | ≤ 1. (6.30) We also know that (𝑄 3 -𝑄 2 ) and (𝑄 2 -𝑄 1 ) are both non-negative. Thus, taking 𝑎 = 𝑄 3 -𝑄 2 and 𝑏 = 𝑄 2 -𝑄 1 , in (6.30), we get

| (𝑄 3 -𝑄 2 ) -(𝑄 2 -𝑄 2 ) (𝑄 3 -𝑄 2 ) | ≤ 1 ⇒ | S 𝐾 (Bowley)| ≤ 1 ⇒ -1 ≤ S 𝐾 (Bowley) ≤ 1.
(6.31) Thus, Bowley's coefficient of skewness ranges from -1 to 1.

An important measure of skewness uses the third moment about the mean expressed in dimensionless form and is given by

Moment coefficient of skewness = 𝑎 3 = 𝑚 3 𝑆 3 = 𝑚 3 ( √ 𝑚 2 ) 3 = 𝑚 3 √𝑚 2 3 .
(6.32) Another measure of skewness is sometimes given by 𝑏 1 = 𝑎 3 2 . For perfectly symmetrical curves, such as the normal curve, 𝑎 3 and 𝑏 1 are zero.

Example 6.7 Table 6.4 shows the frequency distribution of the weekly wages of 65 employees at the Orange Company. 

Kurtosis

If we know the measures of central tendency, dispersion and skewness, we still cannot form a complete idea about the distribution. In addition to these measures, we should know one more measure which Prof. Karl Pearson calls the "Convexity of curve or Kurtosis". Kurtosis enables us to have an idea about the flatness or peakedness of the curve, Definition (The Kurtosis): Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal distribution.

Kurtosis is based on the size of a distribution's tails. Positive kurtosis indicates too few observations in the tails, whereas negative kurtosis indicates too many observations in the tail of the distribution.

A distribution having a relatively high peak is called leptokurtic, while one which is flat-topped is called platykurtic. A normal distribution, which is not very peaked or very flat-topped, is called mesokurtic. One measure of kurtosis uses the fourth moment about the mean expressed in dimensionless form and is given by

Moment coefficient of kurtosis = 𝑎 4 = 𝑚 4 𝑆 4 =
𝑚 4 𝑚 2 2 , (6.33) which is often denoted by 𝑏 2 . For the normal distribution, 𝑏 2 = 𝑎 4 = 3. For this reason, the kurtosis is sometimes defined by 𝑏 2 -3, which is positive for a leptokurtic distribution, negative for a platykurtic distribution, and zero for the normal distribution.

Another measure of kurtosis is based on both quartiles and percentiles and is given by 𝜅 = 𝑄 𝑃 90 -𝑃 10 , (6.34) where 𝑄 = (𝑄 3 -𝑄 1 )/2 is the semi-interquartile range. We refer to 𝜅 (the lowercase Greek letter kappa) as the percentile coefficient of kurtosis; for the normal distribution, 𝜅 has the value 0.263. 

DISPERSION STATISTICS

Dispersion statistics summarize the scatter or spread of the data. Most of these functions describe deviation from a particular location. For instance, variance is a measure of deviation from the mean. Mathematica provides a set of functions and tools for calculating, visualizing, and analyzing dispersion statistics, allowing users to gain deeper insights into the variability and distribution of their data. Let us go through them in detail.

InterquartileRange[list]

gives the difference between the upper and lower quartiles for the elements in list. InterquartileRange [dist] gives the difference between the upper and lower quartiles for the distribution dist.

QuartileDeviation[list]

gives the quartile deviation or semi-interquartile range of the elements in list.

QuartileDeviation[dist]

gives the quartile deviation or semi-interquartile range of the distribution dist. gives the mean absolute deviation from the mean of the elements in list.

Mathematica Examples

StandardDeviation[list]

gives the sample standard deviation of the elements in list.

StandardDeviation[dist]

gives the standard deviation of the distribution dist.

Variance[list]

gives the sample variance of the elements in list. Variance [dist] gives the variance of the distribution dist. Input (* In the code, the variance of a normal distribution is calculated using the Variance function, which provides a measure of the spread or variation of the distribution. By varying the value of σ (standard deviation) in the loop and generating plots for each value, the code visually illustrates how changing the standard deviation affects the shape and spread of the normal distribution. The variance itself represents the average squared deviation of data points from the mean. As the standard deviation increases (larger σ values), the variance will also increase, indicating a greater dispersion or variation of the data: *) d=NormalDistribution[0,σ]; Variance [d] 196 {{n,300,"Sample size"},10,1000,10,Appearance->"Labeled"},{{dist,NormalDistribution[0,1],"Distribution"},{NormalDistribution[0,1] ,StudentTDistribution [3],ExponentialDistribution [1],UniformDistribution[{- 

Mathematica

SHAPE STATISTICS

A variety of moments are used to summarize a distribution or data. Mean is used to indicate a center location, variance and standard deviation are used to indicate dispersion, etc. The Wolfram Language fully supports moments of any order, univariate or multivariate, for symbolic distributions and data. Moreover, you can get some information about the shape of a distribution using shape statistics functions. Skewness describes the amount of asymmetry. Kurtosis measures the concentration of data around the peak and in the tails versus the concentration in the flanks. let us start by considering moment functions.

Moment[list,r]

gives the r^(th) sample moment of the elements in list.

Moment[dist,r]

gives the r^(th) moment of the distribution dist.

Moment[…,{r1,r2,…}]

gives the {r1,r2,…}^(th) multivariate moment.

Moment[r]

represents the r^(th) formal moment.

CentralMoment[list,r]

gives the r^(th) central moment of the elements in list with respect to their mean.

CentralMoment[dist,r]

gives the r^(th) central moment of the distribution dist.

CentralMoment[r]

represents the r^(th) formal central moment.

FactorialMoment[list,r]

gives the r^(th) moment of the elements in the list. FactorialMoment [dist,r] gives the r^(th) moment of the distribution dist.

FactorialMoment[r]

represents the r^(th) factorial moment. gives the coefficient of skewness for the elements in list.

Mathematica

Skewness[dist]

gives the coefficient of skewness for the distribution dist.

QuartileSkewness[list]

gives the coefficient of quartile skewness for the elements in list.

QuartileSkewness[dist]

gives the coefficient of quartile skewness for the distribution dist.

Kurtosis[list]

gives the coefficient of kurtosis for the elements in list.

Kurtosis[dist]

gives the coefficient of kurtosis for the distribution dist. 

FUNDAMENTAL PRINCIPLES OF PROBABILITY

Probability theory is a branch of mathematics that deals with the study of uncertainty and randomness. It provides a framework for analyzing and quantifying the likelihood of events occurring in various scenarios. In this chapter, we consider three principal concepts in probability namely, interpretations of probability, counting techniques, and conditional probability.

• In probability theory, there are different interpretations of what probability represents. These interpretations reflect different philosophical viewpoints and have implications for how probabilities are understood and used. Some common interpretations include: o Classical Interpretation: The classical interpretation assumes that all outcomes of an experiment are equally likely, and probability is calculated as the ratio of favorable outcomes to the total number of equally likely outcomes. o Frequency Interpretation: The frequency interpretation views probability as the long-term relative frequency of an event occurring in a repeated experiment or observation. • Counting techniques form another fundamental concept of probability theory. These techniques provide methods to determine the number of possible outcomes in a given situation. The two fundamental techniques are permutations and combinations: o Permutations deal with the arrangement of objects in a specific order. It involves counting the number of ways to select and arrange a subset of objects from a larger set. o Combinations focus on selecting objects without considering their order.

• Conditional probability is a crucial concept in probability theory. Conditional probability is essential in understanding dependent events, where the occurrence of one event affects the likelihood of the other. It helps in modeling real-world scenarios.

Probability theory also forms the foundation for more advanced concepts, such as random variables, probability distributions, and statistical inference. These concepts enable us to model and analyze complex systems, estimate parameters, and make predictions based on observed data. In the following chapters, we represent these concepts in detail.

Elementary Probability Theory

Statisticians use the word experiment to describe any process that generates a set of data. A simple example of a statistical experiment is the tossing of a coin. In this experiment, there are only two possible outcomes, heads or tails.

Definition (Random Experiment):

An experiment that can result in different outcomes, even though it is repeated in the same manner every time, is called a random experiment.

Assume that the experiment can be repeated any number of times under identical conditions. Each repetition is called a trial. A (random) experiment satisfies the following three conditions:

1. The set of all possible outcomes is known in advance in each trial; 2. In any particular trial, it is not known which particular outcome will happen; and 3. The experiment can be repeated under identical conditions.
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Definition (Sample Space): The set of all possible outcomes of a random experiment is called the sample space of the experiment. The sample space is denoted as 𝑆.

Definition (Discrete Sample Space):

A sample space is discrete if it consists of a finite or countable infinite set of outcomes.

Definition (Continuous Sample Space):

A sample space is continuous if it contains an interval (either finite or infinite) of real numbers.

Example 8.1

Consider the experiment of tossing a die. If we are interested in the number that shows on the top face, the sample space is 𝑆 1 = {1, 2, 3, 4, 5, 6}. If we are interested only in whether the number is even or odd, the sample space is simply 𝑆 2 = {even, odd}.

Note that, Example 8.1 illustrates the fact that more than one sample space can be used to describe the outcomes of an experiment. In some experiments, it is helpful to list the elements of the sample space systematically utilizing a tree diagram.

Example 8.2

An experiment consists of flipping a coin and then flipping it a second time if a head occurs. If a tail occurs on the first flip, then a die is tossed once. To list the elements of the sample space providing the most information, we construct the following tree diagram An outcome in 𝑆 is called a sample point or element. For any given experiment, we may be interested in the occurrence of certain events rather than in the occurrence of a specific element in the sample space. For instance, we may be interested in the event 𝐴 that the outcome when a die is tossed is divisible by 3. This will occur if the outcome is an element of the subset 𝐴 = {3,6} of the sample space 𝑆 1 in Example 8.1.

Definition (Event):

An event is a subset of the sample space of a random experiment. Define the events 𝐴 and 𝐵 for the die-tossing experiment: 𝐴: Observe an odd number 𝐵: Observe a number less than 4 Solution Since event 𝐴 occurs if the upper face is 1, 3, or 5, it is a collection of three simple events (sample points) and we write 𝐴 = {1,3,5}. Similarly, the event 𝐵 occurs if the upper face is 1, 2, or 3 and is defined as a collection of three simple events: 𝐵 = {1, 2,3}.

Some of the basic set operations are summarized here in terms of events:

• The union of two events is the event that consists of all outcomes that are contained in either of the two events. We denote the union as

𝐸 1 ∪ 𝐸 2 . Note that 𝐸 1 ∪ 𝐸 2 = 𝐸 2 ∪ 𝐸 1 .
• The intersection of two events is the event that consists of all outcomes that are contained in both of the two events. We denote the intersection as

𝐸 1 ∩ 𝐸 2 . Note that 𝐸 1 ∩ 𝐸 2 = 𝐸 2 ∩ 𝐸 1 . • The distributive law for set operations implies that (𝐴 ∪ 𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶) and (𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶). (8.1)
• The complement of an event in a sample space is the set of outcomes in the sample space that are not in the event. We denote the complement of the event 𝐸 as 𝐸′. The notation 𝐸 𝐶 is also used in other literature to denote the complement. • The definition of the complement of an event implies that

(𝐸 ′ ) ′ = 𝐸. (8.2) • DeMorgan's laws imply that (𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′ and (𝐴 ∩ 𝐵) ′ = 𝐴 ′ ∪ 𝐵 ′ . (8.3) 
Definition (Mutually Exclusive): Two events are mutually exclusive if, when one event occurs, the other cannot, and vice versa. Hence, two events, denoted as 𝐸 1 and 𝐸 2 , such that 𝐸 1 ∩ 𝐸 2 = ∅, (8.4) are said to be mutually exclusive.

Example 8.4

In the die-tossing experiment, Example 8.3, events 𝐴 and 𝐵 are not mutually exclusive, because they have two outcomes in common-observing a 1 or a 3. Both events 𝐴 and 𝐵 will occur if either 1 or 3 is observed when the experiment is performed. In contrast, the six simple events 1, 2, . .. , and 6 form a set of all mutually exclusive outcomes of the experiment. When the experiment is performed once, one and only one of these simple events can occur.

We can use Venn diagrams to represent a sample space and events in a sample space, see for example, 

1 𝐸 2 𝐸 1 𝐸 2 𝐸 1 𝐸 2 𝐸 1 𝐸 1 ∪ 𝐸 2 𝐸 1 ∩ 𝐸 2 𝐸 1 ∩ 𝐸 2 = ∅ 𝐸 1 ′ CHAPTER 8
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Counting Techniques

In a sample space with a large number of outcomes, determining the number of outcomes associated with the events through direct enumeration could be tedious. In this section, we consider three counting techniques (multiplication principle, permutations and combinations) and use them in probability computations.

Definition (Multiplication Principle):

Assume an operation can be described as a sequence of 𝑘 experiments 𝐴 1 , 𝐴 2 , ., 𝐴 𝑘 contain, respectively, 𝑛 1 , 𝑛 2 , ., 𝑛 𝑘 outcomes, such that for each possible outcome of 𝐴 1 there are 𝑛 2 possible outcomes for 𝐴 2 , and so on, then there are a total of

𝑛 1 × 𝑛 2 ו••× 𝑛 𝑘 , (8.5 
) possible outcomes for the composite experiment 𝐴 1 , 𝐴 2 , ., 𝐴 𝑘 .

The multiplication principle is particularly useful when dealing with situations where events occur one after another in a sequence. By multiplying the number of possibilities at each step, we can determine the total number of outcomes for the entire sequence. The multiplication principle is often visualized using tree diagrams.

Example 8.5

How many sample points are there in the sample space when a pair of dice is thrown once?

Solution

(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (1,3), (2,3), (3,3), (4,3), (5,3), [START_REF] Weiss | Introductory Statistics[END_REF]3), (1,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], (2,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], (3,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], [START_REF] Chambers | Graphical Methods for Data Analysis[END_REF][START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], [START_REF] Tukey | Exploratory Data Analysis[END_REF][START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], (1,[START_REF] Tukey | Exploratory Data Analysis[END_REF], (2,[START_REF] Tukey | Exploratory Data Analysis[END_REF], (3,[START_REF] Tukey | Exploratory Data Analysis[END_REF], (4,5), [START_REF] Tukey | Exploratory Data Analysis[END_REF][START_REF] Tukey | Exploratory Data Analysis[END_REF], [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Tukey | Exploratory Data Analysis[END_REF], (1,[START_REF] Weiss | Introductory Statistics[END_REF], (2,[START_REF] Weiss | Introductory Statistics[END_REF], (3,[START_REF] Weiss | Introductory Statistics[END_REF], [START_REF] Chambers | Graphical Methods for Data Analysis[END_REF][START_REF] Weiss | Introductory Statistics[END_REF], [START_REF] Tukey | Exploratory Data Analysis[END_REF][START_REF] Weiss | Introductory Statistics[END_REF], [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Weiss | Introductory Statistics[END_REF],

The first die can land face-up in any one of 𝑛 1 = 6 ways. For each of these 6 ways, the second die can also land face-up in 𝑛 2 = 6 ways. Therefore, the pair of dice can land in 𝑛 1 × 𝑛 2 = 6 × 6 = 36 possible ways.

When a random sample of size 𝑘 is taken from a total of 𝑛 objects, the total number of ways in which the random sample of size 𝑘 can be selected depends on the particular sampling method we employ. Here we will consider four sampling methods:

• Sampling with replacement and the objects are ordered,

• Sampling without replacement and the objects are ordered,

• Sampling without replacement and the objects are not ordered, and • Sampling with replacement and the objects are not ordered.

Counting Techniques

The multiplication principle allow us to determine the total number of outcomes in a given scenario. Whether it is arranging objects in a specific order or selecting items from a set, this technique help us systematically count the possibilities.

Permutations refer to the arrangements or orderings of a set of objects. They are used when the order of elements matters.

Combinations, on the other hand, are concerned with the selection of objects without considering their order.

Sampling with Replacement and the Objects Are Ordered

• Sampling with replacement refers to a sampling method where an object or element is selected from a set, and after selection, it is returned to the set before the next selection is made. This means that the same object can be chosen more than once in the sampling process. • When the objects are ordered, it means that the arrangement or sequence of the selected objects is considered significant. The order in which the objects are selected or arranged affects the outcome. • When a random sample of size 𝑘 is taken with replacement from a total of 𝑛 objects and the objects being ordered, then there are 𝑛 𝑘 possible ways of selecting 𝑘-tuples.

1 2 … 𝑘 Choice 1 Choice 1 … Choice 1 … … … … Choice 𝑛 Choice 𝑛 … Choice 𝑛 For example,
(1) if a die is rolled four times, then the sample space will consist of 6 4 4-tuples.

(2) If an urn contains nine balls numbered 1 to 9, and a random sample with replacement of size 𝑘 = 6 is taken, then the sample space 𝑆 will consist of 9 6 6-tuples.

Sampling without Replacement and the Objects Are Ordered

Sampling without replacement refers to a sampling method where each object or element is selected from a set, and once selected, it is not returned to the set before the next selection is made. This means that each object can only be chosen once in the sampling process.

Consider a set of elements, such as 𝑆 = {𝑎, 𝑏, 𝑐}. A permutation of the elements is an ordered sequence of the elements. For example, 𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑎𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏, and 𝑐𝑏𝑎 are all of the permutations of the elements of 𝑆. There are 𝑛 1 = 3 choices for the first position. No matter which letter is chosen, there are always 𝑛 2 = 2 choices for the second position.

No matter which two letters are chosen for the first two positions, there is only 𝑛 3 = 1 choice for the last position, giving a total of 𝑛 1 𝑛 2 𝑛 3 = (3)(2)(1) = 6 permutations.

1 2 … 𝑛 Choice 1 Choice 1 … Choice 1 … … … … Choice 𝑛 -1 Choice 𝑛

Definition (Number of Permutations):

The number of permutations of 𝑛 different elements is 𝑛! where

𝑛! = 𝑛 × (𝑛 -1) × (𝑛 -2) ו••× 2 × 1. (8.6)
In some situations, we are interested in the number of arrangements of only some of the elements of a set. The following result also follows from the multiplication rule and the previous discussion.

1 2 … 𝑟 Choice 1 Choice 1 … Choice 1 … … … … Choice 𝑛 -(𝑟 -1) … Choice 𝑛 -1 Choice 𝑛

Definition (Permutations of Subsets):

The number of permutations of subsets of 𝑟 elements selected from a set of 𝑛 different elements is

𝑃 𝑟 𝑛 = 𝑛 × (𝑛 -1) × (𝑛 -2) ו••× (𝑛 -𝑟 + 1) = 𝑛! (𝑛 -𝑟)! . (8.7) Example 8.6
The number of permutations of the four letters 𝑎, 𝑏, 𝑐, and 𝑑 will be 4! = 24. We have {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑎𝑐𝑑𝑏, 𝑎𝑑𝑏𝑐, 𝑎𝑑𝑐𝑏, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑑𝑎𝑐, 𝑏𝑑𝑐𝑎, 𝑏𝑐𝑎𝑑, 𝑏𝑐𝑑𝑎, 𝑐𝑎𝑏𝑑, 𝑐𝑎𝑑𝑏, 𝑐𝑏𝑎𝑑, 𝑐𝑏𝑑𝑎, 𝑐𝑑𝑎𝑏, 𝑐𝑑𝑏𝑎, 𝑑𝑎𝑏𝑐, 𝑑𝑎𝑐𝑏, 𝑑𝑏𝑎𝑐, 𝑑𝑏𝑐𝑎, 𝑑𝑐𝑎𝑏, 𝑑𝑐𝑏𝑎}

Now consider the number of permutations that are possible by taking two letters at a time from four. These would be {𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑏𝑎, 𝑏𝑐, 𝑏𝑑, 𝑐𝑎, 𝑐𝑏, 𝑐𝑑, 𝑑𝑎, 𝑑𝑏, 𝑑𝑐}.

We have two positions to fill, with 𝑛 1 = 4 choices for the first and then 𝑛 2 = 3 choices for the second, for a total of 𝑛 1 𝑛 2 = (4)(3) = 12 permutations. In general, 𝑛 distinct objects taken 𝑟 at a time can be arranged in

𝑛(𝑛 -1)(𝑛 -2) • • • (𝑛 -𝑟 + 1) ways= 4!/2! = (4)(3) = 12.

Permutations of Similar Objects

When dealing with permutations of similar objects, we often encounter repetitions of elements. This is because there are multiple objects with the same characteristics and arranging them in different orders results in equivalent outcomes. If the objects are all distinct, then we have seen that the number of permutations without repetition is 𝑛!. For each of these permutations, we can permute the 𝑛 1 identical objects of type 1 in 𝑛 1 ! possible ways; since these objects are considered identical, the arrangement is unchanged. Similarly, we can take any of the 𝑛 2 ! permutations of the identical objects of type 2 and obtain the same arrangement. Continuing this argument, we account for these repeated arrangements by dividing by the number of repetitions. This gives the following result for the total number of permutations: 

Definition (Permutations of Similar

Sampling without Replacement and the Objects Are Not Ordered

When the objects are not ordered, it means that the arrangement or sequence of the selected objects is not considered significant. The order in which the objects are selected or arranged does not affect the outcome. Note that in a permutation, the order in which each object is selected becomes important. When the order of arrangement is not important for example, if we do not distinguish between 𝐴𝐵 and 𝐵𝐴, the arrangement is called a combination. We give the following result for the number of combinations.

Definition (Combinations):

The number of ways in which 𝑟 objects can be selected (without replacement) from a collection of 𝑛 distinct objects is, (the number of combinations is denoted as

( 𝑛 𝑟 ) or 𝐶 𝑟 𝑛 ) 𝐶 𝑟 𝑛 = ( 𝑛 𝑟 ) = 𝑛! 𝑟! (𝑛 -𝑟)! = 𝑛(𝑛 -1)(𝑛 -2) … (𝑛 -𝑟 + 1) 𝑟! . (8.9) 
Example 8.8 How many different methods can the admissions committee of the Math department select three Egyptian graduate students from 15 Egyptian applicants and four foreign graduate students from 25 foreign applicants? Solution

The three Egyptian students can be chosen in (

) ways, and the four foreign students can be chosen in (

ways. Hence, by the multiplication principle, the whole selection can be made in (

) ways.

Sampling with Replacement and the Objects Are Not Ordered

In obtaining an unordered sample of size 𝑟, with replacement, from a total of 𝑛 objects, (𝑟 -1) replacements will be made before sampling ceases. Hence, the number of possible samples can be obtained by using the formula,

( 𝑛 + 𝑟 -1 𝑟 ) = (𝑛 + 𝑟 -1)! 𝑟! (𝑛 -1)! . (8.10)
Example 8.9 Suppose that we want to sample from the set 𝐴 = {1,2,3}, 𝑟 = 2 times such that repetition is allowed and order does not matter. There are 6 different ways of doing this

• 1,1; • 1,2; • 1,3; • 2,2; • 2,3; • 3,3;
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How can we get the number 6 without actually listing all the possibilities? One way to think about this is to note that any of the pairs in the above list can be represented by the number of 1 's, 2 's and 3 's it contains. That is, if 𝑥 1 is the number of ones, 𝑥 2 is the number of twos, and 𝑥 3 is the number of threes, we can equivalently represent each pair by a vector (𝑥 1 , 𝑥 2 , 𝑥 3 ) , i.e.,

• 1,1 → (𝑥 1 , 𝑥 2 , 𝑥 3 ) = (2,0,0); • 1,2 → (𝑥 1 , 𝑥 2 , 𝑥 3 ) = (1,1,0); • 1,3 → (𝑥 1 , 𝑥 2 , 𝑥 3 ) = (1,0,1); • 2,2 → (𝑥 1 , 𝑥 2 , 𝑥 3 ) = (0,2,0); • 2,3 → (𝑥 1 , 𝑥 2 , 𝑥 3 ) = (0,1,1); • 3,3 → (𝑥 1 , 𝑥 2 , 𝑥 3 ) = (0,0,2).
Note that here 𝑥 𝑖 ≥ 0 are integers and 𝑥 1 + 𝑥 2 + 𝑥 3 = 2. Thus, we can claim that the number of ways we can sample two elements from the set 𝐴 = {1,2,3} such that ordering does not matter and repetition is allowed is the same as solutions to the following equation 𝑥 1 + 𝑥 2 + 𝑥 3 = 2, where 𝑥 𝑖 ∈ {0,1,2}.

Theorem 8.1: The total number of distinct 𝑟 samples from an 𝑛-element set such that repetition is allowed and order does not matter is the same as the number of distinct solutions to the equation 𝑥 1 + 𝑥 2 +. . . +𝑥 𝑛 = 𝑟, where 𝑥 𝑖 ∈ {0,1,2,3, . . . }. (8.11) and is equal to

( 𝑛 + 𝑟 -1 𝑟 ) = (𝑛+𝑟-1)! 𝑟!(𝑛-1)! .

Interpretations and Axioms of Probability

Probability is used to quantify the likelihood, or chance, that an outcome of a random experiment will occur. The likelihood of an outcome is quantified by assigning a number from the interval [0,1] to the outcome (or a percentage from 0 to 100%).

Classical Interpretation

The classical probability rule is applied to compute the probabilities of events for an experiment for which all outcomes are equally likely. For example, head and tail are two equally likely outcomes when a fair coin is tossed once. Each of these two outcomes has the same chance of occurrence.

According to the classical probability rule, to find the probability of a simple event, we divide 1.0 by the total number of outcomes for the experiment. On the other hand, to find the probability of a compound event 𝐸, we divide the number of outcomes favorable to event 𝐸 by the total number of outcomes for the experiment.

Definition (Equally Likely Outcomes):

Whenever a sample space consists of 𝑁 possible outcomes that are equally likely, the probability of each outcome is 1/𝑁.

Definition (Probability of an Event):

For a discrete sample space, the probability of an event 𝐸, denoted as 𝑃(𝐸), equals the sum of the probabilities of the outcomes in 𝐸.

Relative Frequency Interpretation

The relative frequency of an event is used as an approximation for the probability of that event. Because relative frequencies are determined by performing an experiment, the probabilities calculated using relative frequencies may change when an experiment is repeated. The probability of an outcome is interpreted as the limiting value of the proportion of times the outcome occurs in 𝑛 repetitions of the random experiment as 𝑛 increases beyond all bounds.
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If an experiment is repeated 𝑛 times and an event 𝐴 is observed 𝑓 times where 𝑓 is the frequency, then, according to the relative frequency concept of probability:

𝑃(𝐴) = 𝑓 𝑛 = Frequency of A Sample size . (8.12)

Axioms of Probability

Axioms are the foundational principles upon which probability theory is constructed. The axiomatic approach defines the properties that probabilities must satisfy to be considered valid measures of uncertainty. The Kolmogorov axioms are introduced by Russian mathematician Andrey Kolmogorov in 1933.

Definition (Kolmogorov Axioms-Axioms of Probability):

Probability is a number that is assigned to each member of a collection of events from a random experiment that satisfies the following properties:

(1) 𝑃(𝑆) = 1 where 𝑆 is the sample space (2) 0 ≤ 𝑃(𝐸) ≤ 1 for any event 𝐸

(3) For two events 𝐸 1 and 𝐸 2 with Hence, if an experiment can result in any one of 𝑁 different equally likely outcomes, and if exactly 𝑛 of these outcomes correspond to event 𝐴, then the probability of event 𝐴 is

𝐸 1 ∩ 𝐸 2 = ∅ 𝑃(𝐸 1 ∪ 𝐸 2 ) = 𝑃(𝐸 1 ) + 𝑃(𝐸 2 ). ( 8 
𝑃(𝐴) = 𝑛 𝑁 . ( 8 

.16) Unions of Events and Addition Rules

Joint events are generated by applying basic set operations to individual events. Unions of events, such as 𝐴 ∪ 𝐵; intersections of events, such as 𝐴 ∩ 𝐵; and complements of events, such as 𝐴′are common of interest. The probability of a joint event can often be determined from the probabilities of the individual events that it comprises. Basic set operations are also sometimes helpful in determining the probability of a joint event. 

Proof:

The 𝑃(𝐴 ∪ 𝐵) is the sum of the probabilities of the sample points in 𝐴 ∪ 𝐵. Now 𝑃(𝐴) + 𝑃(𝐵) is the sum of all the probabilities in 𝐴 plus the sum of all the probabilities in 𝐵. Therefore, we have added the probabilities in (𝐴 ∩ 𝐵) twice. Since these probabilities add up to 𝑃(𝐴 ∩ 𝐵), we must subtract this probability once to obtain the sum of the probabilities in 𝐴 ∪ 𝐵.

∎ Example 8.11

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed? Solution Let 𝐴 be the event that 7 occurs and 𝐵 the event that 11 comes up. Now, a total of 7 occurs for 6 of the 36 sample points, {(1,6), (2,[START_REF] Tukey | Exploratory Data Analysis[END_REF], (3,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], (4,3), (5,2), (6,1)}, and a total of 11 occurs for only 2 of the sample points, {(5,6), [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Tukey | Exploratory Data Analysis[END_REF]}. Since all sample points are equally likely, we have 𝑃(𝐴) = 6/36 = 1/6 and 𝑃(𝐵) = 2/36 = 1/18.

The events 𝐴 and 𝐵 are mutually exclusive since a total of 7 and 11 cannot both occur on the same toss. Therefore,

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) = 1 6 + 1 18 = 2 9 .

Conditional Probability

One very important concept in probability theory is conditional probability. In some applications, the practitioner is interested in the probability structure under certain restrictions. The probability of an event 𝐵 under the knowledge that the outcome will be in event 𝐴 is denoted as 𝑃(𝐵|𝐴) and this is called the conditional probability of 𝐵 given 𝐴.

Definition (Conditional Probability):

The conditional probability of an event 𝐵 given that an event 𝐴 has occurred, 𝑃(𝐴) > 0, is (8.25) Therefore, 𝑃(𝐵|𝐴) can be interpreted as the relative frequency of event 𝐵 among the trials that produce an outcome in event 𝐴.

𝑃(𝐵|𝐴) = 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐴) . ( 8 

Example 8.12

What is the probability that the total of two dice will be greater than 8 given that the first die is a 6? Solution This can be computed by considering only outcomes for which the first die is a 6. Then, determine the proportion of these outcomes that total more than 8. There are 6 outcomes for which the first die is a 6, {(6,1), (6,2), (6,3), [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Tukey | Exploratory Data Analysis[END_REF], [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Weiss | Introductory Statistics[END_REF]}, and of these, there are four that total more than 8 {(6,3), [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Tukey | Exploratory Data Analysis[END_REF], [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Weiss | Introductory Statistics[END_REF]}. The probability of a total greater than 8 given that the first die is 6 is therefore 

Definition (Multiplication Rule):

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵). (8.26) Thus, the probability that both 𝐴 and 𝐵 occur is equal to the probability that 𝐴 occurs multiplied by the conditional probability that 𝐵 occurs, given that 𝐴 occurs.

Example 8.13

Suppose we have a bag containing 5 balls of which 3 are green and 2 are red. Suppose we draw two balls in succession from this bag without replacement.

• what is the probability of drawing 2 green balls?

• what is the probability of drawing a red ball followed by a green ball? Solution Let's define the following events: event 𝐺 1 -selecting a green ball for the first draw, event 𝐺 2 -selecting a green ball for the second draw, and event 𝑅 1 -selecting a red ball for the first draw. The probability of drawing 2 green balls is:

𝑃(𝐺 1 ∩ 𝐺 2 ) = 𝑃(𝐺 2 |𝐺 1 )𝑃(𝐺 1 ) = ( 2 4 ) ( 3 5 ) = 3 10 .
The probability of drawing a red ball followed by a green ball is: 

𝑃(𝑅 1 ∩ 𝐺 2 ) = 𝑃(𝐺 2 |𝑅 1 )𝑃(𝑅 1 ) = ( 3 4 ) ( 2 

Independence

Two events are said to be independent if the occurrence (or non-occurrence) of one event does not affect the probability that the other event will occur. In this case, the conditional probability of 𝑃(𝐵|𝐴) might equal 𝑃(𝐵), i.e., the knowledge that the outcome of the experiment is in event 𝐴 does not affect the probability that the outcome is in event 𝐵. So that, we obtain Definition (Independence, two events): Two events are independent if any one of the following equivalent statements is true:

(1) 𝑃(𝐴|𝐵) = 𝑃(𝐴), (2) 𝑃(𝐵|𝐴) = 𝑃(𝐵), (3) 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).

Example 8.14

Suppose we toss a coin twice and we define the following events: event 𝐴obtaining heads for the first toss, and event 𝐵obtaining heads for the second toss. Solution Because the outcome of the first coin toss does not affect the outcome of the next coin toss, these events are independent.

Example 8.15

Suppose we roll two fair dice. What is the probability that the outcome of both the dice is even? Solution Let events 𝐴 and 𝐵 represent the outcome of the first and second dice respectively. Events 𝐴 and 𝐵 are independent because the outcome of the first dice does not affect the outcome of the second dice. Therefore, the probability that the outcome of both dice is even given by:

𝑃(𝐴 is even ∩ 𝐵 is even) = 𝑃(𝐴 is even)𝑃(𝐵 is even) = ( 3 6 ) ( 3 6 ) = 1 4 .
It is simple to show that independence implies related results such as

𝑃(𝐴 ′ ∩ 𝐵 ′ ) = 𝑃(𝐴 ′ )𝑃(𝐵 ′ ). ( 8 

.32) Remark:

A mutually exclusive relationship between two events is based only on the outcomes that compose the events. However, an independence relationship depends on the probability model used for the random experiment. Often, independence is assumed to be part of the random experiment that describes the physical system under study. The concepts of mutually independent events and mutually exclusive events are separate and distinct. The following table contrasts the results for the two cases (provided that the probability of the conditioning event is not zero).

If statistically independent If mutually exclusive

𝑃(𝐴|𝐵) = 𝑃(𝐴) 0 𝑃(𝐵|𝐴) = 𝑃(𝐵) 0 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵) 0 
Definition (Independence, multiple events): The events 𝐸 1 , 𝐸 2 , … , 𝐸 𝑛 are independent if and only if (8.36) This is a useful result that enables us to solve for 𝑃(𝐴|𝐵) in terms of 𝑃(𝐵|𝐴).

𝑃 (𝐸 𝑖 1 ∩ 𝐸 𝑖 2 ∩•••∩ 𝐸 𝑖 𝑘 ) = 𝑃(𝐸 𝑖 1 ) × 𝑃(𝐸 𝑖 2 ) ו••× 𝑃(𝐸 𝑖 𝑘 ). ( 8 

Theorem 8.3 (Bayes Theorem):

If 𝐸 1 , 𝐸 2 , … , 𝐸 𝑘 are 𝑘 mutually exclusive and exhaustive events and 𝐵 is any event,

𝑃(𝐸 1 |𝐵) = 𝑃(𝐵|𝐸 1 )𝑃(𝐸 1 ) 𝑃(𝐵|𝐸 1 )𝑃(𝐸 1 ) + 𝑃(𝐵|𝐸 2 )𝑃(𝐸 2 ) +••• +𝑃(𝐵|𝐸 𝑘 )𝑃(𝐸 𝑘 )
, (8.37) for 𝑃(𝐵) > 0 Example 8. 16 Suppose we have the following two bags: bag 𝑥, which contains 1 red and 3 green balls. bag 𝑦, which contains 2 red and 1 green balls. We pick one bag at random and then draw a single ball. Given that the drawn ball is red, compute the probability that it came from bag 𝑦.

Solution

We define the following events: event 𝑥bag 𝑥 is chosen, event 𝑦bag 𝑦 is chosen, and event red -a red ball is drawn. The probability we are after is, therefore, 𝑃(𝑦|red). Using Bayes theorem, we have that:

𝑃(𝑦|red) = 𝑃(red|𝑦)𝑃(𝑦) 𝑃(red) .
We are not provided with 𝑃(red), so we must use the second form of Bayes theorem in which we express the denominator 𝑃(red) using the law of total probability: 

𝑃(𝑦|red) = 𝑃(red|𝑦)𝑃(𝑦) 𝑃(red|𝑥)𝑃(𝑥) + 𝑃(red|𝑦)𝑃(𝑦) = ( 2 3 ) ( 1 2 ) ( 1 4 ) ( 1 2 ) + ( 2 3 ) ( 1 2 ) 

Example 8.17

Suppose a statistics class contains 70% male and 30% female students. It is known that in a test, 5% of males and 10% of females got an "A" grade. If one student from this class is randomly selected and observed to have an "A" grade, what is the probability that this is a male student? Solution Let 𝐴 1 denote that the selected student is a male, and 𝐴 2 denote that the selected student is a female. Here the sample space 𝑆 = 𝐴 1 ∪ 𝐴 2 . Let 𝐷 denote that the selected student has an "A" grade. We are given 𝑃(𝐴 1 ) = 0. Therefore, we divided this chapter into three units to cover the following topics, operations on sets, combinatorial functions and different counting scenarios and probability.

In the following table, we list the built-in functions that are used in this chapter. 

Operations on Sets Combinatorial Functions

[Range[1,3],3] Length[triplets] Output {{1,1,1},{1,1,2},{1,1,3},{1,2,1},{1,2,2},{1,2,3},{1,3,1},{1,3,2},{1,3,3},{2,1,1}, {2,1,2},{2,1,3},{2,2,1},{2,2,2},{2,2,3},{2,3,1},{2,3,2},{2,3,3},{3,1,1},{3,1,2}, {3,1,3},{3,2,1},{3,2,2},{3,2,3},{3,3,1},{3,3,2},{3,3,3}} Output 27 Subsets[list]
gives a list of all possible subsets of list.

Subsets[list,n]

gives all subsets containing at most n elements.

Subsets[list,{n}]

gives all subsets containing exactly n elements. generates a list of all possible permutations of the elements in list.

Mathematica

Permutations[list,n]

gives all permutations containing at most n elements.

Permutations[list,{n}]

gives all permutations containing exactly n elements. gives a sorted list of all the distinct elements that appear in any of the listi.

Mathematica

Union[list]

gives a sorted version of a list, in which all duplicated elements have been dropped.

Intersection[list1,list2,…]

gives a sorted list of the elements common to all the listi.

Complement[eall,e1,e2,…]

gives the elements in eall that are not in any of the ei. 

Mathematica

) Column[ Table[ Binomial[i,j], {i ,0,n}, {j,0,i} ], Center ] triangle=Table 
(* Direct enumeration *) Permutations[Flatten[{Table[0,m],Table[1,n]}]] directEnumeration[m_,n_]:=Length[Permutations[Flatten[{Table[0,m],Table[1,n]}]]] directEnumeration[5,2] Output 21 Output {{0,0,1,1,1,1,1},{0,1,0,1,1,1,1},{0,1,1,0,1,1,1},{0,1,1,1,0,1,1},{0,1,1,1,1,0,1},{0 ,1,1,1,1,1,0},{1,0,0,1,1,1,1},{1,0,1,0,1,1,1},{1,0,1,1,0,1,1},{1,0,1,1,1,0,1},{1,0, 1,1,1,1,0},{1,1,0,0,1,1,1},{1,1,0,1,0,1,1},{1,1,0,1,1,0,1},{1,1,0,1,1,1,0},{1,1,1,0 ,0,1,1},{1,1,1,0,1,0,1},{1,1,1,0,1,1,0},{1,1,1,1,0,0,1},{1,1,1,1,0,1,0},{1,1,1,1,1, 0,0}} Output 21
Input (* The code illustrates the binomial theorem, which states that for any non-negative integer n and real numbers a and b, the expansion of the binomial (a+b)^n can be expressed as the sum of terms of the form C(n,k)*a^(n-k)*b^k, where C(n,k) represents the binomial coefficient. The code begins by defining the variables a and b, which are set to x and y, respectively. The exponent n is also defined as 5. Next, the code calculates the binomial coefficients using the Binomial function and stores them in the coefficients list. After that, the code generates the terms of the expansion by multiplying each coefficient with the corresponding powers of a and b, as specified by the binomial theorem. The expansion is then printed by summing up the terms using the Sum function and displaying the result. A dditionally, the code demonstrates the expansion using the built-in Expand function, which directly computes (a+b)^n and prints the expanded form. Lastly, a function named binomialTheorem is defined. This function takes an integer n as input and generates a bar chart to visualize the binomial coefficients. The coefficients are computed and stored in the coefficients list using the same approach as before. To observe different cases, the function binomialTheorem is called with a specific input value of n, which can be modified to 

samples=Tuples[Range[n],k] numCombinations=n^k Output {{1,1},{1,2},{1,3},{1,4},{1,5},{2,1},{2,2},{2,3},{2,4},{2,5},{3,1},{3,2},{3,3}, {3,4},{3,5},{4,1},{4,2},{4,3},{4,4},{4,5},{5,1},{5,2},{5,3},{5,4},{5,5}} Output 25
Input (* In this code, n represents the number of elements in the set, and k represents the number of elements to be selected. To calculate the number of possible ways when sampling with replacement and ordered objects, we use the formula n^k. This is because for each position in the selection, we have n choices (as replacement is allowed), and since the objects are ordered, we consider all possible arrangements. The result is stored in the variable numWays. To calculate the probability of an event, assuming each event is equally likely, we use the formula 1/n^k. This is because there are n^k total possible outcomes, and each event has exactly one outcome. Since the events are mutually exclusive and equally likely, the probability of each event is 1/n^k. The result is stored in the variable probEvent: *) Input (* The formula to count permutations in the case of sampling without replacement and ordered is given by the expression: n!/(n-k)!, where "n" represents the total number of items available and "k" represents the number of items to select: *) Input (* In this example, we start by defining the values as a range from 1 to 6. The sample size is set to 3,and we generate all possible ordered samples without replacement using Permutations. Next, we define the condition for the event using AllTrue and the EvenQ function. This condition ensures that all elements in a sample are even numbers. We filter the generated samples using Select and apply the condition to keep only the samples that satisfy the condition. The total number of samples is calculated using Length, and the number of favorable outcomes is obtained by calculating the length of the filtered samples. In this example, it is a fair six-sided die, so the sample space is defined as the list {1,2,3,4,5,6}. Next, the events A and B are defined as lists that satisfy certain conditions. The probabilities of events A and B are calculated by dividing the length of each event by the length of the sample space. The intersection of events A and B is then computed using the Intersection function. Finally, the conditional probability P(A|B) is calculated by dividing the length of the intersection of events A and B by the length of event B: *) 

(

273

The conditional probability P(A|B) is 0.142857 Mathematica Examples 9.17 Independence Input (* Independence: *) (* In this code, we define two events, eventA and eventB, as lists of outcomes. We then calculate the probabilities of each event by dividing the length of the event by the total number of possible outcomes (assuming a six-sided die). Next, we calculate the joint probability of events A and B by finding the length of their intersection and dividing it by the total number of possible outcomes. Finally, we check for independence by comparing the joint probability with the product of the individual probabilities. If they are equal, the events are considered independent: *) Are events A and B independent? False Input (* In this code, the calculateIndependence function takes three arguments: eventA, eventB, and sampleSpace. It calculates the probabilities of event A, event B, and the intersection of events A and B based on the provided sample space. It then compares the calculated probability of the intersection with the product of the probabilities of the individual events to check for independence. The sample space is defined using the Tuples function with the elements {0,1} representing possible outcomes of the two events. The events A and B are defined as functions using the & notation. In this example, event A is defined as the first element being 1, and event B is defined as the second element being 1. You can modify these conditions according to your specific scenario. By calling the calculateIndependence function with the defined events and sample space, the code will check if the events are independent and print the corresponding message: *) (* Check if the events are independent: *) If[Abs[probAB-probA*probB]<10^(-6), Print["The events are independent:","probAB= ",probAB,", " ,"probA= ",probA,", " ,"probB= ",probB],

(
Print["The events are not independent:","probAB= ",probAB,", " ,"probA= ",probA,", " ,"probB= ",probB]

]; ] 

DISCRETE RANDOM VARIABLES AND DISTRIBUTIONS

In this chapter, we delve into the world of discrete random variables (RVs)and their associated probability distributions. Discrete RVs play a crucial role in probability theory and statistics, providing a framework to understand and analyze phenomena that can be counted or measured in discrete units. From simple coin flips to the occurrence of rare events, discrete RVs enable us to model and make predictions about a wide range of real-world scenarios.

• We begin this chapter by introducing the concept of discrete RVs and their probability mass functions (PMFs). A discrete RV represents the outcomes of an experiment or event that can take on a finite or countably infinite set of values. The PMF assigns probabilities to each possible value that the RV can assume, forming the building blocks of its probability distribution. • Next, we will discuss the cumulative distribution function (CDF), which provides a comprehensive view of the probability distribution. The CDF characterizes the probability that a discrete RV takes on a value less than or equal to a specified threshold. By understanding the CDF, we gain valuable insights into the overall behavior and properties of the RV. • We then shift our focus to moment-generating functions (MGFs), which offer a powerful tool for studying the properties of discrete RVs. MGFs encode the moments of a RV, including its mean, variance, and higherorder moments, providing a concise representation of its distribution. Through MGFs, we can derive important statistical measures. • The subsequent sections of this chapter will discuss specific discrete probability distributions that are commonly encountered in various fields. We will explore the following distributions: o Bernoulli distribution: A simple yet fundamental distribution that models a binary outcome (success or failure) with a single parameter representing the probability of success. o Binomial distribution: A distribution that describes the number of successes in a fixed number of independent Bernoulli trials. It is characterized by two parameters: the number of trials and the probability of success. o Geometric distribution: A distribution that models the number of trials required to achieve the first success in a sequence of independent Bernoulli trials with a constant probability of success. o Negative binomial distribution: A distribution that describes the number of trials required to achieve a fixed number of successes in a sequence of independent Bernoulli trials with a constant probability of success. o Poisson distribution: A distribution that models the number of events occurring within a fixed interval of time or space. It is commonly used to represent rare events with a known average rate. o Hypergeometric distribution: A distribution that models the probability of obtaining a specified number of successes in a fixed number of draws from a finite population without replacement. o Discrete uniform distribution: A distribution where all possible outcomes have an equal probability of occurring. It is often used when the outcome of an experiment is equally likely to be any value within a given range.

Throughout this chapter, we present theoretical concepts, provide mathematical derivations, and illustrate the practical relevance of each distribution with real-world examples. By mastering these key discrete RVs and distributions, readers will develop a solid foundation for probabilistic reasoning and statistical analysis, empowering them to solve complex problems and make informed decisions in a wide range of fields. 

RV

The concept of a RV allows us to pass from the experimental outcomes to a numerical function of the outcomes, often simplifying the sample space. In simpler terms, a RV is like a function that maps the outcomes of a random event to numerical values. A RV is denoted by an uppercase letter such as 𝑋. After an experiment is conducted, the measured value of the RV is denoted by a lowercase letter such as 𝑥. Just like how we assign probabilities to events, we can do the same to RVs. Consider the following examples.

Example 10.1

In tossing dice, we are often interested in the sum of the two dice and are not really concerned about the values of the individual dice. That is, we may be interested in knowing that the sum is 7 and not be concerned over whether the actual outcome was (1,[START_REF] Weiss | Introductory Statistics[END_REF] or (2,5) or (3,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF] or (4,3) or (5,2) or (6,1). Letting 𝑋 denote the RV that is defined as the sum of two fair dice, then: 

𝑃(𝑋 = 2) = 𝑃((1,1)) = 1/36, 𝑃(𝑋 = 3) = 𝑃((1,2), (2,1)) = 2/

Example 10.5

Suppose we draw two balls from a bag containing many red and green balls. We are interested in the number of green balls we draw. How should we define the RV in this case?

Solution

We should define RV 𝑋 as the number of green balls we draw. The sample space 𝐺 in this case is: 𝐺 = {𝑅𝑅, 𝑅𝐺, 𝐺𝑅, 𝐺𝐺}. Here, 𝑅 represents the event of drawing a red ball, and 𝐺 represents the event of drawing a green ball. The RV 𝑋 maps each of the sample points to a real value 𝑥, which is the number of green balls we draw for each sample point: 𝑋(𝑅𝑅) = 0, 𝑋(𝑅𝐺) = 1, 𝑋(𝐺𝑅) = 1 and 𝑋(𝐺𝐺) = 2.

Example 10.6

Suppose we draw two balls with-replacement from a bag containing 2 red and 3 green balls. What is the probability of drawing: (a) no red balls? (b) one red ball? (c) two red balls? Solution Let us define RV 𝑋 as the number of red balls we draw. The probabilities of interest are: 𝑃(𝑋 = 0) -the probability of drawing no red balls. 𝑃(𝑋 = 1) -the probability of drawing one red ball. 𝑃(𝑋 = 2) -the probability of drawing two red balls. The RV 𝑋 maps each of the sample points to a real value 𝑥, which is the number of red balls we draw for each sample point: 𝑋(𝑅𝑅) = 2, 𝑋(𝑅𝐺) = 1, 𝑋(𝐺𝑅) = 1 and 𝑋(𝐺𝐺) = 0. We can compute these probabilities by referring to the sample space: In the above examples, the RVs of interest took on a finite number of possible values. RVs whose set of possible values can be written either as a finite sequence 𝑥 1 , . .. , 𝑥 𝑛 , or as an infinite sequence 𝑥 1 , . .. are said to be discrete.

𝑃(𝑋 = 0) = 𝑃(𝐺𝐺) = ( 3 5 ) ( 3 

Definition (Discrete RVs):

A discrete RV is a RV with a countable finite (or countably infinite) range. Or a discrete RV is a RV whose possible values can be listed.

Definition (Continuous RVs):

A continuous RV is a RV with an interval (either finite or infinite) of real numbers for its range.

Here are a few examples of discrete RVs:

1. The number of cars sold at a dealership during a given month. 2. The number of houses in a certain block. 3. The number of fish caught on a fishing trip. 4. The number of complaints received at the office of an airline on a given day. 5. The number of customers who visit a bank during any given hour. 6. The number of heads obtained in three tosses of a coin. 7. The number of emails received in a day. 8. The number of defective items in a batch of products. 9. The number of children in a family. 10. The number of successful attempts in a series of trials. 11. The number of books borrowed by a student from the library. 12. The number of accidents that occur in a given time period, such as the number of car accidents in a month. [START_REF] Olkin | Probability Models and Applications[END_REF]. The number of phone calls received by a call center in a day. 14. The number of students present in a classroom on a given day. 15. The number of flights delayed at an airport in a given hour or day. 16. The number of rainy days in a particular month.

Probability Distributions and PMFs

RVs are so important in random experiments that sometimes we essentially ignore the original sample space of the experiment and focus on the probability distribution of the RV. The probability distribution of a RV is a description of the probabilities associated with the possible values of the RV. For a discrete RV, the distribution is often specified by just a list of the possible values along with the probability of each. For other cases, probabilities are expressed in terms of a formula. . This leads to,

Definition (CDF):

The CDF of a discrete RV 𝑋 = 𝑥, denoted as 𝐹(𝑥), is:

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓(𝑥 𝑖 ) 𝑥 𝑖 ≤𝑥 . (10.
2) For a discrete RV 𝑋 = 𝑥, 𝐹(𝑥) satisfies the following properties. ( 1)

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓(𝑥 𝑖 ) 𝑥 𝑖 ≤𝑥 . (2) 0 ≤ 𝐹(𝑥) ≤ 1. (3) If 𝑥 ≤ 𝑦, then 𝐹(𝑥) ≤ 𝐹(𝑦).
That is, 𝐹(𝑥) is the probability that the RV 𝑋 takes on a value that is less than or equal to 𝑥.

Remarks:

• Note that this is analogous to a relative-frequency distribution with probabilities replacing the relative frequencies. Thus, we can think of probability distributions as theoretical or ideal limiting forms of relativefrequency distributions when the number of observations made is very large. • Notation: We will use the notation 𝑋 ∼ 𝐹 to signify that 𝐹 is the CDF of 𝑋.

• All probability questions about 𝑋 can be answered in terms of its CDF 𝐹. For example, suppose we wanted to compute 𝑃(𝑎 < 𝑋 ≤ 𝑏). This can be accomplished by first noting that the event (𝑋 ≤ 𝑏) can be expressed as the union of the two mutually exclusive events (𝑋 ≤ 𝑎) and (𝑎 < 𝑋 ≤ 𝑏). Therefore, we obtain that 𝑃(𝑋 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑎) + 𝑃(𝑎 < 𝑋 ≤ 𝑏), (10. 

𝐹(𝑥) = { 0 1 -𝑒𝑥𝑝{-𝑥 2 } 𝑥 ≤ 0 𝑥 > 0 .
What is the probability that 𝑋 exceeds 1?

Solution

The desired probability is computed as follows: When a balanced coin is tossed three times, eight equally likely outcomes are possible. For instance, HHT means that the first two tosses are heads and the third is tails. Let 𝑋 denote the total number of heads obtained in the three tosses. Then 𝑋 is a discrete RV whose possible values are 0, 1, 2, and 3, as shown in The event that at most two heads are tossed can be represented as (𝑋 ≤ 2), read as "𝑋 is less than or equal to two." e. The event that at most two heads are tossed can be expressed as (𝑋 ≤ 2) = ((𝑋 = 0) or (𝑋 = 1) or (𝑋 = 2)). Because the three events on the right are mutually exclusive, we have, 𝑃(𝑋 ≤ 2) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) = 0.125 + 0.375 + 0.375 = 0.875.

𝑃(𝑋 > 1) = 1 -𝑃(𝑋 ≤ 1) = 1 -𝐹(1) = 𝑒 -1 = 0.368.

Example 10.9

If 𝑋 is the RV we associated with rolling a fair six-sided die, then we can easily write down the CDF of 𝑋. The probability distribution and the CDFs are as shown in Table 10.2. Notice that 𝑃(𝑋 ≤ 𝑥) = 0 for any 𝑥 < 1 since 𝑋 cannot take values less than 1. Also, notice that 𝑃(𝑋 ≤ 𝑥) = 1 for any 𝑥 > 6. Finally, note that the probabilities 𝑃(𝑋 ≤ 𝑥) are constant on any interval of the form [𝑥, 𝑥 + 1) as required. 10.3. For example, the probability of getting sum 5 is 4/36 = 1/9; thus in 900 tosses of the dice we would expect 100 tosses to give the sum 5. Notice that the CDF is constant over any half-closed integer interval from 2 to 12. For example, 𝐹(𝑋) = 3/36 for all 𝑋 in the interval [3,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF]. 

Mean, Variance, and Standard Deviation

The concept of expectation is easily extended. If 𝑋 denotes a discrete RV that can assume the values 𝑥 1 , 𝑥 2 , . .. , 𝑥 𝑘 with respective probabilities 𝑃 1 , 𝑃 2 , . .. , 𝑃 𝑘 , where 𝑃 1 + 𝑃 2 +. . . +𝑃 𝑘 = 1, the mathematical expectation of 𝑋 (or simply the expectation of 𝑋), denoted by 𝐸(𝑋), is defined as

𝐸(𝑋) = 𝑃 1 𝑥 1 + 𝑃 2 𝑥 2 +. . . +𝑃 𝑘 𝑥 𝑘 = ∑ 𝑃 𝑗 𝑥 𝑗 𝑘 𝑗=1 .
(10.5) If the probabilities 𝑃 𝑗 in this expectation are replaced with the relative frequencies 𝑓 𝑗 /𝑁, where 𝑁 = ∑ 𝑓 𝑗 , the expectation reduces to ∑ 𝑓 𝑗 𝑥 𝑗 𝑘 𝑗=1 /𝑁, which is the arithmetic mean 𝑋 ̅ of a sample of size 𝑁 in which 𝑥 1 , 𝑥 2 , . .. , 𝑥 𝑘 appear with these relative frequencies. As 𝑁 gets larger and larger, the relative frequencies 𝑓 𝑗 /𝑁 approach the probabilities 𝑃 𝑗 . Thus, we are led to the interpretation that 𝐸(𝑋) represents the mean of the population from which the sample is drawn.

Definition (Mean):

The mean or expected value of the discrete RV 𝑋, denoted as 𝜇 or 𝐸(𝑋), is (10.9) That is, the expected value of a constant is just its value.

𝜇 = 𝐸(𝑋) = ∑ 𝑥𝑓(𝑥) 𝑥 . ( 10 
• If we take 𝑏 = 0, then we obtain,

𝐸[𝑎𝑋] = 𝑎𝐸[𝑋].
(10.10) The expected value of a constant multiplied by a RV is just the constant times the expected value of the RV.

• The quantity 𝐸[𝑋 𝑛 ], 𝑛 ≥ 1, is called the 𝑛th moment of 𝑋. By (10.7), we note that (10.13) An alternative formula for Var(𝑋) can be derived as follows:

𝐸[𝑋 𝑛 ] = ∑ 𝑥 𝑛 𝑃(𝑥) 𝑥 . ( 10 
Var(𝑋) = 𝐸[(𝑋 -𝜇) 2 ] = 𝐸[𝑋 2 -2𝜇𝑋 + 𝜇 2 ] = 𝐸[𝑋 2 ] -𝐸[2𝜇𝑋] + 𝐸[𝜇 2 ] = 𝐸[𝑋 2 ] -2𝜇𝐸[𝑋] + 𝜇 2 = 𝐸[𝑋 2 ] -𝜇 2 .
Theorem 10.2: The variance of 𝑋 is equal to the expected value of the square of 𝑋 minus the square of the expected value of 𝑋. Let 𝜇 = 𝐸[𝑋] and recall that 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝜇 + 𝑏. Thus, by the definition of variance, we have

Var(𝑋) = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 . ( 10 
Var(𝑎𝑋 + 𝑏) = 𝐸[(𝑎𝑋 + 𝑏 -𝐸[𝑎𝑋 + 𝑏]) 2 ] = 𝐸[(𝑎𝑋 + 𝑏 -𝑎𝜇 -𝑏) 2 ] = 𝐸[(𝑎𝑋 -𝑎𝜇) 2 ] = 𝐸[𝑎 2 (𝑋 -𝜇) 2 ] = 𝑎 2 𝐸[(𝑋 -𝜇) 2 ] = 𝑎 2 Var(𝑋).
∎ Remarks:

• Specifying particular values for 𝑎 and 𝑏 in (10.15) leads to some interesting results. For instance, by setting 𝑎 = 0 in (10.15) we obtain that Var(𝑏) = 0. (10.16) That is, the variance of a constant is 0.

• Similarly, by setting 𝑎 = 1 we obtain, Var(𝑋 + 𝑏) = 𝑉𝑎𝑟(𝑋).

(10.17) That is, the variance of a constant plus a RV is equal to the variance of the RV.

• Finally, setting 𝑏 = 0 yields Var(𝑎𝑋) = 𝑎 2 Var(𝑋). We call 𝑀 𝑋 (𝑡) the MGF because all of the moments of 𝑋 can be obtained by successively differentiating 𝑀 𝑋 (𝑡).

Recall that the Maclaurin series of the function 𝑒 𝑡𝑥 is

𝑒 𝑡𝑥 = 1 + 𝑡𝑥 + (𝑡𝑥) 2 2! + (𝑡𝑥) 3 3! + ⋯ + (𝑡𝑥) 𝑛 𝑛! + ⋯. (10.20)
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By using the fact that the expected value of the sum equals the sum of the expected values, the MGF can be written as

𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = 𝐸 [1 + 𝑡𝑋 + (𝑡𝑋) 2 2! + (𝑡𝑋) 3 3! + ⋯ + (𝑡𝑋) 𝑛 𝑛! + ⋯ ] = 1 + 𝐸[𝑡𝑋] + 𝐸 [ (𝑡𝑋) 2 2! ] + 𝐸 [ (𝑡𝑋) 3 3! ] + ⋯ + 𝐸 [ (𝑡𝑋) 𝑛 𝑛! ] + ⋯ = 1 + 𝑡𝐸[𝑋] + 𝑡 2 2! 𝐸[𝑋 2 ] + 𝑡 3 3! 𝐸[𝑋 3 ] + ⋯ + 𝑡 𝑛 𝑛! 𝐸[𝑋 𝑛 ] + ⋯.
(10.21) Note that 𝑀 𝑋 (0) = 1 for all the distributions. Taking the derivative of 𝑀 𝑋 (𝑡) with respect to 𝑡, we obtain The usefulness of the foregoing theorem lies in the fact that, if the MGF can be found, the often difficult process of summation involved in calculating different moments can be replaced by the much easier process of differentiation. Each distribution has its own specific characteristics and applications, making them useful for modeling and analyzing various types of discrete RVs. The following seven distributions form the core set of commonly used discrete probability distributions. They are frequently encountered in various fields, including statistics, probability theory, engineering, finance, and social sciences. Understanding these distributions and their properties is crucial for many statistical analyses and modeling applications. In this section, we discuss these distributions in some detail. 

𝑑 𝑑𝑡 𝑀 𝑋 (𝑡) = 𝑀 𝑋 ′ (𝑡) = 𝐸[𝑋] + 𝑡𝐸[𝑋 2 ] + 𝑡 2 2! 𝐸[𝑋 3 ] + 𝑡 3 3! 𝐸[𝑋 3 ] + ⋯ + 𝑡 𝑛-1 (𝑛 -1)! 𝐸[𝑋 𝑛 ] + ⋯. ( 10 

Discrete Distributions

Bernoulli Distribution

Random experiments having exactly two mutually exclusive outcomes are called dichotomous experiments or Bernoulli trials. For instance, when a coin is tossed, the two possible outcomes are head (𝐻) and tail (𝑇). Even if an experiment has more than two mutually exclusive outcomes, we can consider it as a dichotomous experiment. For example, when a die is thrown, the set of all mutually exclusive outcomes is 𝛺 = {1, 2, 3, 4, 5, 6}. If we consider getting faces 3 or 5 as an event, say 𝐴, and its complement in 𝛺 as the other event, the experiment reduces to a dichotomous experiment. Here, 𝐴 = {3,5} and 𝐴′ = {1,2,4,6}.

In fact, all non-trivial experiments can be viewed as Bernoulli trials or dichotomous experiments. The event in which we are interested is labeled as success (𝑆) having probability 𝑃(𝑆) = 𝑝, 0 < 𝑝 < 1 and its complementary event as failure (𝐹) with probability 𝑃(𝐹) = 1 -𝑝 = 𝑞. If for such an experiment, a RV 𝑋 is defined such that it takes value 1 when success occurs and 0 when failure occurs, then 𝑋 follows a Bernoulli distribution. Hence, Bernoulli distribution, is the discrete probability distribution of a RV which takes only two values 1 and 0 with respective probabilities 𝑝 and 1 -𝑝, see Figure 10.4. This distribution is named after Swiss mathematician James Bernoulli (1654-1705). In above example, if the die is fair and we are interested in the occurrence of event 𝐴, then 𝑝 = 2/6.

Definition (Bernoulli Distribution):

A RV 𝑋 is said to follow Bernoulli distribution with parameter 𝑝 if its PMF is given by, Thus, the mean or expected value of a Bernoulli distribution is given by 𝐸[𝑋] = 𝑝.

𝑓 𝑋 (𝑥) = { 𝑝 𝑥 𝑞 1-𝑥 ; 𝑥 = 0, 1 0 ; otherwise , (10.29 
The variance can be written as follows:

Var[𝑋] = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 .
Using the properties of 𝐸[𝑋 2 ], we get,

𝐸[𝑋 2 ] = ∑ 𝑋 2 𝑃(𝑋 = 𝑥) = 1 2 (𝑝) + 0 2 (𝑞) = 𝑝.
Substituting this value, we have • It is commonly used to model binary outcomes, such as success/failure, yes/no, or presence/absence.

Var[𝑋] = 𝑝 -𝑝 2 = 𝑝(1 -𝑝) = 𝑝𝑞.
• The distribution is characterized by a single parameter, usually denoted as 𝑝, which represents the probability of success. The probability of failure is then given by 1 -𝑝. • The Bernoulli distribution serves as the building block for more complex distributions, such as the binomial distribution, which models the number of successes in a fixed number of Bernoulli trials. Hence, Bernoulli distribution is a special case of the Binomial distribution when the number of trials = 1. 

Binomial Distribution

A trial with only two possible outcomes is used so frequently as a building block of a random experiment that it is called a Bernoulli trial. It is usually assumed that the trials that constitute the random experiment are independent. This implies that the outcome from one trial has no effect on the outcome to be obtained from any other trial. Furthermore, it is often reasonable to assume that the probability of a success in each trial is constant. The binomial distribution with parameters 𝑛 and 𝑝 is the discrete probability distribution of the number of successes in a sequence of 𝑛 independent experiments, each asking a yes-no question, and each with its own Boolean-valued outcome: success (with probability 𝑝) or failure (with probability 𝑞 = 1 -𝑝).

Definition (Binomial Distribution):

The binomial distribution has certain conditions that need to be met for its application. A random experiment consists of 𝑛 Bernoulli trials such that (1) The trials are independent.

(2) Each trial results in only two possible outcomes, labeled as "success" and "failure."

(3) The probability of a success in each trial, denoted as 𝑝, remains constant.

If 𝑝 is the probability that an event will happen in any single trial (called the probability of a success) and 𝑞 = 1 -𝑝 is the probability that it will fail to happen in any single trial (called the probability of a failure), then the probability that the event will happen exactly 𝑥 times in 𝑛 trials (i.e., 𝑥 successes and 𝑛 -𝑥 failures will occur) is given by (the PMF of 𝑋 is)

𝑓 𝑋 (𝑥) = ( 𝑛 𝑥 ) 𝑝 𝑥 (1 -𝑝) 𝑛-𝑥 , 𝑥 = 0,1, … , 𝑛. (10.31) 
Remarks:

• In 𝑛 trials if we are getting 𝑥 successes, then there will be 𝑛 -𝑥 failures. Since the trials are independent and 𝑝 is same in all trials, probability of getting 𝑥 successes is 𝑝 × 𝑝 ×. . .× 𝑝 (𝑥 times) = 𝑝 𝑥 and probability of getting 𝑛 -𝑥 failures is 𝑞 × 𝑞 × . . .× 𝑞 (𝑛 -𝑥 times) = 𝑞 𝑛-𝑥 . Hence, the probability of getting 𝑥 successes and 𝑛 -𝑥 failures is 𝑝 𝑥 𝑞 𝑛-𝑥 . The number of ways in which 𝑥 successes can occur in 𝑛 trials is 𝑛!/𝑥! (𝑛 -𝑥)! = ( 𝑛 𝑥 ). Hence, the probability of getting 𝑥 successes in 𝑛 trials in any order is given by, ( 𝑛 𝑥 )𝑝 𝑥 𝑞 𝑛-𝑥 . This probability distribution of the RV 𝑋 is denoted by 𝑋 ∼ 𝐵(𝑛, 𝑝), see Figure 10.5.

• This discrete probability distribution is often called the binomial distribution since for 𝑥 = 0, 1, 2, . . . , 𝑛 it corresponds to successive terms of the binomial formula, or binomial expansion,

(𝑞 + 𝑝) 𝑛 = 𝑞 𝑛 + ( 𝑛 1 ) 𝑞 𝑛-1 𝑝 1 + ( 𝑛 2 ) 𝑞 𝑛-2 𝑝 2 + ⋯ + 𝑝 𝑛 .
For example

(𝑞 + 𝑝) 4 = 𝑞 4 + ( 4 1 ) 𝑞 3 𝑝 1 + ( 4 2 ) 𝑞 2 𝑝 2 + ( 4 3 
) 𝑞 1 𝑝 3 + 𝑝 4 = 𝑞 4 + 4𝑞 3 𝑝 1 + 6𝑞 2 𝑝 2 + 4𝑞 1 𝑝 3 + 𝑝 4 .

Example 10.12

The probability of getting exactly 2 heads in 6 tosses of a fair coin is

𝑓(𝑥) = ( 𝑛 𝑥 ) 𝑝 𝑥 (1 -𝑝) 𝑛-𝑥 = ( 6 2 ) ( 1 2 ) 2 ( 1 2 
) = (𝑞 + 𝑝) 𝑛 = 1.

6-2 = 6! 2! 4! ( 1 2 ) 6 
• Let 𝑋 ∼ 𝐵(𝑛, 𝑝). Then 𝑋 gives number of success in 𝑛 independent trials with probability 𝑝 for success in each trial. Note that 𝑛 -𝑋 gives number of failures in 𝑛 independent trials with probability 1 -𝑝 = 𝑞 for failure in each trial. Therefore, 𝑛 -𝑋 ∼ 𝐵(𝑛, 𝑞). Applications:

1-The binomial distribution can be used to model the number of defective items in a production batch. In a production process, items are often inspected or tested to determine whether they meet certain quality standards. The binomial distribution can be applied in this context by considering each item produced as a trial, and the outcome of each trial is whether the item is defective or not. The binomial distribution assumes the following conditions are met:

• Fixed number of trials: The production batch consists of a fixed number of items, denoted by '𝑛'.

• Two possible outcomes: Each item can either be defective or non-defective, representing the two possible outcomes. • Independent trials: The production process assumes that the items are produced independently of each other.

The probability of an item being defective does not depend on the outcomes of other items. • Constant probability of defect: The probability of an item being defective, denoted by '𝑝', remains the same for each item produced in the batch. • By using the binomial distribution, we can calculate the probabilities associated with different numbers of defective items in the batch. The PMF of the binomial distribution allows us to determine the likelihood of observing a specific number of defective items in the batch, given the fixed number of items and the probability of a defect.

2-In clinical trials and drug testing, binomial distribution is often used to analyze and interpret the results. It provides a framework for understanding the probability of success or response to treatment among a group of participants. Here is a breakdown of why the binomial distribution is applicable in this context:

• Binary outcome: In clinical trials, the primary outcome of interest is typically a binary outcome, such as whether a patient experiences a positive response to a treatment or not. • Fixed number of trials: In a clinical trial, there is a fixed number of participants who undergo the treatment being tested. Each participant can be considered a trial in the context of the binomial distribution. For example, if there are 100 participants, the binomial distribution allows us to analyze the number of participants who respond positively to the treatment out of the 100. • Independent trials: The binomial distribution assumes that each participant's response to the treatment is independent of others. That means the response of one participant does not influence the response of another participant. • Constant probability of success: In the context of drug testing, the probability of success refers to the likelihood of a positive response to the treatment. The binomial distribution assumes that this probability remains constant for each participant in the trial. This assumption allows us to model the probability of observing a certain number of successes (positive responses) among the fixed number of trials (participants).

Example 10.13

Suppose that 20% of the population is left-handed. Find the probability that in group of 60 individuals there will be, 

𝑉(𝑋) = 𝜇 2 ′ -(𝜇 1 ′ ) 2 = 𝐸[𝑋 2 ] -[𝐸(𝑋)] 2 ,
and

𝜇 2 ′ = 𝐸[𝑋 2 ] = ∑[𝑥(𝑥 -1) + 𝑥] ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 = ∑ 𝑥(𝑥 -1) ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 + ∑ 𝑥 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 = ∑ 𝑥(𝑥 -1) 𝑛! 𝑥! (𝑛 -𝑥)! 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=2 + 𝐸(𝑋) = 𝑛(𝑛 -1)𝑝 2 ∑ (𝑛 -2)! (𝑥 -2)! (𝑛 -𝑥)! 𝑝 𝑥-2 𝑞 𝑛-𝑥 𝑛 𝑥=2 + 𝑛𝑝 = 𝑛(𝑛 -1)𝑝 2 ∑ ( 𝑛 -2 𝑥 -2 ) 𝑝 𝑥-2 𝑞 𝑛-𝑥 𝑛 𝑥=2 + 𝑛𝑝 = 𝑛(𝑛 -1)𝑝 2 + 𝑛𝑝.
Therefore, The third raw moment,

𝑉(𝑋) = 𝑛(𝑛 -1)𝑝 2 + 𝑛𝑝 -(𝑛𝑝) 2 = 𝑛 2 𝑝 2 -𝑛𝑝 2 + 𝑛𝑝 -𝑛 2 𝑝 2 = 𝑛𝑝 -𝑛𝑝 2 =
𝜇 3 ′ = 𝐸[𝑋 3 ] = ∑ 𝑥 3 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 = ∑[𝑥(𝑥 -1)(𝑥 -2) + 3𝑥(𝑥 -1) + 𝑥] ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 = 𝑛(𝑛 -1)(𝑛 -2)𝑝 3 + 3𝑛(𝑛 -1)𝑝 2 + 𝑛𝑝.
Therefore, = 𝑛(𝑛 -1)(𝑛 -2)(𝑛 -3)𝑝 4 + 6𝑛(𝑛 -1)(𝑛 -2)𝑝 3 + 7𝑛(𝑛 -1)𝑝 2 + 𝑛𝑝.

𝜇 3 = 𝜇 3 ′ -3𝜇 2 ′ 𝜇 1 ′ + 2(𝜇 1 ′ ) 3 = 𝑛𝑝𝑞(1 -2𝑝) = 𝑛𝑝𝑞(𝑞 -𝑝).
Therefore, 

𝜇 4 = 𝜇 4 ′ -4𝜇 3 ′ 𝜇 1 ′ + 6𝜇 2 ′ (𝜇 1 ′ ) 2 -3(𝜇 1 ′ ) 4 = 3𝑛 2 𝑝 2 𝑞 2 + 𝑛𝑝𝑞(1 -6𝑝𝑞
𝛽 1 = 𝜇 3 2 𝜇 2 3 = [𝑛𝑝𝑞(𝑞 -𝑝)] 2 (𝑛𝑝𝑞) 3 = (𝑞 -𝑝) 2 𝑛𝑝𝑞 .
Therefore,

𝛾 1 = √𝛽 1 = 𝑞 -𝑝 √𝑛𝑝𝑞 .
Hence, binomial distribution is:

1. Positively skewed if 𝛾 1 > 0; i.e., 𝑞 > 𝑝.

2. Symmetric if 𝛾 1 = 0, i.e.; 𝑞 = 𝑝. 

Negatively skewed if

𝛽 2 = 𝜇 4 𝜇 2 2 = 3𝑛 2 𝑝 2 𝑞 2 + 𝑛𝑝𝑞(1 -6𝑝𝑞) (𝑛𝑝𝑞) 2 = 3 + 1 -6𝑝𝑞 𝑛𝑝𝑞 .
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Therefore,

𝛾 2 = 𝛽 2 -3 = 1 -6𝑝𝑞 𝑛𝑝𝑞 .
Hence, binomial distribution is: 

1. Leptokurtic if
𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∑ 𝑒 𝑡𝑥 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 = ∑ ( 𝑛 𝑥 ) (𝑝𝑒 𝑡 ) 𝑥 𝑞
296 = ∑ 𝑑 𝑑𝑝 ((𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 ) 𝑛 𝑥=0 = ∑ [𝑟(𝑥 -𝑛𝑝) 𝑟-1 (-𝑛) ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 + (𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑥𝑝 𝑥-1 (1 -𝑝) 𝑛-𝑥 𝑛 𝑥=0 + (𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 (𝑛 -𝑥)(1 -𝑝) 𝑛-𝑥-1 (-1)] = -𝑛𝑟 ∑(𝑥 -𝑛𝑝) 𝑟-1 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 + ∑(𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 ( 𝑥 𝑝 ) 𝑛 𝑥=0 + ∑(𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 (- 𝑛 -𝑥 1 -𝑝 ) 𝑛 𝑥=0 = -𝑛𝑟𝜇 𝑟-1 + ∑(𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 ( 𝑥 𝑝 - 𝑛 -𝑥 1 -𝑝 ) = -𝑛𝑟𝜇 𝑟-1 + ∑(𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 ( 𝑥 -𝑛𝑝 𝑝𝑞 ) = -𝑛𝑟𝜇 𝑟-1 + 1 𝑝𝑞 ∑(𝑥 -𝑛𝑝) 𝑟+1 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 = -𝑛𝑟𝜇 𝑟-1 + 1 𝑝𝑞 𝜇 𝑟+1 .
Therefore, The PMF is

𝜇
𝑓 𝑋 (𝑥) = ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 ,
hence, we have

𝑓 𝑋 (𝑥 + 1) = ( 𝑛 𝑥 + 1 ) 𝑝 𝑥+1 𝑞 𝑛-𝑥-1 ,
and 

𝑓 𝑋 (𝑥 + 1) 𝑓 𝑋 (𝑥) = ( 𝑛 𝑥+1 )𝑝 𝑥+1 𝑞 𝑛-𝑥-1 ( 𝑛 𝑥 )𝑝 𝑥 𝑞 𝑛-𝑥 = 𝑛! (𝑥 + 1)! (𝑛 -𝑥 -1)! 𝑝 𝑥+1 𝑞 𝑛-𝑥-1

Poisson Distribution

The Poisson distribution is named after the French mathematician Siméon Denis Poisson, who introduced it in the early 19th century. He approached the distribution by considering the limit of a binomial distribution in which 𝑛 tends to infinity, 𝑝 tends to zero and 𝑛𝑝 remains finite and equal to 𝜆. The Poisson distribution is widely used to model the occurrence of rare events in a given time period or space interval.

Definition (Poisson Distribution):

The Poisson distribution is a discrete probability distribution that describes the number of events that occur in a fixed interval of time or space, given a known average rate of occurrence and the events happening independently of each other.

Definition (Poisson Distribution):

The RV 𝑋 that equals the number of events in a Poisson process (a process in which events occur randomly and independently at a constant average rate) is a Poisson RV with parameter 0 < 𝜆, and the PMF of 𝑋 is given by

𝑓 𝑋 (𝑥) = { 𝑒 -𝜆 𝜆 𝑥 𝑥! ; 𝑥 = 0, 1,2, … 0 ; otherwise, ( 10 
.42) where 𝜆 > 0 is the parameter of the Poisson distribution, see Figure 10.6. We can write 𝑋 ∼ 𝑃(𝜆).

The assumptions of Poisson distribution

• Independent events:

The events or occurrences being counted must be independent of each other. This means that the occurrence of one event does not affect the occurrence of another event.

• Fixed time or space interval:

The Poisson distribution models the number of events that occur in a fixed interval of time or space. This interval must be well-defined and consistent. • Constant average rate:

The events must occur at a constant average rate throughout the interval. This average rate is denoted by λ. It represents the expected number of events occurring in the given interval. • Infinitesimally small sub-intervals:

The probability of more than one event occurring in an infinitesimally small sub-interval must be negligible. In other words, the events should be relatively rare or low in frequency within the chosen interval.

Some applications of the Poisson distribution:

• The Poisson distribution is utilized in environmental research to analyze the frequency of natural events like earthquakes, floods, or forest fires. It helps in assessing the risk and severity of such events, planning for disaster management, and evaluating the impact of environmental factors.

• Manufacturing and quality control:

The Poisson distribution is applied in quality control processes to model the occurrence of defects in a production line or the number of errors in a sample. It aids in setting quality standards, monitoring process performance, and making decisions regarding product acceptance or rejection.

• Sports analytics:

The Poisson distribution finds application in sports analytics, particularly in modeling the number of goals, points, or scores in various sports. It aids in predicting match outcomes, and assessing player performance.

How the Poisson distribution is applied in modeling, for example, the arrival rates in queuing systems:

• The Poisson distribution assumes that customers arrive at a queuing system at a constant average rate, such as 𝜆 customers per unit of time (e.g., per hour, per day). This rate is often estimated based on historical data or assumptions about the system. • The Poisson distribution assumes that customer arrivals occur independently of each other. In other words, the arrival of one customer does not affect the arrival of another. • Using the Poisson distribution's PMF, the probability of a specific number of customer arrivals within a given time period can be calculated.

• By considering the arrival rate and using the Poisson distribution, queuing theory can estimate the expected number of customers in the system or the average queue length. Queuing theory enables the calculation of key performance measures, such as the utilization rate of the service facility, the probability of the system being idle, or the average service rate required to meet a target level of customer service. These metrics guide decision-making for system design, capacity planning, and service level agreements.

More examples of Poisson distribution modeling

• Consider the number of telemarketing phone calls received by a household during a given day. In this example, the receiving of a telemarketing phone call by a household is called an occurrence, the interval is one day (an interval of time), and the occurrences are random (that is, there is no specified time for such a phone call to come in) and discrete. The total number of telemarketing phone calls received by a household during a given day may be 0, 1, 2, 3, 4, and so forth. The independence of occurrences in this example means that the telemarketing phone calls are received individually and none of two (or more) of these phone calls are related.

In contrast, consider the arrival of patients at a physician's office. These arrivals are nonrandom if the patients have to make appointments to see the doctor. The arrival of commercial airplanes at an airport is nonrandom because all planes are scheduled to arrive at certain times, and airport authorities know the exact number of arrivals for any period (although this number may change slightly because of late or early arrivals and cancellations). The Poisson probability distribution cannot be applied to these examples. 𝑃(𝑥 = 0) = 𝑒 -2.5 (2.5) 0 0! = 0.082, 𝑃(𝑥 = 1) = 𝑒 -2.5 (2.5) 1 1! = 0.205, 𝑃(𝑥 = 2) = 𝑒 -2.5 (2.5) 2 2! = 0.257.

Example 10.18

The number of admissions per day at an emergency room has a Poisson distribution and the mean is 5. 

(d) probabilitydistribution=Table[ { i, N[ Probability[x==i,x\[Distributed]PoissonDistribution[5.8]] ] }, {i,0,20} ]
{{0,0.00302755},{1,0.0175598},{2,0.0509235},{3,0.098452},{4,0.142755},{5,0.165596},{6,0.1600 76},{7,0.132635},{8,0.0961602},{9,0.0619699},{10,0.0359426},{11,0.0189515},{12,0.0091599},{1 3,0.00408673},{14,0.00169307},{15,0.000654655},{16,0.000237312},{17,0.0000809654},{18,0.0000 260888},{19,7.96396*10-6},{20,2.30955*10-6}}

(e)
ListPlot[ probabilitydistribution, PlotStyle->Purple, Filling->Axis, Mesh->All, ImageSize->200, AxesLabel->{"X","probability"} ]

There are connections between the Poisson distribution and several other probability distributions.

Relationship with the Binomial Distribution:

The Poisson distribution can be derived as an approximation of the binomial distribution when the number of trials 𝑛 is large and the probability of success (𝑝) is small, while the product 𝜆 = 𝑛𝑝 remains moderate or large. In this scenario, the Poisson distribution with parameter 𝜆 provides a good approximation to the binomial distribution. This connection is known as the Poisson approximation to the binomial distribution.

Relationship with the Exponential Distribution:

The inter-arrival times in a Poisson process follow an exponential distribution. This means that if the events in a system follow a Poisson process, the time between consecutive events (inter-arrival time) will be exponentially 301 distributed. Similarly, if the inter-arrival times are exponentially distributed, it implies that the events are occurring according to a Poisson process.

Poisson distribution as a limiting form of binomial distribution

Theorem 10.15: The Poisson distribution is obtained as an approximation to the binomial distribution under the conditions: i) 𝑛 is very large (𝑛 → ∞), ii) 𝑝 is very small (𝑝 → 0), iii) 𝑛𝑝 = 𝜆, a finite quantity.

Proof:

For binomial distribution,

𝑓(𝑥) = ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 ; 𝑥 = 0,1,2, … , 𝑛,
where 0 < 𝑝 < 1 and 𝑝 + 𝑞 = 1. Now,

𝑓(𝑥) = ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 = 𝑛! 𝑥! (𝑛 -𝑥)! 𝑝 𝑥 𝑞 𝑛-𝑥 = 𝑛(𝑛 -1)(𝑛 -2) … (𝑛 -𝑥 + 1) 𝑥! 𝑝 𝑥 𝑞 𝑛-𝑥 = 𝑛 𝑥 (1 - 1 𝑛 ) (1 - 2 𝑛 ) … (1 - 𝑥 -1 𝑛 ) 𝑥! (1 -𝑝) 𝑥 𝑝 𝑥 𝑞 𝑛 = (1 - 1 𝑛 ) (1 - 2 𝑛 ) … (1 - 𝑥 -1 𝑛 ) 𝑞 𝑥 (𝑛𝑝) 𝑥 𝑞 𝑛 𝑥! . Now, lim 𝑛→∞ (1 - 1 𝑛 ) (1 - 2 𝑛 ) … (1 - 𝑥 -1 𝑛 ) = 1.
Also,

𝑛𝑝 = 𝜆 ⇒ 𝑝 = 𝜆 𝑛 .
Therefore,

lim 𝑛→∞ 𝑞 𝑥 = lim 𝑛→∞ (1 -𝑝) 𝑥 = lim 𝑛→∞ (1 - 𝜆 𝑛 ) 𝑥 = 1, lim 𝑛→∞ 𝑞 𝑛 = lim 𝑛→∞ (1 -𝑝) 𝑛 = lim 𝑛→∞ (1 - 𝜆 𝑛 ) 𝑛 = 𝑒 -𝜆 .
Using these limits, we get

𝑓(𝑥) = 𝑒 -𝜆 𝜆 𝑥 𝑥! ; 𝑥 = 0, 1,2, … .
which is the PMF of a Poisson distribution.

∎ Example 10.21

Ten percent of the tools produced in a certain manufacturing process turn out to be defective. Find the probability that in a sample of 10 tools chosen at random exactly 2 will be defective by using 

𝜇 1 ′ = 𝐸[𝑋] = ∑ 𝑥 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 = 𝜆𝑒 -𝜆 ∑ 𝜆 𝑥-1 (𝑥 -1)! ∞ 𝑥=1 = 𝜆𝑒 -𝜆 𝑒 𝜆 = 𝜆.
𝑉(𝑋) = 𝜇 2 ′ -(𝜇 1 ′ ) 2 = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 ,
and 

𝜇 2 ′ = 𝐸[𝑋 2 ] = ∑[𝑥(𝑥 -1) + 𝑥] 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 = ∑ 𝑥(𝑥 -1) 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=2 + ∑ 𝑥 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=1 = 𝜆 2 𝑒 -𝜆 ∑ 𝜆 𝑥-2 (𝑥 -2)! ∞ 𝑥=2 + 𝐸(𝑋) = 𝜆 2 𝑒 -𝜆 𝑒 𝜆 + 𝜆 = 𝜆 2 + 𝜆. Therefore, 𝑉(𝑋) = 𝜆 2 + 𝜆 -𝜆 2 = 𝜆,
𝛽 1 = 𝜇 3 2 𝜇 2 3 = 𝜆 2 𝜆 3 = 1 𝜆 .
Therefore,

𝛾 1 = √𝛽 1 = 1 √𝜆 ,
and

𝛽 2 = 𝜇 4 𝜇 2 2 = 3𝜆 2 + 𝜆 𝜆 2 = 3 + 1 𝜆 .
Therefore, 𝑋 ∼ 𝑃(𝜆 1 ) and 𝑌 ∼ 𝑃(𝜆 2 ) implies 𝑀 𝑋 (𝑡) = 𝑒 𝜆 1 (𝑒 𝑡 -1) and 𝑀 𝑌 (𝑡) = 𝑒 𝜆 2 (𝑒 𝑡 -1) respectively. Since 𝑋 and 𝑌 are independent, 𝑀 𝑋+𝑌 (𝑡) = 𝑀 𝑋 (𝑡) × 𝑀 𝑌 (𝑡) = 𝑒 𝜆 1 (𝑒 𝑡 -1) 𝑒 𝜆 2 (𝑒 𝑡 -1) = 𝑒 (𝜆 1 +𝜆 2 )(𝑒 𝑡 -1) , which is the MGF of 𝑃(𝜆 

𝛾 2 = 𝛽 2 -3 = 1 𝜆 . ∎ Theorem 
𝜇 𝑟 = 𝐸[𝑋 -𝐸[𝑋]] 𝑟 = 𝐸[𝑋 -𝜆] 𝑟 = ∑(𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 .
Therefore,

𝑑 𝑑𝜆 𝜇 𝑟 = 𝑑 𝑑𝜆 [∑(𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 ] = ∑ 𝑑 𝑑𝜆 ((𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝜆 𝑥 𝑥! ) ∞ 𝑥=0 = ∑ 1 𝑥! [𝑟(𝑥 -𝜆) 𝑟-1 (-1)𝑒 -𝜆 𝜆 𝑥 + (𝑥 -𝜆) 𝑟 (-𝑒 -𝜆 )𝜆 𝑥 + (𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝑥𝜆 𝑥-1 ] ∞ 𝑥=0 = -𝑟 ∑(𝑥 -𝜆) 𝑟-1 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 -∑(𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 + ∑ 𝑥 𝜆 (𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 = -𝑟𝜇 𝑟-1 + ∑(𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝜆 𝑥 𝑥! (-1 + 𝑥 𝜆 ) ∞ 𝑥=0 = -𝑟𝜇 𝑟-1 + ∑(𝑥 -𝜆) 𝑟 𝑒 -𝜆 𝜆 𝑥 𝑥! ( 𝑥 -𝜆 𝜆 ) ∞ 𝑥=0 = -𝑟𝜇 𝑟-1 + 1 𝜆 ∑(𝑥 -𝜆) 𝑟+1 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 = -𝑟𝜇 𝑟-1 + 1 𝜆 𝜇 𝑟+1 .
Therefore,

𝜇 𝑟+1 = 𝜆 (𝑟𝜇 𝑟-1 + 𝑑𝜇 𝑟 𝑑𝜆 ).
∎

Negative Binomial Distribution

The negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified number of successes (denoted as 𝑟) occurs. The distribution is characterized by two parameters: the probability of success in each trial (denoted as 𝑝) and the number of successes that must occur before the experiment is stopped (denoted as 𝑟). For example, we can define rolling a 6 on a dice as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success (𝑟 = 3). In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution.

Definition (Negative Binomial Distribution):

A RV 𝑋 is said to follow negative binomial distribution with parameters 𝑟 and 𝑝 if its PMF is given by, 

𝑓
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The negative binomial distribution is an extension of the binomial distribution. While the binomial distribution models the number of successes in a fixed number of independent Bernoulli trials, the negative binomial distribution models the number of trials required to achieve a fixed number of successes. Now suppose that a Bernoulli trial is repeated 𝑛 times keeping the probability, 𝑝, of success same through out the trials and the trials independent. If we are interested in finding the probability distribution of 𝑋, the number of successes in 𝑛 trials, then 𝑋 ∼ 𝐵(𝑛, 𝑝). Here, the number of trials '𝑛' is fixed. Instead, suppose we are interested in finding the probability of number of trials required to get 𝑟 successes. Then we have the negative binomial distribution. Here, the number of successes is fixed, not the number of trials '𝑛'. Hence the name negative binomial.

Let the RV 𝑌 be the number of trials required to get 𝑟 successes. Then 𝑦 = 𝑟, 𝑟 + 1, . .. . Suppose 𝑌 takes the value 𝑦. i.e., 𝑦 trials are required to get 𝑟 success. Then, out of these 𝑦 trials 𝑟 are successes including the 𝑦th one. Hence, there will be 𝑦 -𝑟 failures preceding the 𝑟th success. Let 𝑋 be the number of failures preceding 𝑟th success. Clearly, 𝑋 takes values 0,1,2, . .. . Note that both the RVs 𝑋 and 𝑌 follow negative binomial distribution where 𝑋 assumes values 0,1,2, . .. and 𝑌 assumes values 1,2,3, . .. . 𝑃(X = x) = 𝑃( 𝑥 failures preceding the 𝑟 th success) = 𝑃(Getting 𝑟 -1 successes in 𝑥 + 𝑟 -1 trials and a success in (𝑥 + 𝑟) th trial)

= ( 𝑥 + 𝑟 -1 𝑟 -1 ) 𝑝 𝑟-1 𝑞 (𝑥+𝑟-1)-(𝑟-1) 𝑝 = ( 𝑥 + 𝑟 -1 𝑥 ) 𝑝 𝑟 𝑞 𝑥 ; 𝑥 = 0,1,2, … .

The assumptions of negative binomial distribution

• Independent trials:

The trials or events being considered must be independent of each other. The outcome of one trial should not influence the outcome of subsequent trials. • Fixed probability of success:

The probability of success (𝑝) remains constant across all trials. • Counting discrete events:

The negative binomial distribution is appropriate for situations where the variable of interest is a count of discrete events.

• No upper limit on trials:

There is no upper limit on the number of trials. The negative binomial distribution allows for an indefinite number of trials until a specified number of successes is achieved.

Some applications of the negative binomial distribution:

• Quality control:

In manufacturing or production processes, the negative binomial distribution can be used to model the number of defective items found before a certain number of acceptable items are produced. This helps in assessing the quality of the process and determining the appropriate inspection levels. • Sports analytics:

The negative binomial distribution can be applied in sports analytics to model the number of attempts or games needed for a player to achieve a certain number of goals, points, or victories. This assists in evaluating player performance, predicting future outcomes, and making strategic decisions. • Customer relationship management:

In marketing and customer relationship management, the negative binomial distribution can be used to model the number of contacts or interactions required to achieve a certain number of successful sales or conversions.
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This aids in analyzing customer behavior, optimizing marketing campaigns, and predicting customer acquisition rates. • Website analytics:

In web analytics, the negative binomial distribution can be employed to model the number of page views or clicks before a certain number of conversions or desired actions are completed by users. This helps in measuring website effectiveness, evaluating marketing campaigns, and optimizing user experiences. • Social sciences:

The negative binomial distribution can be used in social sciences, such as sociology or criminology, to model the number of events (such as criminal offenses or social interactions) before a specific number of desired outcomes or patterns are observed. This assists in understanding social phenomena, predicting behavior, and evaluating intervention programs. {{0,0.01024},{1,0.03072},{2,0.055296},{3,0.0774144},{4,0.0928973},{5,0.100329},{6,0.100329}, {7,0.094596},{8,0.0851364},{9,0.0737849},{10,0.0619793},{11,0.0507103},{12,0.0405683},{13,0. 0318305},{14,0.0245549},{15,0.0186618},{16,0.0139963},{17,0.0103737},{18,0.00760741},{19,0.0 0552538},{20,0.00397827}} ListPlot[ probabilitydistribution, PlotStyle->Purple, Filling->Axis, Mesh->All, ImageSize->200, AxesLabel->{"X","probability"} ]

Geometric Distribution

Consider a sequence of trials, where each trial has only two possible outcomes (designated failure and success). The probability of success is assumed to be the same for each trial. In such a sequence of trials, the geometric distribution is useful to model the number of failures before the first success since the experiment can have an indefinite number of trials until success, unlike the binomial distribution which has a set number of trials. The distribution gives the probability that there are zero failures before the first success, one failure before the first success, two failures before the first success, and so on. For example, if you are flipping a fair coin until you get heads (success), the number of tails you get before the first heads follows a geometric distribution.

Negative binomial RV gives number of failures preceding the 𝑟th success. When 𝑟 = 1 it reduces to geometric RV and its distribution is called geometric distribution. Hence, it gives the probability distribution of number of failures preceding the 1st success and takes values 0,1,2, . .. .

Definition (Geometric Distribution):

In a series of Bernoulli trials (independent trials with constant probability 𝑝 of a success), the RV 𝑋 that equals the number of failures before the first success is a geometric RV with parameter 0 < 𝑝 < 1. Its PMF is given by, 𝑓 𝑋 (𝑥) = { 𝑝𝑞 𝑥 ; 𝑥 = 0, 1,2, … 0 ; otherwise, (10.54) where 0 < 𝑝 < 1 and 𝑝 + 𝑞 = 1. Here we write 𝑋 ∼ GEO 0 (𝑝). (See Figure 10.8).

Remarks:

• Since the probabilities for 𝑥 = 0,1,2, . .. are the terms of geometric progression series, the distribution has the name geometric distribution. Sometimes it is called Furry distribution. • Some authors define geometric distribution as the number of trials required to obtain the first success. In this case the RV 𝑋 takes values 𝑥 = 1,2,3, . .. and the PMF is given by 𝑓 𝑋 (𝑥) = { 𝑝𝑞 𝑥-1 ; 𝑥 = 1,2, … 0 ; otherwise, (10.55) where 0 < 𝑝 < 1 and 𝑝 + 𝑞 = 1. Here we write 𝑋 ∼ GEO 1 (𝑝).

Example 2.24

Letting 𝑆 denote the outcome of "success" and 𝐹 denote the outcome of "failure", we can summarize the possible outcomes of a geometric experiment and their likelihoods (the PMF) in Table 10. [START_REF] Chambers | Graphical Methods for Data Analysis[END_REF]. Here, we write 𝑝 for the probability of success and 𝑞 for the probability of failure. The geometric distribution makes several key assumptions:

• Independent trials: Geometric distribution assumes that each trial or attempt is independent of the others. The outcome of one trial does not affect the outcome of subsequent trials.

• Binary outcomes:

Geometric distribution assumes that each trial has two possible outcomes, often referred to as success and failure. These outcomes are mutually exclusive, meaning that only one of them can occur in each trial.

• Constant probability of success:

Geometric distribution assumes that the probability of success remains constant across all trials. • Discrete outcomes:

Geometric distribution deals with discrete outcomes, specifically the count of trials until the first success.

• Infinite range (theoretically):

Geometric distribution theoretically has an infinite range, as it is possible for an infinite number of trials to be required before the first success occurs. However, in practice, the distribution is often truncated to a finite range for practicality and ease of analysis.

Geometric distribution has several applications in various fields.

• Sports analytics: Geometric distribution finds applications in sports analytics, particularly in scenarios where the focus is on the number of attempts or trials needed to achieve a particular outcome. For example, it can be used to analyze the number of shots needed to score a goal in soccer or the number of attempts needed to make a successful basketball free throw. • Marketing and sales forecasting:
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Geometric distribution can be used to model customer behavior, such as the number of marketing interactions or sales calls needed to secure the first purchase from a potential customer. It aids in forecasting conversion rates and optimizing sales strategies.

• Search algorithms:

In algorithms and search theory, the geometric distribution can be used to model the number of trials (e.g., iterations or comparisons) needed until finding the desired solution or item in a search process. (10.58) Proof:

Mean 𝜇 1 ′ = 𝐸[𝑋] = ∑ 𝑥𝑝𝑞 𝑥 ∞ 𝑥=0 = 𝑝[𝑞 + 2𝑞 2 + 3𝑞 3 + ⋯ ] = 𝑝𝑞[1 + 2𝑞 + 3𝑞 2 + ⋯ ] = 𝑝𝑞(1 -𝑞) -2 = 𝑝𝑞 𝑝 2 = 𝑞 𝑝 .
Variance

𝑉(𝑋) = 𝜇 2 ′ -(𝜇 1 ′ ) 2 = 𝐸(𝑋 2 ) -[𝐸(𝑋)] 2 ,
and

𝜇 2 ′ = 𝐸(𝑋 2 ) = ∑[𝑥(𝑥 -1) + 𝑥]𝑝𝑞 𝑥 ∞ 𝑥=0 310 = ∑ 𝑥(𝑥 -1)𝑝𝑞 𝑥 ∞ 𝑥=2 + ∑ 𝑥𝑝𝑞 𝑥 ∞ 𝑥=1 = 𝑝((2)(1)𝑞 2 + (3)(2)𝑞 3 + (4)(3)𝑞 4 + ⋯ ) + 𝐸(𝑋) = 2𝑝𝑞 2 (1 -𝑞) -3 + 𝑞 𝑝 = 2𝑞 2 𝑝 -2 + 𝑞 𝑝 .
Therefore,

𝑉(𝑋) = 2𝑞 2 𝑝 2 + 𝑞 𝑝 -( 𝑞 𝑝 ) 2 = 𝑞 2 𝑝 2 + 𝑞 𝑝 = 𝑞 2 + 𝑝𝑞 𝑝 2 = 𝑞(𝑞 + 𝑝) 𝑝 2 = 𝑞 𝑝 2 .
MGF, [START_REF] Gupta | Fundamentals of Mathematical Statistics[END_REF] For a certain manufacturing process, it is known that, on average, 2 in every 100 items is defective. What is the probability that the seventh item inspected is the first defective item found? Solution 

𝑀 𝑋 (𝑡) = 𝐸(𝑒 𝑡𝑋 ) = ∑ 𝑒 𝑡𝑋 𝑝𝑞 𝑥 ∞ 𝑥=0 = 𝑝 ∑(𝑞𝑒 𝑡 ) 𝑥 ∞ 𝑥=0 = 𝑝(1 + 𝑞𝑒 𝑡 + (𝑞𝑒 𝑡 ) 2 + ⋯ ) = 𝑝(1 -𝑞𝑒 𝑡 ) -1 = 𝑝 1 -𝑞𝑒 𝑡 . ∎ Example 10.
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Hypergeometric Distribution

We learned that one of the conditions required to apply the binomial distribution is that the trials are independent, so that the probabilities of the two outcomes or events (success and failure) remain constant. If the trials are not independent, we cannot apply the binomial probability distribution to find the probability of 𝑥 successes in 𝑛 trials. In such cases we replace the binomial probability distribution by the hypergeometric probability distribution. Such a case occurs when a sample is drawn without replacement from a finite population. When sampling is done without replacement, it means that each item selected from the population is not put back or replaced before the next selection. As a result, the composition of the population changes with each selection, and the probability of drawing subsequent items is affected by previous selections. In the context of hypergeometric distribution, sampling without replacement is a fundamental assumption. The distribution calculates the probability of obtaining a specific number of successes (items of interest) in a fixed-sized sample, drawn without replacement from a finite population.

For example, let us consider a bag of colored balls: 10 red balls, and 5 blue balls. If we randomly draw 4 balls from the bag without replacement, the probability of obtaining a specific number of red balls (successes) can be calculated using the hypergeometric distribution. The hypergeometric distribution takes into account the fact that the probability of selecting a red ball changes with each draw. As we remove red balls from the bag, the probability of selecting another red ball decreases. This is different from the binomial distribution, which assumes sampling with replacement and treats each draw as independent. 

Definition (Hypergeometric Distribution
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The assumptions of hypergeometric distribution

• Finite population:

The hypergeometric distribution assumes that the population size (𝑁) is fixed and known. This means that there is a specific number of items or individuals in the population from which the sample is drawn. • Sampling without replacement:

The hypergeometric distribution assumes that sampling is done without replacement. This means that each item selected from the population is not returned or replaced before the next selection. • Two mutually exclusive outcomes:

The hypergeometric distribution deals with two mutually exclusive outcomes, typically referred to as successes and failures. The distribution calculates the probability of obtaining a specific number of successes in the sample. For example, in a bag of red and blue balls, success may refer to selecting a red ball, and failure may refer to selecting a blue ball. • Fixed number of successes in the population:

The hypergeometric distribution assumes that the number of successes in the population (𝐾) is known.

• Fixed sample size:

The hypergeometric distribution assumes a fixed sample size (𝑛). This means that the number of items or individuals selected from the population remains constant throughout the sampling process. The distribution calculates the probability of obtaining a specific number of successes within this fixed sample size. 
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Discrete Uniform Distribution

The discrete uniform distribution is a symmetric probability distribution wherein a finite number of values are equally likely to be observed; every one of 𝑛 values has equal probability 1/𝑛. A simple example of the discrete uniform distribution is throwing a fair dice. The possible values are 1, 2, 3, 4, 5, 6, and each time the die is thrown the probability of a given score is 1/6. If two dice are thrown and their values added, the resulting distribution is no longer uniform because not all sums have equal probability.

Parameters of the discrete uniform distribution

• The parameters of the discrete uniform distribution are typically denoted as follows: 𝑎 represents the lowest value that the RV can take. 𝑏 represents the highest value that the RV can take. Simply, we have consecutive integers {𝑎, 𝑎 + 1, 𝑎 + 2, … , 𝑏}. The PMF of the discrete uniform distribution assigns an equal probability to each value within the range. The PMF is defined as:

𝑃(𝑋 = 𝑥) = 1 𝑏 -𝑎 + 1 , for 𝑎 ≤ 𝑥 ≤ 𝑏,
where 𝑋 is the RV, 𝑥 is a specific value within the range, and 𝑃(𝑋 = 𝑥) represents the probability of 𝑋 taking the value 𝑥.

• In some cases, the discrete uniform distribution is defined using the parameter 𝑛, which represents the total number of possible outcomes or elements in the range. It is important to note that when using 𝑛 as the parameter, the range of outcomes is implicitly defined as {1,2, . . . , 𝑛}, and each outcome has an equal probability of 1/𝑛. The minimum value 𝑎 can be defined as 1, representing the lowest value in the range.

The maximum value 𝑏 can be defined as 𝑛, representing the highest value in the range. Using these parameters, the PMF of the discrete uniform distribution becomes: 

𝑃(𝑋 = 𝑥) = 1 𝑛 , for 1 
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The assumptions of discrete uniform distribution

• Finite range:

The distribution assumes a finite range of values, typically denoted by {𝑥₁, 𝑥₂, . . . , 𝑥ₙ}. These values are equally likely to occur, and there is no preference or bias towards any specific value within the range.

• Equal probability:

Each value in the range has an equal probability of occurring. This means that the PMF assigns the same probability to each outcome. • Independence:

The occurrences of the values within the range are assumed to be independent of each other. In other words, the outcome of one observation does not affect the probabilities or outcomes of subsequent observations. • Exhaustive and mutually exclusive:

The values in the range are assumed to be exhaustive and mutually exclusive. This means that one and only one of the possible values can occur at any given time.

• Discreteness:

The distribution deals with discrete values rather than continuous values. The RV can only take on specific values within the range, and there are no intermediate values.

Discrete uniform distribution has several applications in various fields.

• Random number generation:

The discrete uniform distribution is often used as a basis for generating random numbers. Random number generators aim to produce sequences of numbers that appear uniformly distributed over a specified range.

The discrete uniform distribution ensures that each number within the range has an equal chance of being selected, making it useful for simulations.

• Monte Carlo simulations:

The discrete uniform distribution is frequently employed in Monte Carlo simulations, which use random sampling to model and analyze complex systems. Monte Carlo simulations are widely used in physics, engineering, finance, and other fields. The uniform distribution is often utilized to generate RVs within a specific range to simulate uncertain events or variables in the system being studied. 

Mean, 𝜇 1 ′ = 𝐸[𝑋] = ∑ 𝑥 1 𝑛 𝑛 𝑥=1 = 1 𝑛 ∑ 𝑥 𝑛 𝑥=1 = 1 𝑛 [1 + 2 + 3 + ⋯ + 𝑛] = 𝑛(𝑛 + 1) 2𝑛 = (𝑛 + 1) 2 .
Variance

𝑉(𝑋) = 𝜇 2 ′ -(𝜇 1 ′ ) 2 = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 ,
and

𝜇 2 ′ = 𝐸[𝑋 2 ] = ∑ 𝑥 2 1 𝑛 𝑛 𝑥=1 = 1 𝑛 ∑ 𝑥 2 𝑛 𝑥=1 = 1 𝑛 (1 2 + 2 2 + ⋯ + 𝑛 2 ) = 𝑛(𝑛 + 1)(2𝑛 + 1) 6𝑛 = (𝑛 + 1)(2𝑛 + 1) 6 .
Therefore, 

𝑉(𝑋) = (𝑛 + 1)(2𝑛 + 1) 6 -( 𝑛 + 1 2 ) 2 = 𝑛 + 1 2 [ 4𝑛 + 2 -3𝑛 -3 6 ] = ( 𝑛 + 1 2 ) ( 𝑛 - 1 
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MATHEMATICA LAB: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In this chapter, we delve into the world of discrete random variables, which play a crucial role in modeling various phenomena with countable outcomes. We explore their PMFs, CDFs, and MGFs, while leveraging the power of Mathematica to perform computations and gain insights.

• Mathematica provides a range of built-in functions designed to facilitate the analysis of discrete random variables. These functions include Probability, NProbability, PDF, CDF, Expectation, NExpectation, MomentGeneratingFunction and CentralMomentGeneratingFunction. The Probability function allows users to estimate the likelihood of specific events occurring for discrete random variables. NProbability enables numerical estimation of probabilities. PDF and CDF assist in determining the probability density and cumulative probability of discrete random variables, respectively. Expectation and NExpectation functions calculate the expected value or mean of a discrete random variable, providing insights into its central tendency. MomentGeneratingFunction and CentralMomentGeneratingFunction allow for the calculation of higher-order moments and central moments, offering a more comprehensive understanding of the distribution of the random variable. By utilizing these functions, mathematicians and data scientists can efficiently analyze and extract valuable insights from discrete random variables.

• Moreover, Mathematica offers a comprehensive set of built-in functions to handle various probability distributions effortlessly. In this chapter, we also explore six essential probability distributions: Binomial distribution, Poisson distribution, negative binomial distribution, geometric distribution, hypergeometric distribution, and discrete uniform distribution.

Therefore, we divided this chapter into seven units to cover the above topics. In the subsequent units, we delve deeper into each distribution, exploring their properties, statistical measures, and applications.

In the following table, we list the built-in functions that are used in this chapter. gives the probability for an event that satisfies the predicate pred under the assumption that x follows the probability distribution dist.

Distributed

Probability[pred,x\[Distributed]data]

gives the probability for an event that satisfies the predicate pred under the assumption that x follows the probability distribution given by data.

Probability[pred,{x1,x2,…} \[Distributed]dist]
gives the probability that an event satisfies pred under the assumption that {x1,x2,…} follows the multivariate distribution dist.

Probability[pred, {x1\[Distributed]dist1, x2\[Distributed]dist2,…}]
gives the probability that an event satisfies pred under the assumption that x1, x2, … are independent and follow the distributions dist1, dist2, ….

Probability[pred1\[Conditioned]pred2,…]

gives the conditional probability of pred1 given pred2.

NProbability[pred,x\[Distributed]dist]

gives the numerical probability for an event that satisfies the predicate pred under the assumption that x follows the probability distribution dist.

NProbability[pred,{x1,x2,…} \[Distributed]dist]
gives the numerical probability that an event satisfies pred under the assumption that {x1,x2,…} follows the multivariate distribution dist.

NProbability[pred, {x1\[Distributed]dist1, x2\[Distributed]dist2,…}]
gives the numerical probability that an event satisfies pred under the assumption that x1, x2, … are independent and follow the distributions dist1, dist2, ….

NProbability[pred1\[Conditioned]pred2,…]
gives the numerical conditional probability of pred1 given pred2. (* Probability of (x is less than or equal to 4 or x is less than 3) and x is greater {p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20} Output {2/3,1/2,2/3,1/2,1/3,1/2,1/6,0,1/3,2/3,0,0,1/2,1/3,1/6,0,1/3,1/2,0, gives the probability density function for the distribution dist evaluated at x.

Mathematica

PDF[dist,{x1,x2,…}]

gives the multivariate probability density function for a distribution dist evaluated at {x1,x2,…}.

PDF[dist]

gives the PDF as a pure function. gives the expectation of expr under the assumption that x follows the probability distribution dist.

Mathematica

Expectation[ expr, x\[Distributed]data]

gives the expectation of expr under the assumption that x follows the probability distribution given by data.

Expectation[ expr,{x1,x2,…}\[Distributed]dist]

gives the expectation of expr under the assumption that {x1,x2,…} follows the multivariate distribution dist.

Expectation[ expr,{x1\[Distributed]dist1, x2\[Distributed]dist2,…}]
gives the expectation of expr under the assumption that x1, x2, … are independent and follow the distributions dist1, dist2, ….

Expectation[ expr\[Conditioned]pred,…]

gives the conditional expectation of expr given pred.

NExpectation[ expr,x\[Distributed] dist]

gives the numerical expectation of expr under the assumption that x follows the probability distribution dist.

NExpectation[expr, {x1,x2,…}\[Distributed]dist]
gives the numerical expectation of expr under the assumption that {x1,x2,…} follows the multivariate distribution dist.

NExpectation[expr, {x1\[Distributed]dist1, x2\[Distributed]dist2,…}]
gives the numerical expectation of expr under the assumption that x1, x2, … are independent and follow the distributions dist1, dist2, ….
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NExpectation[expr \[Conditioned]pred,…]
gives the numerical conditional expectation of expr given pred.

Mathematica Examples 11.4 Expectation and NExpectation

Input (* The code showcases the steps involved in determining the expectation. It begins by defining the discrete distribution, specifying its parameters, and assigning it to a variable. The function g(x) is defined to represent the desired function for which the expectation is being calculated. The expectation is then computed using the Expectation function, which takes the function g(x) and the random variable x distributed according to the defined distribution. This function provides a direct method to calculate the expectation. Additionally, the code includes an explaining the concept of the expectation for a discrete distribution as the PDF-weighted sum: *) Input (* Suppose we have a random variable X that represents the outcome of rolling a fair six-sided die, and event A represents the event of rolling an even number. The possible values of X are {1,2,3,4,5,6},and the corresponding conditional probabilities P(X=x|A)are {0,1/3,0,1/3,0,1/3}. The conditional probability P(X=x|A) can be calculated using the following formula: P(X=x|A)=P(X=x ∩ A)/P(A). 

d=PoissonDistribution[μ]; g[x_]=x^2; directExpectation=Expectation[g[x],
)=\!\( \*UnderoverscriptBox[\(\[Sum]\), \(ξ = \(-∞\)\), \(x\)]\(f\((ξ)\)\)\): *) PDF[GeometricDistribution[p],m] FullSimplify[ Sum[ PDF[GeometricDistribution[p],m], {m,-∞,Floor[n]} ] ] CDF[GeometricDistribution[p],n] Output { (1 -p) m p m >= 0 0 True Output { 1 -(1 -p) 1+Floor[n] Floor[n] >= 0 0 True Output { 1 -(1 -p) 1+Floor[n] n

CONTINUOUS RANDOM VARIABLES AND DISTRIBUTIONS

In this chapter, we will delve into the world of continuous RVs and distributions. Unlike discrete RVs that take on only a finite or countable number of values, continuous RVs can assume any value within a specified range or interval.

The study of continuous RVs is crucial in various fields, including statistics, probability theory, and applied mathematics, due to their widespread applicability in modeling real-world phenomena.

• We will begin by exploring the concept of probability density functions (PDFs). Continuous RVs are described by a PDF rather than a PMF as used for discrete RVs. The PDF gives the probability of a variable falling within a certain interval. Integration over the PDF within a specific interval gives the probability of the variable falling within that interval. PDF provides a means to quantify the likelihood of observing a value within a given interval. We will discuss the properties and interpretation of PDFs, as well as their role in calculating probabilities and expected values. • Next, we will study CDFs of continuous RVs, which complement PDFs by providing a different perspective on the distribution of continuous RVs. CDFs give the probability of observing a value less than or equal to a specific point. We will examine the properties of CDFs and their connection to PDFs, enabling us to obtain valuable information about the behavior of continuous RVs. • Another fundamental concept we will explore is the MGF of continuous RVs. The MGF allows us to derive moments of a RV, providing a comprehensive description of its distribution. We will investigate how MGFs can be used to determine moments, variance, and other statistical measures of continuous RVs. • After establishing these foundational concepts, we will proceed to study specific continuous probability distributions. o We will begin with the uniform distribution, which represents a scenario where all outcomes within a given range are equally likely. o Next, we will examine the exponential distribution, which is widely used in modeling various realworld events, such as the time between occurrences of certain events. o Following that, we will study the gamma distribution, which is a versatile continuous probability distribution frequently encountered in fields such as reliability analysis, queuing theory, and insurance. We will explore the gamma distribution's shape, parameters, and applications, shedding light on its usefulness in modeling diverse phenomena. o Lastly, we will turn our attention to the normal distribution, also known as the Gaussian distribution.

Normal distribution is one of the most important and widely used continuous probability distributions due to its remarkable properties and its natural occurrence in many real-world phenomena. We will investigate the characteristics of the normal distribution, including its bellshaped curve, and the empirical rule.

Each of these distributions will be examined in detail, discussing their PDFs, CDFs, and moments. Real-world examples and applications will be provided to illustrate the practical relevance of these distributions in various fields of study. By studying continuous RVs and their associated distributions, we gain a deeper understanding of the probabilistic nature of continuous phenomena.

12.1 Continuous RVs and PDF

Continuous RVs

The possible values that a continuous RV can assume are infinite and uncountable. For example, the variable that represents the time taken by a worker to commute from home to work is a continuous RV. Suppose 6 minutes is the minimum time and 120 minutes is the maximum time taken by all workers to commute from home to work. Let 𝑋 be a continuous RV that denotes the time taken to commute from home to work by a randomly selected worker. Then 𝑋 can assume any value in the interval 6 to 120 minutes. This interval contains an infinite number of values that are uncountable.

Examples of continuous RVs:

• Height and weight:

The height of individuals can be considered a continuous RV since it can take on any value within a certain range. For example, a person's height can be measured in centimeters or inches and can have values like 150.5 cm, 175.2 cm, or any other value within the range of human heights. Also, the weight of objects is often considered a continuous RV. It can be measured in grams, kilograms, or pounds and can have any value within a certain range. For instance, the weight of a fruit can be 250 grams, 500 grams, or any other value within the weight distribution. • Time:

Time is often modeled as a continuous RV. For instance, the time it takes for a car to travel from one point to another, the duration of a phone call, or the time it takes to complete a task can be considered continuous RVs. These variables can have infinitely many possible values, such as 4.562 seconds, 12.987 milliseconds, or any other value in the range of possible times. • Temperature:

Temperature is another example of a continuous RV. It can be measured in degrees Celsius or Fahrenheit. For example, the temperature outside can be 27.3°C, 18.9°C, or any other value within the possible temperature range.

• Income:

Income is often modeled as a continuous RV since it can take on any value within a certain range. For example, a person's annual income can be $50,000, $75,000, or any other value within the income distribution.

• Stock prices:

The prices of stocks in financial markets are considered continuous RVs. • Blood pressure:

Blood pressure is a continuous RV that represents the force exerted by blood against the walls of blood vessels. It is typically measured in millimeters of mercury (mmHg). For instance, a person's blood pressure can be 120/80 mmHg, 140/90 mmHg or any other combination within the possible pressure range. • Rainfall:

The amount of rainfall in a particular area during a given time period can be modeled as a continuous RV. It can be measured in millimeters or inches. For instance, the rainfall in a region can be 10 millimeters, 50 millimeters, or any other value within the possible range of rainfall amounts.

• Arrival time:

In queuing theory or transportation analysis, the time between arrivals of customers, vehicles, or events can be modeled as continuous RVs. For instance, the time between the arrivals of customers at a store, the time between buses arriving at a bus stop, or the inter-arrival time of requests to a server can all be represented by continuous RVs.

• Response time in customer service:

The time it takes for a customer service representative to respond to a customer inquiry or request can be modeled as a continuous RV.

• Lifetime of electronic devices:

The lifespan of electronic devices such as smartphones, laptops, or refrigerators can be treated as a continuous RV. It represents the duration until the device becomes inoperable or obsolete. For example, the lifetime of a smartphone can be 2 years, 4 years, or any other value within the range of possible lifetimes. The time until a light bulb burns out, or the lifespan of a battery can all be considered continuous RVs. • Speed:

Suppose we have a RV representing the speed of vehicles on a highway. The speed can take on any positive value within a certain range, such as 60 km/h, 65.5 km/h, or any other value in between. Speed is a continuous RV as it can vary continuously.

These examples illustrate how continuous RVs can represent quantities that can take on a wide range of values, potentially spanning an infinite number of possibilities. A PDF 𝑓(𝑥) can be used to describe the probability distribution of a continuous RV 𝑋. If an interval is likely to contain a value for 𝑋, its probability is large, and it corresponds to large values for 𝑓(𝑥). A histogram is an approximation to a PDF. For each interval of the histogram, the area of the bar equals the relative frequency (proportion) of the measurements in the interval. The relative frequency is an estimate of the probability that a measurement falls in the interval. Similarly, the area under 𝑓(𝑥) over any interval equals the true probability that a measurement falls in the interval.

PDFs, CDFs and MGFs

Remember that, for discrete RVs,

• The sum of all the probabilities 𝑃(𝑥) equals 1 and • The probability that 𝑋 falls into a certain interval is the sum of all the probabilities in that interval.

Continuous RVs have some parallel characteristics listed next.

• The area under a continuous probability distribution is equal to 1.

• The probability that 𝑋 will fall into a particular interval-say, from 𝑎 to 𝑏-is equal to the area under the curve between the two points 𝑎 and 𝑏. Hence, the probability that 𝑋 is between 𝑎 and 𝑏 is determined as the integral of 𝑓(𝑥) from 𝑎 to 𝑏. A PDF provides a simple description of the probabilities associated with a RV. As long as 𝑓(𝑥) is nonnegative and ∫ 𝑓(𝑥)𝑑𝑥 ∞ -∞ = 1, 0 ≤ 𝑃(𝑎 < 𝑋 < 𝑏) ≤ 1 so that the probabilities are properly restricted. A PDF is zero for 𝑥 values that cannot occur.

There is an important difference between discrete and continuous RVs. Consider the probability that 𝑋 equals some particular value, say, 𝑎. Since there is no area above a single point, 𝑋 = 𝑎, in the probability distribution for a continuous RV, our definition implies that the probability is always zero. For example, if 𝑋 is the height of a randomly selected female student from a university, then the probability that this student is exactly 66.8 inches tall is zero; that is, 𝑃(𝑋 = 66.8) = 0.

• For a continuous RV 𝑋 and any value 𝑎, 𝑃(𝑋 = 𝑎) = ∫ 𝑓(𝑥)𝑑𝑥 𝑎 𝑎 = 0.

• This implies that 𝑃(𝑥 ≥ 𝑎) = 𝑃(𝑥 > 𝑎) and 𝑃(𝑥 ≤ 𝑎) = 𝑃(𝑥 < 𝑎). • If 𝑋 is a continuous RV, for any 𝑎 and 𝑏, 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏). • In other words, the probability that 𝑋 assumes a value in the interval 𝑎 to 𝑏 is the same whether or not the values 𝑎 and 𝑏 are included in the interval. For the example on the heights of female students, the probability that a randomly selected female student is between 65 and 68 inches tall is the same as the probability that this female is 65 to 68 inches tall. • This is not true in general for discrete RVs.

Definition (CDF):

The CDF of a continuous RV 𝑋 is

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑢)𝑑𝑢 𝑥 -∞ , (12.2.1) for -∞ < 𝑥 < ∞. Given 𝐹(𝑥), 𝑓(𝑥) = 𝑑𝐹(𝑥) 𝑑𝑥 , ( 12 
.2.2) as long as the derivative exists. That is, the density is the derivative of the CDF. The importance of the CDF here, just as for discrete RV, is that probabilities of various intervals can be computed from a formula for 𝐹(𝑥). If we have the CDF 𝐹(𝑥), then 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹(𝑏) -𝐹(𝑎). (12.2.3)
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Example 12.1 Suppose that 𝑋 is a continuous RV whose PDF is given by 𝑓(𝑥) = { 𝐶(4𝑥 -2𝑥 2 ), 0 < 𝑥 < 2 0, otherwise .

(a) What is the value of 𝐶? (b) Find 𝑃(𝑋 > 1).

(c) Find 𝐹(𝑥).

Solution

(a) Since 𝑓 is a PDF, we must have that

∫ 𝑓(𝑥)𝑑𝑥 ∞ -∞ = 1, implying that ∫ 𝐶(4𝑥 -2𝑥 2 )𝑑𝑥 2 0 = 1, [𝐶 (4 𝑥 2 2 -2 𝑥 3 3 )] 𝑥=0 𝑥=2 = 1 ⟹ 𝐶 (4 4 2 -2 8 3 ) -0 = 8 3 𝐶 = 1.
Hence, 𝐶 = (c)

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 3 8 (4𝑢 -2𝑢 2 )𝑑𝑢 𝑥 -∞ = ∫ 3 8 (4𝑢 -2𝑢 2 )𝑑𝑢 𝑥 0 = 3𝑥 2 4 - 𝑥 3 4 .
The mean and variance can also be defined for a continuous RV. Integration replaces summation in the discrete definitions.

Definition (Mean and Variance):

Suppose that 𝑋 is a continuous RV with PDF 𝑓(𝑥). The mean or expected value of 𝑋, denoted as 𝜇 or 𝐸[𝑋], is

𝜇 = 𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥 ∞ -∞ . (12.
3) The variance of 𝑋, denoted as 𝑉(𝑋) or 𝜎 2 , is

𝜎 2 = 𝑉(𝑋) = ∫ (𝑥 -𝜇) 2 𝑓(𝑥)𝑑𝑥 ∞ -∞ = ∫ 𝑥 2 𝑓(𝑥)𝑑𝑥 ∞ -∞ -𝜇 2 .
(12.4) The standard deviation of 𝑋 is 𝜎 = √𝜎 2 .

Definition (Expected Value):

The expected value of a function ℎ(𝑋) of a continuous RV 𝑋 with PDF 𝑓(𝑥) is defined as

𝐸[ℎ(𝑋)] = ∫ ℎ(𝑥)𝑓(𝑥)𝑑𝑥 ∞ -∞ .
(12.5) Let us consider the example of the height of adult males in a given population. The height of an individual can be considered a continuous RV because it can take on any value within a certain range (e.g., from 150 cm to 200 cm), and there are infinitely many possible values between any two given heights.

• Let us say we have a population of 10,000 adult males, and we want to study their heights. We can represent the height of each individual as a continuous RV, denoted by the symbol "𝑋." In this example, 𝑋 can take on any value between 150 cm and 200 cm, including decimal values. • To analyze this continuous RV, we can look at its probability distribution, which describes how likely it is for 𝑋 to take on different values within the given range. In this case, the probability distribution of the height of adult males might resemble a bell-shaped curve, also known as a normal distribution.
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• Using a normal distribution, we can calculate the probability of an individual having a height within a certain range. For example, we can calculate the probability of an adult male being between 170 cm and 180 cm tall. This calculation involves integrating the PDF of the normal distribution over the interval from 170 cm to 180 cm. • Moreover, continuous RVs allow us to calculate various summary statistics. For instance, we can determine the mean height of the population, 𝜇, which represents the average height of adult males in the given population. We can also calculate the standard deviation, 𝜎, which measures the variability or spread of heights in the population.

Definition (MGF):

The MGF of the continuous RV 𝑋 with PDF 𝑓(𝑥) is defined as 

𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∫ 𝑒 𝑡𝑥 𝑓(𝑥)𝑑𝑥 ∞ -∞ . ( 12 
(𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∫ 𝑒 𝑡𝑥 𝑓(𝑥)𝑑𝑥 ∞ -∞ = ∫ 𝑒 𝑡𝑥 1 √2𝜋 𝑒 -𝑥 2 2 𝑑𝑥 ∞ -∞ = 1 √2𝜋 ∫ 𝑒 (𝑡𝑥- 𝑥 2 2 ) 𝑑𝑥 ∞ -∞ = 1 √2𝜋 ∫ 𝑒 -1 2 (𝑥 2 -2𝑡𝑥) 𝑑𝑥 ∞ -∞ = 1 √2𝜋 ∫ 𝑒 -1 2 (𝑥 2 -2𝑡𝑥+𝑡 2 )+ 1 2 𝑡 2 𝑑𝑥 ∞ -∞ = 1 √2𝜋 ∫ 𝑒 -1 2 (𝑥-𝑡) 2 + 1 2 𝑡 2 𝑑𝑥 ∞ -∞ = 𝑒 1 2 𝑡 2 1 √2𝜋 ∫ 𝑒 -1 2 (𝑥-𝑡) 2 𝑑𝑥 ∞ -∞ = 𝑒 1 2 𝑡 2 ,
where

1 √2𝜋 ∫ 𝑒 -1 2 (𝑥-𝑡) 2 𝑑𝑥 ∞ -∞ = 1.

Definition (Properties of the MGF):

1. The MGF of 𝑋 is unique in the sense that, if two RVs 𝑋 and 𝑌 have the same MGF (𝑀 𝑋 (𝑡) = 𝑀 𝑌 (𝑡), for 𝑡 in an interval containing 0), then 𝑋 and 𝑌 have the same distribution. 

Continuous Distributions

The following is a list of some commonly continuous probability distributions: These are just a few examples of continuous random distributions. There are many other distributions with different properties and applications in statistics and probability theory. The following four distributions form the core set of commonly used continuous probability distributions. They are frequently encountered in various fields, including statistics, probability theory, engineering. In this section, we discuss these distributions in some detail.

Continuous Distributions Uniform Distribution

Gamma Distribution Exponential Distribution

Normal Distribution 420

Continuous Uniform or Rectangular Distribution

One of the simplest continuous distributions in all of statistics is the continuous uniform distribution. This distribution is characterized by a density function that is "flat," and thus the probability is uniform in a closed interval, say [𝑎, 𝑏]. It is a family of symmetric probability distributions. The distribution describes an experiment where there is an arbitrary number outcome that lies between certain bounds. The bounds are defined by the parameters, 𝑎 and 𝑏. The interval can be either closed (eg. [𝑎, 𝑏]) or open (eg. (𝑎, 𝑏)). Therefore, the distribution is often abbreviated U(𝑎, 𝑏). The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. Remarks:

Definition (PDF of Continuous Uniform Distribution

• The continuous uniform distribution requires specifying the interval within which the RV can take on values. This interval is usually defined by two parameters, a lower bound and an upper bound, which determine the range of possible outcomes. The width of the interval affects the spread and variability of the distribution. • The continuous uniform distribution can be seen as the continuous counterpart of the discrete uniform distribution. While the discrete uniform distribution assigns equal probabilities to a finite number of discrete values, the continuous uniform distribution assigns equal probabilities to an infinite number of values within a continuous interval. • The PDF of a continuous uniform distribution is constant within the interval and zero outside the interval.

This reflects the uniformity of the distribution, as there are no peaks or valleys in the probability density.
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• The distribution is known as rectangular distribution, since the curve 𝑦 = 𝑓(𝑥) describes a rectangle over the 𝑥-axis and between the ordinates at 𝑥 = 𝑎 and 𝑥 = 𝑏. • The CDF of a continuous uniform distribution is a linear function that increases uniformly from 0 to 1 as the value of the RV ranges from the lower bound to the upper bound. This property makes it easy to calculate probabilities and percentiles associated with specific values.

The continuous uniform distribution has several applications in various fields:

• Random number generation:

The continuous uniform distribution is often used to generate random numbers within a specified range. This is useful in simulations, computer graphics, cryptography, and various statistical applications.

• Monte Carlo simulations:

Monte Carlo simulations involve using random numbers to estimate the outcome of complex systems or processes. The continuous uniform distribution is frequently used to generate random inputs for these simulations.

How the continuous uniform distribution is applied in simulating various physical phenomena:

• Initial conditions: When simulating physical systems, it is often necessary to assign initial conditions to the variables involved.

The continuous uniform distribution can be used to randomly generate initial values within the desired range. For example, in fluid dynamics simulations, the initial velocities or temperatures of particles can be assigned using the uniform distribution.

• Parameter variation:

Simulations often involve varying parameters within certain ranges to study their effects on the system. The continuous uniform distribution can be used to randomly sample parameter values within their specified ranges. This allows for exploring a broad range of parameter configurations to understand the behavior of the system under different conditions. • Monte Carlo simulations:

Monte Carlo simulations involve repeated random sampling to estimate the behavior of a system or process. The continuous uniform distribution is often used to generate random inputs for these simulations. For example, in nuclear physics simulations, the position and direction of particles can be sampled using the uniform distribution to simulate the scattering or absorption processes. • Sensor noise:

In physical measurements and sensor simulations, noise is often introduced to account for uncertainties and measurement errors. The continuous uniform distribution can be employed to model sensor noise by adding random fluctuations to the measured values within a specified range. This helps in simulating realistic sensor data and assessing the performance of signal processing algorithms.

• Boundary conditions:

Simulating physical systems often requires specifying boundary conditions. The continuous uniform distribution can be used to randomly assign boundary values within the desired range. For instance, in heat transfer simulations, the temperature at the boundary of an object can be assigned using the uniform distribution to simulate different thermal boundary conditions. • Random perturbations:

In dynamic systems, random perturbations are often used to model environmental or external influences. The continuous uniform distribution can be used to generate random perturbations within specified ranges. This allows for simulating the effects of random disturbances on the system's behavior over time. 

Mean, 𝐸[𝑋] = ∫ 𝑥 1 𝑏 -𝑎 𝑑𝑥 𝑏 𝑎 = 1 𝑏 -𝑎 [ 𝑥 2 2 ] 𝑎 𝑏 = 1 𝑏 -𝑎 𝑏 2 -𝑎 2 2 = 𝑎 + 𝑏 2 .
In other words, the expected value of a uniform [𝑎, 𝑏] RV is equal to the midpoint of the interval [𝑎, 𝑏].

Variance,

𝑉(𝑋) = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 , 𝐸[𝑋 2 ] = ∫ 𝑥 2 1 𝑏 -𝑎 𝑑𝑥 𝑏 𝑎 = 1 𝑏 -𝑎 [ 𝑥 3 3 ] 𝑎 𝑏 = 1 𝑏 -𝑎 𝑏 3 -𝑎 3 3 = 1 𝑏 -𝑎 (𝑏 -𝑎)(𝑎 2 + 𝑎𝑏 + 𝑏 2 ) 3 = 𝑎 2 + 𝑎𝑏 + 𝑏 2 3 .
Therefore, It is possible to consider the melting point, 𝑋, of a specific solid to be a continuous RV that is uniformly distributed between 120 and 145 C. Find the probability that such a solid will melt between 125 and 130 C.

𝑉(𝑋) = 𝑎 2 + 𝑎𝑏 + 𝑏 2 3 -( 𝑎 + 𝑏 2 ) 2 = (𝑏 -𝑎) 2 12 .

Solution

The PDF is given by: 

𝑓 𝑋 (𝑥) = { 1 

Exponential Distribution

The exponential distribution is a probability distribution that models the time it takes for an event to occur in a continuous and memoryless manner. In the exponential distribution, the RV represents the time until the next event occurs. In other words, it is used to model waiting times or inter-arrival times between events. In this context, an "event" refers to a specific occurrence or outcome of interest. For example, the arrival of a customer at a service counter, the failure of a machine, or the time until the next phone call in a call center can all be considered events. It is commonly used in various fields, including reliability engineering, queueing theory, and survival analysis. The Exponential Distribution is characterized by a single parameter, often denoted as 𝜆, which represents the rate parameter. The rate parameter determines the average rate at which events occur. The higher the value of 𝜆, the more frequent the events are. The exponential distribution may be viewed as a continuous counterpart of the geometric distribution, which describes the number of Bernoulli trials necessary for a discrete process to change state. In contrast, the exponential distribution describes the time for a continuous process to change state. 

Definition (Exponential Distribution
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The PDF 𝑓 𝑋 (𝑥) assumes the value 0 for negative values of 𝑥, and then for positive values, it starts off at a value equal to 𝜆. This is because if we put 𝑥 = 0 in the PDF expression, you get 𝜆 times 𝑒 0 , which leaves us just with 𝜆. So, it starts off with 𝜆, and then it decays at the rate of 𝜆. Notice that when 𝜆 is small, the initial value of the PDF is small. But then the decay rate is also small, so that the PDF extends over a large range of 𝑥's.

Definition (CDF of Exponential Distribution):

The CDF is given by 𝐹 𝑋 (𝑥) = ∫ 𝜆𝑒 -𝜆𝑥 𝑑𝑥 𝑥 0 = { 1 -𝑒 -𝜆𝑥 ; 𝑥 ≥ 0, 0; otherwise.

(12.15)

In the context of estimating the probability of the expected waiting time until the next event, let us consider an example. Suppose we are interested in estimating the waiting time until the next customer arrives at a store. We assume that customers arrive according to a Poisson process, where events occur continuously and independently at a constant average rate. Exponential distribution is used to model the time between consecutive customer arrivals. If we want to find the probability that the waiting time until the next event is less than or equal to a specific time 𝑡, we calculate the CDF of the exponential distribution. The CDF gives us the probability that the waiting time is less than or equal to 𝑥. Therefore, we can estimate the probability of the expected waiting time until the next event by plugging in the appropriate value of 𝑥 into the CDF equation.

Example 12.6

If the rate parameter 𝜆 = 1/10. What is the probability that the waiting time until the next customer arrival is less than or equal to 5 minutes.

Solution

We can calculate: 𝐹(5) = 1 -𝑒 (-5/10) ≈ 0.393. This means that there is approximately a 39.3% chance that the next customer will arrive within 5 minutes. 

Solution

In this case, you might choose to model the time between earthquakes using an exponential distribution. Since the average interarrival time is 20 years, the rate parameter would be 𝜆 = 1/20 = 0.05.

To find the probability that the waiting time until the next earthquake occurs between 10 to 25 years, we need to calculate the cumulative probability within that range. 

Definition (Memoryless):

The exponential distribution is memoryless, which means that the time until the next event occurs does not depend on how much time has already elapsed.

To understand this property intuitively, consider an example. Let us say 𝑋 represents the time until a light bulb fails, following an exponential distribution with a mean lifetime of 100 hours. If the light bulb has already been working for 50 hours and has not failed yet, the memoryless property tells us that the probability of the light bulb failing within the next 20 hours is the same as the probability of a new light bulb failing within 20 hours, regardless of the time that has already passed. This is because the exponential distribution does not "remember" the past; the remaining lifetime of the light bulb is still governed by the same exponential distribution with a mean of 100 hours.

Proof:

Let 𝑋 be exponentially distributed with parameter 𝜆. Suppose we know 𝑋 > 𝑠. What is the probability that 𝑋 is also greater than some value 𝑠 + 𝑡? We can demonstrate the memoryless property as follows:

𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑠) = [𝑃(𝑋 > 𝑠 + 𝑡 and 𝑋 > 𝑠)] 𝑃(𝑋 > 𝑠) = [𝑃(𝑋 > 𝑠 + 𝑡)] 𝑃(𝑋 > 𝑠) [since 𝑋 > 𝑠 + 𝑡 implies 𝑋 > 𝑠] = 1 -𝑃(𝑋 ≤ 𝑠 + 𝑡) 1 -𝑃(𝑋 ≤ 𝑠) [using the complementary probability] = 1 -[1 -𝑒 -𝜆(𝑠 + 𝑡) ] 1 -[1 -𝑒 -𝜆𝑠 ] [using CDF] = 𝑒 -𝜆(𝑠 + 𝑡) 𝑒 -𝜆𝑠 = 𝑒 -𝜆𝑡 = 𝑃(𝑋 > 𝑡).
Hence, we have shown that 𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑠) = 𝑃(𝑋 > 𝑡). It turns out that the conditional probability does not depend on 𝑠. The probability of an exponential RV exceeding the value 𝑠 + 𝑡 given 𝑠 is the same as the variable originally exceeding that value 𝑡, regardless of 𝑠, which confirms the memoryless property of the exponential distribution.

The exponential distribution is memoryless because the past has no bearing on its future behavior. Every instant is like the beginning of a new random period, which has the same distribution regardless of how much time has already elapsed.

∎

The exponential distribution has some key properties:

• The exponential distribution is the only memoryless continuous RV.

• Lack of a maximum value:

The exponential distribution has an unbounded support, meaning that the RV can take on any positive value.

There is no maximum value for the time until the next event occurs.

• Exponential decay:

The exponential distribution has a decaying exponential shape, with a higher probability density at shorter times and a lower probability density at longer times. This property reflects the decreasing likelihood of an event occurring as time goes on.

The exponential distribution has several applications in various fields:

• In real-world scenarios:
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The assumption of a constant rate (or probability per unit time) is rarely satisfied. For example, the rate of incoming phone calls differs according to the time of day. The exponential distribution is used to model the decay of radioactive isotopes. The time it takes for a certain fraction of the radioactive material to decay follows an exponential distribution.

• Actuarial science:

Actuaries use the exponential distribution to model the time until an event, such as death or insurance claim, occurs. It aids in determining life expectancy, pricing insurance policies, and assessing the financial risk associated with various events.

The exponential distribution is however not appropriate to model the overall lifetime of organisms or technical devices, because the "failure rates" here are not constant: more failures occur for very young and for very old systems.

Theorem 12.2:

If 𝑋 is exponential RV, then

𝐸[𝑋] = 1 𝜆 , (12.16 
)

𝑉(𝑋) = 1 𝜆 2 , (12.17) 
𝑀 𝑋 (𝑡) = 𝜆 𝜆 -𝑡 .

(12.18) The mean of the exponential distribution is equal to 1/𝜆, this means that as the rate parameter increases, the distribution becomes more concentrated around zero.

Proof:

Mean,

𝐸[𝑋] = ∫ 𝑥𝜆𝑒 -𝜆𝑥 𝑑𝑥 ∞ 0 = 𝜆 ∫ 𝑥𝑒 -𝜆𝑥 𝑑𝑥 ∞ 0 = 𝜆 Γ(2) 𝜆 2 = 1 𝜆 . Variance, 428 𝑉(𝑋) = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 𝐸[𝑋 2 ] = ∫ 𝑥 2 𝜆𝑒 -𝜆𝑥 𝑑𝑥 ∞ 0 = 𝜆 Γ(3) 𝜆 3 = 2 𝜆 2 .
Therefore,

𝑉(𝑋) = 2 𝜆 2 -( 1 𝜆 ) 2 = 1 𝜆 2 .
MGF,

𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∫ 𝑒 𝑡𝑥 𝜆𝑒 -𝜆𝑥 𝑑𝑥 ∞ 0 = (1 - 𝑡 𝜆 ) -1 = ( 𝜆 𝜆 -𝑡
). 

∎

Gamma Distribution

The Gamma distribution is a continuous probability distribution that is widely used in various fields, including statistics, engineering, and physics. It is a versatile distribution that allows us to model a wide range of real-world phenomena, such as waiting times, survival analysis, and the distribution of RVs that are always positive. The Gamma distribution was first introduced by mathematician Leonard Euler in the 18th century while studying the problem of waiting times. It was later developed and extensively studied by Karl Pearson and other statisticians in the early 20th century, solidifying its importance in statistical theory and practice. There are two equivalent parameterizations in common use:

• With a shape parameter 𝑘 and a scale parameter 𝜃.

• With a shape parameter 𝛼 = 𝑘 and an inverse scale parameter 𝛽 = 1/𝜃, called a rate parameter.

In each of these forms, both parameters are positive real numbers. These parameters allow us to control the shape, location, and spread of the distribution, making it a flexible tool for modeling various types of data. Moreover, the gamma distribution encompasses several other well-known distributions as special cases, such as the exponential distribution, chi-square distribution, and Erlang distribution.

The exponential distribution describes the time between events in a Poisson process, where events occur at a constant average rate. The exponential distribution is characterized by a single parameter, the rate parameter 𝛽, which represents the average rate of event occurrence. The gamma distribution is characterized by two parameters: 𝛼 and 𝛽. The shape parameter 𝛼 determines the number of sub-events or events that need to occur in sequence before a major event takes place. The parameter 𝛽 controls the rate at which these sub-events occur. If we consider a sequence of events where the waiting time for each event follows an exponential distribution with rate 𝛽, then the waiting time for the 𝑛-th event follows a gamma distribution with shape parameter 𝛼 = 𝑛. This means that as each sub-event occurs, the waiting time for the major event increases, and it follows a gamma distribution. The shape parameter 𝛼 is equal to the number of sub-events or steps required to reach the major event. The construction of the gamma distribution using the exponential distribution allows it to model various phenomena where multiple sub-events, each following an exponential distribution, must happen in sequence for a major event to occur. Examples are the waiting time of celldivision events, the number of compensatory mutations for a given mutation, and the waiting time until a repair is necessary for a hydraulic system. In these cases, each sub-event contributes to the overall waiting time, and the gamma distribution can capture the variability and cumulative effect of these sub-events.

The construction of the gamma distribution using the exponential distribution where multiple sub-events, each following an exponential distribution, must happen in sequence for a major event to occur.

Proof:

Consider the distribution function 𝐷(𝑥) of waiting times until the ℎth Poisson event given a Poisson distribution with a rate of change 𝜆,

𝐷(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 1 -𝑃(𝑋 > 𝑥) = 1 -𝑃(0,1,2, … , (ℎ -1) events in [0, 𝑥]) = 1 -∑ (𝜆𝑥) 𝑘 𝑒 -𝜆𝑥 𝑘! ℎ-1 𝑘=0 = 1 -𝑒 -𝜆𝑥 ∑ (𝜆𝑥) 𝑘 𝑘! ℎ-1 𝑘=0
.
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for 𝑥 in [0, ∞). The corresponding probability function 𝑃(𝑥) of waiting times until the ℎth Poisson event is then obtained by differentiating 𝐷(𝑥),

𝑃(𝑥) = 𝐷 ′ (𝑥) = 𝑑 𝑑𝑥 (1 -∑ (𝜆𝑥) 𝑘 𝑒 -𝜆𝑥 𝑘! ℎ-1 𝑘=0 ) = 𝑑 𝑑𝑥 (1 -𝑒 -𝜆𝑥 -∑ (𝜆𝑥) 𝑘 𝑒 -𝜆𝑥 𝑘! ℎ-1 𝑘=1 ) = - 𝑑 𝑑𝑥 𝑒 -𝜆𝑥 -∑ 𝑑 𝑑𝑥 (𝜆𝑥) 𝑘 𝑒 -𝜆𝑥 𝑘! ℎ-1 𝑘=1 = 𝜆𝑒 -𝜆𝑥 -∑ 1 𝑘! 𝑑 𝑑𝑥 [(𝜆𝑥) 𝑘 𝑒 -𝜆𝑥 ] ℎ-1 𝑘=1 = 𝜆𝑒 -𝜆𝑥 -∑ 1 𝑘! [( 𝑑 𝑑𝑥 (𝜆𝑥) 𝑘 ) 𝑒 -𝜆𝑥 + (𝜆𝑥) 𝑘 𝑑 𝑑𝑥 𝑒 -𝜆𝑥 ] ℎ-1 𝑘=1 = 𝜆𝑒 -𝜆𝑥 -∑ 1 𝑘! [(𝑘(𝜆𝑥) 𝑘-1 𝜆)𝑒 -𝜆𝑥 + (𝜆𝑥) 𝑘 (-𝜆𝑒 -𝜆𝑥 )] ℎ-1 𝑘=1 = 𝜆𝑒 -𝜆𝑥 -𝜆𝑒 -𝜆𝑥 ∑ 1 𝑘! [(𝑘(𝜆𝑥) 𝑘-1 ) -(𝜆𝑥) 𝑘 ] ℎ-1 𝑘=1 = 𝜆𝑒 -𝜆𝑥 (1 -∑ [( 𝑘(𝜆𝑥) 𝑘-1 𝑘! ) - (𝜆𝑥) 𝑘 𝑘! ] ℎ-1 𝑘=1 ) = 𝜆𝑒 -𝜆𝑥 (1 -∑ [( (𝜆𝑥) 𝑘-1 (𝑘 -1)! ) - (𝜆𝑥) 𝑘 𝑘! ] ℎ-1 𝑘=1 ) = 𝜆𝑒 -𝜆𝑥 (1 -[1 - (𝜆𝑥) ℎ-1 (ℎ -1)! ]) = 𝜆𝑒 -𝜆𝑥 (𝜆𝑥) ℎ-1 (ℎ -1)! = 𝜆(𝜆𝑥) ℎ-1 (ℎ -1)! 𝑒 -𝜆𝑥 .
Now let 𝑘 = ℎ (not necessarily an integer) and define 𝜃 is a reciprocal of the event rate 𝜃 = 1/𝜆, which is the mean wait time (the average time between event arrivals). Then the above equation can be written

𝑃(𝑥) = 𝜆(𝜆𝑥) 𝑘-1 (𝑘 -1)! 𝑒 -𝑥 𝜃 = 𝜆𝜆 𝑘-1 𝑥 𝑘-1 (𝑘 -1)! 𝑒 -𝑥 𝜃 = 𝜆 𝑘 𝑥 𝑘-1 Γ(𝑘) 𝑒 -𝑥 𝜃 = 𝜃 -𝑘 Γ(𝑘) 𝑥 𝑘-1 𝑒 -𝑥 𝜃 ,
for 𝑥 in [0, ∞), where (𝑘 -1)! = Γ(𝑘). This is the PDF for the gamma distribution.
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Definition (PDF of Gamma Distribution): A RV 𝑋 is said to have a gamma distribution with parameters 𝑘 and 𝜃, if its PDF is given by 𝑓 𝑋 (𝑥) = 𝑓 𝑋 (𝑥; 𝑘, 𝜃) = { 𝜃 -𝑘 Γ(𝑘) 𝑥 𝑘-1 𝑒 -𝑥 𝜃 ; 𝑥 > 0, 0; otherwise, (12.19.1) where 𝑘 > 0 and 𝜃 > 0, and Γ(𝑘) is the gamma function. (See Figure 12.5). A RV 𝑋 is said to have a gamma distribution with parameters 𝛼 and 𝛽, if its PDF is given by 𝑓 𝑋 (𝑥) = 𝑓 𝑋 (𝑥; 𝛼, 𝛽) = { 𝛽 𝛼 Γ(𝛼) 𝑥 𝛼-1 𝑒 -𝛽𝑥 ; 𝑥 > 0, 0; otherwise, (12.19.2) where 𝛼 > 0 and 𝛽 > 0, and Γ(𝛼) is the gamma function.

Definition (CDF of Gamma Distribution):

The CDF is the regularized gamma function: 

Remark:

The gamma distribution represents the sum of 𝑘 independent exponential RVs with the same rate parameter 𝜃. Therefore, when 𝑘 = 1 in the gamma distribution, it reduces to the exponential distribution. Mathematically, when 𝑘 = 1 (12.19.1), or 𝛼 = 1 (12.19.2), the PDF of the gamma distribution simplifies to: 𝑓 𝑋 (𝑥) = 𝑒 

𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∫ 𝑒 𝑡𝑥 𝜃 -𝑘 Γ(𝑘) 𝑥 𝑘-1 𝑒 -𝑥 𝜃 𝑑𝑥 ∞ 0 = ∫ 𝜃 -𝑘 Γ(𝑘) 𝑥 𝑘-1 𝑒 𝑡𝑥-𝑥 𝜃 𝑑𝑥 ∞ 0 = ∫ 𝜃 -𝑘 Γ(𝑘) 𝑥 𝑘-1 𝑒 -(1-𝜃𝑡) 𝑥 𝜃 𝑑𝑥 ∞ 0 . Let 𝑥 = 𝑦𝜃 1-𝜃𝑡 , 𝑦 = (1 -𝜃𝑡) 𝑥 𝜃 and 𝑑𝑦 = 1-𝜃𝑡 𝜃 𝑑𝑥, so 𝑀 𝑋 (𝑡) = ∫ 𝜃 -𝑘 Γ(𝑘) ( 𝑦𝜃 1 -𝜃𝑡 ) 𝑘-1 𝑒 -𝑦 𝜃 1 -𝜃𝑡 𝑑𝑦 ∞ 0 = 𝜃 1 -𝜃𝑡 𝜃 -𝑘 Γ(𝑘) ( 𝜃 1 -𝜃𝑡 ) 𝑘-1 ∫ 𝑦 𝑘-1 𝑒 -𝑦 𝑑𝑦 ∞ 0 = 1 (1 -𝜃𝑡) 𝑘 1 Γ(𝑘) ∫ 𝑦 𝑘-1 𝑒 -𝑦 𝑑𝑦 ∞ 0 = 1 (1 -𝜃𝑡) 𝑘 . Mean, 𝐸[𝑋] = 𝑑 𝑑𝑡 𝑀 𝑋 (𝑡)| 𝑡=0 = [-𝑘(1 -𝜃𝑡) -𝑘-1 (-𝜃)]| 𝑡=0 = 𝑘𝜃.
Variance, 

𝐸[𝑋 2 ] = 𝑑 2 𝑑𝑡 2 𝑀 𝑋 (𝑡)| 𝑡=0 = 𝑑 𝑑𝑡 [𝑘𝜃(1 -𝜃𝑡) -𝑘-1 ]| 𝑡=0 = [(-𝑘 -1)𝑘𝜃(1 -𝜃𝑡) -𝑘-2 (-𝜃)]| 𝑡=0 = [(𝑘 + 1)𝑘𝜃 2 ].

Normal Distribution

Normal distribution plays a pivotal role in most of the statistical techniques used in applied statistics. The main reason for this is the central limit theorem, according to which normal distribution is found to be the approximation of most of the RVs. We may discuss it in detail later.

It was first introduced by a French mathematician, Abraham De-Moivre (1667-1754). He obtained it while working on certain problems in the games of chance. Later, two mathematical astronomers Pierre Laplace (1749-1827) and Karl Gauss (1777-1855) developed this distribution independently. They found that it can be used to model errors (the deviation of the observed value from the true value). Hence, this distribution is also known as Gaussian distribution and Laplace's distribution. But it is most commonly known as the normal distribution.

Definition (Normal Distribution):

A RV 𝑋 is said to follow a normal distribution with parameters 𝜇 and 𝜎 2 if its PDF is given by

𝑓 𝑋 (𝑥) = 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 , -∞ < 𝑥 < ∞, (12.27 
) where -∞ < 𝜇 < ∞ and 𝜎 > 0. In this case, we can write 𝑋 ∼ 𝑁(𝜇, 𝜎 2 ) or 𝑋 ∼ 𝑁(𝜇, 𝜎). Given the values of the mean, 𝜇, and the standard deviation, 𝜎, we can find the area under a normal distribution curve for any interval. The value of 𝜇 determines the center of a normal distribution curve on the horizontal axis, and the value of 𝜎 gives the spread of the normal distribution curve. The three normal distribution curves shown in Figure 12.6 (upper panel) have the same mean but different standard deviations. By contrast, the three normal distribution curves in Figure 12.6 (lower panel) have different means but the same standard deviation.

We list the following properties of the normal curve:

1. The normal curve is symmetrical about the ordinate at 𝑥 = 𝜇, i.e., 𝑓(𝜇 + 𝑐) = 𝑓(𝜇 -𝑐) for any 𝑐. 2. 50% of the total area under a normal distribution curve lies on the left side of the mean, and 50% lies on the right side of the mean. 3. The mean, median, and mode are identical and occur at 𝑥 = 𝜇. 4. The mode of the normal curve is at 𝑥 = 𝜇, and is equal to 1 𝜎√2𝜋 . 5. It is unimodal: its first derivative is positive for 𝑥 < 𝜇 negative for 𝑥 > 𝜇 and zero only at 𝑥 = 𝜇. 6. The normal curve extends from -∞ to +∞. 7. In graphical form, normal distribution will appear as a bell curve. 8. For a normal distribution 𝛽 1 = 0 (i.e., symmetric) and 𝛽 2 = 3 (i.e., mesokurtic). 9. 𝑥-axis is an asymptote to the curve. That is, the curve touches the 𝑥-axis only at ±∞. i. e. , 𝑃(𝜇 -2𝜎 ≤ 𝑋 ≤ 𝜇 + 2𝜎) = 0.9545. (c) 99.73% of the items lie between 𝜇 -3𝜎 and 𝜇 + 3𝜎.

i. e. , 𝑃(𝜇 -3𝜎 ≤ 𝑋 ≤ 𝜇 + 3𝜎) = 0.9973. (d) The total area under the curve and above the horizontal axis is equal to 1.

The normal distribution has several applications in various fields:

• Heights of adult males:

The distribution of heights of adult males tends to follow a normal distribution. The mean and standard deviation can vary depending on the population being considered, but it is often modeled as a normal RV. Most people are of average height, with a small number of people being taller or shorter than average.

• Errors in measurements:

In many scientific experiments and measurements, there is inherent uncertainty and variability. The errors associated with these measurements are often assumed to be normally distributed.

• Body temperatures:

The distribution of body temperatures in a healthy adult population is often modeled as a normal RV with a mean around 98.6 degrees Fahrenheit (37 degrees Celsius) and a standard deviation of approximately 0.6 degrees Fahrenheit (0.3 degrees Celsius). • Blood pressure:

Systolic and diastolic blood pressures in a population are often assumed to follow normal distributions. The mean and standard deviation can vary depending on factors such as age and health conditions.

• Exam scores:

In educational settings, the scores on exams are often assumed to be normally distributed. Most students score around the average, with a small number of students scoring much higher or lower. This assumption allows for the use of statistical methods to analyze performance and set grading criteria.

• Machine learning:

The normal distribution serves as a fundamental assumption in many machine learning algorithms, such as linear regression, logistic regression, and Gaussian mixture models. It allows for probabilistic modeling and inference in various learning tasks.

• Sampling theory:

The normal distribution plays a crucial role in sampling theory and the central limit theorem. The central limit theorem states that as the sample size increases, the distribution of the sample mean approaches a normal distribution. This is true even if the individual variables are not normally distributed. • Normal RVs are also used in hypothesis testing, confidence intervals, and other statistical procedures. (12.31) Proof:

Mean, 𝜇 1 ′ = 𝐸[𝑋] = ∫ 𝑥 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 𝑑𝑥 ∞ -∞ 436 = ∫ (𝑥 -𝜇 + 𝜇) 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 𝑑𝑥 ∞ -∞ = ∫ (𝑥 -𝜇) 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 𝑑𝑥 ∞ -∞ + 𝜇 ∫ 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 𝑑𝑥 ∞ -∞ = ∫ 𝜎𝑧 1 √2𝜋 𝑒 -𝑧 2 2 𝑑𝑧 ∞ -∞ + 𝜇 (𝑧 = (𝑥 -𝜇)/𝜎) = 𝜎 √2𝜋 ∫ 𝑧𝑒 -𝑧 2 2 𝑑𝑧 ∞ -∞ + 𝜇 = 𝜎 √2𝜋 [𝑒 -𝑧 2 2 ] -∞ ∞ + 𝜇 = 𝜎 √2𝜋 × 0 + 𝜇 = 𝜇.
Variance,

𝑉(𝑋) = 𝐸(𝑋 -𝐸(𝑋)) 2 = 𝐸(𝑋 -𝜇) 2 = ∫ (𝑥 -𝜇) 2 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 𝑑𝑥 ∞ -∞ = 1 𝜎√2𝜋 ∫ (𝜎𝑧) 2 𝑒 -𝑍 2 2 𝜎𝑑𝑧 ∞ -∞ (𝑧 = (𝑥 -𝜇)/𝜎) = 𝜎 2 √2𝜋 ∫ 𝑧 2 𝑒 -𝑍 2 2 𝑑𝑧 ∞ -∞
(With u = z and dv = ze -z 2 2 , the integration by parts formula)

= 𝜎 2 √2𝜋 [-𝑧e -z 2 2 | -∞ ∞ + ∫ 𝑒 -𝑍 2 2 𝑑𝑧 ∞ -∞ ] (∫ udv = uv -∫ vdu) = 𝜎 2 √2𝜋 [0 + √2𝜋] = 𝜎 2 .
∎ Theorem 12.9: If 𝑋 is a normal RV with parameters 𝜇 and 𝜎, then all odd-order central moments are zero, 𝜇 2𝑟+1 = 0. (12.32) Proof: 

𝜇 2𝑟+1 = 𝐸(𝑋 -𝐸(𝑋)) 2𝑟+1 = 𝐸(𝑋 -𝜇) 2𝑟+1 = ∫ (𝑥 -𝜇) 2𝑟+1 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2
𝜇 2𝑟 = 𝐸(𝑋 -𝐸(𝑋)) 2𝑟 = 𝐸(𝑋 -𝜇) 2𝑟 = ∫ (𝑥 -𝜇) 2𝑟 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 𝑑𝑥 ∞ -∞ = 1 𝜎√2𝜋 ∫(𝜎𝑧) 2𝑟 𝑒 -𝑧 2 2 𝜎𝑑𝑧 ∞ -∞ (𝑧 = (𝑥 -𝜇)/𝜎) = 𝜎 2𝑟 √2𝜋 ∫ 𝑧 2𝑟 𝑒 -𝑧 2 2 𝑑𝑧 ∞ -∞ = 2𝜎 2𝑟 √2𝜋 ∫ 𝑧 2𝑟 𝑒 -𝑧 2 2 𝑑𝑧 ∞ 0
(being the integral of an even function) Hence,

= 2𝜎 2𝑟 √2𝜋 ∫ (2𝑢) 𝑟 𝑒 -𝑢 𝑑𝑢 √2𝑢 ∞ 0 (With 𝑢 = 𝑧 2 2 ) = 2 𝑟 𝜎 2𝑟 √𝜋 ∫ 𝑢 𝑟-1 2 𝑒 -𝑢 𝑑𝑢 ∞ 0 = 2 𝑟 𝜎 2𝑟 √𝜋 Γ (𝑟 + 1 2 ) 1 𝑟+ 1 2 = 2 𝑟 𝜎 2𝑟 √𝜋 (𝑟 - 1 2 ) (𝑟 - 3 2 ) … 3 2 1 2 Γ ( 1 2 ) 
𝜇 2𝑟+2 = (2𝑟 + 1)𝜎 2 𝜇 2𝑟 .
With this recurrence formula and the information 𝜇 0 = 1, we can calculate 𝜇 2 and 𝜇 4 successively. Putting 𝑟 = 0 we get 𝜇 2 = 𝜎 2 and then substituting 𝑟 = 1 we obtain 𝜇 4 = 3𝜎 4 .

∎

Theorem 12.12: The normal distribution is symmetric and mesokurtic. 𝛾 1 = 0, 𝛾 2 = 0. (12.35) Proof:

Skewness:

Since all the odd-order central moments are zero,

𝛽 1 = 𝜇 3 2 𝜇 2 3 = 0.
Hence, 𝛾 1 = √𝛽 1 = 0. That is, the normal distribution is symmetric.

Kurtosis:

𝛽 2 = 𝜇 4 𝜇 2 2 = 3𝜎 4 𝜎 4 = 3.
Hence, 𝛾 2 = 𝛽 2 -3 = 0. That is, the distribution is mesokurtic. 

∎

𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∫ 𝑒 𝑡𝑥 1 𝜎√2𝜋 𝑒 - (𝑥-𝜇) 2 2𝜎 2 𝑑𝑥 ∞ -∞ (𝑧 = 𝑥 -𝜇 𝜎 ) = 1 𝜎√2𝜋 ∫ 𝑒 𝑡(𝜇+𝑧𝜎) 𝑒 -𝑧 2 2 𝑑𝑧 ∞ -∞ = 𝑒 𝜇𝑡 √2𝜋 ∫ 𝑒 𝑡𝑧𝜎-𝑧 2 2 𝑑𝑧 ∞ -∞ = 𝑒 𝜇𝑡 √2𝜋 ∫ 𝑒 -1 2 (𝑧 2 -2𝑡𝑧𝜎) 𝑑𝑧 ∞ -∞ = 𝑒 𝜇𝑡 √2𝜋 ∫ 𝑒 -1 2 (𝑧 2 -2𝑡𝑧𝜎+𝑡 2 𝜎 2 )+ 1 2 𝑡 2 𝜎 2 𝑑𝑧 ∞ -∞ = 𝑒 𝜇𝑡+ 1 2 𝑡 2 𝜎 2 √2𝜋 ∫ 𝑒 -1 2 (𝑧-𝑡𝜎) 2 𝑑𝑧 ∞ -∞ (𝑢 = 𝑧 -𝑡𝜎) CHAPTER 12
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= 𝑒 𝜇𝑡+ 1 2 𝑡 2 𝜎 2 √2𝜋 ∫ 𝑒 -𝑢 2 2 𝑑𝑢 ∞ -∞ = 2 𝑒 𝜇𝑡+ 1 2 𝑡 2 𝜎 2 √2𝜋 ∫ 𝑒 -𝑢 2 2 𝑑𝑢 ∞ 0
(being the integral of an even function) 

= 2 𝑒 𝜇𝑡+ 1 2 𝑡 2 𝜎 2 √2𝜋 ∫ 𝑒 -𝑣 𝑑𝑣 √2𝑣 ∞ 0 (𝑣 = 𝑢 2 2 ) = 𝑒 𝜇𝑡+ 1 2 𝑡 2 𝜎 2 √𝜋 ∫ 𝑣 1 2 -1 𝑒 -𝑣 𝑑𝑣 ∞ 0 = 𝑒 𝜇𝑡+ 1 2 𝑡 2 𝜎 2 √𝜋 Γ ( 1 2 
Given 𝑋 1 ∼ 𝑁(𝜇 1 , 𝜎 1 2 ), implies 𝑀 𝑋 1 (𝑡) = 𝑒 𝜇 1 𝑡+ 1 2 𝑡 2 𝜎 1 2 and 𝑋 2 ∼ 𝑁(𝜇 2 , 𝜎 2 2 ), implies 𝑀 𝑋 2 (𝑡) = 𝑒 𝜇 2 𝑡+ 1 2 𝑡 2 𝜎 2 2
. Since 𝑋 1 and 𝑋 2 are independent,

𝑀 𝑋 1 +𝑋 2 (𝑡) = 𝑀 𝑋 1 (𝑡)𝑀 𝑋 2 (𝑡) = 𝑒 𝜇 1 𝑡+ 1 2 𝑡 2 𝜎 1 2 𝑒 𝜇 2 𝑡+ 1 2 𝑡 2 𝜎 2 2 = 𝑒 (𝜇 1 +𝜇 2 )𝑡+ 1 2 𝑡 2 (𝜎 1 2 +𝜎 2 2 ) ,
which is the MGF of 𝑁(𝜇 1 + 𝜇 Differentiation yields that the density function of 𝑌 is 441

𝑓 𝑌 (𝑦) = { 1 𝑏 𝑓 𝑋 ( 𝑦 -𝑎 𝑏 ) , 𝑏 > 0, - 1 𝑏 𝑓 𝑋 ( 𝑦 -𝑎 𝑏 ) , 𝑏 < 0,
which can be written as

𝑓 𝑌 (𝑦) = 1 |𝑏| 𝑓 𝑋 ( 𝑦 -𝑎 𝑏 ) = 1 √2𝜋𝜎|𝑏| 𝑒 - ( 𝑦-𝑎 𝑏 -𝜇) 2 2𝜎 2 = 1 √2𝜋𝜎|𝑏| 𝑒 - (𝑦-𝑎-𝑏𝜇) 2 2𝑏 2 𝜎 2 ,
showing that 𝑌 = 𝑎 + 𝑏𝑋 is normal with mean 𝑎 + 𝑏𝜇 and variance 𝑏 2 𝜎 2 . Creating a new RV by this transformation is referred to as standardizing. The RV 𝑍 represents the distance of 𝑋 from its mean in terms of standard deviations. It is the key step to calculating a probability for an arbitrary normal RV.

Definition (Standard Normal Distribution):

A RV 𝑍 is said to follow standard normal distribution if its PDF is given by . Therefore, 𝑃(𝑎 < 𝑋 < 𝑏) is the area under the standard normal curve between the abscissae 𝑧 1 and 𝑧 2 .

𝑓 𝑍 (𝑧) = 1 √2𝜋 𝑒 -𝑧 2 2 , -∞ < 𝑧 < ∞. ( 12 

Definition (𝒛 𝜶 , 𝒛-Score):

The symbol 𝑍 𝛼 is used to denote the 𝑧-score that has an area of 𝛼 to its right under the standard normal curve.

Example 12.9

On a final examination in physics, the mean was 70 and the standard deviation was 14. 

[ Line[{{q[[i]],0},{q[[i]],PDF[dist,q[[i]]]}}], {i,1,7} ] ], Blue, Table[ Text[αright[[i]],{q[[i]],0.05+PDF[dist,q[[i]]]}],
{i,1,7} ] }, PlotRange->{0,0.48},(*Set the y-axis plot range*) Filling->Axis, PlotStyle->Purple, ImageSize->250 ]

Normal Distribution as a Limiting Form of Binomial Distribution

The relation between the binomial and normal distributions can be understood through an approximation. When the number of trials 𝑛 in the binomial distribution is large and the probability of success 𝑝 is not extremely close to 0 or 1, the shape of the binomial distribution becomes more and more similar to the shape of the normal distribution.

More formally, if 𝑋 is a RV that follows a binomial distribution with parameters 𝑛 and 𝑝, then the mean of 𝑋 is given by 𝜇 = 𝑛𝑝, and the standard deviation is given by 𝜎 = √𝑛𝑝𝑞. When 𝑛 is large, the binomial distribution can be 445 approximated by a normal distribution with the same mean and standard deviation. That is, 𝑋 is approximately normally distributed with mean 𝜇 and standard deviation 𝜎. (See Figure 12 ))

= - 𝜇𝑡 𝜎 + 𝑛𝑝𝑡 𝜎 + 𝑛𝑝𝑡 2 2𝜎 2 (1 -𝑝) + 𝑂 ( 1 𝑛 1 2 ) = - 𝜇𝑡 𝜎 + 𝑛𝑝𝑡 𝜎 + 𝑛𝑝𝑞𝑡 2 2𝜎 2 + 𝑂 ( 1 𝑛 1 2 ) = - 𝜇𝑡 𝜎 + 𝜇𝑡 𝜎 + 𝜎 2 𝑡 2 2𝜎 2 + 𝑂 ( 1 𝑛 1 2 ) = 𝑡 2 2 + 𝑂(1/𝑛 1/2 ), as 𝑛 → ∞ ln 𝑀 𝑍 (𝑡) = 𝑡 2 2 ⇒ 𝑀 𝑍 (𝑡) = 𝑒 𝑡 2 2 .
This is the MGF of a standard normal variate. So 𝑍 → 𝑁(0,1) as 𝑛 → ∞.

∎

Definition (Continuity Correction):

Continuity correction is an adjustment done while approximating a discrete RV with a continuous RV, like approximating Binomial or Poisson RV with normal RV. Hence, while calculating the probability of a discrete RV using normal approximation, correction factor should be applied. This can be done by subtracting -0.5 from the lower limit and adding 0.5 to the upper limit.

Example 12.12

Find the probability of getting between 4 and 7 heads inclusive in 12 tosses of a fair coin by using, (a) the binomial distribution and (b) the normal approximation to the binomial distribution.

Solution:

Note that even though the binomial distribution is discrete, it has the shape of the continuous normal distribution. When approximating the binomial probability at 4, 5, 6, and 7 heads by the area under the normal curve, find the 447 normal curve area from 𝑋 = 3.5 to 𝑋 = 7.5. The 0.5 that you go on either side of 𝑋 = 4 and 𝑋 = 7 is the continuity correction. The following are the steps to follow when approximating the binomial with the normal. Choose the normal curve with mean 𝑛𝑝 = 12(0.5) = 6 and standard deviation √𝑛𝑝𝑞 = √12(0.5)(0.5) = √3. You are choosing the normal curve with the same center and variation as the binomial distribution. Then find the area under the curve from 3.5 to 7.5. This is the normal approximation to the binomial distribution. 

Probability Plots

If a simple random sample is taken from a population, the distribution of the observed values of a variable will approximate the distribution of the variable-and the larger the sample, the better the approximation tends to be. We can use this fact to help decide whether a variable is normally distributed. If a variable is normally distributed, then, for a large sample, a histogram of the observations should be roughly bell shaped; for a very large sample, even moderate departures from a bell shape cast doubt on the normality of the variable. However, for a relatively small sample, ascertaining a clear shape in a histogram and, in particular, whether it is bell shaped is often difficult. Thus, for relatively small samples, a more sensitive graphical technique than the ones we have presented so far is required for assessing normality. Probability plots (Quantile-Quantile plot (Q-Q plot) and Probability-Probability plot (P-P plot)) provide such techniques. Q-Q plots and P-P plots are useful for assessing the normality assumption of a dataset, but they can also be used to compare data against other distributions, such as the exponential or uniform distribution. They provide visual evidence of whether the data conform to a particular distribution or exhibit departures from it.

Q-Q plot

A Q-Q plot is a plot of the quantiles of two distributions against each other, or a plot based on estimates of the quantiles. A point (𝑥, 𝑦) on the plot corresponds to one of the quantiles of the second distribution (𝑦-coordinate) plotted against the same quantile of the first distribution (𝑥-coordinate). The pattern of points in the plot is used to compare the two distributions. If the two distributions being compared are similar, the points in the Q-Q plot will approximately lie on the straight line.

• A Q-Q plot is used to compare the shapes of distributions, providing a graphical view of how properties such as location, scale, and skewness are similar or different in the two distributions. • Q-Q plots can be used to compare collections of data too.

• The main step in constructing a Q-Q plot is calculating or estimating the quantiles to be plotted. If one or both of the axes in a Q-Q plot is based on a theoretical distribution with a continuous CDF, all quantiles are uniquely defined and can be obtained by inverting the CDF. • If a theoretical probability distribution with a discontinuous CDF is one of the two distributions being compared, some of the quantiles may not be defined, so an interpolated quantile may be plotted. • If the Q-Q plot is based on data, there are multiple quantile estimators in use. Rules for forming Q-Q plots when quantiles must be estimated or interpolated are called plotting positions.

How a Q-Q plot is constructed:

451

• Sort the data: Start by sorting the dataset in ascending order. This sorted dataset will be used to calculate the quantiles. • Calculate theoretical quantiles:

Choose a theoretical distribution that you want to compare the dataset against. For example, if you want to check for normality, you would use the normal distribution. Calculate the theoretical quantiles corresponding to the sorted data points using the chosen distribution. There are various methods available to estimate the theoretical quantiles, depending on the distribution. • Calculate empirical quantiles:

Calculate the empirical quantiles for the sorted data points. The empirical quantiles represent the percentiles of the dataset. For example, the 25th percentile would be the value below which 25% of the data falls.

• Plot the Q-Q plot:
Plot the empirical quantiles on the y-axis and the corresponding theoretical quantiles on the x-axis. Each data point represents a pair of quantiles (theoretical quantile, empirical quantile). Connect these points to visualize the Q-Q plot. 

P-P plot

A P-P plot is another graphical tool used to assess the fit of a dataset to a specific distribution or to compare two datasets. The P-P plot compares the observed CDF values of the data against the expected CDFs under the assumed distribution. It helps visualize whether the data conform to a particular distribution or exhibit departures from it.

452

How a P-P plot is constructed:

• Sort the data in ascending order.

• Calculate the CDF values for each data point based on the rank (i.e., the position of the data point in the sorted list). • Determine the corresponding expected CDFs for the assumed distribution.

• Plot the observed CDFs against the expected CDFs on a scatter plot.

If the observed CDFs fall approximately on a straight line, it suggests that the data follow the assumed distribution. Deviations from the straight line indicate deviations from the assumed distribution.

Remarks:

• As you can see, Figure 12.8, (first column), just because data come from a normal distribution does not imply that they will be perfectly linear. In general, the points are close to the line, but small patterns such as in the upper right or the gap in the lower left can occur without invalidating the normality assumption. • In addition to the overall shape of the plot, specific patterns or deviations can be observed. Outliers, heavy tails, and multimodal distributions can be detected through departures from the straight line. S-shaped or Jshaped curves can indicate departures from normality. (See Figure 12.8.)

UNIT 13.1

CONTINUOUS RANDOM VARIABLES

In this unit, our primary focus will be on the functions Probability, CDF, InverseCDF, and Quantile. We will examine how these functions are used in the practical applications, specifically in calculating probabilities and determining z-scores for continuous random variables.

Mathematica Examples 13.1

Input (* In this code, we define the PDF using the pdf function, which represents a normal distribution with a mean of 0 and a standard deviation of 1. Then, the cdf function calculates the integral of the PDF from negative infinity to x, representing the CDF. Finally, we compute the CDF values using both our cdf function and the built-in CDF function for the given value 1.5. The output will demonstrate that the results from both approaches are the same: *) ], {x,0,6}, PlotRange->All, Filling->Axis, PlotLegends->Placed[{"a=0,b=2","a=0,b=3","a=0,b=4"},{0. 

(

Input

(* The code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from Uniform distribution with min=0 and max=6, and then using these samples to estimate the parameters of another Uniform distribution with unknown min and max. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from-0 to 5. The code also generates a list plot of 2 sets of random samples from the Uniform distribution with λ=3. The plot shows the 100 random points generated from two random samples. 
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Size" sliders, the code allows the user to explore how changing these parameters affects the means of the random samples. Specifically, increasing the number of samples n tends to make the distribution of the means narrower and more concentrated around the true mean of the underlying distribution. On the other hand, increasing the sample size tends to reduce the variability in the means and make them more precise estimators of the true mean: *) ], {x,0,20}, Filling->Axis, PlotLegends->Placed[{"k=1,θ=2","k=4,θ=2","k=6,θ=2"},{0. 

Manipulate

: *) Manipulate[ dist1=GammaDistribution[α1,β1]; dist2=GammaDistribution[α2,β2]; distSum=TransformedDistribution[ x+y, {Distributed[x,dist1],Distributed[y,dist2]} ]; Plot[ { PDF[dist1,x], PDF[dist2,x], PDF[distSum,x]
}, {x,0,20}, ImageSize->400, PlotRange->All, AxesLabel->{"x","f(x)"}, Filling->{1->{2},2->{3}}, FillingStyle->{LightBlue,LightPurple}, PlotLegends->{"Distribution 1","Distribution 2","Sum of Distributions"} ], {{α1,1.7,"α1"},0.1,5,0.1,Appearance->"Labeled"}, {{β1,2,"β1"},1,3,0.1,Appearance->"Labeled"}, {{α2,1.7,"α2"},0.1,5,0.1,Appearance->"Labeled"}, {{β2,2,"β2"},1,3,0.1,Appearance->"Labeled"}] 

PDF[ GammaDistribution[1/2 v,Sqrt[2],2,0], x ] PDF[ ChiDistribution[v], x ] Output { 2 1 2 + 1-v 2 𝑒 -x 2 2 x -1+v Gamma[v/2] x > 0 0 True Output { 2 1 2 + 1-v 2 𝑒 -x 2 2 x -1+v Gamma[v/2]
x > 0 0 True

Mathematica Examples 13.74

Input (* ExponentialDistribution is a special case of gamma distribution: *) The PDF function used in the code calculates the PDF of the normal distribution, which is symmetric about its mean. The plot of the PDF clearly shows this symmetry, with the peak of the distribution located at the mean and the same amount of probability density on both sides of the mean. Additionally, the Epilog option in the code adds vertical lines at μ-σ, μ, and μ+σ, indicating one standard deviation away from the mean on both sides. Since the normal distribution is symmetric, these lines are equidistant from the mean and therefore, the distance between μ and μ\[PlusMinus]σ is the same. This property is true for all normal distributions, and is one of the defining characteristics of the normal distribution: *) Input (* The normal approximation to the binomial distribution is a method of approximating the binomial distribution with a normal distribution, which is a continuous probability distribution that can be characterized by its mean and standard deviation. This approximation is possible when the number of trials is large and the probability of success in each trial is not too close to 0 or 1. To apply the normal approximation, we first calculate the mean and standard deviation of the binomial distribution. The mean is equal to the product of the number of trials and the probability of success in each trial, while the standard deviation is the square root of the product of the number of trials, the probability of success, and the probability of failure. Once we have the mean and standard deviation, we can use the normal distribution to approximate the binomial distribution.

PDF[ ExponentialDistribution[1/λ], x ] PDF[ GammaDistribution[1,λ], x ] Output { 𝑒 - 𝑥 λ λ x
The code generates two sets of random data points, one from a binomial distribution with n and p and another from a normal distribution with μ=n*p and σ=Sqrt[n*p*( ], {{n,30,"n"},5,60,1,Appearance->"Labeled"}, {{p,0.5,"p"},0.1,0.9,0.05,Appearance->"Labeled"}, {{no,3000,"Sample Size"},400,5000,10,Appearance->"Labeled"} ] 

DERIVED STATISTICAL DISTRIBUTIONS

• In the realm of probability theory and statistics, derived distributions play a fundamental role in understanding and analyzing random phenomena. Derived distributions are modifications or transformations of existing distributions, obtained through various techniques such as functions of random variables or weighted mixtures of distributions. These modifications allow us to explore new properties, uncover hidden patterns, and model complex systems with greater flexibility. • By manipulating existing distributions, researchers and practitioners can create derived distributions that capture specific characteristics or behaviors of interest. These modified distributions serve as powerful tools in diverse fields, including physics, economics, engineering, and social sciences. They enable us to tackle complex problems and make informed decisions by providing a deeper understanding of the underlying probabilistic structures. • One common approach to constructing derived distributions is through functions of random variables. By applying mathematical operations, such as addition, multiplication, exponentiation, or composition, to the values of random variables, we can generate new random variables with different distributions. These derived distributions often possess distinct properties or offer insights into the relationship between variables. • Another method for obtaining derived distributions is through weighted mixtures of distributions. By combining multiple distributions with appropriate weights, we can create a composite distribution that represents a combination of different phenomena or subpopulations. This approach is particularly useful when dealing with heterogeneous data or complex systems with multiple interacting components.

Transformed Distribution

TransformedDistribution 

) Mean[transformedDistribution] Total[Map[Mean,{originaldistribution1,originaldistribution2}]] Output 1 √𝜋𝜎 3 Gamma[𝛼] 2 1 2 (-3+𝛼) 𝑒 - (𝑥-𝜇) 2 2𝜎 2 ( 𝜎 𝛽 ) 1+𝛼 × (𝛽 𝜎 Gamma [ 𝛼 2 ] Hypergeometric1F1 [ 𝛼 2 , 1 2 , 1 2 ( 1 𝛽 + -𝑥 + 𝜇 𝜎 2 ) 2 𝜎 2 ] + √2(𝑥 𝛽 -𝛽 𝜇 -𝜎 2 )Gamma[ 1 + 𝛼 2 ]Hypergeometric1F1[ 1 + 𝛼 2 , 3 2 , 1 2 ( 1 𝛽 

BIVARIATE RANDOM VARIABLES AND DISTRIBUTIONS

In probability theory and statistics, the study of RVs is essential for understanding the uncertainty and variability in various phenomena. While the analysis of single RVs provides valuable insights, many real-world phenomena involve multiple variables that are interrelated. To explore such scenarios, this chapter focuses on bivariate RVs and their distributions. Bivariate RVs find applications in various fields, including finance, risk management, econometrics, environmental studies, quality control, biostatistics, and social sciences.

In this chapter, we will investigate the following topics.

• Joint distribution functions:

The joint distribution function serves as a fundamental tool for analyzing bivariate RVs. It captures the probabilities associated with different combinations of values taken by two RVs. • Discrete bivariate RVs:

Discrete bivariate RVs deal with situations where both variables can only take on a countable set of values. We investigate the joint PMF of discrete bivariate RVs, examining concepts such as marginal PMFs, independence, and conditional probabilities.

• Continuous bivariate RVs:

In contrast to discrete bivariate RVs, continuous bivariate RVs involve variables that can assume any value within a specified range. We study the joint PDF associated with continuous bivariate RVs, exploring concepts such as joint CDFs, marginal PDFs, and independence.

• Covariance and correlation:

To measure the degree of association between two RVs, we need to focus on the concepts of covariance and correlation. Covariance quantifies the linear relationship between variables, while correlation provides a standardized measure of both linear and non-linear relationships. We explore the covariance matrix and its role in characterizing bivariate RVs. • Independence:

Independence between RVs is a crucial concept. When two RVs are independent, their joint behavior can be analyzed by examining the properties of each variable separately. It allows for simpler calculations and modeling assumptions.

• Joint moments:

Moments provide valuable insights into the distribution of RVs. Joint moments offer additional information about the joint behavior of RVs. By studying moments such as means, variances, and higher-order moments, we gain a deeper understanding of the joint characteristics and properties of the variables.

Finally, we conclude the chapter by studying two joint distributions:

• Multinomial distribution: Multinomial distribution extends the notion of binomial distribution to scenarios where we have more than two outcomes. We investigate the properties and applications of multinomial distribution, highlighting its relevance in analyzing experiments involving multiple categorical variables. 

If 𝑥 1 ≤ 𝑥 2 and 𝑦 1 ≤ 𝑦 2 , then 𝐹 𝑋𝑌 (𝑥 2 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 1 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 2 , 𝑦 1 ) + 𝐹 𝑋𝑌 (𝑥 1 , 𝑦 1 ) ≥ 0. (14.9) Proof: (14.9)

(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑌 ≤ 𝑦 2 ) = (𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑌 ≤ 𝑦 1 ) ∪ (𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑦 1 ≤ 𝑌 ≤ 𝑦 2 ).
The two events on the right-hand side are disjoint; hence

𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑌 ≤ 𝑦 2 ) = 𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑌 ≤ 𝑦 1 ) + 𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑦 1 ≤ 𝑌 ≤ 𝑦 2 ).
Then using (14.8), we obtain

𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑦 1 ≤ 𝑌 ≤ 𝑦 2 ) = 𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑌 ≤ 𝑦 2 ) -𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑌 ≤ 𝑦 1 ) = 𝐹 𝑋𝑌 (𝑥 2 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 1 , 𝑦 2 ) -[𝐹 𝑋𝑌 (𝑥 2 , 𝑦 1 ) -𝐹 𝑋𝑌 (𝑥 1 , 𝑦 1 )] = 𝐹 𝑋𝑌 (𝑥 2 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 1 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 2 , 𝑦 1 ) + 𝐹 𝑋𝑌 (𝑥 1 , 𝑦 1 ).
Since the probability must be nonnegative, we conclude that 𝐹 𝑋𝑌 (𝑥 2 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 1 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 2 , 𝑦 1 ) + 𝐹 𝑋𝑌 (𝑥 1 , 𝑦 1 ) ≥ 0, if 𝑥 1 ≤ 𝑥 2 and 𝑦 1 ≤ 𝑦 2 .

∎ Theorem 14.1: Consider a bivariate RV (𝑋, 𝑌). If 𝑋 and 𝑌 are independent, then every event of the form (𝑎 < 𝑋 < 𝑏) is independent of every event of the form (𝑐 < 𝑌 < 𝑑).

Proof:

By definition, if 𝑋 and 𝑌 are independent, we have 

𝐹 𝑋𝑌 (𝑥, 𝑦) = 𝐹 𝑋 (𝑥)𝐹 𝑌 (𝑦). Using 𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑦 1 ≤ 𝑌 ≤ 𝑦 2 ) = 𝐹 𝑋𝑌 (𝑥 2 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 1 , 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥 2 , 𝑦 1 ) + 𝐹 𝑋𝑌 (𝑥 1 , 𝑦 1 ), such that 𝑥 1 = 𝑎, 𝑥 2 = 𝑏, 𝑦 1 =
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which indicates that event (𝑎 ≤ 𝑋 ≤ 𝑏) and event (𝑐 ≤ 𝑌 ≤ 𝑑) are independent.

∎ If more than one RV is defined in a random experiment, it is important to distinguish between the joint probability distribution of 𝑋 and 𝑌 (CDF that describes the behavior of these variables together) and the probability distribution of each variable individually (the behavior of each variable individually, regardless of the other). The individual CDF of a RV is referred to as its marginal CDF.

The probability of one event in the presence of all outcomes of the other RV is called the marginal probability. It considers the union of all events for the second variable. It is called the marginal probability because if all outcomes and probabilities for the two variables were laid out together in a table (𝑋 as columns, 𝑌 as rows), then the marginal probability of one variable 𝑋 would be the sum of probabilities for the other variable, 𝑌 rows, on the margin of the table, see for instance, tables of Examples 14.2, 14.3, and 14.4. The marginal probability distribution of 𝑋 can be determined from the joint probability distribution. (14.10.

Definition (Marginal

2) The CDFs 𝐹 𝑋 (𝑥) and 𝐹 𝑌 (𝑦) when obtained by (14.10.1) and (14.10.2), are referred to as the marginal CDFs of 𝑋 and 𝑌, respectively.

Discrete Bivariate RVs

If 𝑋 and 𝑌 are discrete RVs, the joint probability distribution of 𝑋 and 𝑌 is a description of the set of points (𝑥 𝑖 , 𝑦 𝑗 ) in the range of (𝑋, 𝑌) along with the probability of each point. The joint probability distribution of two RVs is sometimes referred to as the bivariate probability distribution or bivariate distribution of the RVs. One way to describe the joint probability distribution of two discrete RVs is through a joint PMF 𝑓(𝑥 𝑖 , 𝑦 𝑗 ) = 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) = 𝑃(𝑋 = 𝑥 𝑖 , 𝑌 = 𝑦 𝑗 ).

Definition (Joint PMF): Let (𝑋, 𝑌) be a discrete bivariate RV and let (𝑋, 𝑌) take on the values (𝑥 𝑖 , 𝑦 𝑗 ) for a certain allowable set of integers 𝑖 and 𝑗. Let 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) = 𝑃(𝑋 = 𝑥 𝑖 , 𝑌 = 𝑦 𝑗 ). The function 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) is called the joint PMF of (𝑋, 𝑌) and satisfies 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) ≥ 0, (

∑ ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑦 𝑗 𝑥 𝑖 = 1, 14.11.1) 
)

𝑃[(𝑋, 𝑌) ∈ 𝐴] = ∑ ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) (𝑥 𝑖 ,𝑦 𝑗 )∈𝑅 𝐴 , (14.11. 
3) where the summation is over the points (𝑥 𝑖 , 𝑦 𝑗 ) in the range space 𝑅 𝐴 corresponding to the event 𝐴. 

∑ ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑖 ) 𝑦 𝑖 𝑥 𝑖 = ∑ ∑ 𝑘(2𝑥 𝑖 𝑦 𝑗 ) 3 𝑦 𝑗 =1 3 𝑥 𝑖 =1 = 2𝑘(1(1) + 1(2) + 1(3) + 2(1) + 2(2) + 2(3) + 3(1) + 3(2) + 3(3)) = 2𝑘(1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9) = 72𝑘 = 1. Thus 𝑘 = 1 72 . (b) The marginal PMF of 𝑋 is 𝑓 𝑋 (𝑥 𝑖 ) = ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑖 ) 𝑦 𝑗 = ∑ 1 72 (2𝑥 𝑖 𝑦 𝑗 ) 3 𝑦 𝑖 =1 = 1 36 (𝑥 𝑖 (1) + 𝑥 𝑖 (2) + 𝑥 𝑖 (3)) = 𝑥 𝑖 6 .
The marginal PMF of 𝑌 is 

𝑓 𝑌 (𝑦 𝑗 ) = ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑖 ) 𝑥 𝑖 = ∑ 1 72 (2𝑥 𝑖 𝑦 𝑗 ) 3 𝑥 𝑖 =1 = 1 36 (1(𝑦 𝑗 ) + 2(𝑦 𝑗 ) + 3(𝑦 𝑗 )) = 𝑦 𝑗 6 .

Continuous Bivariate RVs

The joint probability distribution of two continuous RVs 𝑋 and 𝑌 can be specified by providing a method for calculating the probability that 𝑋 and 𝑌 assume a value in any region 𝑅 of two-dimensional space. Analogous to the PDF of a single continuous RV, a joint PDF can be defined over two-dimensional space. The double integral of 𝑓 𝑋𝑌 (𝑥, 𝑦) over a region 𝑅 provides the probability that (𝑋, 𝑌) assumes a value in 𝑅. This integral can be interpreted as the volume under the surface 𝑓 𝑋𝑌 (𝑥, 𝑦) over the region 𝑅. Typically, 𝑓 𝑋𝑌 (𝑥, 𝑦) is defined over all of two-dimensional space by assuming that 𝑓 𝑋𝑌 (𝑥, 𝑦) = 0 for all points for which 𝑓 𝑋𝑌 (𝑥, 𝑦) is not specified.

Definition (Joint PDF):

A joint PDF of a continuous bivariate RV (𝑋, 𝑌), denoted as 𝑓 𝑋𝑌 (𝑥, 𝑦), satisfies the following properties: 

𝑓 𝑋𝑌 (𝑥, 𝑦) ≥ 0, (14.15.1) 
∫ ∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 ∞ -∞ ∞ -∞ = 1, (14.15 
𝑓 𝑋 (𝑥) = ∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑦 ∞ -∞ , (14.17.1) 
𝑓 𝑌 (𝑦) = ∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥 ∞ -∞ . (14.17 
573 ∫ ∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 ∞ -∞ ∞ -∞ = ∫ ∫ 𝑘𝑥𝑦𝑑𝑥𝑑𝑦 1 0 1 0 = 𝑘 ∫ ( 𝑥 2 2 ) 0 1 𝑦𝑑𝑦 1 0 = 𝑘 ∫ 𝑦 2 𝑑𝑦 1 0 = 𝑘 ( 𝑦 2 4 ) 0 1 = 𝑘 4 = 1.
Thus 𝑘 = 4.

(b) The marginal PDF of 𝑋 is

𝑓 𝑋 (𝑥) = ∫ 4𝑥𝑦𝑑𝑦 1 0 = 4𝑥 ∫ 𝑦𝑑𝑦 1 0 = 4𝑥 ( 𝑦 2 2 ) 0 1 = 2𝑥.
Hence,

𝑓 𝑋 (𝑥) = { 2𝑥, 0 < 𝑥 < 1, 0, otherwise. The marginal PDF of 𝑌 is 𝑓 𝑌 (𝑦) = ∫ 4𝑥𝑦𝑑𝑥 = 4𝑦 ∫ 𝑥𝑑𝑥 1 0 = 4𝑦 ( 𝑥 2 2 ) 0 1 = 2𝑦 1 0 .
Hence,

𝑓 𝑌 (𝑦) = { 2𝑦, 0 < 𝑦 < 1, 0, otherwise. Since,
𝑓 𝑋𝑌 (𝑥, 𝑦) = 𝑓 𝑋 (𝑥)𝑓 𝑌 (𝑦), 𝑋 and 𝑌 are independent.

(c) The region in the 𝑥𝑦 plane corresponding to the event (𝑋 + 𝑌 < 1) is shown in the following figure as a shaded area.

Then

𝑃(𝑋 + 𝑌 < 1) = ∫ ∫ 4𝑥𝑦𝑑𝑥𝑑𝑦 1-𝑦 0 1 0 = ∫ 4𝑦 ( 𝑥 2 2 ) 0 1-𝑦 𝑑𝑦 1 0 = ∫ 4𝑦 (1 -𝑦) 2 2 𝑑𝑦 1 0 = ∫ 2𝑦(1 -𝑦) 2 𝑑𝑦 1 0 = ∫ 2𝑦(1 -2𝑦 + 𝑦 2 )𝑑𝑦 1 0 = ∫ (2𝑦 -4𝑦 2 + 2𝑦 3 )𝑑𝑦 1 0 = 2 ( 𝑦 2 2 ) 0 1 -4 ( 𝑦 3 3 ) 0 1 + 2 ( 𝑦 4 4 ) 0 1 = 1 - 4 3 + 1 2 = 1 6 . 𝑥 𝑦 1 1 574 

Covariance and Correlation

When two or more RVs are defined on a probability space, it is useful to describe how they vary together; that is, it is useful to measure the relationship between the variables. Joint moments of bivariate RV provide information about the relationship between two variables simultaneously. They describe the combined behavior of the variables and can be used to analyze the joint distribution.

Definition (Joint Moment):

The (𝑘, 𝑛)th joint moment of a bivariate RV (𝑋, 𝑌) is defined by (14.20) If (𝑋, 𝑌) is a discrete bivariate RV, then using (14.19), and (14.13), we. obtain 

𝑚 𝑘𝑛 = 𝐸[𝑋 𝑘 𝑌 𝑛 ] = { ∑ ∑ 𝑥 𝑖 𝑘 𝑦 𝑗 𝑛 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑥 𝑖 𝑦 𝑗 , Discrete RV, ∫ ∫ 𝑥 𝑘 𝑦 𝑛 𝑓 𝑋𝑌 (𝑥, 𝑦) ∞ -∞ ∞ -∞ 𝑑𝑥𝑑𝑦, Continuous RV. ( 14 
𝜇 𝑋 = 𝐸[𝑋] = ∑ ∑ 𝑥 𝑖 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑥 𝑖 𝑦 𝑗 = ∑ 𝑥 𝑖 [∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑦 𝑗 ] 𝑥 𝑖 = ∑ 𝑥 𝑖 𝑓 𝑋 (𝑥 𝑖 ) 𝑥 𝑖 , (14.21.1) 
𝜇 𝑌 = 𝐸[𝑌] = ∑ ∑ 𝑦 𝑗 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑦 𝑗 𝑥 𝑖 = ∑ 𝑦 𝑗 [∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑥 𝑖 ] 𝑦 𝑗 = ∑ 𝑦 𝑗 𝑓 𝑌 (𝑦 𝑗 ) 𝑦 𝑗 . ( 14 
𝜇 𝑋 = 𝐸[𝑋] = ∫ ∫ 𝑥𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 ∞ -∞ ∞ -∞ = ∫ 𝑥 [∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑦 ∞ -∞ ] 𝑑𝑥 ∞ -∞ = ∫ 𝑥𝑓 𝑋 (𝑥)𝑑𝑥 ∞ -∞ , (14.23.1) 
𝜇 𝑌 = 𝐸[𝑌] = ∫ ∫ 𝑦𝑓 𝑋𝑌 (𝑥, 𝑦) ∞ -∞ ∞ -∞ 𝑑𝑥𝑑𝑦 = ∫ 𝑦 [∫ 𝑓 𝑋𝑌 (𝑥, 𝑦) ∞ -∞ 𝑑𝑥] ∞ -∞ 𝑑𝑦 = ∫ 𝑦𝑓 𝑌 (𝑦) ∞ -∞
𝑑𝑦.

(14.23.2) Similarly, we have

𝐸[𝑋 2 ] = ∫ ∫ 𝑥 2 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 ∞ -∞ ∞ -∞ = ∫ 𝑥 2 𝑓 𝑋 (𝑥)𝑑𝑥 ∞ -∞ , (14.24.1 
) 

𝐸[𝑌 2 ] = ∫ ∫ 𝑦 2 𝑓 𝑋𝑌 (𝑥, 𝑦) ∞ -∞ ∞ -∞ 𝑑𝑥𝑑𝑦 = ∫ 𝑦 2 𝑓 𝑌 (𝑦)𝑑𝑦 ∞ -∞ . ( 14 
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A common measure of the relationship between two RVs is the covariance. Covariance is a measure of the joint variability of two RVs. Intuitively, the covariance between 𝑋 and 𝑌 indicates how the values of 𝑋 and 𝑌 move relative to each other. Let us provide the definition, then discuss the properties and applications of covariance. The resulting covariance value can provide insight into the relationship between the variables:

Definition (Covariance

• Positive covariance: A positive covariance (Cov > 0) indicates that when 𝑋 tends to be above its mean (𝑋 -𝜇 𝑋 > 0), 𝑌 tends to be above its mean (𝑌 -𝜇 𝑌 > 0), and vice versa. It suggests a positive relationship between the variables, meaning that they tend to move together in the same direction. (i.e., if the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values, the 576 covariance is positive). For example, if 𝑋 represents hours of study and 𝑌 represents exam scores, a positive covariance would imply that as study time increases, exam scores also tend to increase. See Figure 14.1.

• Negative covariance:

A negative covariance (Cov < 0) implies that when 𝑋 tends to be above its mean, 𝑌 tends to be below its mean (and vice versa). It indicates a negative relationship between the variables, suggesting that they tend to move in opposite directions. (i.e., the greater values of one variable mainly correspond to the lesser values of the other, the covariance is negative.) For instance, in the context of temperature and sales of winter clothing, a negative covariance would indicate that as temperatures rise (𝑋 increases), sales of winter clothing decrease (𝑌 decreases).

• Zero covariance:

A covariance of zero (Cov = 0) suggests that changes in one variable are unrelated to changes in the other.

Definition (Uncorrelated RVs): If Cov(𝑋, 𝑌) = 0, then we say that 𝑋 and 𝑌 are uncorrelated. From (14.27), we see that 𝑋 and 𝑌 are uncorrelated if

𝐸[𝑋 𝑌] = 𝐸[𝑋]𝐸[𝑌]. (14.28) 
Note that if 𝑋 and 𝑌 are independent, then it can be shown that they are uncorrelated, but the converse is not true in general; that is, the fact that 𝑋 and 𝑌 are uncorrelated does not, in general, imply that they are independent.

Theorem 14.2: Let (𝑋, 𝑌) be a bivariate RV. If 𝑋 and 𝑌 are independent, then 𝑋 and 𝑌 are uncorrelated.

Proof:

If (𝑋, 𝑌) is a discrete bivariate RV, then by ( If (𝑋, 𝑌) is a continuous bivariate RV, then by (14.19), and (14.17)

𝐸[𝑋𝑌] = ∫ ∫ 𝑥𝑦𝑓 𝑋𝑌 (𝑥, 𝑦) ∞ -∞ ∞ -∞ 𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑥𝑦𝑓 𝑋 (𝑥)𝑓 𝑌 (𝑦) ∞ -∞ ∞ -∞ 𝑑𝑥𝑑𝑦 = (∫ 𝑥𝑓 𝑋 (𝑥)𝑑𝑥 ∞ -∞ ) (∫ 𝑦𝑓 𝑌 (𝑦)𝑑𝑦 ∞ -∞ ) = 𝐸[𝑋]𝐸[𝑌].
Thus, 𝑋 and 𝑌 are uncorrelated by (14.28).
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Remarks:

• The variance is a special case of the covariance in which the two variables are identical (that is, in which one variable always takes the same value as the other): Let 𝑋 and 𝑌 be two independent 𝑁(0,1) RVs and 𝑍 = 1 + 𝑋 + 𝑋𝑌 2 , 𝑊 = 1 + 𝑋. Find Cov(𝑍, 𝑊). 

Cov(𝑋, 𝑋) = 𝐸[𝑋𝑋] -𝐸[𝑋]𝐸[𝑋] = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 = 𝜎 𝑋 2 = Var(𝑋). ( 14 
(𝑋 + 𝑌) = 𝐸[(𝑋 + 𝑌 -𝐸[𝑋 + 𝑌]) 2 ] = 𝐸[(𝑋 + 𝑌 -𝐸[𝑋] -𝐸[𝑌]) 2 ] = 𝐸[(𝑋 -𝐸[𝑋] + 𝑌 -𝐸[𝑌]) 2 ] = 𝐸[(𝑋 -𝐸[𝑋]) 2 + 2(𝑋 -𝐸[𝑋])(𝑌 -𝐸[𝑌]) + (𝑌 -𝐸[𝑌]) 2 ] = 𝐸[(𝑋 -𝐸[𝑋]) 2 ] + 𝐸[(𝑌 -𝐸[𝑌]) 2 ] + 2𝐸[(𝑋 -𝐸[𝑋])(𝑌 -𝐸[𝑌])] = Var(𝑋) + Var(𝑌) + 2Cov(𝑋, 𝑌). (14.36) 
Solution Cov(𝑍, 𝑊) = Cov(1 + 𝑋 + 𝑋𝑌 2 , 1 + 𝑋) = Cov(𝑋 + 𝑋𝑌 2 , 𝑋) = Cov(𝑋, 𝑋) + Cov(𝑋𝑌 2 , 𝑋) = Var(𝑋) + 𝐸[𝑋 2 𝑌 2 ] -𝐸[𝑋𝑌 2 ]𝐸[𝑋] = 1 + 𝐸[𝑋 2 ]𝐸[𝑌 2 ] -(𝐸[𝑋]) 2 𝐸[𝑌 2 ] = 1 + 1 -0 = 2.
𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) = { 1 3 , (0,1), (1,0), (2,1), 0, otherwise 
. Find Cov(𝑋, 𝑌).

Solution 𝑥 = 0 𝑥 = 1 𝑥 = 2 𝑓 𝑌 (𝑦) 𝑦 = 0 0 1 3 0 1 3 𝑦 = 1 1 3 0 1 3 2 3 𝑓 𝑋 (𝑥) 1 3 1 3 1 3 1
Since,

𝑓 𝑋𝑌 (0,1) = 1 3 ≠ 𝑓 𝑋 (0)𝑓 𝑌 (1) = 2 9 ,
𝑋 and 𝑌 are not independent. We have also

𝐸[𝑋] = ∑ 𝑥 𝑖 𝑓 𝑋 (𝑥 𝑖 ) 𝑥 𝑖 = (0) ( 1 3 ) + (1) ( 1 3 ) + (2) ( 1 3 ) = 1, 𝐸[𝑌] = ∑ 𝑦 𝑗 𝑓 𝑌 (𝑦 𝑗 ) 𝑦 𝑗 = (0) ( 1 3 ) + (1) ( 2 3 ) 
= 2 3 , 𝐸[𝑋𝑌] = ∑ ∑ 𝑥 𝑖 𝑦 𝑗 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑥 𝑖 𝑦 𝑗 = (0)(1) ( 1 3 ) + (1)(0) ( 1 3 ) + (2)(1) ( 1 3 ) = 2 3 . 
So, Cov(𝑋, 𝑌) = 𝐸(𝑋𝑌) -𝐸(𝑋)𝐸(𝑌)

= 2 3 - (1) ( 2 3 ) 
= 0. Thus, 𝑋 and 𝑌 are uncorrelated.

Definition (Covariance Matrix):

A covariance matrix, also known as a variance-covariance matrix, is a square matrix that summarizes the variances and covariances of multiple RVs. If we have 𝑛 RVs, 𝑋 1 , 𝑋 2 , ..., 𝑋 𝑛 , the covariance matrix is an 𝑛 × 𝑛 matrix denoted by Σ where the element in the 𝑖th row and 𝑗th column represents the covariance between 𝑋 𝑖 and 𝑋 𝑗 . Hence,

Σ 𝑖𝑗 = Cov(𝑋 𝑖 , 𝑋 𝑗 ) = 𝐸[(𝑋 𝑖 -𝐸[𝑋 𝑖 ])(𝑋 𝑗 -𝐸[𝑋 𝑗 ])].
(14.40) It is important to note that the covariance between 𝑋 and 𝑌 is the same as the covariance between 𝑌 and 𝑋, which means that the covariance matrix is symmetric. Therefore,

Σ 𝑖𝑗 = Σ 𝑗𝑖 .
(14.41) A covariance matrix provides several important pieces of information:

• Variances: The diagonal elements of the covariance matrix give the variances of the individual variables, providing a measure of their dispersion or variability. Σ 𝑖𝑖 = Cov(𝑋 𝑖 , 𝑋 𝑖 ) = Var(𝑋 𝑖 ). • Covariances: The off-diagonal elements of the covariance matrix represent the covariances between pairs of variables.

14.6 Conditional Probability Distributions

When two RVs are defined in a random experiment, knowledge of one can change the probabilities that we associate with the values of the other. The RVs 𝑋 and 𝑌 are expected to be dependent. Knowledge of the value obtained for 𝑋 changes the probabilities associated with the values of 𝑌. The conditional probability distribution describes the probability distribution of a RV given that another RV has taken on a specific value or falls within a certain range. It provides information about the probability distribution of one variable, taking into account the values of another variable. Recall that the definition of conditional probability for events 𝐴 and 𝐵 is 𝑃(𝐵|𝐴) = 𝑃(𝐴 ∩ 𝐵) ∕ 𝑃(𝐴). This definition can be applied with the event 𝐴 defined to be 𝑋 = 𝑥 and event 𝐵 define 𝑌 = 𝑦. Similarly, the conditional PMF of 𝑋 given 𝑌 = 𝑦 𝑗 , 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 ), can be written as the following. 

Definition (Conditional

∫ 𝑓 𝑌|𝑋 (𝑦|𝑥)𝑑𝑦 ∞ -∞ = 1. ( 14 
𝑌 = -5 -4 -3 -2 -1 0 1 2 3 4 5 𝑋 = 2 1/6 𝑋 = 3 1/5 1/5 𝑋 = 4 1/4 1/

Solution

The conditional PMF of 𝑌 given 𝑋 = 𝑥 𝑖 , 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ), can be written as the following. 

𝑌 = 0 1 2 3 4 5 .∑ 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) 𝑦 𝑗 𝑋 = 2 1 1 𝑋 = 3 1 1 𝑋 = 4 1/3 2/3 1 𝑋 = 5
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Example 14. [START_REF] Olkin | Probability Models and Applications[END_REF] The joint PMF of a bivariate RV (𝑋, 𝑌) is given by 𝑓 𝑋𝑌 (𝑥, 𝑦) = { 𝑘(2𝑥 𝑖 + 𝑦 𝑗 ), 𝑥 𝑖 = 1,2; 𝑦 𝑗 = 1,2, 0, otherwise, where 𝑘 is a constant. 

𝑓 𝑋 (𝑥 𝑖 ) = ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑦 𝑗 = ∑ 1 18 (2𝑥 𝑖 + 𝑦 𝑗 ) 2 𝑦 𝑗 =1 = 1 18 (2𝑥 𝑖 + 1) + 1 18 (2𝑥 𝑖 + 2) = 1 18 (4𝑥 𝑖 + 3), 𝑥 𝑖 = 1,2.
The marginal PMF of 𝑌 are

𝑓 𝑌 (𝑦 𝑗 ) = ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑥 𝑖 = ∑ 1 18 (2𝑥 𝑖 + 𝑦 𝑗 ) 2 𝑥 𝑖 =1 = 1 18 (2 + 𝑦 𝑗 ) + 1 18 (4 + 𝑦 𝑗 ) = 1 18 (2𝑦 𝑗 + 6), 𝑦 𝑗 = 1,2.
The conditional PMFs

𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) = 2𝑥 𝑖 + 𝑦 𝑗 4𝑥 𝑖 + 3 , 𝑥 𝑖 = 1,2; 𝑦 𝑗 = 1,2, 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 ) = 2𝑥 𝑖 + 𝑦 𝑗 2𝑦 𝑗 + 6 , 𝑥 𝑖 = 1,2; 𝑦 𝑗 = 1,2, 𝑃(𝑌 = 2|𝑋 = 2) = 𝑃 𝑌|𝑋 (2|2) = 2(2) + 2 4(2) + 3 = 6 11 , 𝑃(𝑋 = 2|𝑌 = 2) = 𝑃 𝑋|𝑌 (2|2) = 2(2) + 2 2(2) + 6 = 3 5 .

Example 14.14

Consider the bivariate RV (𝑋, 𝑌) Example 14.7, find the conditional PDFs 𝑓 𝑌|𝑋 (𝑦|𝑥) and 𝑓 𝑋|𝑌 (𝑥|𝑦).

Solution

We have,

𝑓 𝑋𝑌 (𝑥, 𝑦) = { 4𝑥𝑦, 0 < 𝑥 < 1,0 < 𝑦 < 1, 0, otherwise, CHAPTER 14 
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𝑓 𝑋 (𝑥) = { 2𝑥, 0 < 𝑥 < 1, 0, otherwise, 𝑓 𝑌 (𝑦) = { 2𝑦, 0 < 𝑦 < 1, 0, otherwise. Hence, 𝑓 𝑌|𝑋 (𝑦|𝑥) = 2𝑦 = 𝑓 𝑌 (𝑦), 0 < 𝑥 < 1,0 < 𝑦 < 1, 𝑓 𝑋|𝑌 (𝑥|𝑦) = 2𝑥 = 𝑓 𝑋 (𝑥), 0 < 𝑥 < 1,0 < 𝑦 < 1, Note that in this case, the 𝑓 𝑌|𝑋 (𝑦|𝑥) is the same as the marginal PDF 𝑓 𝑌 (𝑦). This means that the conditional PDF 𝑓 𝑌|𝑋 (𝑦|𝑥) does not depend on the value of 𝑋. Similarly, the 𝑓 𝑋|𝑌 (𝑥|𝑦) is the same as the marginal PDF 𝑓 𝑋 (𝑥). This means that the conditional PDF 𝑓 𝑋|𝑌 (𝑥|𝑦) does not depend on the value of 𝑌. The bivariate normal distribution is characterized by its shape, mean vector, variance-covariance matrix, and correlation coefficient. Understanding these characteristics is crucial for comprehending the properties and applications of the distribution see Figures 14.2 and 14.3.

Joint Distributions

• Shape:

The bivariate normal distribution forms an elliptical shape in two dimensions. The contours of the distribution are typically centered around the mean vector and symmetrically spread along the axes. The elliptical shape can be stretched or compressed, depending on the correlation between the variables. • Mean vector:

The mean vector of the bivariate normal distribution represents the average values of the two variables. It is denoted as a column vector,

( 𝜇 1 𝜇 2 ),
where 𝜇 1 is the mean of the first variable and 𝜇 2 is the mean of the second variable. The mean vector determines the location of the center of the distribution. • Variance-covariance matrix:

The variance-covariance matrix of the bivariate normal distribution characterizes the variability and relationship between the two variables. It is a 2 × 2 symmetric matrix that contains variances, and covariances. The matrix has the form:

( 𝜎 1 2 𝜎 12 𝜎 12 𝜎 2
2 ), where 𝜎 1 2 and 𝜎 2 2 represent the variances of the first and second variables, respectively, and 𝜎 12 is the covariance between the two variables.
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• Correlation coefficient:

The correlation coefficient measures the linear relationship between the two variables in the bivariate normal distribution. It is denoted as 𝜌 and ranges between -1 and 1.

Definition (Bivariate Normal PDF):

The PDF of a bivariate normal distribution, BVN (𝜇 1 , 𝜇 2 , 𝜎 1 2 , 𝜎 2 2 , 𝜌), is given by 𝑓 𝑋𝑌 (𝑥, 𝑦; 𝜎 1 , 𝜎 2 ; 𝜇 1 , 𝜇 2 , 𝜌) = 1

2𝜋𝜎 1 𝜎 2 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 ] , (14.52 
) for -∞ < 𝑥 < ∞ and -∞ < 𝑦 < ∞, with parameters 𝜎 1 > 0, 𝜎 2 > 0, -∞ < 𝜇 1 < ∞, -∞ < 𝜇 2 < ∞, and -1 < 𝜌 < 1.

Theorem 14.3 (MGF of Bivariate Normal Distribution):

Let (𝑋, 𝑌)~BVN (𝜇 1 , 𝜇 2 , 𝜎 1 2 , 𝜎 2 2 , 𝜌). Then 𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 + 1 2 (𝑡 1 2 𝜎 1 2 +𝑡 2 2 𝜎 2 2 +2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ) . (14.53) 

Proof:

By definition,

𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = 𝐸[𝑒 𝑡 1 𝑋+𝑡 2 𝑌 ] = ∫ ∫ 𝑒 𝑡 1 𝑥+𝑡 2 𝑦 ∞ -∞ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 ∞ -∞ = ∫ ∫ 𝑒 𝑡 1 𝑥+𝑡 2 𝑦 ∞ -∞ 1 2𝜋𝜎 1 𝜎 2 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 ] 𝑑𝑥𝑑𝑦 ∞ -∞ . Put 𝑥-𝜇 1 𝜎 1 = 𝑢, 𝑦-𝜇 2 𝜎 2 = 𝑣, -∞ < (𝑢, 𝑣) < ∞, then 𝑥 = 𝑢𝜎 1 + 𝜇 1 ⟹ 𝑑𝑥 = 𝜎 1 𝑑𝑢, 𝑦 = 𝑣𝜎 2 + 𝜇 2 ⟹ 𝑑𝑦 = 𝜎 2 𝑑𝑣, 𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = ∫ ∫ 𝑒 𝑡 1 (𝑢𝜎 1 +𝜇 1 )+𝑡 2 (𝑣𝜎 2 +𝜇 2 ) 𝑣 1 2𝜋√1 -𝜌 2 𝑒 (- 1 2(1-𝜌 2 ) [𝑢 2 -2𝜌𝑢𝑣+𝑣 2 ]) 𝑑𝑢𝑑𝑣 𝑢 = ∫ ∫ 𝑒 (𝑢𝑡 1 𝜎 1 +𝑡 1 𝜇 1 )+(𝑣𝑡 2 𝜎 2 +𝑡 2 𝜇 2 ) 𝑣 1 2𝜋√1 -𝜌 2 𝑒 (- 1 2(1-𝜌 2 ) [𝑢 2 -2𝜌𝑢𝑣+𝑣 2 ]) 𝑑𝑢𝑑𝑣 𝑢 = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 2𝜋√1 -𝜌 2 ∫ ∫ 𝑒 (𝑢𝑡 1 𝜎 1 +𝑣𝑡 2 𝜎 2 - 1 2(1-𝜌 2 ) [𝑢 2 -2𝜌𝑢𝑣+𝑣 2 ]) 𝑣 𝑑𝑢𝑑𝑣 𝑢 = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 2𝜋√1 -𝜌 2 ∫ ∫ 𝑒 - 1 2(1-𝜌 2 ) ([𝑢 2 -2𝜌𝑢𝑣+𝑣 2 ]-2(1-𝜌 2 )(𝑢𝑡 1 𝜎 1 +𝑣𝑡 2 𝜎 2 )) 𝑣 𝑑𝑢𝑑𝑣 𝑢 .
We have

[𝑢 2 -2𝜌𝑢𝑣 + 𝑣 2 ] -2(1 -𝜌 2 )(𝑢𝑡 1 𝜎 1 + 𝑣𝑡 2 𝜎 2 ) = (𝑢 -𝜌𝑣 -(1 -𝜌 2 )𝑡 1 𝜎 1 ) 2 + (1 -𝜌 2 )[(𝑣 -𝜌𝑡 1 𝜎 1 -𝑡 2 𝜎 2 ) 2 -𝑡 1 2 𝜎 1 2 -𝑡 2 2 𝜎 2 2 -2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ].
By taking

𝑢 -𝜌𝑣 -(1 -𝜌 2 )𝑡 1 𝜎 1 = 𝑤√1 -𝜌 2 ,
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𝑣 -𝜌𝑡 1 𝜎 1 -𝑡 2 𝜎 2 = 𝑧.

We have

𝑑𝑢𝑑𝑣 = √1 -𝜌 2 𝑑𝑤𝑑𝑧. 𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 2𝜋√1 -𝜌 2 ∫ ∫ 𝑒 - 1 2(1-𝜌 2 ) ([𝑢 2 -2𝜌𝑢𝑣+𝑣 2 ]-2(1-𝜌 2 )(𝑢𝑡 1 𝜎 1 +𝑣𝑡 2 𝜎 2 )) 𝑣 𝑑𝑢𝑑𝑣 𝑢 = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 2𝜋√1 -𝜌 2 ∫ ∫ 𝑒 - 1 2(1-𝜌 2 ) (𝑤 2 (1-𝜌 2 )+(1-𝜌 2 )[𝑧 2 -𝑡 1 2 𝜎 1 2 -𝑡 2 2 𝜎 2 2 -2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ]) ∞ -∞ √1 -𝜌 2 𝑑𝑤𝑑𝑧 ∞ -∞ = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 2𝜋 ∫ ∫ 𝑒 -1 2 (𝑤 2 +𝑧 2 -𝑡 1 2 𝜎 1 2 -𝑡 2 2 𝜎 2 2 -2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ) ∞ -∞ 𝑑𝑤𝑑𝑧 ∞ -∞ = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 2𝜋 𝑒 -1 2 (-𝑡 1 2 𝜎 1 2 -𝑡 2 2 𝜎 2 2 -2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ) ∫ ∫ 𝑒 -1 2 (𝑤 2 +𝑧 2 ) ∞ -∞ 𝑑𝑤𝑑𝑧 ∞ -∞ = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 2𝜋 𝑒 1 2 (𝑡 1 2 𝜎 1 2 +𝑡 2 2 𝜎 2 2 +2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ) ∫ 𝑒 -1 2 𝑤 2 ∞ -∞ 𝑑𝑤 ∫ 𝑒 -1 2 𝑧 2 𝑑𝑧 ∞ -∞ = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 + 1 2 (𝑡 1 2 𝜎 1 2 +𝑡 2 2 𝜎 2 2 +2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ) ( 1 √2𝜋 ∫ 𝑒 -1 2 𝑤 2 ∞ -∞ 𝑑𝑤) ( 1 √2𝜋 ∫ 𝑒 -1 2 𝑧 2 𝑑𝑧 ∞ -∞ ) = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 + 1 2 (𝑡 1 2 𝜎 1 2 +𝑡 2 2 𝜎 2 2 +2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ) .
In particular if (𝑋, 𝑌)~BVN (0,0,1,1, 𝜌), then

𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = 𝑒 1 2 (𝑡 1 2 +𝑡 2 2 +2𝜌𝑡 1 𝑡 2 ) .
∎ Theorem 14.4: Let (𝑋, 𝑌)~BVN (𝜇 1 , 𝜇 2 , 𝜎 1 2 , 𝜎 2 2 , 𝜌). Then 𝑋 and 𝑌 are independent if and only if 𝜌 = 0. Proof:

Let (𝑋, 𝑌)~BVN (𝜇 1 , 𝜇 2 , 𝜎 1 2 , 𝜎 2 2 , 𝜌). Then 𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 + 1 2 (𝑡 1 2 𝜎 1 2 +𝑡 2 2 𝜎 2 2 +2𝜌𝑡 1 𝑡 2 𝜎 1 𝜎 2 ) .
If 𝜌 = 0, then

𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = 𝑒 𝑡 1 𝜇 1 +𝑡 2 𝜇 2 + 1 2 𝑡 1 2 𝜎 1 2 + 1 2 𝑡 2 2 𝜎 2 2 = 𝑒 𝑡 1 𝜇 1 + 1 2 𝑡 1 2 𝜎 1 2 𝑒 𝑡 2 𝜇 2 + 1 2 𝑡 2 2 𝜎 2 2 = 𝑀 𝑋 (𝑡 1 )𝑀 𝑌 (𝑡 2 ).
Moreover, if 𝜌 = 0, then

𝑓 𝑋𝑌 (𝑥, 𝑦; 𝜎 1 , 𝜎 2 ; 𝜇 1 , 𝜇 2 , 0) = 1 2𝜋𝜎 1 𝜎 2 𝑒 - 1 2 [ (𝑥-𝜇 1 ) 2 𝜎 1 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 ] = 1 √2𝜋𝜎 1 𝑒 [- 1 2 (𝑥-𝜇 1 ) 2 𝜎 1 2 ] 1 √2𝜋𝜎 2 𝑒 [- 1 2 (𝑦-𝜇 2 ) 2 𝜎 2 2 ]
= 𝑓 𝑋 (𝑥)𝑓 𝑌 ( 𝑦).

From 𝑀 𝑋𝑌 (𝑡 1 , 𝑡 2 ) = 𝑀 𝑋 (𝑡 1 )𝑀 𝑌 (𝑡 2 ) and 𝑓 𝑋𝑌 (𝑥, 𝑦) = 𝑓 𝑋 (𝑥)𝑓 𝑌 ( 𝑦), 𝑋 and 𝑌 are independent.

Conversely if 𝑋 and 𝑌 are independent, then 𝜌 = 0. 

𝑓 𝑋 (𝑥) = 1 √2𝜋𝜎 1 𝑒 - 1 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 , (14.54.1) 
𝑓 𝑌 (𝑦) = 1 √2𝜋𝜎 2 𝑒 - 1 2 ( 𝑦-𝜇 2 𝜎 2 ) 2 . 
(14.54.2) Proof:

The marginal distribution of RV 𝑋 is given by

𝑓 𝑋 (𝑥) = ∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑦 ∞ -∞ = 1 2𝜋𝜎 1 𝜎 2 √1 -𝜌 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 ] 𝑑𝑦 ∞ -∞ . Put 𝑦-𝜇 2 𝜎 2
= 𝑢, then 𝑑𝑦 = 𝜎 2 𝑑𝑢. Therefore,

𝑓 𝑋 (𝑥) = 1 2𝜋𝜎 1 𝜎 2 √1 -𝜌 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )𝑢 𝜎 1 +𝑢 2 ] 𝜎 2 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 1 (1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢 2 -2𝜌( 𝑥-𝜇 1 𝜎 1 )𝑢] 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 1 (1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢 2 -2𝜌( 𝑥-𝜇 1 𝜎 1 )𝑢+𝜌 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 -𝜌 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ] 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 1 (1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢 2 -2𝜌( 𝑥-𝜇 1 𝜎 1 )𝑢+𝜌 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ] 𝑒 - 1 2(1-𝜌 2 ) [-𝜌 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ] 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 1 (1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 𝑒 - 1 2(1-𝜌 2 ) [-𝜌 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ] ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢-𝜌( 𝑥-𝜇 1 𝜎 1 )] 2 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 1 (1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 𝑒 𝜌 2 2(1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢-𝜌( 𝑥-𝜇 1 𝜎 1 )] 2 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 1 (1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 + 𝜌 2 2(1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢-𝜌( 𝑥-𝜇 1 𝜎 1 )] 2 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1-𝜌 2 2(1-𝜌 2 ) ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢-𝜌( 𝑥-𝜇 1 𝜎 1 )] 2 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢-𝜌( 𝑥-𝜇 1 𝜎 1 )] 2 𝑑𝑢 ∞ -∞ . Put 1 √(1-𝜌 2 ) [𝑢 -𝜌 ( 𝑥-𝜇 1 𝜎 1
)] = 𝑡, then 𝑑𝑢 = √(1 -𝜌 2 )𝑑𝑡. We get,

𝑓 𝑋 (𝑥) = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 - 1 2(1-𝜌 2 ) [𝑢-𝜌( 𝑥-𝜇 1 𝜎 1 )] 2 𝑑𝑢 ∞ -∞ = 1 2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 -𝑡 2 2 √(1 -𝜌 2 )𝑑𝑡 ∞ -∞ CHAPTER 14 BIVARIATE RANDOM VARIABLES AND DISTRIBUTIONS 588 = 1 2𝜋𝜎 1 𝑒 - 1 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ∫ 𝑒 -𝑡 2 2 𝑑𝑡 ∞ -∞ = 1 2𝜋𝜎 1 𝑒 - 1 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 √2𝜋 = 1 √2𝜋𝜎 1 𝑒 - 1 2 ( 𝑥-𝜇 1 𝜎 1 ) 2 ,
where we used

∫ 𝑒 -𝑡 2 2 𝑑𝑡 ∞ -∞ = √2𝜋.
Similarly, we shall get

𝑓 𝑌 (𝑦) = ∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥 ∞ -∞ = 1 √2𝜋𝜎 2 𝑒 - 1 2 ( 𝑦-𝜇 2 𝜎 2 ) 2 .
Hence, 𝑋~𝑁(𝜇 1 , 𝜎 1 2 ) and 𝑌~𝑁(𝜇 2 , 𝜎 2 2 ).

∎

Remark:

We have proved that if (𝑋, 𝑌)~BVN (𝜇 1 , 𝜇 2 , 𝜎 1 2 , 𝜎 2 2 , 𝜌), then the marginal PDFs of 𝑋 and 𝑌 are also normal. However, the converse is not true, i.e., if the marginal distributions of 𝑋 and 𝑌 are normal, it does not necessarily imply that the joint distribution of (𝑋, 𝑌) is bivariate normal.

Theorem 14.6 (Conditional Distributions):

Let (𝑋, 𝑌)~BVN (𝜇 1 , 𝜇 2 , 𝜎 1 2 , 𝜎 2 2 , 𝜌), then the conditional distribution of 𝑋 for a fixed 𝑌, is given by

𝑓 𝑋|𝑌 (𝑥|𝑦) = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 )𝜎 1 2 [(𝑥-𝜇 1 )-𝜌 𝜎 1 𝜎 2 (𝑦-𝜇 2 )]
2 , (14.55.1) and the conditional distribution of 𝑌 for a fixed 𝑋, is given by

𝑓 𝑌|𝑋 (𝑦|𝑥) = 1 √2𝜋𝜎 2 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 )𝜎 2 2 [(𝑦-𝜇 2 )-𝜌 𝜎 2 𝜎 1 (𝑥-𝜇 1 )] 2 .
(14.55.2) Proof:

Conditional distribution of 𝑋 for a fixed 𝑌, is given by

𝑓 𝑋|𝑌 (𝑥|𝑦) = 𝑓 𝑋𝑌 (𝑥, 𝑦) 𝑓 𝑌 (𝑦) = √2𝜋𝜎 2 2𝜋𝜎 1 𝜎 2 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 ]+ 1 2 ( 𝑦-𝜇 2 𝜎 2 ) 2 = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 ]+ (1-𝜌 2 ) 2(1-𝜌 2 ) ( 𝑦-𝜇 2 𝜎 2 ) 2 = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 -(1-𝜌 2 )( 𝑦-𝜇 2 𝜎 2 ) 2 ] = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 {1-(1-𝜌 2 )}] = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [ (𝑥-𝜇 1 ) 2 𝜎 1 2 - 2𝜌(𝑥-𝜇 1 )(𝑦-𝜇 2 ) 𝜎 1 𝜎 2 + (𝑦-𝜇 2 ) 2 𝜎 2 2 𝜌 2 ] = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 ) [( 𝑥-𝜇 1 𝜎 1 )-𝜌( 𝑦-𝜇 2 𝜎 2 )] 589 = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 )𝜎 1 2 [(𝑥-𝜇 1 )-𝜌 𝜎 1 𝜎 2 (𝑦-𝜇 2 )] 2 = 1 √2𝜋𝜎 1 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 )𝜎 1 2 [𝑥-(𝜇 1 +𝜌 𝜎 1 𝜎 2 (𝑦-𝜇 2 ))] 2 ,
which is the probability function of a univariate normal distribution with mean and variance given by

𝐸(𝑋|𝑌 = 𝑦) = 𝜇 1 + 𝜌 𝜎 1 𝜎 2 (𝑦 -𝜇 2 ), 𝑉(𝑋|𝑌 = 𝑦) = 𝜎 1 2 (1 -𝜌 2 ).
Hence, the conditional distribution of 𝑋 for fixed 𝑌 is given by

(𝑋|𝑌 = 𝑦)~𝑁 [𝜇 1 + 𝜌 𝜎 1 𝜎 2 (𝑦 -𝜇 2 ), 𝜎 1 2 (1 -𝜌 2 )].
Similarly, the conditional distribution of RVs 𝑌 for, a fixed 𝑋 is

𝑓 𝑌|𝑋 (𝑦|𝑥) = 𝑓 𝑋𝑌 (𝑥, 𝑦) 𝑓 𝑋 (𝑥) = 1 √2𝜋𝜎 2 √1 -𝜌 2 𝑒 - 1 2(1-𝜌 2 )𝜎 2 2 [𝑦-(𝜇 2 +𝜌 𝜎 2 𝜎 1 (𝑥-𝜇 1 ))] 2 .
Thus, the conditional distribution of 𝑌 for fixed 𝑋 is given by

(𝑌|𝑋 = 𝑥)~𝑁 [𝜇 2 + 𝜌 𝜎 2 𝜎 1 (𝑥 -𝜇 1 ), 𝜎 2 2 (1 -𝜌 2 )]. 
∎ Note that when 𝑋 and 𝑌 are independent, then 𝜌 = 0 and 𝐸(𝑌|𝑋 = 𝑥) = 𝜇 2 = 𝐸(𝑌).

Multinomial Distribution

The Multinomial experiment

• The experiment consists of 𝑛 identical trials.

• The outcome of each trial falls into one of 𝑘 categories.

• The probability that the outcome of a single trial falls into a particular category-say, category 𝑖-is 𝑝 𝑖 and remains constant from trial to trial. This probability must be between 0 and 1, for each of the 𝑘 categories, and the sum of all 𝑘 probabilities is ∑ 𝑝 𝑖 = 1. • The trials are independent.

• The experimenter counts the observed number of outcomes in each category, written as 𝑂 1 , 𝑂 2 , …, 𝑂 𝑘 , with 𝑂 1 + 𝑂 2 + ⋯ + 𝑂 𝑘 = 𝑛.

You have probably noticed the similarity between the multinomial experiment and the binomial experiment. In fact, when there are 𝑘 = 2 categories, the two experiments are identical, except for notation. Instead of 𝑝 and 𝑞, we write 𝑝 1 and 𝑝 2 to represent the probabilities for the two categories, "success" and "failure." Instead of 𝑥 and (𝑛 -𝑥), we write 𝑂 1 and 𝑂 2 to represent the observed number of "successes" and "failures."

Hence, the multinomial distribution is a probability distribution that generalizes the concept of the binomial distribution to more than two categories or outcomes. It is used to model experiments or situations where there are multiple possible outcomes, and each outcome has a certain probability of occurring.
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It is defined by the following parameters:

• Number of categories or outcomes 𝑘:

The multinomial distribution deals with 𝑘 mutually exclusive and exhaustive categories or outcomes.

• Number of trials 𝑛:

The fixed number of independent trials or experiments. • Probability vector 𝑝:

A vector of probabilities, denoted as 𝐩 = (𝑝 1 , 𝑝 2 , … , 𝑝 𝑘 ), where each 𝑝 𝑖 represents the probability of occurrence for outcome 𝑖. The probabilities must satisfy the following conditions: 𝑝 𝑖 ≥ 0 for all 𝑖 and 𝑝 1 + 𝑝 2 + ⋯ + 𝑝 𝑘 = 1.

Definition (Multinomial Distribution):

The RVs 𝑋 1 , 𝑋 2 , … , 𝑋 𝑘 that denote the number of trials that result in class 1, class 2, … , class 𝑘, respectively, have a multinomial distribution and the joint PMF is 

𝑃(𝑋 1 = 𝑥 1 , 𝑋 2 = 𝑥 2 , … , 𝑋 𝑝 = 𝑥 𝑝 ) = 𝑛! 𝑥 1 ! 𝑥 2 ! … 𝑥 𝑘 ! 𝑝 1 𝑥 1 𝑝 2 𝑥 2 … 𝑝 𝑘 𝑥 𝑘 , ( 14 

Example 14.15

Suppose that a fair die is rolled seven times. Find the probability that 1 and 2 dots appear twice each; 3,4, and 5 dots once each; and 6 dots not at all. Solution Let (𝑋 1 , 𝑋 2 , , . . . , 𝑋 6 ) be a six-dimensional random vector, where 𝑋 𝑖 denotes the number of times 𝑖 dots appear in seven rolls of a fair die. Then (𝑋 1 , 𝑋 2 , , . . . , 𝑋 6 ) is a multinomial RV with parameters 𝑛 = 7 and ( 𝑝 1 , 𝑝 2 , . . . , 𝑝 6 ) where 𝑝 𝑖 = 1 6 (𝑖 = 1,2, . .. ,6). Hence, The moment generating function is given by

𝑃(𝑋 1 = 2, 𝑋 2 = 2, 𝑋 3 = 1, 𝑋 4 = 1, 𝑋 5 = 1, 𝑋 6 = 0) = 7! 2! 2! 1! 1! 1! 0! ( 1 6 ) 2 ( 1 6 ) 2 ( 1 6 ) 1 ( 1 6 ) 1 ( 1 6 ) 1 ( 1 6 ) 0 
= 7! 2! 2! ( 1 6 
𝑀 𝑋 (𝑡) = 𝑀 𝑋 1 ,𝑋 2 ,…,𝑋 𝑘 (𝑡 1 , 𝑡 2 , … , 𝑡 𝑘 ) = 𝐸 [𝑒 ∑ 𝑡 𝑖 𝑋 𝑖 𝑘 𝑖=1 ] = ∑ 𝑛! 𝑥 1 ! 𝑥 2 ! … 𝑥 𝑘 ! 𝑝 1 𝑥 1 𝑝 2 𝑥 2 … 𝑝 𝑘 𝑥 𝑘 [𝑒 ∑ 𝑡 𝑖 𝑋 𝑖 𝑘 𝑖=1 ] 𝑥 = ∑ 𝑛! 𝑥 1 ! 𝑥 2 ! … 𝑥 𝑘 ! (𝑝 1 𝑒 𝑡 1 ) 𝑥 1 (𝑝 2 𝑒 𝑡 2 ) 𝑥 2 … (𝑝 𝑘 𝑒 𝑡 𝑘 ) 𝑥 𝑘 𝑥 = (𝑝 1 𝑒 𝑡 1 + 𝑝 2 𝑒 𝑡 2 + ⋯ + 𝑝 𝑘 𝑒 𝑡 𝑘 ) 𝑛 ,
where 𝑥 = (𝑥 1 , 𝑥 2 , … , 𝑥 𝑘 ). Now,

𝑀 𝑋 1 (𝑡) = 𝑀 𝑋 (𝑡 1 , 0, … ,0) = (𝑝 1 𝑒 𝑡 1 + 𝑝 2 + ⋯ + 𝑝 𝑘 ) 𝑛 = ((1 -𝑝 1 ) + 𝑝 1 𝑒 𝑡 1 ) 𝑛 . Since, 𝑝 1 + 𝑝 2 + ⋯ + 𝑝 𝑘 = 1 ⟹ 𝑝 2 + ⋯ + 𝑝 𝑘 = 1 -𝑝 1 . Hence, 𝑋 1 ~𝐵(𝑛, 𝑝 1 ).
Similarly, we shall get: Correlation coefficient,

𝑋 𝑖 ~𝐵(𝑛, 𝑝 𝑖 ); 𝑖 = 1,2, … ,
𝐸[𝑋 𝑖 𝑋 𝑗 ] = [ 𝜕 2 𝑀 𝜕𝑡 𝑖 𝜕𝑡 𝑗 ] 𝑡=0 = [ 𝜕 𝜕𝑡 𝑖 {𝑛𝑝 𝑗 𝑒 𝑡 𝑗 (𝑝 1 𝑒 𝑡 1 + 𝑝 2 𝑒 𝑡 2 + ⋯ + 𝑝 𝑘 𝑒 𝑡 𝑘 ) 𝑛-1 }] 𝑡=0 = [(𝑛 -1)𝑝 𝑗 𝑒 𝑡 𝑗 𝑛𝑝 𝑖 𝑒 𝑡 𝑖 (𝑝 1 𝑒 𝑡 1 + 𝑝 2 𝑒 𝑡 2 + ⋯ + 𝑝 𝑘 𝑒 𝑡 𝑘 ) 𝑛-2 ] 𝑡=0 = 𝑛(𝑛 -1)𝑝 𝑖 𝑝 𝑗 .
𝜌(𝑋 𝑖 , 𝑋 𝑗 ) = Cov(𝑋 𝑖 , 𝑋 𝑗 ) 𝜎 𝑋 𝑖 𝜎 𝑋 𝑗 = -𝑛𝑝 𝑖 𝑝 𝑗 √𝑛𝑝 𝑖 (1 -𝑝 𝑖 )𝑛𝑝 𝑗 (1 -𝑝 𝑗 ) = -𝑝 𝑖 𝑝 𝑗 √ 𝑝 𝑖 𝑝 𝑗 √(1 -𝑝 𝑖 )(1 -𝑝 𝑗 ) = - √ 𝑝 𝑖 𝑝 𝑗 √(1 -𝑝 𝑖 )(1 -𝑝 𝑗 ) = -√ 𝑝 𝑖 𝑝 𝑗 (1 -𝑝 𝑖 )(1 -𝑝 𝑗 ) . ∎ 594 CHAPTER 15

MATHEMATICA LAB: BIVARIATE RANDOM VARIABLES AND DISTRIBUTIONS

Always remember that one of the notable advantages of Mathematica's functions is their ability to handle both discrete and continuous random variables seamlessly not only for univariate random variables but also for bivariate and multivariate random variables. This means that you can apply the Probability, NProbability, PDF, CDF, Expectation, MomentGeneratingFunction, and CentralMomentGeneratingFunction functions to a wide range of probability distributions, regardless of whether they are discrete, continuous, univariate, bivariate or multivariate random variables.

• We start by examining the marginal distribution, which allows us to focus on a single variable of interest while disregarding the other variables in a multivariate distribution. Mathematica offers efficient functions to compute the marginal distribution of a multivariate distribution, for example MarginalDistribution, which can be extremely useful for data analysis and modeling. • Next, we focus on the concepts of covariance and correlation, two measures that quantify the linear relationship between two random variables. Mathematica provides built-in functions (Covariance and Correlation) to calculate these measures, making it effortless to explore the strength and direction of the relationship between variables in a dataset. • Moving forward, we explore the binormal distribution, which is a bivariate probability distribution commonly used in applications where two variables are correlated. We demonstrate how to compute probabilities, generate random samples, and visualize the binormal distribution using Mathematica's functions.

• Lastly, we discuss multinomial distribution, which models scenarios where multiple outcomes occur simultaneously with specific probabilities. Mathematica offers versatile tools to work with multinomial distributions, allowing us to compute probabilities, generate random samples, and perform various analyses. • Throughout the chapter, we will provide step-by-step explanations and practical examples to demonstrate the usage of Mathematica functions for these concepts. By the end of this chapter, you will have a solid understanding of how to leverage Mathematica's capabilities to analyze and work with probability distributions effectively.

In the following table, we list the built-in functions that are used in this chapter.

MarginalDistribution BinormalDistribution Covariance MultinomialDistribution Correlation

Therefore, we divided this chapter into three units to cover the above topics. gives the covariance between the vectors v1 and v2.

Covariance[m]

gives the sample covariance matrix for observations in matrix m.

Covariance[m1,m2]

gives the covariance matrix for the matrices m1 and m2.

Covariance[dist]

gives the covariance matrix for the multivariate symbolic distribution dist.

Covariance[dist,i,j]

gives the (i,j)^(th) covariance for the multivariate symbolic distribution dist.

Correlation[v1,v2]

gives the correlation between the vectors v1 and v2.

Correlation[m]

gives the sample correlation matrix for observations in matrix m.

Correlation[m1,m2]

gives the correlation matrix for the matrices m1 and m2.

Correlation[dist]

gives the correlation matrix for the multivariate symbolic distribution dist. Correlation[dist,i,j] gives the (i,j)^(th) correlation for the multivariate symbolic distribution dist. 606

Mathematica

GraphicsRow[ { Histogram3D[ data, Automatic, "PDF", ColorFunction->"Rainbow", ImageSize->300 ], MatrixPlot[ cov, ColorFunction->"TemperatureMap", FrameTicks->Automatic, Mesh->True, ImageSize->300 ] } ] ] Manipulate[ dist=BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ]; covRange=Range[1,1000,1]; distPlot[ dist, covRange
], {{μ1,1},1,2,Appearance->"Labeled"}, {{μ2,1},1,2,Appearance->"Labeled"}, {{σ1,1},1,2,Appearance->"Labeled"}, {{σ2,1},1,2,Appearance->"Labeled"}, {{ρ,-0.9},-0.9,0. represents a bivariate normal distribution with mean {μ1,μ2} and covariance matrix {{σ12,ρ σ1 σ2},{ρ σ1 σ2,σ22}}.

BinormalDistribution[{σ1,σ2 },ρ]
represents a bivariate normal distribution with zero mean.

BinormalDistribution[ρ]

represents a bivariate normal distribution with zero mean and covariance matrix {{1,ρ },{ρ,1}}.

Covariance[dist]

gives the covariance matrix for the multivariate symbolic distribution dist.

Covariance[dist,i,j]

gives the (i,j)^(th) covariance for the multivariate symbolic distribution dist. {{μ1,1,"μ1"},0,1.5,0.1}, {{μ2,3,"μ2"},2,4,0.1}, {{σ1,1.5,"σ1"},1,2,0.1}, {{σ2,2.5,"σ2"},2,3,0.1}, {{ρ,0.5,"ρ"},0.1,0.9,0.1}, {{n,2000,"n"},500,4000 
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Input (* BinormalDistribution[{μ1,μ2} ,{σ1,σ2},ρ] represents a 

SAMPLING THEORY

In this chapter, we will study the fundamental concepts of sampling theory and explore various distributions that play a crucial role in statistical inference. Understanding these concepts is essential for drawing accurate conclusions from a sample and making inferences about the population. We will cover the following topics and concepts.

• Sampling theory:

Statistical inference refers to the process of drawing conclusions or making predictions about a population based on sample data. Sampling theory focuses on the process of selecting a subset, or sample, from a larger population. By studying samples, we can make inferences about the population as a whole, which can save time and resources. • Sampling distribution of the sample mean:

The sampling distribution of the sample mean is a key concept in statistics. It describes the distribution of all possible sample means that could be obtained from repeated sampling from a population. Understanding this distribution is crucial for estimating population parameters, such as the population mean, and making inferences about the population based on the sample mean.

• Central limit theorem (CLT):

The CLT is a fundamental result in statistics that states that, under certain conditions, the distribution of sample means will approximate a normal distribution, regardless of the shape of the population distribution. This theorem is widely used in statistical inference and plays a pivotal role in hypothesis testing and confidence interval estimation. • Chi-square distribution:

The chi-square distribution is a probability distribution that arises in various statistical applications. It is commonly used for hypothesis testing and constructing confidence intervals for the population variance and assessing goodness-of-fit. We will explore the properties and applications of the chi-square distribution and its relationship with other statistical distributions.

• Student t-distribution:

The student t-distribution is employed when the population standard deviation is unknown and needs to be estimated from the sample. We will explore the characteristics of the t-distribution and understand how it differs from the standard normal distribution. • Fisher F-distribution:

The Fisher F-distribution is employed in statistical inference to compare the variances of two or more populations. It is commonly used in the analysis of variance. We will examine the properties and applications of the F-distribution and how it relates to the chi-square distribution.

• Sampling distribution of sample variance:

The sampling distribution of the sample variance provides insights into the variability of sample variances obtained from repeated sampling. It follows a chi-square distribution and is crucial for making inferences about the population variance.

• Sampling distribution of sample proportion:

The sampling distribution of the sample proportion is relevant when studying categorical data and making inferences about population proportions. We will investigate the properties and applications of this distribution.

By understanding the concepts covered in this chapter, you will gain a solid foundation in sampling theory and the distributions associated with sampling. These concepts are vital in statistical analysis and will enable you to draw meaningful conclusions and make accurate inferences about populations based on sample data. Sampling theory is of great value in many connections:

• For example, it is useful in estimating unknown population quantities (such as population mean and variance), often called population parameters or briefly parameters, from knowledge of corresponding sample quantities (such as sample mean and variance), often called sample statistics or briefly statistics. • Sampling theory is also helpful in determining whether the observed differences between two samples are due to chance variation or whether they are really significant. Such questions arise, for example, in deciding whether one production process is better than another.

Definition (Statistical Inference):

Statistical inference, in general, is the study of the inferences made about a population using samples taken from it, together with indications of the accuracy of such inferences by using probability theory.

For the conclusions of sampling theory to be valid, samples must be chosen to represent a population. A study of sampling methods and related problems is called the design of the experiment.

A simple random sample is a subset of a statistical population in which each member of the subset has an equal probability of being chosen. The main attribute of this sampling plan is that every sample of size 𝑛 has the same chance of being chosen. For example, suppose you want to select a sample of size 𝑛 = 2 from a population containing 𝑁 = 4 objects. If the four objects are identified by the symbols 𝑥 1 , 𝑥 2 , 𝑥 3 , and 𝑥 4 , there are six distinct pairs that could be selected, as listed in Table 16.1. If the sample of 𝑛 = 2 observations is chosen so that each of these six samples has the same chance-one out of six or 1/6-of selection, then the resulting sample is called a simple random sample or just a random sample. Definition (Random Sample 1): If a sample of 𝑛 elements is selected from a population of 𝑁 elements using a sampling plan in which each member of a population has an equal chance of being included in the sample, then the sampling is said to be random, and the resulting sample is a simple random sample.

To use sample data to make inferences about an entire population, it is necessary to make some assumptions about the relationship between the two. One such assumption, which is often quite reasonable, is that there is an underlying (population) probability distribution such that the measurable values of the items in the population can be thought of as being independent RVs having this distribution. If the sample data are then chosen in a random fashion, then it is reasonable to suppose that they, too, are independent values from the distribution. The RVs are usually assumed to be independent and identically distributed.
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So, in selecting a random sample of size 𝑛 from a population 𝐹(𝑥), let us define the RV 𝑋 𝑖 , 𝑖 = 1,2, . . . , 𝑛, to represent the 𝑖th measurement or sample value that we observe. The RVs 𝑋 1 , . .. ,𝑋 𝑛 will then constitute a random sample from the population 𝐹(𝑥) with numerical values 𝑥 1 , . .. ,𝑥 𝑛 if the measurements are obtained by repeating the experiment 𝑛 independent times under essentially the same conditions. Because of the identical conditions under which the elements of the sample are selected, it is reasonable to assume that the 𝑛 RVs 𝑋 1 , . . . , 𝑋 𝑛 are independent and that each has the same probability distribution 𝐹(𝑥). That is, the probability distributions of 𝑋 1 , . . . , 𝑋 𝑛 are, respectively, 𝐹(𝑥 1 ), . . . , 𝐹(𝑥 𝑛 ), and their joint probability distribution is 𝐹(𝑥 1 , . . . , 𝑥 𝑛 ) = 𝐹(𝑥 1 ) ••• 𝐹(𝑥 𝑛 ). Hence, the concept of a random sample is described formally by the following definition.

Definition (Random Sample 2):

If 𝑋 1 , . .. ,𝑋 𝑛 are independent RVs having a common distribution 𝐹, then we say that they constitute a random sample from the distribution 𝐹 and write its joint probability distribution as 𝐹(𝑥 1 , . . . , 𝑥 𝑛 ) = 𝐹(𝑥 1 ) ••• 𝐹(𝑥 𝑛 ).

(16.1) Such a collection of RVs is also referred to as being independent and identically distributed (IID).

In other words, the terms random sample and IID are basically one and the same. In statistics, "random sample" is the typical terminology, but in probability it is more common to say "IID".

By assuming independence, we can treat each observation as a unique source of information, unaffected by the other observations. The assumption of identical distribution ensures that the sample accurately represents the population, allowing us to make generalizations and draw conclusions about the population based on the sample.

In most applications, the population distribution 𝐹 will not be completely specified, and one will attempt to use the data to make inferences about 𝐹. Sometimes it will be supposed that 𝐹 is specified up to some unknown parameters (for instance, one might suppose that 𝐹 was a normal distribution function having an unknown mean and variance), and at other times it might be assumed that almost nothing is known about 𝐹 (except maybe for assuming that it is a continuous, or a discrete, distribution). Problems in which the form of the underlying distribution is specified up to a set of unknown parameters are called parametric inference problems, whereas those in which nothing is assumed about the form of 𝐹 are called nonparametric inference problems.

Remarks:

• If we draw a number from an urn, we have the choice of replacing or not replacing the number into the urn before a second drawing. In the first case, the number can come up again and again, whereas in the second it can only come up once.

Definition (Sampling with and without Replacement):

Sampling where each member of the population may be chosen more than once is called sampling with replacement, while if each member cannot be chosen more than once, it is called sampling without replacement. • Populations are either finite or infinite. For example, if we draw 10 balls successively without replacement from an urn containing 100 balls, we are sampling from a finite population; while if we toss a coin 50 times and count the number of heads, we are sampling from an infinite population. • A finite population in which sampling is with replacement can theoretically be considered infinite since any number of samples can be drawn without exhausting the population. • For many practical purposes, sampling from a finite population that is very large can be considered to be sampling from an infinite population.

Sampling Distribution

If a number of samples, each of the same size 𝑛, is drawn from a given population (either with or without replacement) and for each sample, the value of the statistic (such as the mean and the standard deviation) is calculated, a series of values of a statistic will be obtained. If the number of samples is large, this may be arranged into a frequency table. The frequency distribution of the statistic that will be obtained if the number of samples, each of the same size, were large is called the sampling distribution of a statistic. If, for example, the particular statistic used is the sample mean, then the distribution is called the sampling distribution of means, or the sampling distribution of the mean. Similarly, we could have sampling distributions of standard deviations, variances, medians, proportions, etc. For each sampling distribution, we can compute the mean, standard deviation, etc. Thus, we can speak of the mean and standard deviation of the sampling distribution of means, etc.

Definition (Sampling Distribution):

The probability distribution of a statistic is called a sampling distribution.

Remarks:

• The standard deviation of a sampling distribution of a statistic is often called its standard error (SE).

• The standard deviation measures the dispersion or amount of variability of individual data values from its mean. While standard error measures how far the value of the statistic is likely to be from the true parameter value. For example, the standard error of the sample mean measures how far the sample mean of the data is likely to be from the true population mean. • There is an important way to find the sampling distribution of a statistic: use a simulation to approximate the distribution. That is, draw a large number of samples of size 𝑛, calculating the value of the statistic for each sample, and tabulate the results in a relative frequency histogram. When the number of samples is large, the histogram will be very close to the theoretical sampling distribution.

Example 16.1

A population consists of 𝑁 = 5 numbers: 3, 6, 9, 12, 15. If a random sample of size 𝑛 = 3 is selected without replacement, find the sampling distributions for the sample mean 𝑋 ̅ and the sample median 𝑚.

Solution

The population contains five distinct numbers, and each is equally likely, with probability 𝑝(𝑋) = 1/5. We can easily find the population mean and median as 𝜇 = 3 + 6 + 9 + 12 + 15 5 , 𝑀 = 9.

To find the sampling distribution, we need to know what values of 𝑋 ̅ and 𝑚 can occur when the sample is taken. There are 10 possible random samples of size 𝑛 = 3 and each is equally likely, with a probability 1/10. These samples, along with the calculated values of 𝑋 ̅ and 𝑚 for each, are listed in Table 16.2. 
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where Var(𝑋 1 ) = Var(𝑋 2 ) = ⋯ = Var(𝑋 𝑛 ) = 𝜎 2 and 𝜇 and 𝜎 2 are the population mean and variance, respectively. Hence, the expected value of the sample mean is the population mean 𝜇 whereas its variance is 1/𝑛 times the population variance.

∎

Remarks:

• According to property (16.2.1), the distribution of 𝑋 ̅ is centered precisely at the mean of the population from which the sample has been selected. = 𝐸[𝑒 𝑡𝑎 1 𝑋 1 ⋅ 𝑒 𝑡𝑎 2 𝑋 2 … 𝑒 𝑡𝑎 𝑛 𝑋 𝑛 ].

Since 𝑋 1 , 𝑋 2 , ..., 𝑋 𝑛 are independent RVs, the joint MGF can be expressed as the product of the individual MGFs:

𝑀 𝑌 (𝑡) = 𝐸[𝑒 𝑡𝑎 1 𝑋 1 ] ⋅ 𝐸[𝑒 𝑡𝑎 2 𝑋 2 ] … 𝐸[𝑒 𝑡𝑎 𝑛 𝑋 𝑛 ].
Using the definition of the MGF, the expectation of 𝐸[𝑒 𝑡𝑎𝑋 ] for a RV 𝑋 is simply the MGF evaluated at 𝑡𝑎:

𝑀 𝑋 (𝑡𝑎) = 𝐸[𝑒 𝑡𝑎𝑋 ].
Applying this result to each term in the previous equation, we obtain: will be exactly normally distributed, regardless of the sample size, 𝑛. Then,

𝑀 𝑌 (𝑡) =
𝑋 ̅ ~𝑁 (𝜇, 𝜎 2 𝑛 ), (16.4) 
i.e., when the population is 𝑁(𝜇, 𝜎 2 ), 𝑋 ̅ ~𝑁(𝜇, 𝜎 2

𝑛

) for any sample of size 𝑛.

Proof:

Since 

Proof:

Recall that the MGF of a standard normal distribution is given by 𝑒 𝑀 𝑍 (𝑡) = 𝑒 𝑡 2 /2 , so that in the limit, 𝑍 has the same MGF as a standard normal.

∎

A practical difficulty in applying the CLT is in knowing when 𝑛 is "sufficiently large." The problem is that the accuracy of the approximation for a particular 𝑛 depends on the shape of the original underlying distribution being sampled. If the underlying distribution is symmetric and there is not much probability far out in the tails, then the approximation will be good even for a small 𝑛, whereas if it is highly skewed or has "heavy" tails, then a large 𝑛 will be required. For example, if the distribution is uniform on an interval, then it is symmetric with no probability in the tails, and the normal approximation is very good for 𝑛 as small as 10. However, at the other extreme, a distribution can have such fat tails that its mean fails to exist, and the CLT does not apply, so no 𝑛 is big enough. A popular, although frequently somewhat conservative, convention is that the CLT may be safely applied when 𝑛 > 30. Of course, there are exceptions, but this rule applies to most distributions of real data. So, we have the following fact, If the population distribution is nonnormal, the sampling distribution of 𝑋 ̅ will be approximately normally distributed for large samples 𝑛 ≥ 30.

It is easy to demonstrate the CLT with a computer simulation experiment. We used computer software to draw 100,000 samples at random from the uniform distribution with parameters 𝑎 = 1 and 𝑏 = 5, each of size 𝑛 = 1, 2, 3, 10. Figure 16.3 is a clear demonstration of the CLT, which states that as the sample size increases, the distribution of sample means approaches a normal distribution with a mean equal to the population mean and standard deviation equal to the population standard deviation divided by the square root of the sample size. In this case, the population distribution is uniform, which is not a normal distribution, but the CLT still applies. As the sample size increases, the histograms become more bell-shaped and symmetric, indicating that the sample means are approaching a normal distribution. Additionally, the histograms become narrower, indicating that the standard deviation of the sample means is decreasing as the sample size increases. This demonstrates the practical usefulness of the CLT in allowing us to make inferences about the population mean based on sample means, even when the population distribution is not normal. This type of sampling experiment can be used to investigate the sampling distribution of any statistic. Figure 16.4 provides a good illustration of how the CLT can be used to approximate the distribution of sample means for different distributions. 

Example 16.5

An average of 15 ounces per bottle is used to package a particular brand of drink. There will be slight variances in the amount of liquid that each bottle really holds due to chance. The liquid content of these bottles is normally distributed with 𝜎 = 0.8 oz. The amount of liquid, in ounces, is measured in each of the 20 randomly chosen bottles of this particular type of soda. Find the probability that the sample mean will be within 0.3 oz of 15 oz.

Solution

We know that 𝑋 is normally distributed with mean 𝜇 = 15 and variance 𝜎 2 = 0.64. From CLT, 𝑋 ̅ possesses a normal distribution with a mean 15 and a variance , when we have a finite population and sampling is without replacement, is called the finite population correction factor for the standard error of the sample mean.

Sampling Distribution of Differences

Suppose that we are given two populations. For each sample of size 𝑛 1 drawn from the first population, let us compute a statistic sta 1 ; this yields a sampling distribution for the statistic sta 1 , whose mean and standard deviation we denote by 𝜇 sta 1 and 𝜎 sta 1 , respectively. Similarly, for each sample of size 𝑛 2 drawn from the second population, let us compute a statistic sta 2 ; this yields a sampling distribution for the statistic sta 2 , whose mean and standard deviation are denoted by 𝜇 sta 2 and 𝜎 sta 2 . From all possible combinations of these samples from the two populations, we can obtain a distribution of the differences, sta 1 -sta 2 , which is called the sampling distribution of differences of the statistics. The mean and standard deviation of this sampling distribution, denoted respectively by 𝜇 sta 1 -sta 2 and 𝜎 sta 1 -sta 2 , are given by 𝜇 sta 1 -sta 2 = 𝜇 sta 1 -𝜇 sta 2 , 𝜎 sta 1 -sta 2 = √𝜎 sta 1 2 + 𝜎 sta 2 2 , (16.8) provided that the samples chosen do not in any way depend on each other (i.e., the samples are independent).

If sta 1 , and sta 2 are the sample means from the two populations-which means we denote by 𝑋 ̅ 1 and 𝑋 ̅ 2 , respectively-then the sampling distribution of the differences of means is given for infinite populations with means and standard deviations (𝜇 1 , 𝜎 1 ) and (𝜇 2 , 𝜎 2 ), respectively, by

𝜇 𝑋 ̅ 1 -𝑋 ̅ 2 = 𝜇 𝑋 ̅ 1 -𝜇 𝑋 ̅ 2 = 𝜇 1 -𝜇 2 , 𝜎 𝑋 ̅ 1 -𝑋 ̅ 2 = √𝜎 𝑋 ̅ 1 2 + 𝜎 𝑋 ̅ 2 2 = √ 𝜎 1 2 𝑛 1 + 𝜎 2 2
𝑛 2 , (16.9) using equations (16.2).

Remarks:

• The result also holds for finite populations if sampling is with replacement.
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• Similar results can be obtained for finite populations in which sampling is without replacement by using equations (16.7).

Example 16.7

The average lifespan of plasma TV made by company 𝐴 is 7.5 years, with a standard deviation of 0.9 years, while that of company 𝐵 is 6.6 years, with a standard deviation of 0.7 years. What is the probability that a randomly selected sample of 50 plasma TV from company 𝐴 will have a mean lifespan that is at least one year longer than a similarly selected sample 40 plasma TV from company 𝐵?

Solution

We are given the following information: Population A Population B 𝜇 1 = 7.5 𝜇 2 = 6.6 𝜎 1 = 0.9 𝜎 2 = 0.7 𝑛 1 = 50 𝑛 2 = 40 The sampling distribution of 𝑋 ̅ 1 -𝑋 ̅ 2 will be approximately normal and will have a mean and standard deviation 𝜇 𝑋 ̅ 1 -𝑋 ̅ 2 = 7.5 -6.6 = 0.9, 

𝜎

Chi-square Distribution

Karl Pearson in about 1900 described a well-known probability distribution called "chi-square distribution" or "distribution of chi-square". The square of a standard normal variate is known as the chi-square (𝜒 

= ∫ 𝑒 𝑡𝑧 2 ∞ -∞ 𝑓 𝑍 (𝑧)𝑑𝑧 = ∫ 𝑒 𝑡𝑧 2 ∞ -∞ 1 √2𝜋 𝑒 -𝑧 2 2 𝑑𝑧 = ∫ 1 √2𝜋 𝑒 -𝑧 2 2 (1-2𝑡) 𝑑𝑧 ∞ -∞ = ∫ 1 √2𝜋 𝑒 -𝑢 2 2 𝑑𝑢 √1 -2𝑡 ∞ -∞ = 1 √1 -2𝑡 = (1 -2𝑡) -1 2 ,
where 𝑧√1 -2𝑡 = 𝑢, Definition (PDF of Chi-Square Distribution): A RV 𝑋 is said to follow chi-square distribution with 𝑛 degrees of freedom if its PDF is given by

𝑓 𝑋 (𝑥) = (1/2) 𝑛 2 Γ(𝑛/2) 𝑒 -𝑥 2 𝑥 ( 𝑛 2 -1) 
; 0 < 𝑥 < ∞, (16.16) and we write 𝑋~𝜒 2 (𝑛).

Properties of Chi-square Curve

• Chi-square distribution is a particular case of Gamma distribution with parameters 𝛼 = 𝑛/2 and 𝛽 = 2.

• The chi-square distribution has only one parameter, the degrees of freedom 𝑛. When the degrees of freedom parameter is small, the Chi-Square distribution is skewed and has a long tail. As the degrees of freedom parameter increases, the distribution becomes more symmetric and bellshaped. Specifically, as the degrees of freedom become large, the Chi-Square distribution approaches a normal distribution. Also, the shape of the CDF depends on the number of degrees of freedom 𝜈 of the Chi-Square distribution. (16.17.2) Proof:

The expected value of a chi-square RV 𝑋 is

𝐸[𝑋] = ∫ 𝑥𝑓 𝑋 (𝑥)𝑑𝑥 ∞ 0 = ∫ 𝑥 ( 1 2 ) 𝑛 2 Γ ( 𝑛 2 ) 𝑒 -𝑥 2 𝑥 ( 𝑛 2 -1) 𝑑𝑥 ∞ 0 = ( 1 2 ) 𝑛 2 Γ ( 𝑛 2 ) ∫ 𝑒 -𝑥 2 𝑥 ( 𝑛 2 +1-1) 𝑑𝑥 ∞ 0 = ( 1 2 ) 𝑛 2 Γ ( 𝑛 2 ) Γ ( 𝑛 2 + 1) ( 1 2 ) 𝑛 2 +1 = 𝑛/2 1/2 = 𝑛.
The variance of a Chi-square RV 𝑋 is

Var(𝑋) = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 ,
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𝑋 1 ~𝜒2 (𝑛 1 ), 𝑋 2 ~𝜒2 (𝑛 2 ) implies 𝑀 𝑋 1 (𝑡) = (1 -2𝑡) -𝑛 1 /2 and 𝑀 𝑋 2 (𝑡) = (1 -2𝑡) -𝑛 2 /2 , respectively. Since 𝑋 1 and 𝑋 2 are independent,

𝑀 𝑋 1 +𝑋 2 (𝑡) = 𝑀 𝑋 1 (𝑡)𝑀 𝑋 2 (𝑡) = (1 -2𝑡) -𝑛 1 2 (1 -2𝑡) -𝑛 2 2 = (1 -2𝑡) -𝑛 1 +𝑛 2 2 ,
which is the MGF of 𝜒 2 (𝑛 1 + 𝑛 2 ). Therefore, 𝑋 1 + 𝑋 2 ~𝜒2 (𝑛 1 + 𝑛 2 ).

∎

Remarks:

( The MGF of a chi-squared distribution with 𝑛 degrees of freedom is given by:

𝑀 𝑋 (𝑡) = (1 -2𝑡) -𝑛 2 .
To prove that (𝑋 -𝑛)/√2𝑛 converges in distribution to a standard normal distribution as 𝑛 → ∞, we need to show that the MGF of (𝑋 -𝑛)/√2𝑛 converges pointwise to the MGF of a standard normal distribution as 𝑛 → ∞. Let 𝑌 = (𝑋 -𝑛)/√2𝑛. Then the MGF of 𝑌 is given by:

𝑀 𝑌 (𝑡) = 𝐸[𝑒 𝑡𝑌 ].
Using the definition of 𝑌, we can rewrite this as:

𝑀 𝑌 (𝑡) = 𝐸 [𝑒 𝑡(𝑋-𝑛) √2𝑛 ] = 𝐸 [𝑒 𝑡𝑋 √2𝑛 𝑒 - 𝑡𝑛 √2𝑛 ] = 𝐸 [𝑒 𝑡𝑋 √2𝑛 ] 𝑒 - 𝑡𝑛 √2𝑛 = 𝑀 𝑋 ( 𝑡 √2𝑛 ) 𝑒 - 𝑡𝑛 √2𝑛 .
Substituting the MGF of 𝑋, we have:

652 𝑀 𝑌 (𝑡) = (1 -2 ( 𝑡 √2𝑛 )) - 𝑛 2 𝑒 - 𝑡𝑛 √2𝑛 .
Now, taking the limit as 𝑛 → ∞, we have:

lim 𝑛→∞ 𝑀 𝑌 (𝑡) = lim 𝑛→∞ (1 -2 ( 𝑡 √2𝑛 )) - 𝑛 2 𝑒 -𝑡𝑛 √2𝑛 = 𝑒 -𝑡 2 2 ,
which is the MGF of a standard normal distribution. Therefore, we have shown that the MGF of (𝑋 -𝑛)/√2𝑛 converges pointwise to the MGF of a standard normal distribution as 𝑛 → ∞, which implies that (𝑋 -𝑛)/√2𝑛 converges in distribution to a standard normal distribution as 𝑛 → ∞. ∎

Sampling Distribution of Sample Variance

Let 𝑋 1 , 𝑋 2 , . .. , 𝑋 𝑛 be a random sample of size 𝑛 from 𝑁(𝜇, 𝜎 2 ). Let 𝑋 ̅ be the sample mean. Then,

𝑆 2 = 1 𝑛 -1 ∑(𝑋 𝑖 -𝑋 ̅ ) 2 𝑛 𝑖=1 , (16.23 
) is called the sample variance. If a random sample of size 𝑛 is drawn from a normal population with mean 𝜇 and variance 𝜎 2 , and the sample variance is computed, we obtain a value of the statistic 𝑆 2 . We shall proceed to consider the distribution of the statistic Dividing each term by 𝜎 2 , we have

∑ ( 𝑋 𝑖 -𝜇 𝜎 ) 2 𝑛 𝑖=1 = (𝑛 -1)𝑆 2 𝜎 2 + ( 𝑋 ̅ -𝜇 𝜎/√𝑛 ) 2 .
Since 𝑋 ̅ and 𝑆 2 are independent, we have

𝑀 ∑ ( 𝑋 𝑖 -𝜇 𝜎 ) 2 𝑛 𝑖=1 (𝑡) = 𝑀 (𝑛-1)𝑆 2 𝜎 2 × 𝑀 ( 𝑋 ̅ -𝜇 𝜎/√𝑛 ) 2 , (1 -2𝑡) -𝑛/2 = 𝑀 (𝑛-1)𝑆 2 𝜎 2 × (1 -2𝑡) -1/2 .
Therefore,

𝑀 (𝑛-1)𝑆 2 𝜎 2 = (1 -2𝑡) -(𝑛-1)/2 .
Hence, ).

(
Method2: If 𝑋~Gamma(𝜈/2,2) (in shape-scale parametrization), then 𝑋 is identical to 𝜒 2 (𝜈), the chi-squared distribution with 𝜈 degrees of freedom. Conversely, if 𝑄~𝜒 2 (𝜈) and 𝑐 is a positive constant, then 𝑐𝑄~Gamma(𝜈/2,2𝑐). In our case 𝑄 = (𝑛-1)𝑆 2 𝜎 2

~𝜒2 (𝑛 -1), therefore, .

𝑆 2 = 𝜎 2 𝑛 -1 ( 𝑛 -1 𝜎 2 𝑆 2 ) ~Gamma ( 𝑛 -1 2 , 2𝜎 2 
As a summary of the above mathematical analysis; for describing the sampling distribution of the sample variance, we consider all possible sample of same size, say, 𝑛 taken from the population having variance 𝜎 2 and for each sample 658 Example 16.9

Batteries for motorcycles are warranted to last, on average, for three years with a standard deviation of one year by the manufacturer. Should the manufacturer still be assured that the batteries have a standard deviation of 1 year if seven of these batteries had lives of 1.9, 2.4, 3.0, 3.5, 4.2, 4, and 2 years? Assume that the battery's lifespan is distributed normally.

Solution

We have 𝜇 = 3, 𝜎 2 = 1. Then, we find the sample mean 𝑋 ̅ = 3, sample size 𝑛 = 7, and follows a chi-squared distribution with (𝑛 -1) degrees of freedom, where 𝑛 is the sample size. 2. We can transform the given probability into a probability involving the chi-squared distribution as follows: (16.29) When the population standard deviation 𝜎 is not known and 𝑆 is the sample standard deviation, then also 𝑋 ̅ -𝜇 𝑆/√𝑛 → 𝑁(0,1), (16.30) provided 𝑛, the sample size, is sufficiently large (i.e., 𝑛 ≥ 30). But, in the case when the population is normal, 𝜎 is unknown and sample size is small (i.e., 𝑛 < 30) the distribution of 𝑋 ̅ -𝜇 𝑆/√𝑛 will not be normal. The distribution of the statistic in such cases is known as student 𝑡-distribution. The probability of student 𝑡-distribution was first published in 1908 in a paper written by W. S. Gosset. At the time, Gosset was employed by an Irish brewery that prohibited publication of research by members of its staff. To circumvent this restriction, he published his work secretly under the name "Student." Consequently, the 𝑡-distribution is usually called the student 𝑡-distribution.

𝑆 2 = (1.

Definition (𝒕-Distribution):

Let 𝑍 ∼ 𝑁(0,1) and 𝑌 ∼ 𝜒 2 (𝑛), and let 𝑍 and 𝑌 be independent. Then, the statistic 𝑇 = 𝑍 √𝑌/𝑛 , (16.31) is said to have a 𝑡-distribution with 𝑛 degrees of freedom and we write 𝑇 ∼ 𝑡(𝑛). Therefore, we can say that the standard normal distribution is the parent distribution of the chi-squared distribution and the 𝑡-distribution. The chi-squared distribution is obtained by summing up the squares of independent standard normal RVs, while the 𝑡-distribution is obtained by dividing a standard normal RV by the square root of a chi-squared RV divided by its degrees of freedom. A 𝑇 variable is defined in terms of a standard normal 𝑍 and a 𝜒 2 (𝑛) variable 𝑌. They are independent, so their joint PDF 𝑓(𝑦, 𝑧) is the product of their individual PDFs. We first find the CDF of 𝑇 and then differentiate to obtain the PDF:

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃 ( 𝑍 √𝑌/𝑛 ≤ 𝑡) = 𝑃(𝑍 ≤ 𝑡√𝑌/𝑛) = ∫ ∫ 𝑓(𝑦, 𝑧)𝑑𝑧𝑑𝑦 𝑡√𝑦/𝑛 -∞ ∞ 0 .
Differentiating with respect to 𝑡 using the Fundamental Theorem of Calculus,

𝑓(𝑡) = 𝑑 𝑑𝑡 𝐹(𝑡) = ∫ 𝜕 𝜕𝑡 ∫ 𝑓(𝑦, 𝑧)𝑑𝑧𝑑𝑦 𝑡√𝑦/𝑛 -∞ ∞ 0 = ∫ 𝑓(𝑦, 𝑡√ 𝑦 𝑛 )√ 𝑦 𝑛 𝑑𝑦 ∞ 0 .
Now substitute the joint PDF-that is, the product of the marginal PDFs of 𝑌 and 𝑍-and integrate:

𝑓(𝑡) = ∫ 𝑦 𝑛 2 -1 2 𝑛 2 Γ ( 𝑛 2 ) 𝑒 -𝑦 2 1 √2𝜋 𝑒 - (𝑡√ 𝑦 𝑛 ) 2 2 √ 𝑦 𝑛 𝑑𝑦 ∞ 0 = ∫ 𝑦 𝑛 2 -1 √ 𝑦 𝑛 2 𝑛 2 Γ(𝑛/2) 1 √2𝜋 𝑒 -𝑦 2 𝑒 - 𝑡 2 𝑦 𝑛 2 𝑑𝑦 ∞ 0 = 1 √2𝜋𝑛2 𝑛 2 Γ(𝑛/2) ∫ 𝑦 𝑛+1 2 -1 𝑒 -( 1 2 + 𝑡 2 2𝑛 )𝑦 𝑑𝑦 ∞ 0 .
The integral can be evaluated using the gamma function:

𝑓(𝑡) = 1 √2𝜋𝑛2 𝑛 2 Γ ( 𝑛 2 ) Γ ( 𝑛 + 1 2 ) ( 1 2 + 𝑡 2 2𝑛 ) 𝑛 2 + 1 2 = 1 2 𝑛 2 + 1 2 √𝜋𝑛Γ (𝑛/2) Γ ( 𝑛 + 1 2 ) ( 1 2 ) 𝑛 2 + 1 2 (1 + 𝑡 2 𝑛 ) 𝑛 2 + 1 2 = Γ ( 𝑛 + 1 2 ) √𝜋𝑛Γ (𝑛/2) (1 + 𝑡 2 𝑛 ) - 𝑛+1 2 
; -∞ < 𝑡 < ∞. When the 𝜈 is large (i.e., greater than 30), the 𝑡-distribution approaches a normal distribution, with a bellshaped curve and symmetrical about the mean. However, when the 𝜈 is small, the 𝑡-distribution is more spread out and has heavier tails than the normal distribution. Also, the shape of the CDF depends on the number of degrees of freedom 𝜈 of the Student t-distribution.

Properties of 𝒕-distribution Curve

• The number of degrees of freedom is the only parameter of the 𝑡 distribution. There is a different 𝑡 distribution for each number of degrees of freedom. • The 𝑡 distribution is similar to the normal distribution in some respects. Like the normal distribution curve, the 𝑡 distribution curve is symmetric (bell shaped) about the mean and never meets the horizontal axis, Figure 16.8. • The total area under a 𝑡 distribution curve is 1.0.

• The 𝑡 distribution curve is flatter and wider than the standard normal distribution curve. In other words, the 𝑡-distribution curve has a lower height and a greater spread (or, we can say, a larger standard deviation) than the standard normal distribution. The mean and variance of a 𝑡 variable can be obtained directly from the PDF, but it is instructive to derive them through the definition in terms of independent standard normal and chi-squared variables, 𝑇 = Of course, 𝐸[𝑍] = 0, so 𝐸[𝑇] = 0 if 𝐸[𝑌 -1/2 ] exists. Let's compute 𝐸[𝑌 -𝑘 ] for any 𝑘 if 𝑌 is chi-squared:

𝐸[𝑌 𝑘 ] = ∫ 𝑦 𝑘 𝑦 𝑛 2 -1 2 𝑛 2 Γ ( 𝑛 2 ) 𝑒 -𝑦 2 𝑑𝑦 ∞ 0 = 1 2 𝑛 2 Γ ( 𝑛 2 ) ∫ 𝑦 (𝑘+ 𝑛 2 )-1 𝑒 -𝑦 2 𝑑𝑦 ∞ 0 = 1 2 𝑛 2 Γ ( 𝑛 2 ) 2 𝑘+ 𝑛 2 Γ (𝑘 + 𝑛 2 ) = 2 𝑘 Γ(𝑘 + 𝑛/2) Γ(𝑛/2) ; 𝑘 + 𝑛 2 > 0.
If 𝑘 + 𝑛 2 ≤ 0, the integral does not converge and 𝐸[𝑌 𝑘 ] does not exist. When 𝑘 = -1/2, we require that 𝑛 > 1 for the integral to converge. Thus, the mean of a 𝑡 variable fails to exist if 𝑛 = 1 and the mean is indeed 0 otherwise.

For the variance of 𝑇 we need 𝐸[𝑇 2 ] = 𝐸[𝑍 2 ] 𝐸[1/(𝑌/𝑛)] = 𝑛𝐸[𝑌 -1 ]. We obtain, with the help of the property Γ(𝑎 + 1) = 𝑎Γ(𝑎),

𝐸[𝑌 -1 ] = 2 -1 Γ (-1 + 𝑛 2 ) Γ ( 𝑛 2 ) = 2 -1 Γ ( 𝑛 2 -1) Γ ( 𝑛 2 -1 + 1) = 2 -1 𝑛 2 -1 = 1 𝑛 -2 .
Hence,

Var(𝑇) = 𝑛 1 𝑛 -2 = 𝑛 𝑛 -2 .
provided that -1 + 𝑛/2 > 0, or 𝑛 > 2. For 𝑛 = 1 or 2 the variance of 𝑇 does not exist. For 𝑛 > 2, the variance always exceeds 1, and for large 𝑛 the variance is close to 1.

(1) When 𝑛 = 1, the PDF (16.32) reduces to

𝑓(𝑡) = 1 𝜋(1 + 𝑡 2 )
; 0 < 𝑥 < ∞, (16.35) which is the standard Cauchy distribution 𝐶(1,0).

(2) Let 𝑋 ∼ 𝑡(𝑛), 𝑛 > 1. Then, 𝐸(𝑋 𝑟 ) exists for 𝑟 < 𝑛. , is given by the PDF

𝑓(𝑥) = { Γ[(𝜈 1 + 𝜈 2 )/2] Γ[𝜈 1 /2]Γ[𝜈 2 /2] ( 𝜈 1 𝜈 2 ) 𝜈 1 /2 𝑥 𝜈 1 2 -1 (1 + 𝜈 1 𝜈 2 𝑥) (𝜈 1 +𝜈 2 )/2
, 𝑥 > 0, 0, elsewhere.

(16.42) This is known as the F-distribution with 𝜈 1 and 𝜈 2 degrees of freedoms.

Basic Properties of F-Curves

(1) The total area under an 𝐹-curve equals 1.

(2) An 𝐹 -curve starts at 0 on the horizontal axis and extends indefinitely to the right, approaching, but never touching, the horizontal axis as it does so.

(3) An 𝐹-curve is right skewed.

(4) Actually, there are infinitely many 𝐹-distributions, and we identify the 𝐹-distribution (and 𝐹-curve) in question by its number of degrees of freedom, just as we did for 𝑡-distributions and chi-square distributions. An 𝐹-distribution, however, has two numbers of degrees of freedom instead of one. The first number of degrees of freedom for an 𝐹curve is called the degrees of freedom for the numerator and the second the degrees of freedom for the denominator.

(5) The curve of the 𝐹-distribution depends not only on the two parameters 𝜈 1 and 𝜈 2 but also on the order in which we state them since the density of the 𝐹 distribution is not symmetrical in 𝜈 1 and 𝜈 2 . Once these two values are given, we can identify the curve. Typical 𝐹 -distributions are shown in Figure 16.11. [START_REF] Weiss | Introductory Statistics[END_REF] What happens to 𝐹 if the degrees of freedom are large? If 𝜈 2 is large, then the denominator of expression (16.41) will be close to 1, and approximately the 𝐹 will be just the numerator chi-squared over its degrees of freedom. Similarly, if both 𝜈 1 and 𝜈 2 are large, then both the numerator and denominator will be close to 1, and the 𝐹 ratio therefore will be close to 1. But 𝐸(𝑈) = 𝑚 and
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𝐸[ 1 𝑉 ] = 1 Γ ( 𝑛 2 ) ( 1 2 ) 𝑛 2 ∫ 1 𝑥 𝑥 (𝑛-2) 2 𝑒 -1 2 𝑥 𝑑𝑥 ∞ 0 = 1 Γ ( 𝑛 2 ) ( 1 2 ) 
𝑛 2

∫ 𝑥

(𝑛-4)

2 𝑒 -1 2 𝑥 𝑑𝑥 ∞ 0 = 1 Γ ( 𝑛 2 ) ( 1 2 ) 𝑛 2 [Γ ( 𝑛 -2 2 ) ( 1 2 ) 
- (𝑛-2) 2 ] = Γ ( 𝑛 -2 2 ) Γ ( 𝑛 2 ) ( 1 2 ) 𝑛 2 ( 1 2 ) 
- (𝑛-2) 2 = 2 𝑛 -2 ( 1 2 ) 𝑛 2 ( 1 2 ) - 𝑛 2 +1 = 1 𝑛 -2 ,
where ∫ 𝑥 (𝑛-4)

2 𝑒 -1 2 𝑥 𝑑𝑥 ∞ 0 = Γ ( 𝑛-2 2 ) ( 1 2 
)

- (𝑛-2)
2 , and

Γ( 𝑛-2 2 ) Γ( 𝑛 2 ) = 2 𝑛-2
. Hence,

𝐸[𝑋] = 𝑛 𝑚 𝐸[𝑈]𝐸[1/𝑉] = ( 𝑛 𝑚 ) ( 𝑚) ( 1 𝑛 -2 ) = 𝑛 𝑛 -2 .
The variance formula is similarly derived.

Remarks:

• If 𝑋 ∼ 𝐹(𝑚, 𝑛), then , The values of 𝑆 1 2 /𝑆 2 2 may vary from sample to sample so we construct the probability distribution of the ratio of the sample variances. The probability distribution thus obtained is known as sampling distribution of the ratio of sample variances. Therefore, the sampling distribution of ratio of sample variances can be defined as:

Definition (Sampling Distribution of Ratio of Sample Variances):

The probability distribution of all values of the ratio of two sample variances would be obtained by drawing all possible samples from both the populations is called sampling distribution of ratio of sample variances.

The ratio of two independent chi-square variates when divided by their respective degrees of freedom follows 𝐹distribution as

𝐹 =

[𝜒 2 (𝑛 1 -1)]/(𝑛 
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(c) If the total unshaded area is 0.1, then the region to the left of 𝑎 is 0.05 and the region to the left to 𝑏 is 0.95. The result, at 𝑎, 𝐹 = 0.216508 and at 𝑏, 𝐹 = 2.90129. (d) If the area on the left of 𝑎 is 0.01. The result, at 𝑎, 𝐹 = 0.102857. (e) If the area to the right of 𝑎 is 0.1, then the region to the left of 𝑎 is 1 -0.1 = 0.9. The result, at 𝑎, 𝐹 = 2.27302.

Sampling Distribution of Sample Proportion

In Section 16.2, we have discussed the sampling distribution of sample mean. But in many real situations, the data collected in form of counts or the collected data classified into two categories or groups according to an attribute. For example, the peoples living in a colony may be classified into two groups (male and female) with respect to the characteristic sex, the patients in a hospital may be classified into two groups as cancer and non-cancer patients, etc. Generally, such types of data are considered in terms of proportion of elements, individuals, items possess (success) or not possess (failure) a given characteristic or attribute. For example, the proportion of female in the population, proportion of cancer patents in a hospital, etc. In such situations, we deal with population proportion instead of population mean.

The population proportion, denoted by 𝑝, is obtained by taking the ratio of the number of elements in a population with a specific characteristic to the total number of elements in the population. The sample proportion, denoted by 𝑝, gives a similar ratio for a sample. The sample proportion 𝑝̂ is a RV. In other words, the population proportion 𝑝 is a constant as it assumes one and only one value. However, the sample proportion 𝑝̂ can assume one of a large number of possible values depending on which sample is selected. Hence, 𝑝̂ is a RV and it possesses a probability distribution, which is called its sampling distribution of the sample proportion. For sampling distribution of sample proportion, we draw all possible samples from the population and for each sample we calculate the sample proportion 𝑝.

Definition (Population and Sample

Definition (Sampling Distribution of Sample Proportion):

The probability distribution of all values of the sample proportion that obtained by drawing all possible samples of same size from the population is called the sampling distribution of the sample proportion. For a better understanding of the process, we consider the following example.

Example 16.15

A company consists of five employees. The names and details about their knowledge of math are provided in Table 16.4. 
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success by the value 1, the number of successes, 𝑋, can be interpreted as the sum of 𝑛 values consisting only of 0 and 1s, and 𝑝̂ is just the sample mean of these 𝑛 values.

Let us now consider the probabilities associated with the statistics 𝑋. To begin, note that since each of the 𝑁 members of the population is equally likely to be the ith member of the sample, it follows that 𝑃(𝑋 𝑖 = 1) = 𝑁𝑝 𝑁 = 𝑝, (16.53) 𝑃(𝑋 𝑖 = 0) = 1 -𝑃(𝑋 𝑖 = 1) = 1 -𝑝.

(16.54) That is, each 𝑋 𝑖 is equal to either 1 or 0 with respective probabilities 𝑝 and 1 -𝑝. 

Sampling Distributions of Differences of Proportions

Suppose there are two populations, say, population-I and population-II under study and the population-I having population proportion 𝑝 1 and population-II having population proportion 𝑝 2 according to an attribute. For describing the sampling distribution of difference of two sample proportions, we consider all possible samples of same size 𝑛 1 taken from population-I and for each sample calculate the sample proportion 𝑝̂1 of success. Similarly, determine the sample proportion 𝑝̂2 of success by considering all possible sample of same size 𝑛 2 from population-II. Then we consider all possible differences of proportions 𝑝̂1 and 𝑝̂2. The difference of these proportions may or may not be differ so we construct the probability distribution of these differences. The probability distribution thus obtained is called the sampling distribution of the difference of sample proportions.

Definition (Sampling Distribution of Difference of Two Sample Proportions):

The probability distribution of all values of the difference of two sample proportions that have been obtained by drawing all possible samples of same sizes from both the populations is called sampling distribution of difference between two sample proportions.

The results can be obtained for the sampling distributions of differences of proportions from two binomially distributed populations with parameters (𝑝 1 , 𝑞 1 ) and (𝑝 2 , 𝑞 2 ), respectively. We have 

𝜇 𝑝 ̂1-𝑝 ̂2 = 𝜇 𝑝 ̂1 -𝜇 𝑝 ̂2 = 𝑝 1 -𝑝 2 , 𝜎 𝑝 ̂1-𝑝 ̂2 = √𝜎 𝑝 ̂1 2 + 𝜎 𝑝 ̂2 2 = √ 𝑝 1 𝑞 1 𝑛 1 + 𝑝 2 𝑞 2 𝑛 2 . ( 16 
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Example 16. 16 Determine the probability that less than 45% or more than 55% of 100 fair coin tosses will result in a head.

Solution

The 100 coin tosses are regarded as a sample from the infinite population of all possible coin tosses. In this population the probability of heads is 𝑝 = 1/2 and 𝑞 = 1 -1/2 = 1/2. The standardized variable for the difference in proportions is 𝑧 = 𝑝̂𝐴 -𝑝̂𝐵 -0 0.1118 .

On a continuous-variable basis, 4 or more heads means 3.5 or more heads, so that the difference in proportions should be 3.5 40 = 0.0875 or more; that is, 𝑧 is greater than or equal to (0.0875 -0)/0.1118 = 0.783 (or 𝑧 ≥ 0.783).

The probability of this is the area under the normal curve to the right of 𝑧 = 0.783, which is 0.216814. Thus, the odds against 𝐴 winning are (1 -0.216814): 0.216814 = 0.783186: 0.216814, or 3.61225 to 1. However, the convergence to normality may be slower for non-normal population distributions. In particular, when the population distribution is highly skewed or has heavy tails, a larger sample size may be required for the CLT to apply. In our case, since the population distribution is non-normal, the sampling distribution of the mean is also non-normal for small sample size. However, as the sample size increases, the sampling distribution becomes more symmetric and less skewed, and its peak becomes more concentrated around the population mean: *) 

NProbability
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(* The mean of the distribution of differences can be calculated using the formula: *) mean=μ1-μ2;

(* The standard deviation of the distribution of differences can be calculated using the formula: *) standardError=Sqrt[(σ1^2+σ2^2)/n]; Input (* The code demonstrates the concept of the chi-squared distribution and how it arises from the standard normal distribution through the central limit theorem and sample distribution of mean. Specifically, the code generates 10,000 samples of size 5 from a normal distribution with mean 5 and standard deviation 3. Then, for each sample, the sample mean is calculated and standardized using the central limit theorem, resulting in a standard normal variable. The square of the standardized variable is then calculated, giving a chi-squared variable with 1 degree of freedom. Finally, the code plots histogram of the resulting chi-squared distribution along with the PDF of the chi-squared distribution with 1 degree of freedom: *) .

This family of distributions has two parameters: 𝛉 = (𝜇, 𝜎); so, we maximize the likelihood, ℒ(𝜇, 𝜎 2 ) = 𝑓(𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝜇, 𝜎 2 ), over both parameters simultaneously, or if possible, individually. The log-likelihood can be written as follows:

log[ℒ(𝜇, 𝜎 2 )] = log [( 1 2𝜋𝜎 2 ) 𝑛 2 𝑒 - ∑ (𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 2𝜎 2 ] = log [( 1 2𝜋𝜎 2 ) 𝑛 2 ] + log [𝑒 - ∑ (𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 2𝜎 2 ] = log [(2𝜋𝜎 2 ) -𝑛 2 ] - ∑ (𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 2𝜎 2 = - 𝑛 2 log[2𝜋𝜎 2 ] - 1 2𝜎 2 ∑(𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 .
We now compute the derivatives of this log-likelihood with respect to 𝜇 and equate to zero: This is indeed the maximum of the function, since it is the only turning point in 𝜇 and the second derivative is strictly less than zero. Its expected value is equal to the parameter 𝜇 of the given distribution, 𝐸[𝜇] = 𝜇, which means that the MLE 𝜇̂ is unbiased. Similarly, we differentiate the log-likelihood with respect to σ and equate to zero:

𝜕 𝜕𝜇 log[ℒ(𝜇, 𝜎 2 )] = 0 - 2 2𝜎 2 ∑(𝑥 𝑖 -𝜇)(-1) 𝑛 𝑖=1 = 2 2𝜎 2 [(∑ 𝑥 𝑖 𝑛 𝑖=1 ) -𝑛𝜇] = 2 2𝜎 2 [𝑛 ( ∑ 𝑥 𝑖 𝑛 𝑖=1 𝑛 ) -𝑛𝜇] = 𝑛 𝜎 2 [𝑥̅ -𝜇] = 0,
𝜕 𝜕𝜎 log[ℒ(𝜇, 𝜎 2 )] = 𝜕 𝜕𝜎 [- 𝑛 2 log[2𝜋𝜎 2 ] - 1 2𝜎 2 ∑(𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 ] = - 𝑛 𝜎 + 1 𝜎 3 ∑(𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 = 0, which is solved by, 𝑛 𝜎 = 1 𝜎 3 ∑(𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 ⟹ 𝑛 = 1 𝜎 2 ∑(𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 ⟹ 𝜎 2 = 1 𝑛 ∑(𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1
.

Hence, we have 

= ∑(𝑋 𝑖 -𝜇) 2 𝑛 𝑖=1 -2𝑛(𝑋 ̅ -𝜇)(𝑋 ̅ -𝜇)+𝑛(𝑋 ̅ -𝜇) 2 = ∑(𝑋 𝑖 -𝜇) 2 𝑛 𝑖=1 -2𝑛(𝑋 ̅ -𝜇) 2 +𝑛(𝑋 ̅ -𝜇) 2 = ∑(𝑋 𝑖 -𝜇) 2 𝑛 𝑖=1 -𝑛(𝑋 ̅ -𝜇) 2 , now 𝐸[𝜎 ̂2] = 𝐸 [ 1 𝑛 ∑(𝑋 𝑖 -𝑋 ̅ ) 2 𝑛 𝑖=1 ] = 1 𝑛 𝐸 [∑(𝑋 𝑖 -𝜇) 2 𝑛 𝑖=1 -𝑛(𝑋 ̅ -𝜇) 2 ] = 1 𝑛 (∑ 𝐸[(𝑋 𝑖 -𝜇) 2 ] 𝑛 𝑖=1 -𝑛𝐸[(𝑋 ̅ -𝜇) 2 ]) = 1 𝑛 (∑ 𝜎 𝑋 𝑖 2 𝑛 𝑖=1 -𝑛𝜎 𝑋 ̅ 2 ).
However 𝜎 𝑋 𝑖 2 = 𝜎 2 , for 𝑖 = 1,2, … , 𝑛, and

𝜎 𝑋 ̅ 2 = 𝜎 2 𝑛 .
Therefore,

𝐸[𝜎 ̂2] = 1 𝑛 (𝑛𝜎 2 -𝑛 𝜎 2 𝑛 ) = 𝑛 -1 𝑛 𝜎 2 .
This means that the estimator 𝜎 ̂2 is biased for 𝜎 2 .

MOM

The MOM is a very simple procedure for finding an estimator for one or more population parameters. It starts by expressing the population moments (i.e., the expected values of powers of the RV under consideration) as functions of the parameters of interest. Those expressions are then set equal to the sample moments. The number of such equations is the same as the number of parameters to be estimated. Step-by-step explanation of the MOMs for finding point estimators:

1. Determine the number of parameters: First, determine the number of parameters needed to fully specify the probability distribution you are working with. For example, the normal distribution has two parameters (mean and standard deviation), while the exponential distribution has only one parameter (rate).

Calculate the sample moments:

Calculate the sample moments from the observed data. The 𝑘-th sample moment is calculated by taking the average of the 𝑘-th powers of the data values. For example, the first sample moment (mean) is calculated as the average of the data, while the second sample moment is calculated as the average of the squared data values.

Set up equations:

Set up a system of equations equating the theoretical moments to the sample moments. For example, if you are working with a distribution that has two parameters (mean and variance), you would set up two equations: one equating the theoretical mean to the sample mean, and another equating the theoretical variance to the sample variance. 4. Solve the equations:

Solve the system of equations to find the values of the parameters that satisfy the equations. This can be done analytically or numerically depending on the complexity of the equations and the distribution.

Obtain the point estimators:

Once the equations are solved, the values of the parameters obtained are the point estimators based on the MOMs.

Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. {μ->10.4638,σ->1.8358} {10.4638,1.8358}

Interval Estimate

Even the most efficient unbiased estimator is unlikely to estimate the population parameter exactly. It is true that estimation accuracy increases with large samples, but there is still no reason we should expect a point estimate from a given sample to be exactly equal to the population parameter it is supposed to estimate. There are many situations in which it is preferable to determine an interval within which we would expect to find the value of the parameter. Such an interval is called an interval estimate.

CI Estimates of Population Parameters

Let 𝜇 sta and 𝜎 sta be the mean and standard deviation (SE), respectively, of the sampling distribution of a statistic sta. Then if the sampling distribution of sta is approximately normal (which as we have seen is true for many statistics if the sample size 𝑛 ≥ 30), we can expect to find an actual sample statistic sta lying in the intervals 𝜇 sta -𝜎 sta to 𝜇 sta + 𝜎 sta , 𝜇 sta -2𝜎 sta to 𝜇 sta + 2𝜎 sta , or 𝜇 sta -3𝜎 sta to 𝜇 sta + 3𝜎 sta about 68.27%, 95.45%, and 99.73% of the time, respectively.

Equivalently, we can expect to find (or we can be confident of finding) 𝜇 sta in the intervals sta -𝜎 sta to sta + 𝜎 sta , sta -2𝜎 sta to sta + 2𝜎 sta , or sta -3𝜎 sta to sta + 3𝜎 sta about 68.27%, 95.45%, and 99.73% of the time, respectively. Because of this, we call these respective intervals the 68.27%, 95.45%, and 99.73% CIs for estimating 𝜇 sta . The end numbers of these intervals (sta ± 𝜎 sta , sta ± 2𝜎 sta , and sta ± 3𝜎 sta ) are then called the 68.27%, 95.45%, and 99.73% confidence limits.

Similarly, sta ± 1.96𝜎 sta , and sta ± 2.58𝜎 sta are the 95% and 99% (or 0.95 and 0.99) confidence limits for sta. The percentage confidence is often called the confidence level. The numbers 1.96, 2.58, etc., in the confidence limits are called confidence coefficients, or critical values, and are denoted by 𝑧 𝑐 . From confidence levels we can find confidence coefficients, and vice versa.

Definition (Confidence Coefficient):

The probability that a CI will contain the estimated parameter is called the confidence coefficient.

For example, experimenters often construct 95% CIs. This means that the confidence coefficient, or the probability that the interval will contain the estimated parameter, is 0.95, see Figure 18.3. You can increase or decrease your amount of certainty by changing the confidence coefficient. Some values typically used by experimenters are 0.90, 0.95, 0.98, and 0.99. Table 18.1 shows the values of 𝑧 𝑐 corresponding to various confidence levels used in practice. Since the total area under the curve is 1, the remaining area in the two tails is 𝛼, and each tail contains area 𝛼/2. The value of 𝑧 that has "tail area" 𝛼/2 to its right is called 𝑧 𝛼/2 , and the area between -𝑧 𝛼/2 and 𝑧 𝛼/2 is the confidence coefficient (1 -𝛼), see Figure 18.5.

A (𝟏 -𝜶) 𝟏𝟎𝟎% Large-sample CI (Point estimator) ±𝑧 𝛼/2 (SE of the estimator) where 𝑧 𝛼/2 is the z-value with an area 𝛼/2 in the right tail of a standard normal distribution. This formula generates two values: the lower confidence limit and the upper confidence limit.

The reader should notice that while point and interval estimation represent different approaches to gaining information regarding a parameter, they are related in the sense that CI estimators are based on point estimators. In the following section, for example, we will see that 𝑋 ̅ is a very reasonable point estimator of 𝜇. As a result, the important CI estimator of 𝜇 depends on knowledge of the sampling distribution of 𝑋 ̅ .

Interpreting the CI What does it mean to say you are "90% confident" that the true value of the population mean 𝜇 is within a given interval? If you were to construct 20 such intervals, each using different sample information, your intervals might look like those shown in Figure 18.6. Of the 20 intervals, you might expect that 90% of them, or 18 out of 20, will perform as planned and contain 𝜇 within their upper and lower bounds. Remember that you cannot be absolutely sure that any one particular interval contains the mean 𝜇. You will never know whether your particular interval is one of the 18 that "worked," or whether it is the one interval that "missed." Your confidence in the estimated interval follows from the fact that when repeated intervals are calculated, 90% of these intervals will contain 𝜇. Statistical inference is concerned with making decisions or predictions about parameters. Three parameters that you have seen so far are the population mean 𝜇, the population standard deviation 𝑆 , and the binomial proportion 𝑝. In statistical inference, we state the practical problem in terms of one of these parameters.

Procedure 18.3.

The process of constructing a CI typically involves the following steps:

1. Determine the confidence level: Decide on the desired level of confidence for the interval, typically expressed as a percentage (e.g., 95% confidence level).

Collect sample data:

Obtain a representative sample from the population of interest. The sample should be randomly selected and sufficiently large to meet the assumptions of the chosen inference method.

Calculate sample statistics:

Compute the relevant sample statistics that will be used to estimate the population parameter. The specific statistic will depend on the type of data and the parameter of interest (e.g., mean, proportion, standard deviation).

Identify the sampling distribution:

Determine the appropriate sampling distribution that corresponds to the sample statistic. The choice of distribution depends on the sampling method used and the characteristics of the data (e.g., normal distribution for large samples or t-distribution for small samples).

Determine the margin of error (ME):

Calculate the ME based on the sampling distribution and the desired confidence level. The ME represents the maximum amount of error expected in the estimate. We begin with the simplest case of a CI. The scenario is simple and yet unrealistic. We are interested in estimating a population mean 𝜇 and yet 𝜎 is known. Clearly, if 𝜇 is unknown, it is quite unlikely that 𝜎 is known. Any historical results that produced enough information to allow the assumption that 𝜎 is known would likely have produced similar information about 𝜇. In practice, it is rare to know the true value of 𝜎 for a population, as it typically needs to be estimated from sample data. However, by considering this simpler scenario, we can focus on the fundamental concepts and mechanics of constructing a CI, which remain the same in more realistic situations where both 𝜇 and 𝜎 are unknown.

Large-sample CI and 𝝈 Known

The sampling distribution of 𝑋 ̅ is centered at 𝜇, and in most applications the variance is smaller than that of any other estimators of 𝜇. Thus, the sample mean 𝑥̅ will be used as a point estimate for the population mean 𝜇. Recall that 𝜎 𝑋 ̅ 2 = 𝜎 2 /𝑛, so a large sample will yield a value of 𝑋 ̅ that comes from a sampling distribution with a small variance. Hence, 𝑥̅ is likely to be a very accurate estimate of 𝜇 when 𝑛 is large.

If the statistic is the sample mean 𝑋 ̅ , then the 95% and 99% confidence limits for estimating the population mean 𝜇, are given by 𝑥̅ ± 1.96𝜎 𝑋 ̅ and 𝑥̅ ± 2.58𝜎 𝑋 ̅ , respectively. More generally, the confidence limits are given by 𝑥̅ ± 𝑧 𝑐 𝜎 𝑋 ̅ , (18.2.1) where 𝑧 𝑐 (which depends on the particular level of confidence desired) can be read from Table 18 Often statisticians recommend that even when normality cannot be assumed, 𝜎 is unknown, and 𝑛 ≥ 30, 𝑆 can replace 𝜎 and the CI 𝑥̅ ± 𝑧 𝛼/2 𝑠 √𝑛 , (18.4) may be used. This is often referred to as a large sample CI. The justification lies only in the presumption that with a sample as large as 30 and the population distribution not too skewed, 𝑆 will be very close to the true 𝜎 and thus the CLT prevails. It should be emphasized that this is only an approximation, and the quality of the result becomes better as the sample size grows larger. 

∎

It is important to note that the use of the 𝑡-distribution assumes that the underlying population follows a normal distribution. This assumption is necessary for the validity of using the 𝑡-distribution in constructing CIs. If the population distribution is not approximately normal, the use of the 𝑡-distribution may not be appropriate. When the normality assumption is violated, other methods or statistical techniques may be more suitable for constructing CIs.

Procedure 18.5.

The steps for calculating the 100(1 -𝛼)% CIs for normal population with 𝑛 ≤ 30:

1-Collect a random sample of data from the population of interest. Let the sample size be denoted by 𝑛.

2-Calculate the sample mean, denoted by 𝑥̅ , and the sample standard deviation, denoted by 𝑠, using the following formulas:

𝑥̅ = ∑ 𝑥 𝑖 𝑛 , 𝑠 = 1 𝑛 -1 ∑(𝑥 𝑖 -𝑥̅ ) 2 ,
where 𝑥 𝑖 represents the 𝑖th observation in the sample. where 𝜎 is the known population standard deviation, and √𝑛 is the square root of the sample size. 

Proof:

One-sided confidence bounds are developed in the same fashion as two-sided intervals. However, the source is a onesided probability statement that makes use of the CLT:

𝑃 ( 𝑋 ̅ -𝜇 𝜎/√𝑛 < 𝑧 𝛼 ) = 1 -𝛼, gives 𝑃 (𝜇 > 𝑋 ̅ -𝑧 𝛼 𝜎 √𝑛 ) = 1 -𝛼.
In the same manner,

𝑃 ( 𝑋 ̅ -𝜇 𝜎/√𝑛 > -𝑧 𝛼 ) = 1 -𝛼, gives 𝑃 (𝜇 < 𝑋 ̅ + 𝑧 𝛼 𝜎 √𝑛 ) = 1 -𝛼. ∎ Procedure 18.6.
To calculate one-sided confidence bounds for 𝜇 when the population variance 𝜎 2 is known, you can follow these steps:

1. Obtain a sample from the population of interest, with size 𝑛.

2. Calculate the sample mean, denoted as 𝑥̅ .

3. Specify the desired confidence level for the interval. For example, if you want a 95% confidence level, you would have 𝛼 = 0.05 for a one-sided confidence bound. 4. Determine the critical value corresponding to the chosen confidence level and the chosen tail. For a onesided upper confidence bound, use the z-value from the standard normal distribution that corresponds to the desired significance level 𝛼. (18.9.2) They are the upper and lower 100(1 -𝛼)% bounds, respectively. Here 𝑡 𝛼 is the 𝑡-value having an area of 𝛼 to the right.

Procedure 18.7.

To calculate one-sided confidence bounds on 𝜇 when the population variance 𝜎 2 is unknown, you can follow these steps:

1. Obtain a sample from the population of interest, with size 𝑛. If sta 1 and sta 2 are two sample statistics with approximately normal sampling distributions, confidence limits for the difference of the population parameters corresponding to sta 1 and sta 2 are given by (sta 1 -sta 2 ) ± 𝑧 𝑐 𝜎 sta 1 -sta 2 = (sta 1 -sta 2 ) ± 𝑧 𝑐 √𝜎 sta 1 2 + 𝜎 sta 2 2 , (18.10) while confidence limits for the sum of the population parameters are given by (sta 1 + sta 2 ) ± 𝑧 𝑐 𝜎 sta 1 +sta 2 = (sta 1 -sta 2 ) ± 𝑧 𝑐 √𝜎 sta 1 2 + 𝜎 sta 2 2 , (18.11) provided that the samples are independent.

For example, confidence limits for the difference of two population means, in the case where the populations are infinite, are given by 

(𝑥̅ 1 -𝑥̅ 2 ) ± 𝑧 𝑐 𝜎 𝑋 ̅ 1 -𝑋 ̅ 2 = 𝑥̅ 1 -𝑥̅ 2 ± 𝑧 𝑐 √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 . ( 18 
< (𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 ) √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 < 𝑧𝛼 2 ) = 1 -𝛼, 𝑃 (-𝑧𝛼 2 √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 < (𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 ) < 𝑧𝛼 2 √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 ) = 1 -𝛼, 𝑃 (-[(𝑋 ̅ 1 -𝑋 ̅ 2 ) + 𝑧𝛼 2 √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 ] < -(𝜇 1 -𝜇 2 ) < -[(𝑋 ̅ 1 -𝑋 ̅ 2 ) -𝑧𝛼 2 √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 ]) = 1 -𝛼, 𝑃 ([(𝑋 ̅ 1 -𝑋 ̅ 2 ) -𝑧 𝛼/2 √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 ] < 𝜇 1 -𝜇 2 < [(𝑋 ̅ 1 -𝑋 ̅ 2 ) + 𝑧𝛼 2 √ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 ]) = 1 -𝛼,
which leads to the 100(1 -𝛼)% CI for 𝜇 1 -𝜇 2 .

∎

Procedure 18.8.

The steps for calculating the 100(1 -𝛼)% large-sample CI for estimating the difference between two means of two samples when the population standard deviations (𝜎 1 and 𝜎 2 ) are known (unknown):

1. Obtain two independent samples from the populations of interest. Let us call them Sample 1 and Sample 2, with sizes 𝑛 1 and 𝑛 2 , respectively. 2. Calculate the sample mean for Sample 1, denoted as 𝑥̅ 1 , and the sample mean for Sample 2, denoted as 𝑥̅ 2 . 3. Specify the desired confidence level for the interval. Common choices include 90%, 95%, or 99%. 4. Determine the critical value (z) corresponding to the chosen confidence level. 5. The SE of the difference between means is given by:

√ 𝜎 1 2 𝑛 1 + 𝜎 2 2 𝑛 2 ,
where 𝜎 1 and 𝜎 2 are known or

SE = √ 𝑠 1 2 𝑛 1 + 𝑠 2 2 𝑛 2 ,
where 𝜎 1 and 𝜎 2 are unknown. 

= (𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 ) √𝜎 2 ( 1 𝑛 1 + 1 𝑛 2 ) √ (𝑛 1 -1)𝑆 1 2 + (𝑛 2 -1)𝑆 2 2 𝜎 2 (𝑛 1 + 𝑛 2 -2)
, has the 𝑡-distribution with 𝜈 = 𝑛 1 + 𝑛 2 -2 degrees of freedom.

A point estimate of the unknown common variance 𝜎 2 can be obtained by pooling the sample variances. Denoting the pooled estimator by 𝑆 𝑝 2 , we have

𝑆 𝑝 2 = (𝑛 1 -1)𝑆 1 2 + (𝑛 2 -1)𝑆 2 2 (𝑛 1 + 𝑛 2 -2) . 811 SE = 𝑠 𝑝 √( 1 𝑛 1 + 1 𝑛 2 ).
5. Specify the desired confidence level for the interval. Common choices include 90%, 95%, or 99%. 6. Determine the critical value (𝑡) corresponding to the chosen confidence level and the degrees of freedom (𝑑𝑓). The degrees of freedom can be calculated as: 𝑑𝑓 = 𝑛₁ + 𝑛₂ -2. 7. Look up the critical value by using the t-distribution Mathematica function to find the appropriate t-value.

Determine the critical value 𝑡𝛼 2 corresponding to the chosen confidence level. 

Proof:

The statistic most often used in this case is

𝑇 ′ = (𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 ) √ ( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 )
, which has approximately a 𝑡-distribution with 𝜈 degrees of freedom, where

𝜈 = ( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 ) 2 1 (𝑛 1 -1) ( 𝑆 1 2 𝑛 1 ) 2 + 1 (𝑛 2 -1) ( 𝑆 2 2 𝑛 2 ) 2 .
Since 𝜈 is seldom an integer, we round it down to the nearest whole number. Using the statistic 𝑇′, we write 𝑃(-𝑡 𝛼/2 < 𝑇′ < 𝑡 𝛼/2 ) ≈ 1 -𝛼, where 𝑡 𝛼/2 is the value of the 𝑡-distribution with 𝜈 degrees of freedom, above which we find an area of 𝛼/2.

𝑃 (-𝑡𝛼 2 < [(𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 )]/√( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 ) < 𝑡𝛼 2 ) ≈ 1 -𝛼, 𝑃 (-𝑡𝛼 2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 ) < (𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 ) < 𝑡𝛼 2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 )) ≈ 1 -𝛼, 𝑃 (-(𝑋 ̅ 1 -𝑋 ̅ 2 ) -𝑡𝛼 2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 ) < -(𝜇 1 -𝜇 2 ) < -(𝑋 ̅ 1 -𝑋 ̅ 2 ) + 𝑡𝛼 2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 )) ≈ 1 -𝛼, 𝑃 (-[(𝑋 ̅ 1 -𝑋 ̅ 2 ) + 𝑡𝛼 2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 )] < -(𝜇 1 -𝜇 2 ) < -[(𝑋 ̅ 1 -𝑋 ̅ 2 ) -𝑡𝛼 2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 )]) ≈ 1 -𝛼, 𝑃 ([(𝑋 ̅ 1 -𝑋 ̅ 2 ) -𝑡 𝛼/2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 )] < 𝜇 1 -𝜇 2 < [(𝑋 ̅ 1 -𝑋 ̅ 2 ) + 𝑡𝛼 2 √( 𝑆 1 2 𝑛 1 + 𝑆 2 2 𝑛 2 )]) ≈ 1 -𝛼. ∎ Procedure 18.10.
When the variances, 𝜎 1 2 and 𝜎 2 2 , are unknown and assumed to be unequal, you can calculate the CI for the difference between two means, 𝜇 1 -𝜇 2 , using the following steps:

1. Obtain two independent samples from the populations of interest. Let us call them Sample 1 and Sample 2, with sizes 𝑛 1 and 𝑛 2 , respectively. 2. Calculate the sample mean for Sample 1, denoted as 𝑥̅ 1 , and the sample mean for Sample 2, denoted as 𝑥̅ 2 . Also, calculate the sample standard deviation for Sample 1, denoted as 𝑠 1 , and the sample standard deviation for Sample 2, denoted as 𝑠 2 . 3. The SE of the difference between means is given by:

SE = √( 𝑠 1 2 𝑛 1 + 𝑠 2 2 𝑛 2 ).
4. Specify the desired confidence level for the interval. Common choices include 90%, 95%, or 99%. 5. Determine the critical value (t) corresponding to the chosen confidence level and the degrees of freedom (𝑑𝑓). The degrees of freedom can be approximated using the Welch-Satterthwaite equation:

𝑑𝑓 ≈ ( 𝑠 1 2 𝑛 1 + 𝑠 2 2 𝑛 2 ) 2 1 (𝑛 1 -1) ( 𝑠 1 2 𝑛 1 ) 2 + 1 (𝑛 2 -1) ( 𝑠 2 2 𝑛 2 ) 2 .
6. Look up the critical value by using the t-distribution Mathematica function to find the appropriate t-value. Determine the critical value 𝑡𝛼 2 corresponding to the chosen confidence level. 

Proof:

If the unknown proportion 𝑝 is not expected to be too close to 0 or 1, we can establish a CI for 𝑝 by considering the sampling distribution of 𝑃 ̂. Designating a failure in each binomial trial by the value 0 and a success by the value 1, the number of successes, 𝑥, can be interpreted as the sum of 𝑛 values consisting only of 0 and 1s, and 𝑝̂ is just the sample mean of these 𝑛 values. Hence, by the CLT, for 𝑛 sufficiently large, 𝑃 ̂ is approximately normally distributed with mean When 𝑛 is large, very little error is introduced by substituting the point estimate 𝑝̂= 𝑥/𝑛 for the 𝑝 under the radical sign. Then we can write

𝜇 𝑃 ̂= 𝐸(𝑃 ̂) = 𝐸 ( 𝑋 𝑛 ) = 𝑛𝑝 𝑛 = 𝑝,
𝑃 (𝑃 ̂-𝑧 𝛼/2 √ 𝑝q n < 𝑝 < 𝑃 ̂+ 𝑧 𝛼/2 √ 𝑝q n ) ≈ 1 -𝛼.

∎

It is important to note that this method assumes that the sample follows a large enough sample size and that the observations are independent (one should require both 𝑛𝑝̂ and 𝑛𝑞 ̂ to be greater than or equal to 5). If the sample size is small or the independence assumption is violated, other methods may be more appropriate.

Procedure 18.13.

To calculate a CI for proportions, you can follow these steps:

1. Start with a sample of data and calculate the proportion of successes (𝑝). This is the number of successes divided by the total number of observations. 2. Identify the total number of observations or sample size, 𝑛. 3. Choose the desired confidence level for the interval. Common choices include 90%, 95%, or 99% confidence levels. 4. Look up the critical value corresponding to the chosen confidence level by using standard normal distribution Mathematica function to find the appropriate z-value. 5. The SE represents the standard deviation of the sampling distribution of proportions and is calculated using the formula: SE = √ 𝑝(1 -𝑝) 𝑛 .

6. The ME is the product of the SE and the critical value (𝑧𝛼 

Two Samples: CIs the Difference between Two Proportions

A point estimator of the difference between the two proportions, 𝑝 1 -𝑝 2 , is given by the statistic 𝑃 ̂1 -𝑃 ̂2. Therefore, the difference of the sample proportions, 𝑝̂1 -𝑝̂2, will be used as the point estimate of 𝑝 1 -𝑝 2 .

Theorem 18.10: Large-Sample CI for 𝒑 𝟏 -𝒑 𝟐 If 𝑝̂1 and 𝑝̂2 are the proportions of successes in random samples of sizes 𝑛 1 and 𝑛 2 , respectively, 𝑞 ̂1 = 1 -𝑝̂1, and 𝑞 ̂2 = 1 -𝑝̂2, an approximate 100(1 -𝛼)% CI for the difference of two binomial parameters, 𝑝 1 -𝑝 2 , is given by (𝑝̂1 -𝑝̂2) -𝑧𝛼 

Proof:

A CI for 𝑝 1 -𝑝 2 can be established by considering the sampling distribution of 𝑃 ̂1 -𝑃 ̂2. We know that 𝑃 ̂1 and 𝑃 ̂2 are each approximately normally distributed, with means 𝑝 1 and 𝑝 2 and variances 𝑝 1 𝑞 1 /𝑛 1 and 𝑝 2 𝑞 2 /𝑛 2 , respectively. Choosing independent samples from the two populations ensures that the variables 𝑃 ̂1 and 𝑃 ̂2 will be independent, and then by the reproductive property of the normal distribution, we conclude that 𝑃 ̂1 -𝑃 ̂2 is approximately normally distributed with mean 𝜇 𝑃 ̂1-𝑃 ̂2 = 𝑝 1 -𝑝 

∎

It is important to note that these steps assume that the samples follow large enough sample sizes and that the observations are independent.

Procedure 18.14.

To calculate a CI for the difference between two proportions, you can follow these steps:

1. Start with two independent samples and calculate the proportions of successes (𝑝̂1 and𝑝̂2) for each sample. These are the numbers of successes divided by their respective total numbers of observations. 2. Identify the total number of observations for each sample (𝑛 1 and 𝑛 2 ). 3. Choose the desired confidence level for the interval. Common choices include 90%, 95%, or 99% confidence levels. 4. Look up the critical value corresponding to the chosen confidence level by using standard normal distribution Mathematica function to find the appropriate z-value. 5. The SE represents the standard deviation of the sampling distribution of the difference between proportions and is calculated using the formula:

CHAPTER 19

MATHEMATICA LAB: ESTIMATION THEORY

In this chapter, we will explore two important topics in statistics: point estimate and interval estimate. These concepts play a crucial role in understanding and making inferences from data. We will specifically focus on the implementation of various mathematical functions in the Mathematica that can aid in performing point and interval estimation.

• Point Estimate: Point estimate is a statistical estimate of an unknown population parameter based on observed data. It provides a single value that represents the best estimate of the parameter. In this section, we will discuss the following Mathematica functions related to point estimation: Interval estimate involves determining a range of values that is likely to contain the unknown population parameter. It provides a measure of uncertainty and allows for the quantification of the estimation accuracy. Mathematica provides a comprehensive Hypothesis Testing Package that includes functions for constructing confidence intervals. These functions allow us to perform hypothesis tests and compute confidence intervals for various parameters based on different statistical distributions.

o
In the following table, we list the built-in functions that are used in this chapter. EstimatedDistribution[data,dist,idist] estimates distribution dist with starting values taken from the instantiated distribution idist.

FindDistributionParameters[data,dist]

finds the parameter estimates for the distribution dist from data.

FindDistributionParameters[data,dist, {{p,p0}, {q,q0},…}] finds the parameters p, q, … with starting values p0, q0, ….

The following basic settings can be used for ParameterEstimator: "MaximumLikelihood" maximize the log-likelihood function "MethodOfMoments" match raw moments "MethodOfCentralMoments" match central moments "MethodOfCumulants" match cumulants "MethodOfFactorialMoments" match factorial moments gives a confidence interval for the population mean estimated from list. MeanDifferenceCI[list1,list2] gives a confidence interval for the difference between the population means estimated from list1 and list2.

Mathematica

VarianceCI[list]

gives a confidence interval for the population variance estimated from list.

VarianceRatioCI[list1,list2]

gives a confidence interval for the ratio of the population variances estimated from list1 and from list2.

NormalCI[μ,σ]

gives a confidence interval based on a normal distribution.

StudentTCI[μ,σ,df]

gives a confidence interval based on Student's t distribution with df degrees of freedom.

ChiSquareCI[var,df]

gives a confidence interval based on a 𝜒 2 distribution with df degrees of freedom.

FRatioCI[ratio,n,m]

gives a confidence interval based on an F-ratio distribution with n and m degrees of freedom.

Remarks:

• Assumptions about variances of the populations from which the data were sampled will affect the distribution of the parameter estimate. The KnownVariance and EqualVariances options can be used to specify assumptions about population variances. 

Null and alternative hypotheses

Very often in practice, we are called upon to make decisions about populations based on sample information. Such decisions are called statistical decisions. For example, we may wish to decide based on sample data whether a new serum is really effective in curing a disease, whether one educational procedure is better than another, or whether a given coin is loaded.

In attempting to reach decisions, it is useful to make assumptions (or guesses) about the populations involved. Such assumptions, which may or may not be true, are called statistical hypotheses. They are general statements about the probability distributions of the populations.

Procedures that help us decide whether to accept or reject hypotheses are called tests of hypotheses.

The structure of hypothesis testing will be formulated with the use of the term null hypothesis, which refers to any hypothesis we wish to test and is denoted by 𝐻 0 . The null hypothesis is the default assumption made in hypothesis testing. It is the hypothesis that researchers assume to be true initially, and they seek evidence to either reject or fail to reject it. It is often written in terms of population parameters, such as population means, proportions, standard deviations, correlation coefficients, etc., depending on the type of data and the research question. For example, if you are comparing the mean scores of two groups (group A and group B) on a certain variable (e.g., test scores), the null hypothesis might be: "The population mean of group A is equal to the population mean of group B."

The value of the population parameter specified in the null hypothesis is usually determined in one of three ways.

• First, it may result from past experience or knowledge of the process or even from previous tests or experiments. The objective of hypothesis testing, then, is usually to determine whether the parameter value has changed. • Second, this value may be determined from some theory or model regarding the process under study. Here the objective of hypothesis testing is to verify the theory or model. • A third situation arises when the value of the population parameter results from external considerations, such as design or engineering specifications, or from contractual obligations. In this situation, the usual objective of hypothesis testing is conformance testing.

The alternative hypothesis, also known as the research hypothesis, is the statement that contradicts the null hypothesis. It represents what the researchers want to find evidence for. The alternative hypothesis 𝐻 𝑎 usually represents the question to be answered or the theory to be tested, and thus its specification is crucial.

We will always state the null hypothesis as an equality claim. However, when the alternative hypothesis is stated with the < sign, the implicit claim in the null hypothesis can be taken as ≥ and when the alternative hypothesis is stated with the > sign, the implicit claim in the null hypothesis can be taken as ≤. is consistent with the null hypothesis, we will not reject it; however, if this information is inconsistent with the null hypothesis, we will conclude that the null hypothesis is false and reject it in favor of the alternative. We emphasize that the truth or falsity of a particular hypothesis can never be known with certainty unless we can examine the entire population. This is usually impossible in most practical situations. Therefore, a hypothesis-testing procedure should be developed with the probability of reaching a wrong conclusion in mind.

Testing the hypothesis involves taking a random sample, computing a test statistic from the sample data, and then using the test statistic to make a decision about the null hypothesis.

One-tailed and two-tailed tests

One-tailed and two-tailed tests are two different types of hypothesis tests used in statistical analysis. The choice between these two types of tests depends on the research question and the directionality of the effect or difference being investigated.

One-tailed test:

Also known as a one-sided test, a one-tailed test is used when the research question specifically focuses on whether the population parameter is greater than or less than a certain value. The alternative hypothesis 𝐻 𝑎 in a one-tailed test is directional, and it is formulated to detect an effect in one specific direction.

For example, in this book, the null hypothesis for a hypothesis test concerning a population mean, 𝜇, always specifies a single value for that parameter. Hence, we can express the null hypothesis as

𝐻 0 : 𝜇 = 𝜇 0 ,
where 𝜇 0 is some number. If the primary concern is deciding whether a population mean, 𝜇, is less than a specific value 𝜇 0 , we express the alternative hypothesis as 𝐻 𝑎 : 𝜇 < 𝜇 0 .

A hypothesis test whose alternative hypothesis has this form is called a left-tailed test.

On the other hand, if the primary concern is deciding whether a population mean, 𝜇, is greater than a specified value 𝜇 0 , we express the alternative hypothesis as 𝐻 𝑎 : 𝜇 > 𝜇 0 .

A hypothesis test whose alternative hypothesis has this form is called a right-tailed test. A hypothesis test is called a one-tailed test if it is either left-tailed or right-tailed.

Example 20.2

Consider the following research question: "Does a new drug significantly increase the average test scores of students?"

In a one-tailed test, the hypotheses would be as follows: 𝐻 0 : The new drug has no effect on the average test scores of students. 𝐻 𝑎 : The new drug significantly increases the average test scores of students.

Two-tailed test:

A two-tailed test, also known as a two-sided test, is used when the research question is concerned with whether the population parameter is different from a specific value, without specifying the direction of the difference. The alternative hypothesis 𝐻 𝑎 in a two-tailed test is non-directional, and it is formulated to detect an effect in either direction.
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For example, if the primary concern is deciding whether a population mean, 𝜇, is different from a specified value 𝜇 0 , we express the alternative hypothesis as 𝐻 𝑎 : 𝜇 ≠ 𝜇 0 .

A hypothesis test whose alternative hypothesis has this form is called a two-tailed test.

Example 20.3

Consider the following research question: "Is there a significant difference in the average test scores between two groups of students?"

In a two-tailed test, the hypotheses would be as follows: 𝐻 0 : There is no significant difference in the average test scores between the two groups of students. 𝐻 𝑎 : There is a significant difference in the average test scores between the two groups of students.

Sign in 𝐻 0 = = or ≥ = or ≤ Sign in 𝐻 𝑎 ≠ < > Tests Two-tailed test Left-tailed test Right-tailed test

Type I and type II errors

Any decision we make based on a hypothesis test may be incorrect because we have used partial information obtained from a sample to draw conclusions about the entire population. There are two types of incorrect decisions-Type I error and Type II error, as indicated in the following table. These errors are associated with the acceptance or rejection of a null hypothesis. Type I error (False Positive):

• A Type I error occurs when the null hypothesis 𝐻 0 is incorrectly rejected when it is true. In other words, it is a false positive error where we conclude that there is a significant effect or difference when there is none in reality.

• The probability of making a Type I error is denoted by the symbol "𝛼" and is known as the significance level of the test. It represents the maximum allowable probability of incorrectly rejecting the null hypothesis when it is true. Commonly used significance levels include 0.05 (5%) and 0.01 (1%). • If, for example, the 0.05 (or 5%) significance level is chosen in designing a decision rule, then there are about 5 chances in 100 that we would reject the hypothesis when it should be accepted; that is, we are about 95% confident that we have made the right decision. In such a case, we say that the hypothesis has been rejected at the 0.05 significance level, which means that the hypothesis has a 0.05 probability of being wrong. • By setting a lower significance level, you reduce the chance of committing a Type I error but increase the risk of committing a Type II error. The total non-shaded area, 0.05, is the significance level of the test. It represents the probability of our being wrong in rejecting the hypothesis (i.e., the probability of making a Type I error). Thus, we say that the hypothesis is rejected at the 0.05 significance level or that the 𝑧 score of the given sample statistic is significant at the 0.05 level. The set of 𝑧 scores outside the range -1.96 to 1.96 constitutes what is called the critical region of the hypothesis, the region of rejection of the hypothesis, or the region of significance.

Definition (Rejection Region):

The rejection region is the set of values of the test statistic for which the null hypothesis 𝐻 0 is rejected in favor of the alternative hypothesis 𝐻 𝑎 . In other words, it represents the range of test statistic values that are unlikely to occur if the null hypothesis is true, assuming a specific significance level 𝛼.

For a one-tailed test, the rejection region is located in one tail of the distribution of the test statistic. For a two-tailed test, the rejection region is divided between both tails of the distribution. The size and location of the rejection region depend on the chosen significance level 𝛼 of the test.

The set of 𝑧 scores inside the range -1.96 to 1.96 is thus called the region of acceptance of the hypothesis, or the region of nonsignificance.

Definition (Non-Rejection Region):

The non-rejection region, also called the acceptance region, is the complementary set of the rejection region. It includes the values of the test statistic for which the null hypothesis 𝐻 0 is not rejected, and the test does not provide sufficient evidence to support the alternative hypothesis 𝐻 𝑎 .

The non-rejection region includes the values of the test statistic that are considered likely to occur if the null hypothesis is true, given the chosen significance level 𝛼. If the test statistic falls within this region, the decision is to fail to reject the null hypothesis. For example, in a one-tailed test, the critical value might be the value of the test statistic corresponding to the 𝛼th percentile of the null distribution. In a two-tailed test, there are two critical values, one for the lower tail and one for the upper tail, each corresponding to 𝛼/2 percentiles of the null distribution.

To make a decision in hypothesis testing, researchers compare the observed value of the test statistic (calculated from the sample data) to the critical values. If the observed value falls within the rejection region, the null hypothesis is rejected in favor of the alternative hypothesis. If it falls within the non-rejection region, the null hypothesis is not rejected.

Based on the above remarks, we can formulate the following decision rule (or test of hypothesis or significance):

• Reject the hypothesis at the 0.05 significance level if the 𝑧 score of the statistic Sta lies outside the range -1.96 to 1.96 (i.e., either 𝑧 > 1.96 or 𝑧 < -1.96). This is equivalent to saying that the observed sample statistic is significant at the 0.05 level. • Accept the hypothesis otherwise (or, if desired, make no decision at all).

𝑷-value for hypotheses tests Definition (P-Value):

The 𝑃-value is the probability of obtaining a test statistic as extreme as, or more extreme than, the one calculated from the sample data, assuming that the null hypothesis is true. In other words, it quantifies the strength of evidence against the null hypothesis.

Example 20.7

For testing means, using large samples (𝑛 > 30), calculate the 𝑃-value as follows:

1. For 𝐻 0 : 𝜇 = 𝜇 0 and 𝐻 1 : 𝜇 < 𝜇 0 , 𝑃-value = 𝑃(𝑍 < computed test statistic), 2. For 𝐻 0 : 𝜇 = 𝜇 0 and 𝐻 1 : 𝜇 > 𝜇 0 , 𝑃-value = 𝑃(𝑍 > computed test statistic), and 3. For 𝐻 0 : 𝜇 = 𝜇 0 and 𝐻 1 : 𝜇 ≠ 𝜇 0 , 𝑃-value = 𝑃(Z < -|computed test statistic|) + 𝑃(Z > |computed test statistic|). The computed test statistic is (𝑥̅ -𝜇 0 )/(𝑠/ √𝑛), where 𝑥̅ is the mean of the sample, 𝑠 is the standard deviation of the sample, and 𝜇 0 is the value specified for 𝜇 in the null hypothesis. Note that if 𝜎 is unknown, it is estimated from the sample by using 𝑠. This method of testing the hypothesis is equivalent to the method of finding a critical value or values and if the computed test statistic falls in the rejection region, reject the null hypothesis. The same decision will be reached using either method.

Definition (Decision Criterion for a Hypothesis Test Using the 𝑷-Value):

Typically, a significance level 𝛼 is chosen before conducting the test. The 𝑃-value is then compared to this significance level. If the 𝑃-value is less than or equal to the specified significance level, reject the null hypothesis; otherwise, do not reject the null hypothesis. In other words, if 𝑃 ≤ 𝛼, reject 𝐻 0 ; otherwise, do not reject 𝐻 0 .

It is essential to understand that a small 𝑃-value does not prove that the null hypothesis is false or that the effect is practically significant. It only indicates that the observed data is unlikely to occur under the assumption of the null hypothesis, leading to the rejection of the null hypothesis in favor of the alternative. (* Step 8. Compare the P-value to the significance level: *) pvalueapproach=If[ pValue<α, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( • For a two-tailed test, divide the significance level by 2 and find the corresponding 𝑡-score(s) using Mathematica for t-distribution with 𝑛 -1 degrees of freedom. • For a one-tailed test, find the 𝑡-score corresponding to the desired tail area. 5. Calculate the test statistic using the formula:

For a 𝑡-test:

𝑡 = 𝑥̅ -𝜇 0 𝑠/√𝑛 ,
where 𝑥̅ is the sample mean, 𝜇 0 is the hypothesized population mean, 𝑠 is the sample standard deviation, and 𝑛 is the sample size. 6. Compare the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 7. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the area in both tails of the t-distribution with 𝑛 -1 degrees of freedom. • For a one-tailed test, calculate the area in the appropriate tail. 8. Compare the 𝑃-value to 𝛼.

• If the 𝑃-value is less than 𝛼, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 9. Draw a conclusion based on the results:

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis. The steps for conducting a large sample hypothesis test for the differences between two means when the population standard deviations (𝜎 1 2 and 𝜎 2 2 ) are known (unknown): 1. State the null and alternative hypotheses:

• 𝐻 0 : The difference between the population means is equal to a specified value (𝜇 1 -𝜇 2 = 𝛿 ₀ ).

• 𝐻 1 : The difference between the population means is not equal to the specified value (𝜇 1 -𝜇 2 ≠ 𝛿 ₀ , two-tailed test), or it is greater than/less than the specified value (𝜇 1 -𝜇 2 > 𝛿 ₀ or 𝜇 1 -𝜇 2 < 𝛿 ₀ , one-tailed test). 2. Set the significance level, 𝛼, for the test. 3. Collect random samples from the two populations and calculate the sample means (𝑥̅ 1 and 𝑥̅ 2 ), the sample standard deviations (𝑠 1 and 𝑠 2 ), and the sample sizes (𝑛 1 and 𝑛 2 ). 4. Determine the critical value(s) for the test statistic.

• For a two-tailed test, divide the significance level by 2 and find the corresponding 𝑧-score(s) using the Mathematica standard normal distribution. • For a one-tailed test, find the z-score corresponding to the desired tail area. where 𝑥̅ 1 and 𝑥̅ 2 are the sample means, 𝛿 ₀ is the specified difference, 𝜎 1 2 and 𝜎 2 2 are the population variances, 𝑛 1 and 𝑛 2 are the sample sizes, and the sample standard deviations (𝑠 1 and 𝑠 2 ),. 6. Compare the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 7. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the area in both tails of the distribution.

• For a one-tailed test, calculate the area in the appropriate tail. 8. Compare the 𝑃-value to 𝛼.

• If the 𝑃-value is less than 𝛼, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 9. Draw a conclusion based on the results.

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis. • For a two-tailed test, find the critical values for the upper and lower tails of the F-distribution with 𝑑𝑓 1 and 𝑑𝑓 2 degrees of freedom. • For a one-tailed test, find the critical value corresponding to the desired tail area. 7. Compare the test statistic to the critical value(s).

• If the test statistic is greater than the upper critical value or less than the lower critical value, reject the null hypothesis. • Otherwise, fail to reject the null hypothesis. 8. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the reciprocal of the observed value from the F-distribution with 𝑑𝑓 1 and 𝑑𝑓 2 degrees of freedom. • For a one-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the observed value, depending on the alternative hypothesis. 9. Compare the 𝑃-value to 𝛼.

• If the 𝑃-value is less than 𝛼, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 10. Draw a conclusion based on the results.

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis.

Example 20.17

(* The code demonstrates the steps for conducting a hypothesis test for two population standard deviations. The code will output the sample standard deviations, test statistic, critical value, p-value, and the conclusion based on the user-specified type of hypothesis test: *) (* Specify the type of hypothesis test, choose one of the following, "two-tailed","lefttailed", or "right-tailed": *) hypothesisType="two-tailed";

( 

Options

The following options can be used: AlternativeHypothesis "Unequal" the inequality for the alternative hypothesis

MaxIterations

Automatic max iterations for multivariate median tests 

Hypothesis testing package

NormalPValue [x] gives the cumulative density beyond x for a normal distribution with zero mean and unit variance. StudentTPValue [x,df] gives the cumulative probability beyond x for Student's t distribution with df degrees of freedom. ChiSquarePValue [x,df] gives the cumulative probability beyond x for the chi distribution with df degrees of freedom.

FRatioPValue [x,n,m] gives the cumulative probability beyond x for the F-ratio distribution with n and m degrees of freedom. ImageSize->300, ChartStyle->Purple ] ], {{mean,0,"Mean"},-6,6,0.1,Appearance->"Labeled"}, {{stdDev,1,"Standard Deviation"},0.1,5,0.1,Appearance->"Labeled"}, {{sampleSize,200,"Sample Size"},10,1000,10,Appearance->"Labeled"}, {{significanceLevel,0.05,"Significance Level"},0.01,0.5,0. ImageSize->300, ChartStyle->Purple ] ], {{mean,0,"Mean"},-6,6,0.1,Appearance->"Labeled"}, {{stdDev,1,"Standard Deviation"},0.1,5,0.1,Appearance->"Labeled"}, {{sampleSize,200,"Sample Size"},10,1000,10,Appearance->"Labeled"}, {{significanceLevel,0.05,"Significance Level"},0.01,0.5,0. tests whether the matrices m1 and m2 are independent. IndependenceTest[…,"property"] returns the value of "property".

Mathematica Examples

CorrelationTest

CorrelationTest[{{x1,y1}, {x2,y2},…}] tests whether the correlation coefficient for a bivariate population is zero.

CorrelationTest[{{x1,y1}, {x2,y2},…}, ρ0] tests whether the correlation coefficient is ρ0.

CorrelationTest[{{x1,y1}, {x2,y2},…},{{u1,v1},{u2,v2},…}] tests whether the correlation coefficients for two populations are equal.

CorrelationTest[…,"property"]

returns the value of "property". Input (* The code is designed to test the independence between two sets of vectors (vector1 and vector2, and vector3 and vector4) using the "IndependenceTest" function. It generates the vectors using the BinormalDistribution with different correlation coefficients. The first set of vectors (vector1 and vector2) is generated from the standard bivariate normal distribution with a correlation coefficient of 0, indicating that the vectors should be independent. Thus, the P-value obtained from the "IndependenceTest" should typically be large, as expected. The second set of vectors (vector3 and vector4) is generated from the bivariate normal distribution with a correlation coefficient of 0.6, indicating that there should be a dependency between the vectors. Consequently, the P-value obtained from the "IndependenceTest" should typically be small, indicating a rejection of the null hypothesis of independence: *) Input (* The code aims to perform an independence test on two datasets, data1 and data2, and visualize the datasets using a ListPlot. The first part generates two datasets, data1 and data2, each containing 100 random real numbers in the range [1,[START_REF] Tukey | Exploratory Data Analysis[END_REF]. These datasets are created using the RandomReal function. The independence test is conducted using the "IndependenceTest" function, which is applied to data1 and data2, and the resulting P-value is stored in the variable pValue. The code then proceeds to display the results. The Print function is used to show the calculated P-value from the independence test. Additionally, the code performs the independence test again, but this time with the option "TestDataTable" set to "All". This likely outputs a table with more detailed information about the test results. Finally, a ListPlot is created to visualize the relationship between data1 and data2. The two datasets are plotted as points with a purple color and some opacity, making it easier to identify any patterns or correlations between the two datasets: *) 

Dependency Tests

  [x₁,x₂,...] the maximum of x₁, x₂, . ... Min[x₁,x₂,...] the minimum of x₁, x₂, . ...

  ,{i,imin,imax}] starts with i = i min . Sum[f,{i,imin,imax,di}] uses steps di. Sum[f,{i,{i₁,i₂,…}}] uses successive values i₁, i₂, ….Sum[f,{i,imin,imax},{j,jmin,jmax},…] evaluates the multiple sum ∑ ∑ ,{i,imin,imax}] starts with i = i min . Product[f,{i,imin,imax,di}] uses steps di. Product[f,{i,{i₁,i₂,…}}] uses successive values i₁, i₂, …. Product[f,{i,imin,imax},{j,jmin,jmax},…] derivative with respect to x: *) D[Sin[x]^10,{x,4}] Output 5040 Cos[x]^4 Sin[x]^6 -4680 Cos[x]^2 Sin[x]^8 + 280 Sin[x]^10 Input (* Derivative with respect to x and y: *) D[(Sin[x y])/((x^2+y^2)),x,y] Output -((2 x^2 Cos[x y])/(x^2 + y^2)^2) -(2 y^2 Cos[x y])/(x^2 + y^2)^2 + Cos[x y]/(x^2 + y^2) + (8 x y Sin[x y])/(x^2 + y^2)^3 -(x y Sin[x y])/(x^2 + y^2) Input (* Derivative involving a symbolic function f: *) D[x f[x] f'[x],x] Output f[x] f′[x]+x f′[x] 2 +x f[x] f′′[x] Input D[Sin[x] Cos[x+y],x,y] Output -Cos[x+y] Sin[x]-Cos[x] Sin[x+y]

.

  Integrate[f,{x,xmin,xmax},{y,ymin,ymax},…] gives the multiple integral ∫ d an indefinite integral: *)Integrate[1/((x^3+1)),x] Output ArcTan[(-1 + 2 x)/Sqrt[3]]/Sqrt[3] + 1/3 Log[1 + x] -1/6 Log[1 -x + x^2] Input \[Integral]Sqrt[x+Sqrt[x]]\[DifferentialD]x Output 1/12 Sqrt[Sqrt[x] + x] (-3 + 2 Sqrt[x] + 8 x) + 1/4 ArcTanh[Sqrt[Sqrt[(((2+x^2) Sqrt[4+3 x^2])),{x,-Infinity,Infinity}] Output ArcCosh[Sqrt[3/2]] Input Integrate[x^2+y^2,{x,0,1},{y,0,x}] Output 1

FindRoot 1 -

 1 [f,{x,x₀]}] searches for a numerical root of f, starting from the point x = x₀. Mathematica Examples 1.10 Input Solve[x^2+a x+1==0,x] Output {{x -> 1/2 (-a -Sqrt[-4 + a^2])}, {x -> 1/2 (-a + Sqrt[-4 + a^2])}} Input Solve[a x+y==7&&b x-y==1,{x,y}] Output {{x->8/(a+b),y->-((a-7 b)/(a+b))}} Input (* Eliminate the variable y between two equations: *) Eliminate[{x==2+y,y==z},y] Output 2+z==x Input NSolve[x^5-2 x+3==0,x,Reals] Output {{x->-1.42361}} Input Reduce[x^2-y^3==1,{x,y}] Output y == (-1 + x^2)^(1/3) || y == -(-1)^(1/3) (-1 + x^2)^(1/3) || y == (-1)^(2/3) (-1 + x^2)^(1/3) Input FindRoot[Sin[x]+Exp[x],{x,0}] Output {x->-0.588533} Some Notes In doing calculations, you will often need to use previous results that you have got. In the Wolfram Language, % always stands for your last result. % the last result generated. %% the next-to-last result. % n the result on output line Out[n].

  {x,y}={y,x}interchange the values of x and y.

  f on each element of a list: *)Map[f,{a,b,c,d,e}] Output {f[a],f[b],f[c],f[d],f[e]} Input f/@{a,b,c,d,e} Output {f[a],f[b],f[c],f[d],f[e]}Input (* Map at top level: *) Map[f,{{a,b},{c,d,e}}] Output {f[{a,b}],f[{c,d,e}]} Input (* Map at level 2: *) Map[f,{{a,b},{c,d,e}},{2}] Output {{f[a],f[b]},{f[c],f[d],f[e]}} Input (*Map at levels 1 and 2:*) Map[f,{{a,b},{c,d,e}},2] Output {f[{f[a],f[b]}],f[{f[c],f[d],f[e]}]}

  ,c,d,e,f}[[3]] Output c Input {{a,b,c},{d,e,f},{g,h,i}}[[2,3]] Output f Input Take[{a,b,c,d,e,f},4] Output {a,b,c,d} Input Insert[{a,b,c,d,e},x,-2] Output {a,b,c,d,x,e} Input Delete[{a,b,c,d},3] Output {a,b,d} Input Delete[{a,b,c,d},{{1},{3}}] Output {b,d} Input ReplacePart[{a,b,c,d,e},3->xxx] Output {a,b,xxx,d,e} Input ReplacePart[{a,b,c,d,e},{2->xx,5->yy}] Output {a,xx,c,d,yy} Some functions for rearranging lists are Sort[list]

20 Vectors

 20 and matrices in the Wolfram Language are simply represented by lists and by lists of lists, respectively. Functions for generating lists are Range[ ], Table[ ], and Array[ ].

Examples 1. 26 Matrix

 26 Input {a,b,c}.{x,y,z} Output a x+b y+c z Input Cross[{a,b,c},{x,y,z}] Output {-c y+b z,c x-a z,-b x+a y} Input Norm[{x,y,z}] Output Sqrt[Abs[x]^2 + Abs[y]^2 + Abs[z]^2] Input Normalize[{1,5,1}] Output {1/(3 Sqrt[3]), 5/(3 Sqrt[3]), 1/(3 Sqrt[3])} Mathematica has many functions for generating matrices. The following list summarizes them.

  m by a scalar. a.b dot product of two matrices a. b.

AspectRatio 1 MATHEMATICA

 1 the height-to-width ratio for the plot; Automatic sets it from the absolute x and y coordinates Axes whether to include axes AxesLabel labels to be put on the axes; ylabel specifies a label for the y axis, {xlabel,ylabel} for both axes AxesOrigin the point at which axes cross BaseStyle the default style to use for the plot FormatType the default format type to use for text in the plot Frame whether to draw a frame around the plot FrameLabel labels to be put around the frame; give a list in clockwise order starting with the lower x axis FrameTicks what tick marks to draw if there is a frame; None gives no tick marks GridLines what grid lines to include; Automatic includes a grid line for every major tick mark PlotLabel an expression to be printed as a label for the plot PlotRange the range of coordinates to include in the plot; All includes all points Ticks what tick marks to draw if there are axes; None gives no tick marks PlotStyle a list of lists of graphics primitives to use for each curve (see "Graphics Directives and Options") ClippingStyle what to draw when curves are clipped Filling filling to insert under each curve FillingStyle style to use for filling PlotPoints the initial number of points at which to sample the function MaxRecursion the maximum number of recursive subdivisions allowed ,{x,xmin,xmax},{y,ymin,ymax}] make a three-dimensional plot of f as a function of the variables x and y. Some options for Plot3D function are Axes whether to include axes AxesLabel labels to be put on the axes: zlabel specifies a label for the z axis, {xlabel,ylabel,zlabel} for all axes BaseStyle the default style to use for the plot Boxed whether to draw a three-dimensional box around the surface FaceGrids how to draw grids on faces of the bounding box; All draws a grid on every face LabelStyle style specification for labels Lighting simulated light sources to use Mesh whether an xy mesh should be drawn on the surface PlotRange the range of z or other values to include SphericalRegion whether to make the circumscribing sphere fit in the final display area ViewAngle angle of the field of view ViewCenter point to display at the center ViewPoint the point in space from which to look at the surface ViewVector position and direction of a simulated camera ViewVertical direction to make vertical BoundaryStyle how to draw boundary lines for surfaces ClippingStyle how to draw clipped parts of surfaces ColorFunction how to determine the color of the surfaces Filling filling under each surface FillingStyle style to use for filling PlotPoints the number of points in each direction at which to sample the function; {nx,ny} specifies different numbers in the x and y directions PlotStyle graphics directives for the style of each surface CHAPTER ListPlot[{y₁,y₂,...}] plot y₁, y₂, . .. at x values 1, 2, .... ListPlot[{{x₁,y₁},{x₂,y₂},...}] plot points (x₁, y₁), . ...

  x i , y i , z i ListPointPlot3D[{data1,data2,...}] plots several collections of points, by default in different colors. DensityPlot[f,{x,xmin,xmax]},{y,ymin,ymax}] makes a density plot of f as a function of x and y. ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}] generates a contour plot of f as a function of x and y. [n],Sin[2 n]}, {n,50} ],ImageSize->200 34 {{n2,5/4,"Frequency"},1,4}, {{a2,1,"Amplitude"},0,1}, {{p2,0,"Phase"},0

  , Max, UnitStep, and Clip are piecewise functions of real arguments: , Sign, and Arg are piecewise functions when their arguments are assumed to be real: *) Assuming[ Element[x,Reals], PiecewiseExpand/@{Abs[x],Sign[x],Arg[xand DiscreteDelta are piecewise functions of complex arguments: *) PiecewiseExpand/@{KroneckerDelta[x,y],DiscreteDelta[x,are computed piece-by-piece, unless the function is univariate in a real variable: *)

Figure 2 . 2 .

 22 Figure 2.2. (a), (b), and (c) are the histogram, frequency polygon and the overlap of histogram and frequency polygon, respectively. However, (d) is the percentage polygon. Remarks:

Figure 2 . 3 .

 23 Figure 2.3. (a), (b), and (c) are the cumulative distribution, ogive and the overlap of cumulative distribution and ogive, respectively. However, (d) is the percentage ogives.

Figure 2 . 4 .Figure 2 . 5 .

 2425 Figure 2.4. An ordinary and a cumulative histogram of the same data.

  example uses Manipulate and ListPlot functions to generate a scatter plot of random points within a square with sides of length 2. The RandomReal function generates a matrix of n rows and 2 columns, each containing a random number between -1 and 1. The slider controls the number of points in the plot: *) Manipulate[ ListPlot[ RandomReal[{-1,1},{n,2}], PlotStyle->Directive[Purple,PointSize[Medium],Opacity[0.6]], PlotRange->{{-1,1},{-1,1}}, ImageSize->170 ], {{n,20,"Number of points"},1,100,1} ] Output Input (* This code generates random parameters for a linear model using the RandomReal function. The model function represents a linear model of the form y=a*x+b+epsilon, where epsilon is a random noise term generated using the RandomReal function with the interval {-0.1, 0.1}. The data variable stores the x and y values of the model for values of x between 0 and 10 with a step size of 0.1. The data points are plotted using the ListPlot function with the PlotRange option set to All: *) model[a_,b_,x_]:=a x+b+RandomReal[{-0.1,0.code generates random data points for a smooth curve by adding random noise to the function Sin[x]. The RandomReal function with the interval {-0.1, 0.1} is used to generate random noise. The data variable is a list of x and y values generated using the Table function with a step size of 10/n. The data points are plotted using the ListPlot function with the PlotRange option set to All: *) n=1000; data=Table[ {x,Sin[x]+RandomReal[{-0.1,0.1}]}, {x,0,10,10/n} 72 {x,-1,1}, ImageSize->200 ] Output RandomSample[{e1,e2,…},n] gives a pseudorandom sample of n of the ei. RandomSample[{w1,w2,…} → {e1,e2,…},n] gives a pseudorandom sample of n of the ei chosen using weights wi. RandomSample[{e1,e2,…}] gives a pseudorandom permutation of the ei. Mathematica code 3.5 RandomSample Input (* Find a sample in which no elements ever occur more than once: *) RandomSample[Range[20],10] Output {11,15,17,20,13,6,2,19,9,16} Input (* Generate a random permutation: that a set of random integers over a big range has no repetitions: *) RandomSample[1;;2^20,15] Output {885623,1040581,215821,994714,626881,428795,604106,536316,466021,445442,902056,13 8851,389943,192821,21237} Input (* A function that generates a random sample of 3 elements from the range[x]: *) f[x_]:=RandomSample[Range[x]function that generates a random sample of 5 elements from the range x to y: *) g[x_,y_]:=RandomSample[Range[x,y]code plots the sine function f[x] between 0 and 2 Pi, and then superimposes 10 Purple points on the plot. These points are randomly sampled from a list of equidistant points on the function. The RandomSample function is called with the list of points as the first argument, and 10 as the second argument to select 10 random points from the list: *) f[x_]:=Sin[x]; code creates a list of six colors, and then selects a random sample of three colors using the RandomSample function. The function is called with the list of colors as the first argument, and 3 as the second argument to select 3 random colors from the list. The selected colors are then used to draw three equally spaced disks in a row using the Graphics function: *) colors={Red,Green,Blue,Yellow,Purple,Orange}; sampledColors=RandomSample[colors,3code uses the RandomSample function to randomly sample n points in the unit square, where each point has coordinates chosen uniformly at random from [0, 1]. The Manipulate allows the user to control the number of points n, and then displays the resulting scatter plot using ListPlot: *) Manipulate[ ListPlot[ RandomSample[ Table[{RandomReal[],RandomReal[]},{i,n}], n 74 ], PlotStyle->{Purple,PointSize[0.02],Opacity[0.4

  [{x1,x2,…}] gives lists of the elements xi whose values lie in successive integer bins. BinLists[{x1,x2,…},dx] gives lists of the elements xi whose values lie in successive bins of width dx. BinLists[{x1,x2,…},{xmin,xmax,dx}] gives lists of the xi that lie in successive bins of width dx from xmin to xmax. BinLists[{x1,x2,…},{{b1,b2,…}}] gives lists of the xi that lie in the intervals [b1,b2), [b2,b3), …. BinLists[{{x1,y1,…},{x2,y2,…},…},xb ins,ybins,…]

  BinCounts[{x1,x2,…}] counts the number of elements xi whose values lie in successive integer bins. BinCounts[{x1,x2,…},dx] counts the number of elements xi whose values lie in successive bins of width dx. BinCounts[{x1,x2,…},{xmin,xmax,dx}] counts the number of xi in successive bins of width dx from xmin to xmax. BinCounts[{x1,x2,…},{{b1,b2,…}}] counts the number of xi in the intervals [b1,b2), [b2,b3), …. BinCounts[{{x1,y1,…},{x2,y2,…},…},x bins,ybins,…]

Input ( *

 * This code creates a Manipulate slider for the number of random integers (n) to generate and counts the number of occurrences of each integer using Tally. The resulting counts are plotted using ListPlot, with the integer values on the x-axis and their corresponding counts on the y-axis: *) Manipulate[ data=RandomInteger[{1,10},n]; count=Tally[data]; ListPlot[ count, Filling->Axis, PlotStyle->{Directive[Purple,Opacity[0.8],PointSize[Medium]]}, PlotRange->{{0,11},{0,200}}, ImageSize->300 ], {{n,100},10,1000,10} ] Output Input (* This code creates a Manipulate slider for the number of random numbers (n) to generate from a normal distribution with mean (μ) and standard deviation (σ). The numbers are rounded to the nearest 0.1 and counted using Tally. The resulting counts are plotted using ListPlot, with the rounded values on the x-axis and their corresponding counts on the y-axis: *) Manipulate[ data=RandomVariate[NormalDistribution[μ,σ],n]; count=Tally[Round[data,0.1]]; ListPlot[ count, Filling->Axis, PlotStyle->{Directive[Purple,Opacity[0.8],PointSize[Small]]}, PlotRange->{{-15,15},{0,500}}, ImageSize->350, Frame->{True,True,False,False}, FrameTicks->{{Automatic,None},{None,None}}, FrameLabel->{"Value","Count"}], {{n,5000},100,10000,100}, {{μ,0},-5,5,0.1}, {{σ,2},0.1,5,0.1} ] Output

  how many times b occurs: *) Count[{a,b,a,a,b,c,b},b] Output 3 Input (* Count works with patterns: *) Count[{a,2,a,a,1,c,b,3,3},_Integer] Output 4 Input (* Count the number of elements not matching b: *) Count[{a,b,a,a,b,c,b,a,a},Except[b]] Output 6 Input (* The Count function is used to count the number of elements in the list myList that are greater than 5. The /; pattern is used to select only those elements that satisfy the condition of being greater than 5Count function is used to count the number of pairs of adjacent elements in the list myList that satisfy the condition of having the first element less than the second element. The Partition function is used to create a list of all such pairs, and the {x_,y_}/;x<y pattern is used to select only those pairs that satisfy the given condition: *) myList={3,5,2,8,6,7,10,9}; Partition[myList,2] Count[Partition[myList,2],{x_,y_}/;x<y] Output {{3,5},{2,8},{6,7},{10,9}} Output 3 Input (* The Count function is used to count the number of occurrences of the value 5 in the matrix myMatrix. The Flatten function is used to convert myMatrix to a list, so that Count can be applied to the individual elements: *) myMatrix={{1,2,3},{4,5,6},{7,8,9}}; Count[Flatten[myMatrix],5] Output 1 Input (* The built-in Counts function can be useful for quickly analyzing the frequency distribution of categorical data, such as counting the number of times each word appears in a text document, or the number of occurrences of each category in a dataset. It is also a simple and efficient way to generate a frequency table, as the function takes care of both grouping the data by unique elements and counting their frequencies in one step. In this code, we count the number of occurrences of each element in the list {a, b, c, a}: *) Counts[{a,b,c,a}] Output <|a->2,b->1,c->1|>

  Finally, ListPlot is used to create a plot of the bin counts: *) data=RandomVariate[NormalDistribution[0,1],1000]; binSpec={-3,-2,-1,0,1,2,3}; binCounts=BinCounts[data,{binSpec}] ListPlot[ binCounts, Filling->Axis, PlotStyle->{Directive[Purple,Opacity[0.8],PointSize[Large]]}, ImageSize->170 ] Output {23,123,349,344,142,18} Output Input (* This code creates a Manipulate slider for the number of random numbers (n) to generate from a normal distribution with mean (μ) and standard deviation (σ). The generated numbers are then binned using BinCounts with a minimum value (min), maximum value (max),and bin width (Δ) also specified by sliders. The resulting bin counts are plotted using ListPlot, with the bin index on the x-axis and the count on the y-axis: *) Manipulate[ data=RandomVariate[NormalDistribution[μ,σ],n]; counts=BinCounts[data,{min,max,Δ}]; [Purple,Opacity[0.8],PointSize[Small]]}, PlotRange->All, ImageSize->300, Frame->{True,True,False,False}, FrameTicks->{{Automatic,None},{None,None}}, FrameLabel->{"Bin","Count"}], {{n,1000},100,10000,100}, {{μ,0},-5,5,0.1}, {{σ,1},0.1,5,0.1}, {{min,-5},-5,5,0.1}, {{max,5},-5,5,0.1}, {{Δ,0.1},0.1,1,0.01} ] Output Input (* This code generates a list of data, creates a frequency table with bins of width 1 ranging from 1 to 6 using BinCounts, calculates the relative frequencies of each bin, and displays the table with appropriate labels using TableForm and TableHeadings: *) data={1,2,3,3,3,4,4,5}; binCounts=BinCounts[data,{1,6,1}] relativeFrequencies=Round[binCounts/Total[binCounts],0.001] TableForm[ Transpose[{{"1-2","2-3","3-4","4-5","5-6"},binCounts,relativeFrequencies}], TableHeadings->{None,{"Value","Frequency","Relative Frequency"}} ] Output {1,1,3,2,1} Output {0.125,0.125,0.375,0.

  TableForm[ Transpose[{intevals,binCounts,Accumulate[binCounts],frequencies,Accumulate[frequ encies]}],TableHeadings->{None,{"Bin Range","Frequency","Cumulative Frequency","Relative Frequency","Accumulate Relative frequencies"}} ] ListLinePlot[ Transpose[{Mean/@ranges,Accumulate[binCounts]}], Frame->True, FrameLabel->{"Data","Cumulative Frequency"}, PlotRange->{{Min[data],Max[data]},{0,Length[data]}}, PlotStyle->Directive[Purple,Thickness[0.005]], ImageSize->250 ] ListLinePlot[ Transpose[{Mean/@ranges,Accumulate[frequencies]}], Frame->True, FrameLabel->{"Data","Cumulative Relative Frequency"}, PlotRange->{{Min[data],Max[data]},{0,1}}, PlotStyle->Directive[Purple,Thickness[0.005]], ImageSize->250 ] Output { {Bin Range, Frequency, Cumulative Frequency, Relative Frequency, Accumulate Relative frequencies}, {{{3 -6}}, 2, 2, 1/6, 1,y1,…},{x2,y2,…},…}]

Output {{- 3 ,

 3 -2,-1,0,1,2},{3,11,37,33,16}} Output {{-3,-2,-1,0,1,2},{3/100,11/100,37/100,33/100,4/25}} Output {{-3,-2,-1,0,1,2},{0.03,0.14,0.51,0.84,1.}} Output {{-3,-2},{-2,-1},{-1,0},{0,1},{1,2}} Output { {Bin Interval, Count, PDF, CDF}, {-3,-2, 3, 3/100, 0.03}, {-2,-1, 11, 11/100, 0.

data={1, 2

 2 ,3,3,4,4,4,5,5,6}; {bins,freq}=HistogramList[data,3,"Probability"]; freqTable=TableForm[ Transpose[{Most[bins],Rest[bins],freq}], TableHeadings->{None,{"Left limit of Bin","Right limit of Bin","Probability"}} ] of the most commonly used Mathematica functions include Histogram, and Histogram3D. By using these functions, you can gain a deeper understanding of the underlying patterns in your data and make informed decisions based on your findings. Histogram[{x1,x2,…}] plots a histogram of the values xi. Histogram[{x1,x2,…},bspec] plots a histogram with bin width specification bspec. Histogram[{x1,x2,…},bspec,hspec] plots a histogram with bin heights computed according to the specification hspec. Histogram[{data1,data2,…},…]

n

  use n bins {dx} use bins of width dx {xmin,xmax,dx} use bins of width dx from xmin to xmax {{b1,b2,…}} use bins [b1,b2),[b2,b3),… Automatic determine bin widths automatically "name" use a named binning method {"Log",bspec} apply binning bspec on log-transformed data fb apply fb to get an explicit bin specification {b1,b2,…}

  code generates four histograms of 1000 random samples drawn from a normal distribution with mean 0 and standard deviation 1, using different binning methods. The different methods used are: "Sturges", "Scott", "FreedmanDiaconis", and "Wand". This allows for a comparison of different ways of visualizing the same data, which can help in understanding the data and selecting the most appropriate method for a particular analysis: *)

  code combines a histogram of 2000 random samples drawn from a normal distribution with mean 1 and standard deviation 1, along with a plot of the probability density function (PDF) of the same normal distribution: *) code generates a histogram of 1000 random samples drawn from a normal distribution with mean 0 and standard deviation 1. The resulting histogram has no outline or borders around the bars and is colored in purple. Without the borders around the bars, the shape of the distribution may be more apparent. This can be especially useful when comparing multiple histograms with different data sets or parameters: ,y1},{x2,y2},…}] plots a 3D histogram of the values {xi,yi}. Histogram3D[{{x1,y1},{x2,y2},…},bspec] plots a 3D histogram with bins specified by bspec. Histogram3D[{{x1,y1},{x2,y2},…},bspec, hspec] plots a 3D histogram with bin heights computed according to the specification hspec. Histogram3D[{data1,data2,…}]

Input ( *

 * This code generates a 3D histogram for a random sample of size 400 from a bivariate normal distribution with mean 0 and standard deviation 1 in each dimension. The binning specification {3,5} is used to divide the data into 3 equally spaced bins in the first dimension and 5 equally spaced bins in the second dimension: *) sampledata=RandomVariate[ NormalDistribution[0,1], a different bin width to use in x and y: *) code generates a 3D histogram of a random sample of size 500 from a bivariate normal distribution with mean 0 and standard deviation 1 in each dimension. The code is designed to demonstrate how different binning methods can affect the appearance of a histogram of bivariate data. By visualizing the data in this way, it can be easier to identify patterns and relationships within the data: *) , ColorFunction->Function[{height},Opacity[0.9]],105ChartStyle->RGBColor[0.6,0.30,0.60], ImageSize->170 ], {methods,{"Sturges","Scott","FreedmanDiaconis","Wand"code generates a sequence of 3D histograms for a random sample of size 300 from a bivariate normal distribution with mean 0 and standard deviation 1 in each dimension. The use of different height functions allows for a more comprehensive understanding of the sample's distribution and provides a range of useful visualization tools for data analysis: *) , ColorFunction->Function[{height},Opacity[0.9]], ChartStyle->RGBColor[0.6,0.30,0.60], ImageSize->170 ], {height,{"Count","Probability","PDF","CDF","SF","HF"code generates three 3D histograms to visualize the distributions of three different random samples. The three histograms provide a way to compare the distributions of three different random samples in a 3D space. The customization options allow for different visual styles to be applied to the plot to suit different needs and preferences. The code demonstrates how to use the Style function to customize the color of a single dataset or all datasets in a multi-dataset plot: [sampledata2,RGBColor[0.6,0.30,0.60]],sampledata3}, Descriptive statistics are a set of statistical techniques that are used to summarize and describe the main features of a dataset. Descriptive statistics break down into several types (measures of central tendency, measures of dispersion, and measures of symmetry).

  (4.2) is 𝑣̅ = 127. The mean is useful because it shows where the "center of gravity" exists for an observed set of values (see Figure 4.1).

Figure 4 . 1

 41 Figure 4.1 The left plot displays the values in the set ℎ (4.2) as a list plot with the area under the points filled in to the axis. The right plot displays the same set of data, ℎ, and a horizontal line at the mean value 𝑣̅ = 127. In the right plot, the data points display as a list plot filled up to the mean value to explain how the values in ℎ are distributed around the mean.

  is the total frequency. For instance, if 5, 8, 6, and 2 occur with frequencies 3, 2, 4, and 1, respectively, the arithmetic mean is 𝑣̅ = (5)(3)+(8)(2)+(6)(4)+(2)(1) 3+2+4+1 = 5.7.

Theorem 4 . 1 :Theorem 4 . 2 : 3 : 1

 414231 The sum of the deviations of 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 from their mean 𝑣̅ is equal to zero.Proof:Let 𝑑 𝑗 = 𝑣 𝑗 -𝑣̅ , 𝑗 = 1, … , 𝑁, be the deviations of 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 from their mean 𝑣̅ . Then Sum of the deviations = ∑ If 𝑧 𝑗 = 𝑥 𝑗 + 𝑦 𝑗 , 𝑗 = 1, … , 𝑁, then 𝑧̅ = 𝑥̅ + 𝑦 ̅. If 𝑁 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 have deviations from any number 𝐴 given by 𝑑 𝑗 = 𝑣 𝑗 -𝐴, 𝑗 = 1, … , 𝑁; respectively, then 𝐾 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝐾 have respective frequencies 𝑓 1 , 𝑓 2 , 𝑓 3 , . . . , 𝑓 𝐾 and 𝑑 𝑗 = 𝑣 𝑗 -𝐴, 𝑗 = 1, … , 𝐾; Since 𝑑 𝑗 = 𝑣 𝑗 -𝐴, and 𝑣 𝑗 = 𝑑 𝑗 + 𝐴, we have Find the arithmetic mean of the numbers 5, 8, 11, 9, 12, 6, 14, and 10, choosing as the ''guessed mean'' 𝐴 the value 9.SolutionThe deviations of the given numbers from 9 are -4, -1, 2, 0, 3, -3, 5, and 1, and the sum of the deviations is -

Figure 4 .

 4 Figure 4.2 shows the position of the mean for the symmetric and skewed to the right frequency curves.

Figure 4 . 2 Theorem 4 . 4 :

 4244 Figure 4.2 The position of the mean for symmetric and right-skewed frequency curve.

( b ) 2 ( 6 + 9 )

 b269 By part (a), the deviations of all the class marks from any given one are multiples of 𝑐 (i.e., 𝑑 𝑗 = 𝑐𝑢 𝑗 ). Then, we have 𝑣̅ = 𝐴 + ( ∑ The median of a set of numbers arranged in order of magnitude (i.e., in an array) is either the middle value or the arithmetic mean of the two middle values. Sometimes, the median denotes by 𝑣 ̃. Loosely speaking, order the values of a data set of size 𝑛 from smallest to largest. If 𝑛 is odd, the sample median is the value in position (𝑛 + 1)/2; if 𝑛 is even, it is the average of the values in positions 𝑛/2 and 𝑛/2 + 1 (see Figure4.3). For instance, the set of numbers 2, 5, 6, 9, and 11 has a median 6, (rank the 𝑛 = 5 measurements from smallest to largest: 2, 5, 6, 9, 11), however, the set of numbers 2, 9, 11, 5, 6 and 27 has a median 1 = 7.5, (rank the measurements from smallest to largest: 2, 5, 6, 9, 11, 27) .

Figure 4 . 3

 43 Figure 4.3 The left plot displays the values in the set ℎ (4.2) as a list plot with the area under the points filled in to the axis. The medial plot displays the same data set, ℎ, afer sorting the data points from smallest to largest. The red and blue lines represent positions 𝑛/2 = 20 and 𝑛/2 + 1 = 21, respectively. The right plot displays the same set of data, ℎ, and a horizontal line at the median value 𝑣 ̃= 125. In the right plot, the data points display as a list plot filled up to the median value to explain how the values in ℎ are distributed around the median.

Figure 4 . 4

 44 Figure 4.4 Relative positions of median and mean for symmetric and right-skewed frequency curve.
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Example 4 . 3

 43 ) where, 𝐿= the lower limit of the modal class (i.e., the class containing the mode) 𝑓 1 = the frequency of the modal class 𝑓 0 = the frequency of the class preceding the modal class 𝑓 2 = the frequency of the class succeeding the modal class ℎ = size of the modal class interval Definition (The Empirical Relation): For unimodal frequency curves that are moderately skewed (asymmetrical), we have the empirical relation, Mean -mode = 3(mean -median). (4.11) Following is the distribution of height (in cm) of 50 students. Height (𝑥) 125 -130 130 -135 135 -140 140 -145 145 -150 Number of students (𝑓) Find the modal height of the students. Solution Here the maximum frequency is 14, therefore, the modal class is 130 -135. Thus, we have 𝐿 = 130, ℎ = 5, 𝑓 1 = 14, 𝑓 0 = 7, and 𝑓 2 = 10. Mode = 𝐿 + ( ∆ 1 (𝑓 1 -𝑓 0 ) + (𝑓 1 -𝑓 2 )) ℎ= 130 + ( 14 -7 (14 -7) + (14 -10) ) (5) = 133.18.

  (𝑣 1 𝑣 1 … 𝑣 1 )(𝑣 2 𝑣 2 … 𝑣 2 ) … (𝑣 𝐾 . . . 𝑣 𝐾 )

  Quartiles divide a dataset into four equal parts, where the first quartile (𝑄 1 ) represents the 25th percentile, the second quartile (𝑄 2 ) represents the 50th percentile (the median), and the third quartile (𝑄 3 ) represents the 75th percentile. Quartiles are useful in describing the spread of a dataset and identifying outliers (see Figure 4.5). • Deciles divide a dataset into ten equal parts, where the first decile represents the 10th percentile, the second decile represents the 20th percentile, and so on. Deciles are denoted by 𝐷 1 , 𝐷 2 , . . . , 𝐷 9 (see Figure 4.6). • Percentiles divide a dataset into 100 equal parts, where the first percentile represents the smallest value, and the 100th percentile represents the largest value. For example, the 75th percentile represents the value below which 75% of the data falls. Percentiles are denoted by 𝑃 1 , 𝑃 2 , . . . , 𝑃 99 . • The fifth decile and the 50th percentile correspond to the median. • The 25th and 75th percentiles correspond to the first and third quartiles, respectively. • Collectively, quartiles, deciles, percentiles, and other values obtained by equal subdivisions of the data are called quantiles.

Figure 4 . 5

 45 Figure 4.5 The left plot displays the values in the set ℎ (4.2) as a list plot with the area under the points filled in to the axis. The medial plot displays the same data set, ℎ, after sorting the data points from smallest to largest. The 𝑄1, 𝑄2, and 𝑄3 lines represent positions 25%, 50%, and 75% of data, respectively. The right plot displays the same set of data, ℎ, and horizontal lines at the quartiles 𝑄1 = 117, 𝑄2 = 125, and 𝑄3 = 138.

Figure 4 . 6

 46 Figure 4.6 The left plot displays the values in the set ℎ (4.2) as a list plot with the area under the points filled in to the axis. The medial plot displays the same data set, ℎ, after sorting the data points from smallest to largest. The 𝐷 0.1 , 𝐷 0.5 and 𝐷 0.9 lines represent positions 10%, 50%, and 90% of the data, respectively. The right plot displays the same set of data, ℎ, and horizontal lines at the deciles 𝐷 0.1 = 104, 𝐷 0.5 = 124 and 𝐷 0.9 = 146.

27 4 .

 4 The value of the decile can be determined as a. [lower score + (distance)*(higher score -lower score)]. b. This is given as 24 + 0.4 * (27 -24) = 25.2. 5. Apply steps 3 and 4 to determine the rest of the deciles. 𝐷(2) = 2(𝑛 + 1)/10 = 4.8th data between digit number 4 and 5. Thus, 30 + 0.8 * (32-30) = 31.6.

Figure 4 . 7 .

 47 Figure 4.7. Description of a box plot.

  this code, we generate a random sample of size n from a standard normal distribution. We then calculate the deviations from the mean for each data point by subtracting the sample mean from each data point, and store them in the deviations variable. Finally, we calculate the mean of the deviations. We use the Histogram function to create a histogram of the deviations from the mean. The plot shows that the deviations from the mean are centered around 0, and that the distribution is relatively symmetric and unimodal. This explains that the mean of deviations from the Mean is zero: *) n=1000; (* sample size: *) (* Define a distribution: *) dist=NormalDistribution[0,1]; (* Generate a random sample from the distribution: *) sample=RandomVariate[dist,n]; (* Calculate the deviations from the mean: *) deviations=sample-Mean[sample]; sum=Total[deviations] (* Calculate the mean of the deviations: *) meanDeviations=Mean[deviations] 128 (* Create a histogram of the deviations from the mean: ["Distribution of Deviations from the Mean\nMean of Deviations = ``",meanDeviations], ColorFunction->Function[Opacity[0.7["Deviations from the Mean\nMean of Deviations = ``",meanDeviations], ColorFunction->Function[Opacity[0.7]], Filling->Axis, PlotStyle->Purple, the middle value in the list: *) Median[{1,2,3,4,5,6,7}] Output 4 Input (* Average the two middle values: *) Median[{1,2,3,4,5,6,7,8}] Output 9/2

  code is used to compute the median deviation of a given dataset using two different approaches. The first approach uses the built-in function MedianDeviation to directly compute the median absolute deviation of the dataset, while the second approach involves manually computing the median of the absolute deviations from the median of the dataset using the Median function: code explain that for nearly symmetric samples, Mean and Median are nearly the same. The code is designed to generate n random samples from a nearly symmetric distribution, calculate the differences between the mean and median for each sample, calculate the mean of the differences, and finally create a histogram and ListPlot of the differences with a label displaying the mean difference. The plot shows that the differences are centered around 0, and that the distribution is relatively symmetric and unimodal. This explain that for nearly symmetric samples, Mean and Median are nearly the same: *) n=1000; (* number of samples: *) m=1000; (* sample size: *) (* Define a nearly symmetric distribution: *) dist=NormalDistribution[0,1]; (* Generate n random samples from the distribution: *) samples=RandomVariate[dist,{n,m}]; (* Calculate the differences between the mean and median for each sample: *) 131 diffs=Map[Mean,samples]-Map[Median,samples]; (* Calculate the mean of the differences: *) meanDiff=Mean[diffs]; (* Create a histogram of the differences: ["Distribution of Differences (Mean -Median)\nMean = `` ",meanDiff], ColorFunction->Function[Opacity[0.7]], ChartStyle->Purple, ImageSize->250 ] ListPlot[ diffs, PlotLabel->StringForm["Differences (Mean -Median)"], ColorFunction->Function[Opacity[0.7]], Filling->Axis, PlotStyle->Purple, the elements with the highest frequency: *) Commonest[{b,a,c,2,a,b,1,2,1,2,a}] Output {a,2} Input (* Obtain the 4 most common elements: *) Commonest[{b,a,c,a,a,b,1,1,1,2},4] Output {b,a,c,1}

  ListPlot[ {h,{{0,c[[1]]},{n,c[[1]]}},{{0,c[[2]]},{n,c[[2]]}},{{0,m},{n,m}}}, Joined->{False,True,True,True}, Filling->{1->m,2->{3}}, PlotStyle->{Purple,Purple,Purple,Red}, ImageSize->170, PlotLegends->{"h","Commonest=133","Commonest=117","Mean =127"} ] Output {{133,4},{136,2},{149,1},{123,1},{121,2},{140,2},{139,2},{117,4},{108,1},{126,1},{1 04,2},{116,1},{147,1},{148,1},{150,1},{122,1},{135,2},{146,1},{144,1},{124,2},{120, 1},{110,1},{103,1},{137,1},{101,1},{119,1},{113,1}} Output {133.,117.} Output 127 Output Output TrimmedMean[list,f] gives the mean of the elements in list after dropping a fraction f of the smallest and largest elements. TrimmedMean[list,{f1,f2}]

  ,tmean},{n,tmean}},{{0,m},{n,m}}}, Joined->{False,True,True}, Filling->{1->tmean,2->Axis}, PlotStyle->{Purple,Purple,Red}, ImageSize->170, PlotLegends->{"h","Trimmed Mean .49","Mean"code creates a Manipulate function that allows the user to explore the effects of changing the parameters of a gamma distribution (α and β) on the mean and trimmed mean of a sample of random variates drawn from the distribution. The Manipulate function creates two plots: a histogram of the data and a list plot of the data points. The mean and trimmed mean of the data are plotted as red and blue lines, respectively, in both plots. This code is a tool for exploring the differences between the mean and trimmed mean of a sample of random variates from a gamma distribution. The Manipulate function allows the user to easily adjust the parameters of the gamma distribution and the sample size and trimming percentage, making it a flexible tool for exploring the effects of different factors on the mean and trimmed mean: *) Manipulate[ data=RandomVariate[GammaDistribution[α,β],n]; tm=TrimmedMean[data,p]; m=Mean[,20},{0,0.3}}, PlotLabel->"Histogram of Data", ImageSize->250, ColorFunction->Function[Opacity[0.5]], ChartStyle->Purple ], Graphics[ {Red,Thick,Line[{{tm,0},{tm,1}}],Blue,Thick,Line[{{m,0},{m,1}}]} ] [PointSize[0.02],Opacity[0.5],Purple], PlotLabel->"List Plot of Data", ImageSize->250 ], Graphics[ {Red,Thick,Line[{{1,tm},{n,tm}}],Blue,Thick,Line[{{1,m},{n,m}}]} ] ] ], {{α,2},2,5,Appearance->"Labeled"}, {{β,2},1,3,Appearance->"Labeled"}, {{n,500},100,1000,10,Appearance->"Labeled"}, {{p,0.1},0,0.49,Appearance->"Labeled"} ] Output Input (* Suppose we have a square with vertices at (xmin, ymin),(xmin, ymax),(xmax, ymin),and (xmax, ymax). We can generate a random sample of points within this square using the following code. The variable points now contain a list of 1000 points that lie within the square. The trimmed mean of the x and y coordinates of these points is then used to find the center of the square, which is plotted as a blue point in the final plot: *) (* Generate random sample of x and y coordinates: *) n=1000; (* Number of points in the sample: *) xmin=0;xmax=5; (* Range of x values: *) ymin=0;ymax=10; (* Range of y values: *) points=Table[ {RandomReal[{xmin,xmax}],RandomReal[{ymin,ymax}]}, {i,1,n} ]; (* Find the trimmed mean of the x and y coordinates: *) alpha=0.2; (* Trimming parameter: *) xTrimmed=TrimmedMean[points[[All,1]],alpha]; yTrimmed=TrimmedMean[points[[All,2]],alpha]; center={xTrimmed,yTrimmed}; 137 (* Plot the points and the center: *) ListPlot[ points, AspectRatio->1, Frame->True, Axes->False, PlotStyle->Directive[Purple,PointSize[0.015],Opacity[0.5]], PlotRange->{{xmin,xmax},{ymin,ymax}}, Epilog->{Blue,Opacity[0.9],PointSize[0.04],Point[center]}, ImageSize->200 ] Output WinsorizedMean[list,f] gives the mean of the elements in list after replacing the fraction f of the smallest and largest elements by the remaining extreme values. WinsorizedMean[list,{f1,f2}]

  points from a convex polygon: *) poly1=Polygon[{{-5,0},{-1,3/2},{1,3/2},{2,0},{1,-3/2},{-1,-3/2}}]; poly2=Polygon[{{-2,0},{-1,3/2},{1,3/2},{2,0},{1,-3/2},{-1,-3/2}}]; pts1=RandomPoint[poly1,1500]; pts2=RandomPoint[poly2,1500]; Graphics[ {Lighter[Purple,.9],poly1,Purple,PointSize[Small],Point[pts1]} ] Graphics[ {Lighter[Purple,.9],poly2,Purple,PointSize[Small],Point[pts2]} ] (* Estimate the center of the polygon by computing the spatial median of random points: *) smed1=SpatialMedian[pts1] m1=Mean[pts1] Graphics[ {Lighter[Purple,.9],poly1,Purple,PointSize[Small],Point[pts1],PointSize[0.03],Blue, Point[smed1],PointSize[0.03],Red,Point[m1]} ] smed2=SpatialMedian[pts2] m2=Mean[pts2] 142 Graphics[ {Lighter[Purple,.9],poly2,Purple,PointSize[Small],Point[pts2],PointSize[0.03],Blue, Point[smed2],PointSize[0.03],Red,Point[m2]

Examples 5. 7

 7 GeometricMean Input (* Geometric mean of a list: *) GeometricMean[{a,b,c,d,e,f}] Output (a b c d e f) 1/6 Input (* Geometric mean of columns of a matrix: *) GeometricMean[{{1,2},{5,10},{2,1},{4,3},{12,15}}] Output {2 15 1/5 ,30 2/5 } Input (* Find the geometric mean of WeightedData: *) data={8,3,5,4,9,1,4,2,2,3}; w={0.15,0.09,0.12,0.10,0.16,0.

Examples 5. 9

 9 RootMeanSquare Input (* RootMeanSquare of a list: *) RootMeanSquare[{a,b,c,d,e}] Output √a 2 +b 2 +c 2 +d 2 +e 2 √5 Input (* RootMeanSquare of columns of a matrix: *) RootMeanSquare[{{3,4},{1,2},{5,10},{5,2},{4,for WeightedData: *)

  14],Line[{{10,0},{10,qrs[[1]]}}],RGBColor[0.37,0.5,0.7],Line [{{20,0},{20,qrs[[2]]}}],Darker[Red],Line[{{30,0},{30,qrs[[3]]}}]}, Ticks->{{{10,"Q1",{0,.01}},{20,"Q2",{0,.01}},{30,"Q3",{0,.01}}},True}, PlotStyle->Purple, ImageSize->170 ] ListPlot[ {h,{{0,qrs[[1]]},{n,qrs[[1]]}},{{0,qrs[[2]]},{n,qrs[[2]]}},{{0,qrs[[3]]},{n,qrs[[3] ]}}}, Joined->{False,True,True,True}, Filling->{1->Axis}, PlotStyle->{Purple,RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Darker[Red]}, PlotLegends->{"h","Q1","Q2 -median","Q3"}, AxesLabel->Automatic, code generates a plot of the probability density function (PDF) of a chisquared distribution with five degrees of freedom, and displays the quartiles of the distribution as vertical lines on the plot: *) (* Defines the chi-squared distribution with five degrees of freedom and assigns it to the variable d: *) 149 d=ChiSquareDistribution[5]; (* Uses the Quartiles function to compute the first, second, and third quartiles of the distribution, and assigns them to the variables Q1, Q2, and Q3, respectively: *) {Q1,Q2,Q3}=N[Quartiles[d]] (* Uses the PDF function to compute the PDF of the chi-squared distribution at the quartile values, and assigns them to the variables v1, v2, and v3, respectively: *) {v1,v2,v3}=PDF[d,{Q1,Q2,Q3}] (* Plots the chi-squared distribution and displays the quartiles of the distribution as vertical lines on the plot: *) Plot[ PDF[d,x], {x,0,14}, Filling->Axis, Epilog->{ Directive[Blue],Line[{{Q1,0},{Q1,v1}}], Directive[Green],Line[{{Q2,0},{Q2,v2}}], Directive[Red],Line[{{Q3,0},{Q3,v3}}] }, MeshFunctions->{#1&}, Mesh->{{Q1,Q2,Q3}}, MeshStyle->Black, MeshShading->ColorData[97,"ColorList"],

  [[1]], PlotLabel->Style[Row[{"Joined -",s[[1]]}]], ChartStyle->"Pastel", ImageSize->200 ], {s,{{"Min",Red},{"Mean",Green},{"Median",Blue},{"Max",Orange}}} ] code generates three sets of random data (data1, data2, data3) by sampling from a normal distribution with different means (μ) using RandomVariate. Each set consists of 40 data points. The BoxWhiskerChart function is used to create a boxand-whisker plot. Additionally, points are overlaid on the chart to show the individual data points of each dataset. The Epilog option allows additional elements to be added to the chart. Three sets of points are created using Map and Transpose, corresponding to the three datasets. Each point is randomly displaced in the x-axis within a small range, and the y-coordinate is the actual data value: *) {data1,data2,data3}=Table[ RandomVariate[NormalDistribution[μ,1],40],Opacity[0.4]],Directive[Red,Opacity[0.4]],Directive[White,EdgeForm [Thickness[0.001]]Transpose[{ConstantArray[1,Length[data1]]+RandomReal[{-0.06,0.06},Length[data1]],data1}], Transpose[{ConstantArray[2,Length[data2]]+RandomReal[{-0.06,0.06},Length[data2]],data2}], 159 Transpose[{ConstantArray[3,Length[data3]]+RandomReal[{-0.06,0.06},Length[data3]],data3}]code generates three sets of random data (data1, data2, data3) by sampling from a normal distribution with different means (μ) using RandomVariate. Each set now consists of 500 data points, which is an increase from the previous 40 data points. The BoxWhiskerChart function is used to create a box-and-whisker plot, similar to the previous code. The Epilog option is used to add additional elements to the chart. In this code, points are overlaid on the chart to represent the individual data points of each dataset. The points are created using Map and Transpose, similar to the previous code. However, the random displacement in the x-axis is now increased to a range of-0.25 to 0.25, which is larger than before. The points are also styled with a different color, increased opacity, and reduced size compared to the previous code: ,Opacity[0.4]],Directive[Red,Opacity[0.4]],Directive[White,EdgeForm [Thickness[0.001]]]}, ImageSize->350, Epilog->{ Directive[Purple,Opacity[0.5]], PointSize[0.0045], Map[ Point,{ Transpose[{ConstantArray[1,Length[data1]]+RandomReal[{-0.25,0.25},Length[data1]],data1}], Transpose[{ConstantArray[2,Length[data2]]+RandomReal[{-0.25,0.25},Length[data2]],data2}], Transpose[{ConstantArray[3,Length[data3]]+RandomReal[{-0.25,0.25},Length[data3]],data3}]to the previous code but, in this code, the Epilog contains points overlaid on the chart. Three sets of points are created using Map and Transpose, corresponding to the three datasets. Each point is located at a fixed x-coordinate based on the dataset it belongs to, and the y-coordinate is the actual data value: *)

  𝟏𝟎-𝟗𝟎 Percentile Range): The 10-90 percentile range of a set of data is defined by 10 -90 percentile range = 𝑃 90 -𝑃 10 , (6.1) where 𝑃 10 and 𝑃 90 are the 10th and 90th percentiles for the data. Let us consider the sets (a) 12, 6, 7, 3, 15, 10, 18, 5 and (b) 9, 3, 8, 8, 9, 8, 9, 18. In both cases, range=(largest number -smallest number)= 18 -3 = 15. However, as seen from the arrays of sets (a) and (b), (a) 3, 5, 6, 7, 10, 12, 15, 18 (b) 3, 8, 8, 8, 9, 9, 9, 18,

Figure 6 . 1

 61 Figure 6.1 The left plot displays the values in the set ℎ (4.2) as a list plot with the area under the points filled in to the axis. The right plot displays the same set of data, ℎ, and horizontal lines at the mean value 𝑣̅ = 127 and mean absolute deviation band. In the right plot, the data points display as a list plot filled up to the mean value to explain how the values in ℎ are distributed around the mean.

  .2). (b) If 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝐾 occur with frequencies 𝑓 1 , 𝑓 2 , 𝑓 3 , . . . , 𝑓 𝐾 , respectively, the standard deviation can be written 𝑆 = √ ∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣̅ ) This form is useful for grouped data.

Figure 6 . 2

 62 Figure 6.2 The left plot displays the values in the set ℎ (4.2) as a list plot with the area under the points filled in to the axis. The right plot displays the same set of data, ℎ, and horizontal lines at the mean value 𝑣̅ = 127 and standrad deviation band. In the right plot, the data points display as a list plot filled up to the mean value to explain how the values in ℎ are distributed around the mean.

. 13 ) 6 . 3 5 ( 2 + 5 + 8 + 11 + 14 ) = 8 . 3 ( 2 + 8 + 14 ) = 8 . 1 5( 1 5(

 136352581114832814811 Example Given the sets {2, 5, 8, 11, 14}, and {2, 8, 14}, find (a) the mean of each set, (b) the variance of each set, (c) the mean of the combined (or pooled) sets, and (d) the variance of the combined sets. Solution (a) Mean of first set = 1 Mean of second set = 1 (b) Variance of first set = 𝑆 1 2 = (2 -8) 2 + (5 -8) 2 + (8 -8) 2 + (11 -8) 2 + (14 -8) 2 ) = 18. Variance of second set = 𝑆 2 2 = (2 -8) 2 + (8 -8) 2 + (14 -8) 2 ) = 24.

  ). If 𝑟 = 1, 𝑚 1

  avoid using the mode, we can define S 𝐾 = Skewness = 3(mean -median) standard deviation = 3(𝑣̅ -median) 𝑆 . (6.25) Equations (6.24) and (6.25) are called, respectively, Pearson's first and second coefficients of skewness. The limits for Karl Pearson's coefficient of skewness are ±3.

1 .First 2 .

 12 Find Pearson's (a) first and (b) second coefficients of skewness for the wage distribution of the 65 employees at the Orange Company. 2. Find the (a) quartile and (b) percentile coefficients of skewness for the above frequency distribution. Solution 1. Mean = $279.76, median = $279.06, mode = $277.50, and standard deviation 𝑆 = $15.60. Thus: 𝑄 1 = $268.25, 𝑄 2 = 𝑃 50 = $279.06, 𝑄 3 = $290.75, 𝑃 10 = 𝐷 1 = $258.12, and 𝑃 90 = 𝐷 9 = $301.00:

Input ( *

 * The code provides a visual representation of the dataset h and highlights the mean and mean deviation. The data is then visualized using two ListPlot functions. The first ListPlot displays the dataset h with the Filling option set to Axis. This plot represents the distribution of data points along the vertical axis, providing a visual overview of the dataset. The second ListPlot showcases the dataset h along with additional lines representing the mean value (m) and the mean deviation bands. The mean deviation bands are illustrated by two lines parallel to the mean line, with a distance of mean deviation (md) from the mean: *)

Output 1 / 3 (

 13 Input (* The n^(th) CentralMoment is the Mean of deviations raised to the n^(th) power: *) CentralMoment[{a,b,c},n] Mean[({a,b,c}-Mean[{a,b,c}])^n] 204 (a+1/3 (-a-b-c))^n+(b+1/3 (-a-b-c))^n+(1/3 (-a-b-c)+c)^n) Output 1/3 ((a+1/3 (-a-b-c))^n+(b+1/3 (-a-b-c))^n+(1/3

  for a list of values: *) Skewness[{a,b,c}] Output (√3 ((a+1/3 (-a-b-c))^3+(b+1/3 (-a-b-c))^3+(1/3 (-a-b-c)+c)^3))/((a+1/3 (-a-bc))^2+(b+1/3 (-a-b-c))^2+(1/3 (-a-b-c)+c)^2)^3/2 Input (

  Plot[ {PDF[dist1,x],PDF[dist2,x],PDF[dist3,x]}, {x,-5,5}, PlotStyle->{Purple,Darker[Red],Darker[Blue]}, Filling->Axis, PlotLegends->{ "Skewness = "<>ToString[skewness1], "Skewness = "<>ToString[skewness2], "Skewness = "<>ToString[skewness3] }, Frame->True, FrameLabel->{"x","PDF"}, PlotRange->All, ImageSize->250 ] Output Input (* The code defines a function dist[x_,α_] that represents a skewed normal distribution with mean 0, standard deviation 1, and the shape parameter α. The code then uses the Manipulate function to create an interactive plot. The plot displays the probability density function (PDF) of the skewed normal distribution for different values of α. Inside the Manipulate function, the PlotLabel option is set to display the skewness value of the distribution corresponding to the current value of α. The skewness is calculated using the Skewness function, which takes the SkewNormalDistribution with parameters 0, 1, and α as an argument. By including the skewness value in the plot label, the code helps to visually explain the skewness of the dist distribution. As you adjust the α value using the Manipulate slider, the 208 plot label will update in real-time to reflect the current skewness of the distribution: *) dist[x_,α_]:=SkewNormalDistribution[0,1,α] Manipulate[ Plot[ PDF[dist[x,α],x], {x,-5,5}, PlotRange->All, Filling->Axis, PlotStyle->Purple, Frame->True, FrameLabel->{"x","PDF"}, PlotLabel->Row[{"Skewness: ",Skewness[SkewNormalDistribution[0,1,α]]}], ImageSize->300 ], {{α,0,"α"},-5,5,0.1,Appearance->"Labeled"} ] Output Input (* The code generates a sample dataset from a skewed normal distribution and performs various visualizations and calculations on the data. The code begins by generating 1000 random numbers from a skewed normal distribution and storing them in the variable data. It then calculates the skewness of the data using the Skewness function and prints the result. Next, the code creates a histogram of the data using the Histogram function, displaying the probability density function (PDF). It also creates two scatter plots: listplot1 shows the original data points, and listplot2 displays the sorted data with respect to their ranks. In the case of a skewed distribution, the plot from listplot2 can help identify if the points are more concentrated towards one end, suggesting a skew in that direction. If the points are predominantly clustered towards the lower ranks (left side of the plot),it indicates a negative skew, while clustering towards the higher ranks (right side of the plot) indicates a positive skew: *) (*Generate sample data*) data=RandomVariate[ SkewNormalDistribution[0,1,2], 1000 ]; , ColorFunction->Function[Opacity[0.7]], PlotStyle->Directive[Purple,PointSize[0.01]], ImageSize->250 ] ; (* Create ListPlot2 for sorted data *) listplot2=ListPlot[ {Transpose[{Range[Length[data]],Sort[data]}]}, PlotRange->All, PlotStyle->Directive[PointSize[0.002],Purple], Frame->True, FrameLabel->{"Rank","Value"}, for a matrix gives column-wise ranges: *) QuartileSkewness[{{1,2},{3,5},{1,8},{5,6},{7,8},{2,4}}] QuartileSkewness[{1,3,1,5,7,2}] QuartileSkewness[{2,5,8,6,8the quartile skewness for WeightedData: *) data={8,3,5,4,9,0,4,2,2,3}; w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0a robust estimate of asymmetry when extreme values are present: *) N[ QuartileSkewness[{5,3,10^5,2,1,400,8}] ] (* Measures based on the Mean are heavily influenced by extreme values: *) code provides a visual representation of a sample dataset from a normal distribution through the histogram and includes the quartile skewness value to provide insights into its asymmetry. The quartile skewness measure highlights the skewness 211 characteristics based on the positions of the quartiles, enhancing the understanding of the dataset: ["QuartileSkewness = "<>ToString[qs],{1.5,0.4}]}, ColorFunction->Function[{height},Opacity[height]code begins by defining a dataset h consisting of a series of numerical values. It then calculates the quartile skewness of h using the QuartileSkewness function, storing the result in the variable qs after converting it to a numerical value using N. Two visualizations are created based on the dataset. The list plot shows the trend of the values, while the histogram illustrates the distribution and frequency of the data points. Additionally, the quartile skewness calculation offers a numerical measure of the skewness of the dataset, allowing for a quantitative assessment of its asymmetry: *)

  for a list of values: *) Kurtosis[{a,b,c}] Output (3 ((a+1/3 (-a-b-c))^4+(b+1/3 (-a-b-c))^4+(1/3 (-a-b-c)+c)^4))/((a+1/3 (-a-bc))^2+(b+1/3 (-a-b-c))^2+(1/3 (-a-b-c)+c)^2)^2 Input (* Kurtosis for a matrix gives column-wise kurtosis: *) Kurtosis[{{1,3,4},{4,6,1},{12,1,6}}]//Together Kurtosis[is a ratio of powers of fourth and second central moments: code defines a function named kurtosis that calculates the kurtosis of a data set. It computes the mean, variance, third moment, and fourth moment of the data using built-in functions. The kurtosis is then calculated using a formula that normalizes the fourth central moment by dividing it by the square of the sample variance multiplied by (n-1)/n, where n is the length of the data set: *) kurtosis[data_]:=Module[ {mean,variance,thirdMoment,fourthMoment}, mean=Mean[data]; variance=Variance[data]; thirdMoment=CentralMoment[data,3]; fourthMoment=CentralMoment[data,4]; CentralMoment[data,4]/(Variance[data](Length[data]-1)/Length[data])^2 ] data={1,2,3,4,5,6,7,8,9,10}; (*Replace with your own data*) kurtosiscode generates a histogram of 1000 random variates sampled from a standard normal distribution. It calculates the kurtosis of the distribution and displays it as an annotation on the plot. Kurtosis measures the "tailedness" or the shape of the distribution: *) dist=NormalDistribution[0,1]; ku=Kurtosis[dist] Histogram[ RandomVariate[dist,1000], Automatic, "PDF", Epilog->{Text["Kurtosis = "<>ToString[ku],{1.5,0.35}]}, ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple, code generates a plot of the probability density functions (PDFs) for three different distributions: normal distribution, Student's t-distribution, and Laplace distribution. It also displays the kurtosis values for each distribution in a table placed in the top-right corner of the plot: *) ,pdf3}, {x,-4,4}, PlotLegends->{"Normal Distribution","Student's t-Distribution","Laplace Distribution"}, PlotRange->All, Frame->True, FrameLabel->{"x","PDF"code performs weighted descriptive statistics on a dataset. It calculates several statistics including the mean, median, variance, standard deviation, kurtosis, skewness, and interquartile range. The dataset is accompanied by corresponding weights, which are taken into account during the calculations. The results are displayed in a tabular format using the Grid function: *) (* Create weighted univariate data: *) data={8,3,5,4,9,0,4,2,2,3}; w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09}; a=WeightedData[data,w]; (* Some weighted descriptive statistics: *) Grid[
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 88 Objects): The number of distinct permutations of 𝑛 = 𝑛 1 + 𝑛 2 +••• +𝑛 𝑟 objects of which 𝑛 1 are of one type, 𝑛 2 are of a second type, …, and 𝑛 𝑟 are of an 𝑟th type is 𝑛! 𝑛 1 ! 𝑛 2 ! 𝑛 3 ! … 𝑛 𝑟 ! . (Example 8.7 With 4 different letters 𝑎, 𝑏, 𝑐, and 𝑑, we have 24 distinct permutations. If we let 𝑎 = 𝑏 = 𝑥 and 𝑐 = 𝑑 = 𝑦, we can list only the following distinct permutations:222 {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑎𝑐𝑑𝑏, 𝑎𝑑𝑏𝑐, 𝑎𝑑𝑐𝑏, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑑𝑎𝑐, 𝑏𝑑𝑐𝑎, 𝑏𝑐𝑎𝑑, 𝑏𝑐𝑑𝑎, 𝑐𝑎𝑏𝑑, 𝑐𝑎𝑑𝑏, 𝑐𝑏𝑎𝑑, 𝑐𝑏𝑑𝑎, 𝑐𝑑𝑎𝑏, 𝑐𝑑𝑏𝑎, 𝑑𝑎𝑏𝑐, 𝑑𝑎𝑐𝑏, 𝑑𝑏𝑎𝑐, 𝑑𝑏𝑐𝑎, 𝑑𝑐𝑎𝑏, 𝑑𝑐𝑏𝑎} ⇓ {𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦, 𝑥𝑦𝑥𝑦, 𝑥𝑦𝑦𝑥, 𝑥𝑦𝑥𝑦, 𝑥𝑦𝑦𝑥, 𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦, 𝑥𝑦𝑥𝑦, 𝑥𝑦𝑦𝑥, 𝑥𝑦𝑥𝑦, 𝑥𝑦𝑦𝑥, 𝑦𝑥𝑥𝑦, 𝑦𝑥𝑦𝑥, 𝑦𝑥𝑥𝑦, 𝑦𝑥𝑦𝑥, 𝑦𝑦𝑥𝑥, 𝑦𝑦𝑥𝑥, 𝑦𝑥𝑥𝑦, 𝑦𝑥𝑦𝑥, 𝑦𝑥𝑥𝑦, 𝑦𝑥𝑦𝑥, 𝑦𝑦𝑥𝑥, 𝑦𝑦𝑥𝑥} ⇓ {𝑥𝑥𝑦𝑦, 𝑥𝑦𝑥𝑦, 𝑦𝑥𝑥𝑦, 𝑦𝑦𝑥𝑥, 𝑥𝑦𝑦𝑥, 𝑦𝑥𝑦𝑥}. Thus, we have 4!/(2!)(2!) = 6 distinct permutations.

  .13) Remark: 𝑃(Ø) = 0, (8.14) and for any event 𝐸, 𝑃(𝐸 ′ ) = 1 -𝑃(𝐸).(8.15)Example 8.10A coin is tossed twice. What is the probability that at least 1 head occurs?SolutionThe sample space for this experiment is 𝑆 = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻, 𝑇𝑇}. If the coin is balanced, each of these outcomes is equally likely to occur. Therefore, we assign a probability of 𝜔 to each sample point. Then 4𝜔 = 1, or 𝜔 = 1/4. If 𝐴 represents the event of at least 1 head occurring, then 𝐴 = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻} and 𝑃(𝐴)

Theorem 8 . 2 (

 82 Probability of a Union): 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) -𝑃(𝐴 ∩ 𝐵). (8.17) If 𝐴 and 𝐵 are mutually exclusive events, (𝐴 ∩ 𝐵 = Ø and 𝑃(𝐴 ∩ 𝐵) = 0), then 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵). (8.18) For three events, we have 𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) -𝑃(𝐴 ∩ 𝐵) -𝑃(𝐴 ∩ 𝐶) -𝑃(𝐵 ∩ 𝐶) + 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶). (8.19) Moreover, a collection of events, 𝐸 1 , 𝐸 2 , … , 𝐸 𝑘 , is said to be mutually exclusive if for all pairs, 𝐸 𝑖 ∩ 𝐸 𝑗 = Ø. (8.20) For a collection of mutually exclusive events, 𝑃(𝐸 1 ∪ 𝐸 2 ∪ … ∪ 𝐸 𝑘 ) = 𝑃(𝐸 1 ) + 𝑃(𝐸 2 ) +••• +𝑃(𝐸 𝑘 ). (8.21)

. 22 )

 22 This definition can be understood in a special case in which all outcomes of a random experiment are equally likely. If there are 𝑁 total outcomes, 𝑃(𝐴) = (number of outcomes in 𝐴) 𝑁 ⁄ . (8.23) Also, 𝑃(𝐴 ∩ 𝐵) = (number of outcomes in 𝐴 ∩ 𝐵) 𝑁 ⁄ . in 𝐴 ∩ 𝐵 number of outcomes in 𝐴 .

3 .

 3 More formally, this probability can be written as: 𝑃(total > 8|Die 1 = 6) = 2/3.

  For any event 𝐵, we can write 𝐵 as the union of the part of 𝐵 in 𝐴 and the part of 𝐵 in 𝐴′. That is, 𝐵 = (𝐴 ∩ 𝐵) ∪ (𝐴 ′ ∩ 𝐵). (8.27) This result is shown in the Venn diagram in Figure 8.2. Because 𝐴 and 𝐴′ are mutually exclusive, 𝐴 ∩ 𝐵 and 𝐴′ ∩ 𝐵 are mutually exclusive.

Figure 8 . 2 .

 82 Figure 8.2. (Left figure) Partitioning an event into two mutually exclusive subsets. (Right figure) Partitioning an event into several mutually exclusive subsets.

  ∩ 𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) = 𝑃(𝐵)𝑃(𝐴), These conclusions lead to an important definition.

. 33 )

 33 Definition (Pairwise Independent, multiple events): The events 𝐸 1 , 𝐸 2 , … , 𝐸 𝑛 are pairwise independent if and only if 𝑃 (𝐸 𝑖 𝑗 ∩ 𝐸 𝑖 𝑘 ) = 𝑃 (𝐸 𝑖 𝑗 ) × 𝑃(𝐸 𝑖 𝑘 ) for each 𝑗 ≠ 𝑘. (8.34) Bayes Theorem From the definition of conditional probability, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵|𝐴)𝑃(𝐴). (8.35) Now, considering the second and last terms in the preceding expression, we can write 𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) 𝑃(𝐵) for 𝑃(𝐵) > 0.

•

  7, 𝑃(𝐴 2 ) = 0.3, 𝑃(𝐷|𝐴 1 ) = 0.05, and 𝑃(𝐷|𝐴 2 ) = 0.10. Then by the total probability rule, 𝑃(𝐷) = 𝑃(𝐷|𝐴 1 )𝑃(𝐴 1 ) + 𝑃(𝐷|𝐴 2 )𝑃(𝐴 2 ) = 0.035 + 0.030 = 0.065. Now by Bayes' rule, 𝑃(𝐴 1 |𝐷) = 𝑃(𝐷|𝐴 1 )𝑃(𝐴 1 ) 𝑃(𝐷|𝐴 1 )𝑃(𝐴 1 ) + 𝑃(𝐷|𝐴 2 )𝑃(𝐴 2The Wolfram Language provides a comprehensive set of functions for working with sets and combinatorial objects. For example • The union of two sets A and B can be computed using the Union function in Wolfram Language. It returns a new set that contains all the unique elements from both sets. • The intersection of two sets A and B can be calculated using the Intersection function. It returns a new set that contains the common elements present in both sets. • The Complement function finds the complement with respect to a universal set. • Factorial, Binomial and Multinomial functions calculate the factorial of a number, the binomial coefficient and the multinomial coefficient, respectively. Moreover, there are various built-in functions and techniques to handle different counting scenarios. When sampling with replacement and the objects are ordered, you can use the Tuples function. It generates all possible combinations with repetition of a given set of elements. • When sampling without replacement and the objects are ordered, you can use the Permutations function. It generates all possible permutations of a given list of elements. • When sampling without replacement and the objects are not ordered, you can use the Subsets function. It generates all possible subsets of a given list of elements. • When sampling with replacement and the objects are not ordered, you can use the Tuples function followed by DeleteDuplicates. The Tuples function generates all possible combinations with repetition, and then DeleteDuplicates removes any duplicate samples.

Examples 9. 4

 4 Permutations Input (* Compute all permutations of a list: *) list={1,2,3}; perms=Permutations[list] Length[perms] Output {{1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}} Output 6Input (* Find all permutations of a string: *) string="abcd"; perms=Permutations[Characters[string]] Length[perms] Output {{a,b,c,d},{a,b,d,c},{a,c,b,d},{a,c,d,b},{a,d,b,c},{a,d,c,b},{b,a,c,d},{b,a,d,c},{b ,c,a,d},{b,c,d,a},{b,d,a,c},{b,d,c,a},{c,a,b,d},{c,a,d,b},{c,b,a,d},{c,b,d,a},{c,d, a,b},{c,d,b,a},{d,a,b,c},{d,a,c,b},{d,b,a,c},{d,b,c,a},{d,c,a,b},{d,c,b,a}} Output 24 Input (* Find the permutations of a list with a specific length: *) list={1,2,3}; length=2; perms=Permutations[list,{length}] Output {{1,2},{1,3},{2,1},{2,3},{3,1},{3,2}}

  code calculates the factorial of a given number n using a functional approach with the Product function. The factorialProduct function is defined with a single parameter n. Inside the function, the Product function is used, which takes the variable i and iterates over the values from 1 to n. In each iteration, the i value is multiplied, effectively calculating the factorial by taking the product of all the values from 1 to n. In the code, the factorialProduct function is called with a value of 5, which calculates the factorial of 5 using the Product function. The resulting factorial value is returned as the output: *) factorialProduct[n_]:=Product[i,{i,1,n}] factorialProductcode calculates the binomial using the built-in Binomial function and the factorial formula: *) n=5; (* Number of trials *) k=2; (* Number of successes *) Binomial[n,k] (* Alternatively, if you want to implement your own function to calculate the binomial coefficient, you can use the formula: *) binomial[n,k]=n!/(k!*(n-k)this code, we set n to 10, representing the number of trials. We then generate a table of {m,Binomial[n,m]} pairs using the Table function, where m ranges from 0 to n. This table stores the values of the binomial coefficient for different values of m. The ListPlot function is used to create a plot of these data points: *) n=10; (* number of trials *) data=Table[ {m,Binomial[n,m]'s triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In row 0 (the topmost row), there is a unique nonzero entry 1. Each entry of each subsequent row is constructed by adding the number above and to the left with the number above and to the right, treating blank entries as 0. In this code, we set n to 7, which determines the number of rows in Pascal's triangle. We use nested Table functions to generate a square matrix triangle representing Pascal's triangle. Each element in the matrix is calculated using the Binomial function with row i and column j. The ListPlot function is then used to visualize the constructed Pascal's triangle. We use Flatten[triangle,1] to convert the matrix into a 1D list of values, which will be plotted: *) n=7; (* Number of rows in Pascal's triangle *

  [PointSize[Medium],Purple,Opacity[0.8]], Frame->True, FrameLabel->{"Row","Value"}, PlotLabel->"Pascal's Triangle", 10,10,5,1}}, {{1,6,15,20,15,6,1}}, {{1,7,21,35,35,21,7,1}} } 243 Output Input (* This code calculates the number of ways to choose 3 elements without replacement from a set of 5 elements using the Binomial function. We use the Subsets function to generate all possible combinations of "k" elements from the set of numbers ranging from 1 to "n" and then calculate the length of the resulting list: *) n=5; (* Total number of elements *) k=3; (* Number of elements to choose *) numWaysBinomial=Binomial[n,k] (* Direct enumeration *) Subsets[Range[n],{k}] numWaysEnumeration=Length[Subsets[Range[n],{k}]] numWaysBinomial==numWaysEnumeration Output 10 Output {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,of ways to choose m elements with replacement from a set of n elements: *) n=5; (* Number of elements in the set *) k=2; (* Number of elements to choose *) (*Using the binomial function*) numWaysBinomial=Binomial[n+k-1,k] (* Direct enumeration *) numWaysEnumeration1=Tuples[Range[n],{k}](* with Duplicates *,{1,2},{1,3},{1,4},{1,5},{2,1},{2,2},{2,3},{2,4},{2,5},{3,1},{3,2},{3,3},{3,4 },{3,5},{4,1},{4,2},{4,3},{4,4},{4,5},{5,1},{5,2},{5,3},{5,4},{5,5}} Output 25 Output {{1,1},{1,2},{1,3},{1,4},{1,5},{2,2},{2,3},{2,4},{2,5},{3,3},{3,4},{3,5},{4,4},code calculates the number of ways to arrange 5 indistinguishable objects of one kind and 2 indistinguishable objects of another kind (represented by the numbers 0 and 1) using the binomial coefficient and then checks the result by generating all possible permutations and counting them through direct enumeration: *) n=5; m=2; arrangements[m_,n_]:=Binomial[m+n,m]arrangements[START_REF] Tukey | Exploratory Data Analysis[END_REF]2] 

12 Output X^4+4 x^3 y+6 x^2 y^2+4 x y^3+y^4+4 x^3 z+12 x^2 y z+12 x y^2 z+4 y^3 z+6 x^2 z^2+12 x y z^2+6 y^2 z^2+4 x z^3+4 yMathematica Examples 9 . 12

 12912 the terms of the expansion *) terms=Table[ coefficients[[k+1]]*a^(n-k)*b^k, {k,0,n} ] (* Print the expansion *) Sum[terms[[k+1]],{k,0,n}] (* Print the expansion using Expand function *) Expand[(a+b)^n] ] (* Change the input value to visualize different cases *) Output {1,5,10,10,5,1} Output {x^5,5 x^4 y,10 x^3 y^2,10 x^2 y^3,5 x y^4,y^5} Output x^5+5 x^4 y+10 x^3 y^2+10 x^2 y^3+5 x y^4+y^5 Output x^5+5 x^4 y+10 x^3 y^2+10 x^2 y^3+5 x y^4+y^5 Output Mathematica Examples 9.11 Multinomial Input (* Evaluate numerically: *) Multinomial[1,2,1] multinomialcoefficient=(1+2+1)!/(1!2!1!) (* The 1,2,1 multinomial coefficient appears as the coefficient of x y^2 z in the expansion of (x+y+z)^4 : *) ex=Expand[(x+y+z)^4] Coefficient[ex,x y^2 z] Output 12 Output the multinomial theorem: *) Expand[(x+y+z)^4] sum=Sum[ KroneckerDelta[4-(n1+n2+n3)] Multinomial[n1,n2,n3] x^n1 y^n2 z^n3, {n1,0,4}, {n2,0,4}, {n3,0,4} ]246 Factor[sum] Output X^4+4 x^3 y+6 x^2 y^2+4 x y^3+y^4+4 x^3 z+12 x^2 y z+12 x y^2 z+4 y^3 z+6 x^2 z^2+12 x y z^2+6 y^2 z^2+4 x z^3+4 y z^3+z^4 Output X^4+4 x^3 y+6 x^2 y^2+4 x y^3+y^4+4 x^3 z+12 x^2 y z+12 x y^2 z+4 y^3 z+6 x^2 z^2+12 x y z^2+6 y^2 z^2+4 x z^3+4 y z^3+z^4 Output (x+y+z)^4 Input (* In this code, the function multinomial takes a list n as input, where each element represents the number of occurrences of a particular item. For example, if n={a,b,c}, it means we have a occurrences of the first item, b occurrences of the second item, and c occurrences of the third item. Inside the Module, we define two local variables: numerator and denominator. The numerator is calculated by taking the factorial of the total number of occurrences (Total[n]), while the denominator is obtained by taking the product of the factorials of each element in the list n. Finally, the numerator is divided by the denominator to obtain the multinomial coefficient. You can call this function with a list of numbers to calculate the multinomial coefficient. Finally, the code calculates the multinomial using the built-in multinomial function: *) multinomial[n_]:=Module[ {numerator,denominator}, numerator=Factorial[Total[n]]; denominator=Apply[Times,Factorial[n]Sampling with replacement and the objects being ordered Input (* Sampling with replacement and the objects being ordered refers to a sampling technique where elements are randomly selected from a set, and each element can be selected multiple times (with replacement), and the order of the selected elements matters. In this code, n represents the number of elements in the set, and k represents the number of elements to be selected. The function Tuples generates all possible combinations of length k from the range Range[n]. This function simulates the sampling process with replacement and ordered objects. Also, this code calculates the total number of possible combinations when sampling with replacement and ordered objects. It uses the formula n^k. The result is stored in the variable numCombinations: *) n=5; (* Number of elements in the set. *) k=2; (* Number of elements to be selected. *)

  n=5; (* Number of elements in the set. *) k=2; (* Number of elements to be selected. *) numWays=n^k (* Number of possible ways. *) probEvent=1/n^k (* Probability of an event. this code, the samplingWithReplacementOrdered function takes two parameters as explained before n and k. Inside the function, the Module function is used to define local variables numWays and probEvent. The variable numWays is assigned the value n^k, which represents the number of possible ways when sampling with replacement and ordered objects. The variable probEvent is assigned the value 1/n^k, which represents the probability of an event. The function returns a list containing numWays and probEvent: *) samplingWithReplacementOrdered[n_,k_]:=Module[ {numWays,probEvent}, numWays=n^k;(* Number of possible ways. *)probEvent=1/n^k;(* Probability of an event. *) {numWays,probEvent} ] (* Example usage: *) {n,k}={5,3}; (* Number of elements in the set and number of elements to be selected. this code, the samplingWithReplacementOrdered function takes two parameters as explained befor n and k. Inside the function, the Module function is used to define local variables sampleSpace, numWays, and probEvent. The sampleSpace variable is generated using Tuples to represent all possible combinations. The numWays variable is assigned the length of sampleSpace, representing the number of possible ways. The probEvent variable is assigned 1/numWays, representing the probability of an event. The function returns a list containing the sampleSpace, numWays, and probEvent. In the example usage, you can provide the values of n and k in the samplingWithReplacementOrdered function call. The result will be assigned to sampleSpace, numWays, and probEvent, which you can then use for further analysis. To visualize the sample space and probabilities, the code includes a histogram of the sums of the elements in the sample space, using Histogram. This histogram displays the probabilities of each sum occurring. Additionally, a ListPlot is used to show the probabilities for each element sum using Tally and normalized by numWays: *) samplingWithReplacementOrdered[n_,k_]:=Module[ {sampleSpace,numWays,probEvent}, sampleSpace=Tuples[Range[n],k];(* Generate sample space. *) numWays=Length[sampleSpace];(* Number of possible ways. *) probEvent=1/numWays;(* Probability of an event. *) {sampleSpace,numWays,probEvent} ](* Example usage: *) {n,k}={6,2}; (* Number of elements in the set and number of elements to be selected. *) {sampleSpace,numWays,probEvent}=samplingWithReplacementOrdered[n,k]; /@sampleSpace] N[Tally[Total/@sampleSpace]/numWays] (* ListPlot of probabilities for each element sum: *) ListPlot[ Tally[Total/@sampleSpace]/numWays, 249 PlotMarkers->Automatic, PlotRange->All, PlotStyle->Directive[PointSize[0.009],Purple,Opacity[0.7]], Filling->Axis, ImageSize->250 ] Output {{1,1},{1,2},{1,3},{1,4},{1,5},{1,6},{2,1},{2,2},{2,3},{2,4},{2,5},{2,6},{3,1},{3,2 },{3,3},{3,4},{3,5},{3,6},{4,1},{4,2},{4,3},{4,4},{4,5},{4,6},{5,1},{5,2},{5,3},{5, 4},{5,5},{5,6},{6,1},{6,2},{6,3},{6,4},{6,5},,{3,2},{4,3},{5,4},{6,5},{7,6},{8,5},{9,4},{10,3},{11,2},{12,1}} Output {{0.0555556,0.0277778},{0.0833333,0.0555556},{0.111111,0.0833333},{0.138889,0.11111 1},{0.166667,0.138889},{0.194444,0.166667},{0.222222,0.138889},{0.25,0.111111},{0.2 77778,0.0833333},{0.305556,0.0555556},{0.333333,0.0277778}} Output Input (* In this code, after generating the samples using the Tuples function as explained before, the ListPointPlot3D function is used to create a 3D plot. Each point in the plot represents a selection, where the x-coordinate corresponds to the object chosen in the first selection, the y-coordinate corresponds to the object chosen in the second selection, and the z-coordinate corresponds to the object chosen in the third selection. Running this code will display a 3D plot where each point represents a specific combination of selections. The plot allows you to visualize the distribution of the selections in the three-dimensional space, giving you an intuitive representation of the sampling process. Note: The resulting plot may become crowded if the number of objects or selections is large, making it difficult to visualize each point clearly. In such cases, you can consider sampling a subset of the results or using alternative visualization techniques: *) nObjects=5; (* Total number of objects. *) nSelections=3; (* Number of selections to be made. *) samples=Tuples[Range[nObjects],nSelections]; (* Generate random colors for each point. *) colors=RandomColor[ Length[samples] 3D plot with colored points. *) ListPointPlot3D[ Style[#,colors[[Position[samples,#][[1,1]]]]]&/@samples, PlotStyle->PointSize[0.03], BoxRatios->{1,1,1}, AxesLabel->{"Selection 1","Selection 2","Selection 3"} ] Output Input (* In this updated code, the Manipulate function wraps around the code. Inside the Manipulate, there are two control variables nObjects and nSelections that represent the number of objects and selections, respectively. The control variables are defined using the {{variable, initialValue, label}, min, max, step} syntax. Whenever you adjust the sliders for the number of objects, the samples and colors are updated accordingly, and the plot is automatically refreshed to reflect the changes. This allows you to interactively explore different combinations of objects and selections: ,colors[[Position[samples,#][[1,1]]]]]&/@samples, PlotStyle->PointSize[0.03], BoxRatios->{1,1,1}, AxesLabel->{"Selection 1","Selection 2","Selection 3"} ], {{nObjects,5,"Number of Objects"},3,10,1} ] of Events: *) (* Event 1: The sum of the selected elements is greater than 10. In this code, the Select function is used to filter the sums of all possible combinations and select only those that are greater than 10. The result is stored in the variable event. The Tally function counts the occurrences of each sum, resulting in a list of pairs where the first element is a sum and the second element is its frequency: *) n=6; (* Number of elements in the set. *) k=2; (* Number of elements to be selected. *) values={1,2,3,4,5,6}; (* Values of each element. *)

Input (* Event 5 :

 5 The selected elements form a palindrome. This code generates all possible combinations and selects only those combinations where the elements form a palindrome, using the Reverse function. The result is stored in the variable event: *) n=6; (*Number of elements in the set*) k=3; (*Number of elements to be selected*) values={1,2,3,4,5,6}; (*Values of each element*) event=Select[Tuples[values,k],#==Reverse[#]&]

(* Example 1 :

 1 n=5; (* Total number of people. *) k=2; (* Number of committee members. *) numPermutations=Factorial[n]/Factorial[n-k] Output 20 Input (* Examples: Sampling without replacement and ordered:*) 255 Choosing a Committee. Suppose you have a group of 10 people, and you want to form a committee of 4 members. Let us calculate the number of possible committees: *) n=10; (* Total number of people. *) k=4; (* Number of committee members. *) numPermutations=Factorial[n]/Factorial[n-k] (* Example 2: Arranging Letters in a Word. Consider the word "MATH" How many different arrangements of letters can be formed using all the letters: *) word="MATH"; numPermutations=Factorial[StringLength[word]] (* Example 3: Password Combinations. Suppose you need to create a password using exactly 6 lowercase letters (a-z) without repetition. Let us calculate the number of possible password combinations: *) n=26; (* Total number of lowercase letters. *) k=6; (* Number of letters in the password. *) numPermutations=Factorial[n]/Factorial[n-k] (* Example 4: Assigning Seats. Suppose you have 8 people attending a dinner party, and there are 8 seats arranged in a row. How many ways can the people be assigned to the seats: *) n=8; (* Total number of people. *) k=8; (* Number of seats. *) numPermutations=Factorial[n] (* Example 5: Creating License Plates. In a certain country, license plates consist of 3 letters followed by 3 digits (e.g., ABC123). How many unique license plates can be created?: *) numLetters=26; (* Total number of letters (A-Z). *) numDigits=10; (* Total number of digits (0-9). *) numPositions=6; (* Total number of positions on the license plate. *) numPermutations=Factorial[numLetters+numDigits]/Factorial[numPositions] without replacement and ordered: *) (* Define the number of objects and the sample size: *) n=5; (* Number of objects. *) k=3; (* Sample size. *) values=Range[1,n]; (* Values of each element. *) (* Generate all possible permutations of the objects: *) permutations=Permutations[values]; (* Select a random permutation from the list: *) randomPermutation=RandomChoice[permutations] (* Take the first 4 elements from the random permutations: *)

  Finally, we calculate the probability of the event by dividing the number of favorable outcomes by the total number of samples: *) (* Total number of objects: *) n=6; (* Number of objects selected in each sample: *) sampleSize=3; (* Values of each element: *) values=Range[1,n]; (* Generate all possible ordered samples without replacement: *) samples=Permutations[values,{sampleSize}]; (* Define the condition for the event: *) condition=AllTrue[#,EvenQ]&; (* Filter the samples based on the condition: *) filteredSamples=Select[samples,condition]; (* Calculate the total number of samples: *) totalSamples=Length[samples]; (* Calculate the number of favorable outcomes: *) the probability of the event: *) probability=favorableOutcomes/totalSamples; (* Display the total number of samples and favorable outcomes: *) Print["Total number of samples: ",totalSamples]; Print["Favorable outcomes: ",favorableOutcomes]; (* Display the probability of the event: *) Print["Probability of the event: ",probability]; Output Total number of samples: 120 Favorable outcomes: 6 Probability of the event: 1/20 Input (* In this code, the sampleWithoutReplacementOrdered function takes three arguments: n (total number of objects), r (number of objects selected in each sample), and event (the event we are interested in). The function calculates the sample space by generating all permutations of length r from the range of 1 to n. It then filters the sample space to find the favorable outcomes that satisfy the given event. The count of favorable outcomes and the probability of the event are calculated using the lengths of the corresponding lists: *) sampleWithoutReplacementOrdered[n_,r_,event_]:=Module[ {sampleSpace,favorableOutcomes,probability,count}, sampleSpace=Permutations[Range[n],{r}]; favorableOutcomes=Select[sampleSpace,event]; count=Length[favorableOutcomes]; probability=count/Length[sampleSpace]; {probability,count} ] (* Example usage: *) n=5; (* Total number of objects. *) r=3 ;(* Number of objects selected in each sample. *) event[x_]:=x[[1]]<x[[2]](* Example event: First element is less than the second element. *) sampleSpace=Permutations[Range[n],{r}] favorableOutcomes=Select[sampleSpace,event] {probability,count}=sampleWithoutReplacementOrdered[n,r,event]; Print["Probability of the event:",probability] Print["Count of the event:",count] Output {{1,2,3},{1,2,4},{1,2,5},{1,3,2},{1,3,4},{1,3,5},{1,4,2},{1,4,3},{1,4,5},{1,5,2},{1 ,5,3},{1,5,4},{2,1,3},{2,1,4},{2,1,5},{2,3,1},{2,3,4},{2,3,5},{2,4,1},{2,4,3},{2,4, 5},{2,5,1},{2,5,3},{2,5,4},{3,1,2},{3,1,4},{3,1,5},{3,2,1},{3,2,4},{3,2,5},{3,4,1}, {3,4,2},{3,4,5},{3,5,1},{3,5,2},{3,5,4},{4,1,2},{4,1,3},{4,1,5},{4,2,1},{4,2,3},{4, 2,5},{4,3,1},{4,3,2},{4,3,5},{4,5,1},{4,5,2},{4,5,3},{5,1,2},{5,1,3},{5,1,4},{5,2,1 },{5,2,3},{5,2,4},{5,3,1},{5,3,2},{5,3,4},{5,4,1},{5,4,2},{5,4,3}} Output {{1,2,3},{1,2,4},{1,2,5},{1,3,2},{1,3,4},{1,3,5},{1,4,2},{1,4,3},{1,4,5},{1,5,2},{1 ,5,3},{1,5,4},{2,3,1},{2,3,4},{2,3,5},{2,4,1},{2,4,3},{2,4,5},{2,5,1},{2,5,3},{2,5, 4},{3,4,1},{3,4,2},{3,4,5},{3,5,1},{3,5,2},{3,5,4},{4,5,1},{4,5,2},{4,5,3}} Output Probability of the event: 1/2 Count of the event: 30 Input (* In this code, the event is defined as the sum of the elements in the sample being less than or equal to 20. You can modify the event function according to your specific

  Input (* In this code, we start by defining the set of objects as a list objects with repeated elements (a,a,b,c). Then, we use the Permutations function to generate all possible permutations of the objects. The resulting permutations are stored in the permutations variable. Finally, we use the TableForm function to display the elements of the sample space in a tabular format. The TableHeadings option is used to label the columns with the original objects: *) (* Define the set of objects: *)
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 9 * Create a list plot of the frequencies: *) ListPlot[ frequencies[[All,2]], PlotStyle->Directive[PointSize[0.009],Purple,Opacity[0.7]], Filling->Axis, Frame->True, FrameLabel->{"Sample","Frequency"}, 263 PlotLabel->"Sample -Frequencies", ImageSize->250 ] Output Output Input (* The updated code includes a Manipulate function to provide an interactive experience for exploring sampling without replacement and unordered objects. The code allows you to adjust parameters such as the total number of objects, the number of objects to be selected, the number of samples to generate, and the condition for the event. Inside the Manipulate module, the code calculates the size of the sample space, generates the sample space itself, generates random samples, calculates frequencies, and determines the probability of the event based on the specified condition. The code also creates a histogram and a list plot to visualize the frequency distribution of the samples. Additionally, it displays the size of the sample space and the probability of the event. By interacting with the sliders or input fields in the Manipulate interface, you can dynamically explore different scenarios, observe the corresponding plots, and view the calculated probabilities and sample space sizes: *) (* Function to calculate the number of elements in sample space: *) sampleSpaceSize[n_,k_]:=Binomial[n,k] (* Function to generate sample space: *) generateSampleSpace[n_,k_]:=Module[ {objects,combinations}, objects=Range[n]; combinations=Subsets[objects,{k}]; combinations ] (* Function to calculate the probability of an event: *) probability[event_,sampleSpace_]:=Length[event]/Length[sampleSpace] Manipulate[ Module[ {size,sampleSpace,event,prob,frequencies}, (* Calculate the size of the sample space: *) size=sampleSpaceSize[n,k]; (* Generate the sample space: *) CHAPTER LAB: PRINCIPLES OF PROBABILITY 264 sampleSpace=generateSampleSpace[n,k]; (* Generate random samples from the sample space: *) samples=RandomChoice[sampleSpace,numSamples]; (* Calculate the frequencies of the samples: *) frequencies=Tally[samples]; (* Calculate the probability of the event: *) event=Select[samples,condition]; prob=probability[event,sampleSpace]; (* Output the size of the sample space, the probability of the event, Histogram and ListPlot: *) Column[ { Row[ {"Sample Space Size: ",size} ], Row[ {"Probability of Event: ",prob} ], (* Create a histogram of the frequencies: *) Histogram[ frequencies[[All,2]], Automatic, "Probability", Frame->True, FrameLabel->{"Frequency","Probability"}, PlotLabel->"Sample -Frequencies", ImageSize->250, ColorFunction->Function[Opacity[0.7]], ChartStyle->Purple ], (* Create a list plot of the frequencies: *) ListPlot[ frequencies[[All,2]], PlotStyle->Directive[PointSize[0.009],Purple,Opacity[0.7]], Filling->Axis, Frame->True, FrameLabel->{"Sample","Frequency"}, PlotLabel->"Sample -Frequencies", ImageSize->250 ] } ] ], (* Manipulate parameters: *) {{n,10,"Total Objects"},5,15,1}, {{k,4,"Selected Objects"},2,n,1}, {{numSamples,1000,"Number of Samples"},100,5000,100}, {{condition,EvenQ[First[#]]&,"Event Condition"},{EvenQ[First[#]]&,OddQ[Total[#]]&,EvenQ[Total[#]]&}} ] 265 Output Mathematica Examples 9.15 Sampling with replacement and the objects are not ordered Input (* Sampling with replacement and the objects are not ordered: *) (* In this code, the sampleSpaceSize function calculates the number of elements in the sample space using the binomial coefficient formula (n+k\[Minus]1 choose k). The generateSampleSpace function generates the sample space by using the Tuples function to generate all possible combinations of elements with repetition, and then removes duplicate and equivalent combinations using DeleteDuplicates and sorting: *) sampleSpaceSize[n_,k_]:=Binomial[n+k-1,k] generateSampleSpace[n_,k_]:=Module[ {elements,combinations}, elements=Range[n]; combinations=Tuples[elements,k]; DeleteDuplicates[Sort/@combinations] ] n=3; (* Number of distinct objects. *) k=2; (* Number of selections. *) size=sampleSpaceSize[n,k]; sampleSpace=generateSampleSpace[n,k];

( 9 MATHEMATICA

 9 * Histogram of the frequency: *) Histogram[ frequency[[All,2]], Automatic, "Count", Frame->True, FrameLabel->{"Frequency","Frequency"}, PlotLabel->"Sample -Frequency", ImageSize->250, ColorFunction->Function[Opacity[0.7]], ChartStyle->Purple ] (* ListPlot of the frequency:*) All,2]], PlotStyle->Directive[PointSize[0.009],Purple,Opacity[0.7]], Filling->Axis, Frame->True, FrameLabel->{"Sample","Frequency"}, PlotLabel->"Sample -Frequencies", ImageSize->250 ] Output Number of elements in the sample space: 220 Output Output Input (* In this code, the Manipulate function is used to create a dynamic interface. The values of n and k are initialized to 3 and 2, respectively, and can be adjusted using sliders. Whenever the values of n and k are changed, the sample space is regenerated, a new random sample is generated, and the frequency distribution is recalculated: *) sampleSpaceSize[n_,k_]:=Binomial[n+k-1,k] generateSampleSpace[n_,k_]:=Module[ {elements,combinations}, elements=Range[n]; combinations=Tuples[elements,k]; DeleteDuplicates[Sort/@combinations] ] Manipulate[size=sampleSpaceSize[n,k]; sampleSpace=generateSampleSpace[n,k]; randomSample=RandomChoice[sampleSpace,1000]; frequency=Tally[randomSample]; Column[ { Histogram[ frequency[[All,2]], Automatic, "Count", Frame->True, FrameLabel->{"Frequency","Frequency"}, PlotLabel->"Sample -Frequency", ImageSize->250, CHAPTER LAB: PRINCIPLES OF PROBABILITY 269 ColorFunction->Function[Opacity[0.7]], ChartStyle->Purple ], ListPlot[ frequency[[All,2]], PlotStyle->Directive[PointSize[0.009],Purple,Opacity[0.7]], Filling->Axis, Frame->True, FrameLabel->{"Sample","Frequency"}, PlotLabel->"Sample -Frequencies", ImageSize->250 ], Row[{"Number of elements in the sample space: ",size}], Row[{"Sample space: ",sampleSpace}] } ], {{n,3},1,10,1}, {{k,2},1,10,1} ] Output Mathematica Examples 9.16 Conditional Probability Input (* Conditional Probability: *) (* This code begins by defining the sample space, which represents the possible outcomes.

(

  * Define the sample space:*) sampleSpace=Tuples[{0,1},3] (* Sample space for flipping three coins. *) (* Define the conditions for event A and event B: *) conditionA=Count[#,1]==3&; (* Event A:All three coins show heads.*) conditionB=MemberQ[#,1]&; (* Event B:At least one coin shows heads. *) (* Call the conditionalProbability function: *) conditionalProbability[sampleSpace,conditionA,conditionB]; Output {{0,0,0},{0,0,1},{0,1,0},{0,1,1},{1,0,0},{1,0,1},{1,1,0},{1,1,1}} Output The probability of event A is 0.125 The probability of event B is 0.875

9 MATHEMATICA

 9 calculateIndependence[eventA_,eventB_,sampleSpace_]:=Module[ {probA,probB,probAB}, (* Calculate the probability of event A: *) probA=Length[eventA]/Length[sampleSpace]; (* Calculate the probability of event B: *) CHAPTER LAB: PRINCIPLES OF PROBABILITY 274 probB=Length[eventB]/Length[sampleSpace]; (* Calculate the probability of the intersection of events A and B: *) probAB=Length[eventA&&eventB]/Length[sampleSpace];

( 4 CHAPTER 10 DISCRETE

 410 * Define the sample space: *) sampleSpace=Tuples[{0,1},2] (* Sample space for two events. *) (* Define the events A and B: *) eventA=#[[1]]==1&; (* Event A:The first element is 1. *) eventB=#[[2]]==1&; (* Event B:The second element is 1. *) (* Call the calculateIndependence function: *) calculateIndependence[eventA,eventB,sampleSpace]; Output {{0,0},{0,1},{1,0},{1,1}} OutputThe events are not independent: probAB= 1/2 , probA= 1/4 , probB= 1/

  [START_REF] Unpingco | Python for Probability, Statistics, and Machine Learning[END_REF], 𝑃(𝑋 = 4) = 𝑃((1,3), (2,2), (3,1)) = 3/36, 𝑃(𝑋 = 5) = 𝑃((1,4),(2,3),(3,2), (4,1)) = 4/36, 𝑃(𝑋 = 6) = 𝑃((1,5),(2,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF],(3,3), (4,2), (5,1)) = 5/36, 𝑃(𝑋 = 7) = 𝑃((1,6),(2,[START_REF] Tukey | Exploratory Data Analysis[END_REF],(3,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], (4,3), (5,2), (6,1)) = 6/36, 𝑃(𝑋 = 8) = 𝑃((2,6), (3,5), (4,4), (5,3), (6,2)) = 5/36, 𝑃(𝑋 = 9) = 𝑃((3,6), (4,5), (5,4), (6,3)) = 4/36, 𝑃(𝑋 = 10) = 𝑃((4,6), (5,5), (6,4)) = 3/36, 𝑃(𝑋 = 11) = 𝑃((5,6), (6,5)) = 2/36, 𝑃(𝑋 = 12) = 𝑃((6,6)) = 1/36. In other words, the RV 𝑋 can take on any integral value between 2 and 12. Moreover, we must have 1 = 𝑃(𝑆) = 𝑃 (⋃(𝑋 = 𝑥) For our dice-rolling experiment, let us define the events of success (𝑆) and failure (𝐹) as follows: success -the outcome of rolling a 3, and failure -the outcome of not rolling a 3. Therefore, the sample space 𝐺 is: 𝐺 = {𝐹𝐹, 𝑆𝐹, 𝐹𝑆, 𝑆𝑆}. Here, 𝑆𝐹, for instance, represents a success followed by a failure. We defined the RV 𝑋 as the number of times we roll a 3, which is equivalent to the number of times we observe a success 𝑆. The RV 𝑋 maps each sample point to a specific value 𝑥 like so: 𝑋(𝐹𝐹) = 0, 𝑋(𝑆𝐹) = 1, 𝑋(𝐹𝑆) = 1 and 𝑋(𝐹𝐹) = 2. In other words, the RV 𝑋 can take on any integral value between 0 and 2. 𝑃(𝑋 = 0) = 𝑃((1,1), (1,2), (2,1), (2,2), (1,4), (4,1), (1,5), (2,4), (4,2), (5,1), (1,6), (2,5), (5,2), (6,1), (2,6), (4,4), (6,2), (4,5), (5,4), (4,6), (5,5), (6,4), (5,6), (6,5), (6,6)) = 25/36, 𝑃(𝑋 = 1) = 𝑃((3,1), (3,2), (3,4), (3,5), (3,6), (1,3), (2,3), (4,3), (5,3), (6,3)) = 10/36, 𝑃(𝑋 = 2) = 𝑃((3,3)) = 1/36. Moreover, we must have 𝑃(𝑆) = ∑ 𝑃(𝑋 = 𝑥)
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 101 Figure 10.1. RV as a function.

R

  For a discrete RV 𝑋 with possible values 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 , a PMF is a function such that: (1) 𝑓(𝑥 𝑖 ) ≥ 0.(2) ∑ 𝑓(𝑥 𝑖 ) 𝑛 𝑖=1 = 1.(3) 𝑓(𝑥 𝑖 ) = 𝑃(𝑋 = 𝑥 𝑖 ). PMFs are also commonly referred to as discrete probability distribution.In general, for any discrete RV with possible values 𝑥 1 , 𝑥 2 , …, the events (𝑋 = 𝑥 1 ), (𝑋 = 𝑥 2 ), … are mutually exclusive. Therefore, 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓(𝑥 𝑖 )𝑥 𝑖 ≤𝑥

  3) or 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑏) -𝑃(𝑋 ≤ 𝑎) = 𝐹(𝑏) -𝐹(𝑎). (10.4) Example 10.7 Suppose the RV 𝑋 has CDF

  It is often helpful to look at a probability distribution in graphic form. One might plot the points (𝑥, 𝑓(𝑥)). By joining the points to the 𝑥 axis either with a dashed or with a solid line, we obtain a PMF plot. The graph of the probability distribution makes it easy to see what values of 𝑋 are most likely to occur, and it also indicates a symmetry of the probability distribution. Instead of plotting the points (𝑥, 𝑓(𝑥)), we more frequently construct a probability histogram. To understand that well, let us consider the following examples. 281 Example 10.8

  Figure 10.2 represents the probability histogram, PMF and CDF.
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 102 Figure 10.2. The probability histogram, PMF and CDF for 500 samples from a fair six-sided die.

  Figure 10.3 represents the probability histogram, PMF and CDF.
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 103 Figure 10.3. The probability histogram, PMF and CDF for 10000 samples from a pair of fair dice.
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 6 Definition (Expected Value): The expected value of a function ℎ(𝑋) of a discrete RV 𝑋 with PMF 𝑓(𝑥) is defined as 𝐸[ℎ(𝑋)] = ∑ ℎ(𝑥)𝑓(𝑥) 𝑥 . (10.7) Theorem 10.1: If 𝑎 and 𝑏 are constants, then, 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏. (10.8) Proof CHAPTER 10 DISCRETE RANDOM VARIABLES AND DISTRIBUTIONS 283 𝐸[𝑎𝑋 + 𝑏] = ∑(𝑎𝑥 + 𝑏)𝑃(𝑥) 𝑥 = 𝑎 ∑ 𝑥𝑃(𝑥) 𝑥 + 𝑏 ∑ 𝑃(𝑥) 𝑥 = 𝑎𝐸[𝑋] + 𝑏. ∎ Remarks: If we take 𝑎 = 0 in Theorem 10.1, we see that, 𝐸[𝑏] = 𝑏.

. 11 )

 11 Definition (Variance): If 𝑋 is a RV with mean 𝜇, then the variance of 𝑋, denoted as 𝜎 2 or 𝑉(𝑋) ≡ Var(𝑋) is defined by 𝜎 2 = 𝑉(𝑋) = Var(𝑋) = 𝐸[(𝑋 -𝜇) 2 ] = ∑(𝑥 -𝜇) 2 𝑓(𝑥) 𝑥 . (10.12) Definition (Standard Deviation): The standard deviation of 𝑋 is 𝜎 = √𝜎 2 .

  ): The MGF 𝑀 𝑋 (𝑡) of the RV 𝑋 is defined for all values 𝑡 by 𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∑ 𝑒 𝑡𝑥 𝑃(𝑥) 𝑥 . (10.19)

Theorem 10 . 4 :

 104 If 𝑀 𝑋 (𝑡) exists, then for any positive integer 𝑘, 𝑑 𝑘 𝑑𝑡 𝑘 𝑀 𝑋 (𝑡)| 𝑡=0 = 𝑀 𝑋 (𝑘) (0) = 𝐸[𝑋 (𝑘) ]. (10.28)

  A list of some commonly encountered discrete probability distributions: 1. Bernoulli distribution 2. Binomial distribution 3. Geometric distribution 4. Negative binomial distribution 5. Poisson distribution 6. Hypergeometric distribution 7. Discrete uniform distribution 8. Multinomial distribution 9. Zipf distribution 10. Rademacher distribution 11. Logarithmic distribution 12. Conway-Maxwell-Poisson distribution 13. Skellam distribution 14. Pólya distribution 15. Zeta distribution 16. Negative hypergeometric distribution 17. Wallenius noncentral hypergeometric distribution 18. Yule-Simon distribution 19. Zero-truncated Poisson distribution

  ) where 0 < 𝑝 < 1 and 𝑝 + 𝑞 = 1. Theorem 10.5: If 𝑋 is a Bernoulli RV with parameter 𝑝, 𝜇 = 𝐸(𝑋) = 𝑝 and 𝜎 2 = 𝑉(𝑋) = 𝑝(1 -𝑝). (10.30) Proof: We know that for 𝑋, 𝑃(𝑋 = 1) = 𝑝, and 𝑃(𝑋 = 0) = 𝑞, so 𝐸[𝑋] = (1)𝑃(𝑋 = 1) + (0)𝑃(𝑋 = 0) = (1)𝑝 + (0)𝑞 = 𝑝.

  Hence, the variance of a Bernoulli distribution is Var[𝑋] = 𝑝(1 -𝑝) = 𝑝𝑞.

Figure 10 . 4 .

 104 Figure 10.4. PMF (left) and CDF (right) of Bernoulli distribution. The graph shows that the probability of success is 𝑝 when 𝑋 = 1 and the probability of failure of 𝑋 is (1 -𝑝) or 𝑞 if 𝑋 = 0.

•

  If 𝑛 = 1, the binomial RV reduces to Bernoulli RV, denoted by 𝐵(1, 𝑝). • If 𝑋 ∼ 𝐵(𝑛, 𝑝), then ∑ 𝑓 𝑋 (𝑥) 𝑛 𝑥=0 = ∑ ( 𝑛 𝑥 )𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0

Figure 10 . 5 .

 105 Figure 10.5. PMFs (left) and CDFs (right) of the binomial distribution. The curve of the binomial-distribution depends on the two parameters 𝑝 and 𝑛.

10 DISCRETE RANDOM VARIABLES AND DISTRIBUTIONS 293 Theorem 10 . 7 :

 10293107 (a) at most 10 left-handers, (b) at least 10 left-handers, (c) between 7 and 9 left-handers inclusive, and (d) exactly 13 left-handers. Use Mathematica to find the solutions. Solution The probability of left-handed is 𝑝 = 20/100, 𝑛 = 60. (a) Probability[x<=10,x\[Distributed]BinomialDistribution[60,0.20]] 0.323403 (b) Probability[x>=10,x\[Distributed]BinomialDistribution[60,0.20]] 0.786785 291 (c) Probability[7<=x<=9,x\[Distributed]BinomialDistribution[60,0.20]] 0.182377 (d) Probability[x==13,x\[Distributed]BinomialDistribution[60,0.20]] 0.11799 Example 10.14 Find the probability that in four tosses of a fair die a 3 appears, (a) at no time, (b) once, (c) twice, (d) three times, (e) four times, (f ) five times. Use Mathematica to find the solutions. Solution The probability of 3 in a single toss 𝑝 = 1/6, 𝑛 = 4. (a) Probability[x==0,x\[Distributed]BinomialDistribution[4,1/6]] 625/1296 (b) Probability[x==1,x\[Distributed]BinomialDistribution[4,1/6]] 125/324 (c) Probability[x==2,x\[Distributed]BinomialDistribution[4,1/6]] 25/216 (d) Probability[x==3,x\[Distributed]BinomialDistribution[4,1/6]] 5/324 (e) Probability[x==4,x\[Distributed]BinomialDistribution[4,1/6]] 1/1296 (f ) Probability[x==5,x\[Distributed]BinomialDistribution[4,1/6]] 0 Example 10.15 Find the probability that in a family of 5 children there will be, (a) at least 1 boy (b) at least 1 boy and 1 girl. Assume that the probability of a male birth is 1/2. (c) Out of 4000 families with 5 children each, how many would you expect to have at least 1 boy. Solution (a) Probability[x>=1,x\[Distributed]BinomialDistribution[5,1/2]] 31/32 (b) Probability[(x>=1)&&(0<=x<=4),x\[Distributed]BinomialDistribution[5,1/2]] Probability[(1<=x<=4),x\[Distributed]BinomialDistribution[5,1/2]] 15/16 15/16 (c) Expected number of families with at least 1 boy = (total number of families)( probability at least 1 boy). 4000*15/16 292 Example 10.16 Find the probability that in ten tosses of a coin a head appears. (d) Obtain a table of probabilities for the RV 𝑋, the number of head appears, 𝑋 = 0 to 𝑋 = 10. (e) Plot the probabilities for each value of 𝑋. Solution probabilitydistribution=Table[ { i, N[ Probability[x==i,x\[Distributed]BinomialDistribution[10,1/2]] ] }, {i,0,10} ] {{0,0.000976563},{1,0.00976563},{2,0.0439453},{3,0.117188},{4,0.205078},{5,0.246094},{6,0.20 5078},{7,0.117188},{8,0.0439453},{9,0.00976563},{10,0.000976563}} ListPlot[ probabilitydistribution, PlotStyle->Purple, Filling->Axis, Mesh->All, ImageSize->200, AxesLabel->{"X","probability"} ] Theorem 10.6: If 𝑋 is a binomial RV with parameters 𝑝 and 𝑛, 𝜇 = 𝐸[(𝑋)] = 𝑛𝑝. (10.32) Proof: -1 𝑞 𝑛-𝑥 𝑛 𝑥=1 = 𝑛𝑝(𝑞 + 𝑝) 𝑛-1 = 𝑛𝑝. ∎ CHAPTER If 𝑋 is a binomial RV with parameters 𝑝 and 𝑛, 𝑉(𝑋) = 𝑛𝑞𝑝. (10.33) Proof:

  𝑥(𝑥 -1)(𝑥 -2)(𝑥 -3) + 6𝑥(𝑥 -1)(𝑥 -2) + 7𝑥(𝑥 -1) + 𝑥] ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0

Theorem 10 . 12 :Theorem 10 . 13 :

 10121013 𝑛-𝑥 𝑛 𝑥=0 = (𝑞 + 𝑝𝑒 𝑡 ) 𝑛 . ∎ If 𝑋 ∼ 𝐵(𝑛, 𝑝), 𝑌 ∼ 𝐵(𝑚, 𝑝) and 𝑋 and 𝑌 are independent, then 𝑋 + 𝑌 ∼ 𝐵(𝑛 + 𝑚, 𝑝). (10.39) Proof: 𝑋 ∼ 𝐵(𝑛, 𝑝) and 𝑌 ∼ 𝐵(𝑚, 𝑝) implies 𝑀 𝑋 (𝑡) = (𝑞 + 𝑝𝑒 𝑡 ) 𝑛 and 𝑀 𝑌 (𝑡) = (𝑞 + 𝑝𝑒 𝑡 ) 𝑚 respectively. Since 𝑋 and 𝑌 are independent, 𝑀 𝑋+𝑌 (𝑡) = 𝑀 𝑋 (𝑡) × 𝑀 𝑌 (𝑡) = (𝑞 + 𝑝𝑒 𝑡 ) 𝑛 (𝑞 + 𝑝𝑒 𝑡 ) 𝑚 = (𝑞 + 𝑝𝑒 𝑡 ) 𝑛+𝑚 , which is the MGF of 𝐵(𝑛 + 𝑚, 𝑝). ∎ When 𝑋 ∼ 𝐵(𝑛, 𝑝), 𝜇 𝑟+1 = 𝑝𝑞 (𝑛𝑟𝜇 𝑟-1 + 𝑑𝜇 𝑟 𝑑𝑝 ). (10.40) Proof: 𝜇 𝑟 = 𝐸[𝑋 -𝐸(𝑋)] 𝑟 = 𝐸[𝑋 -𝑛𝑝] 𝑟 = ∑(𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 . Therefore, 𝑑 𝑑𝑝 𝜇 𝑟 = 𝑑 𝑑𝑝 [∑(𝑥 -𝑛𝑝) 𝑟 ( 𝑛 𝑥 ) 𝑝 𝑥 𝑞 𝑛-𝑥 𝑛 𝑥=0 ]

  Queuing theory: The Poisson distribution is commonly used to model the arrival rate of customers in queuing systems, such as waiting lines at banks, call centers, or supermarkets. It helps analyze the waiting times, service rates, and the probability of queue lengths exceeding certain thresholds. • Network traffic analysis: In computer networks and telecommunications, the Poisson distribution is often used to model the arrival rate of packets or messages. It helps in studying network congestion, estimating bandwidth requirements, and designing efficient routing algorithms. • Epidemiology: The Poisson distribution is employed in epidemiological studies to analyze the occurrence of disease outbreaks or the number of cases in a specific population over time. It aids in understanding the spread of infectious diseases, estimating disease rates, and assessing the effectiveness of interventions. • Environmental studies:
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 106 Figure 10.6. PMFs and CDFs of the Poisson-distribution. The curve of the Poisson-distribution depends on the parameters 𝜆.

10 DISCRETE

 10 (a) Find the probability of at most 2 admissions per day (b) The probability of at least 6 admissions per day. Solution (a) N[Probability[x<=2,x\[Distributed]PoissonDistribution[5]]] 0.124652 (b) N[Probability[x>=6,x\[Distributed]PoissonDistribution[5]]] 0.384039 Example 10.19 The average number of traffic accidents on a certain section of highway is three per week. Assume that the number of accidents follows a Poisson distribution with 𝜆 = 3. (a) Find the probability of no accidents on this section of highway during a 1-week period. (b) Find the probability of at most four accidents on this section of highway during a 2-week period. Solution (a) N[Probability[x==0,x\[Distributed]PoissonDistribution[3]]] 0.0497871 (b) N[Probability[x<=4,x\[Distributed]PoissonDistribution[6]]] 0.285057 Example 10.20 Emergency Room Traffic Desert Samaritan Hospital keeps records of emergency room (ER) traffic. Those records indicate that the number of patients arriving between 6: 00 P.M. and 7: 00 P.M. has a Poisson distribution with parameter 𝜆 = 5.8. Determine the probability that, on a given day, the number of patients who arrive at the emergency room between 6: 00 P.M. and 7: 00 P.M. will be (a) exactly 3. (b) at most 3. (c) between 5 and 9, inclusive. (d) Obtain a table of probabilities for the RV 𝑋, the number of patients arriving between 6:00 P.M. and 7:00 P.M, 𝑋 = 0 to 𝑋 = 20. (e) Plot the probabilities for each value of 𝑋. Solution CHAPTER [x==3,x\[Distributed]PoissonDistribution[5.8]]] 0.0951816 (b) N[Probability[x<=3,x\[Distributed]PoissonDistribution[5.8]]] 0.0319518 (c) N[Probability[5<=x<=9,x\[Distributed]PoissonDistribution[5.8]]] 0.821296

  the binomial distribution and (b) the Poisson approximation to the binomial distribution. 𝜆 = 𝑛𝑝 = 10(0.1) = 1. Solution Probability[x==2,x\[Distributed]BinomialDistribution[10,0.1]] 0.19371 N[Probability[x==2,x\[Distributed]PoissonDistribution[1]]] 0.18394 In general, the approximation is good if 𝑝 = 0.1 and 𝑛𝑝 ≤ 5. Theorem 10.16: If 𝑋 is a Poisson RV with parameter 𝜆, 𝜇 = 𝐸[𝑋] = 𝜆. (10.43) Proof:

∎ Theorem 10 . 17 :

 1017 If 𝑋 is a Poisson RV with parameter 𝜆, 𝑉(𝑋) = 𝜆.(10.44) Proof:

  and 𝜎 = √𝜆. ∎ Theorem 10.18: If 𝑋 is a Poisson RV with parameter 𝜆, in a similarly way, we can obtain 𝜇 3 and 𝜇 4 𝜇 3 = 𝜆. (10.45) 𝜇 4 = 3𝜆 2 + 𝜆. (10.46) Theorem 10.19 (Skewness and Kurtosis): If 𝑋 is a Poisson RV with parameter 𝜆,

10 . 20 :Theorem 10 . 21 :

 10201021 If 𝑋 is a Poisson RV with parameter 𝜆, 𝑀 𝑋 (𝑡) = 𝑒 𝜆(𝑒 𝑡 -1) .(10.48) Proof:𝑀 𝑋 (𝑡) = 𝐸[𝑒 𝑡𝑋 ] = ∑ 𝑒 𝑡𝑥 𝑒 -𝜆 𝜆 𝑥 𝑥! ∞ 𝑥=0 = 𝑒 -𝜆 ∑ (𝑒 𝑡 𝜆) 𝑥 𝑥! ∞ 𝑥=0 = 𝑒 -𝜆 𝑒 𝜆𝑒 𝑡 = 𝑒 𝜆(𝑒 𝑡 -1) .∎ If 𝑋 ∼ 𝑃(𝜆 1 ), 𝑌 ∼ 𝑃(𝜆 2 ) and 𝑋 and 𝑌 are independent, then 𝑋 + 𝑌 ∼ 𝑃(𝜆 1 + 𝜆 2 ).(10.49) Proof:

  𝑋 (𝑥) = { ( 𝑥 + 𝑟 -1 𝑥 ) 𝑝 𝑟 𝑞 𝑥 ; 𝑥 = 0, 1,2, … 0 ; otherwise, (10.51) where 𝑟 is the number of successes, 𝑥 is the number of failures, 0 < 𝑝 < 1 and 𝑝 + 𝑞 = 1 and we write 𝑋 ∼ NB(𝑟, 𝑝). (See Figure10.7)
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 10710232223 Figure 10.7. PMFs (left) and CDFs (right) of the negative binomial distribution. The curve of the negative binomial distribution depends on the parameters 𝑟 and 𝑝.

Figure 10 . 8 .Theorem 10 . 24 :

 1081024 Figure 10.8. PMFs (left) and CDFs (right) of the geometric distribution. The curve of the geometric distribution depends on the parameters 𝑝.

  Probability[x==6,x\[Distributed]GeometricDistribution[0.02]] 0.0177168 Example 10.26 Obtain a table of probabilities for the RV 𝑋 ∼ GEO 0 (𝑝), 𝑝 = 0.2, and 𝑋 = 0 to 𝑋 = 20. Plot the probabilities for each value of 𝑋. Solution probabilitydistribution=Table[ { i, N[ Probability[x==i,x\[Distributed]GeometricDistribution[0.2]]

  ): A set of 𝑁 objects contains 𝐾 objects classified as successes and 𝑁 -𝐾 objects classified as failures. A sample of size 𝑛 objects is selected randomly (without replacement) from the 𝑁 objects where 𝐾 ≤ 𝑁 and 𝑛 ≤ 𝑁. The RV 𝑋 that equals the number of successes in the sample is a hypergeometric RV (see Figure10.9). The PMF is 𝑓 𝑋 (𝑥) = max{0, 𝑛 + 𝐾 -𝑁} to min{𝐾, 𝑛}.(10.59) 

Figure 10 . 9 .

 109 Figure 10.9. PMFs (left) and CDFs (right) of the hypergeometric distribution. The curve of the hypergeometric distribution depends on the parameters 𝑛, 𝐾 and 𝑁.

  ≤ 𝑥 ≤ 𝑛. Definition (Discrete Uniform Distribution): A RV 𝑋 has a discrete uniform distribution if each of the 𝑛 values in its range, {𝑥 1 , 𝑥 2 , . . . , 𝑥 𝑛 }, has equal probability (see Figure 10.10). Its PMF is of the form, 𝑓 𝑋 (𝑥) = { 1 𝑏 -𝑎 + 1 ; 𝑥 = 𝑎, 𝑎 + 1, 𝑎 + 2, … 𝑏, 0 ; otherwise. (10.63)

Figure 10 . 10 .Theorem 10 . 25 :

 10101025 Figure 10.10. PMFs (left) and CDFs (right) of the discrete uniform distribution. The curve of the discrete uniform distribution depends on the parameters 𝑎 and 𝑏.

29 Example 10 . 30

 291030 Let us consider an example where we roll a fair six-sided die. In this case, the possible outcomes are the numbers 1, 2, 3, 4, 5, and 6, and each outcome has a probability of 1/6 since the die is fair. (a) What is the probability of rolling a 3? (b) What is the probability of rolling an even number? (c) What is the probability of rolling a number greater than 6? Solution (a) Since there is only one 3 on the die, the probability of rolling a 3 is 1/6.Probability[x==3,x\[Distributed]DiscreteUniformDistribution[{1,6}]] 1/6 (b)There are three even numbers on the die (2, 4, and 6), so the probability of rolling an even number is 3/6 or 1/2.Probability[x==2||x==4||x==6,x\[Distributed]DiscreteUniformDistribution[{1,6}]] 1/2 (c)Since the die only has numbers from 1 to 6, the probability of rolling a number greater than 6 is 0.Probability[x>6,x\[Distributed]DiscreteUniformDistribution[{1,6}]]0 Suppose we have a random number generator that generates integers from 5 to 20, inclusive. Each number between 5 and 20 has an equal probability of being generated, which is

(

  * Plot the PMF: *) ListPlot[ Transpose[{x,p}], PlotRange->All, PlotStyle->Directive[PointSize[0.03],Purple], AxesLabel->{"x","P(X = x)"}, PlotLabel->"Probability Mass Function", ImageSize->250 ] (* Plot the CDF: *) ListPlot[ Transpose[{x,cdf}], PlotRange->All, PlotStyle->Directive[PointSize[0.03],Purple],AxesLabel->{"x","P(X <= x)"}, PlotLabel->"Cumulative Distribution Function", code demonstrates how to define a discrete random variable using the Module function and calculate its PMF, CDF, expected value, variance, and standard deviation. In this code, the Module function is used to encapsulate the variables and calculations. The x variable represents the possible values of the random variable, and the probabilities variable represents the probabilities associated with each value. The PMF is calculated by creating a list pmf that contains the probabilities corresponding to each value. The CDF is computed using the Accumulate function on the PMF. The expected value is calculated by multiplying each value of x with its corresponding probability and summing them up. The variance is computed by summing the squared deviations of the random variable from its expected value, and the standard deviation is obtained by taking the square root of the variance: *) (* Define the discrete random

  than 1: *) p6=Probability[(x<=4||x<3)&&x>1,x\[Distributed]dist]; (* Probability of x being equal to 3: *) p7=Probability[x==3,x\[Distributed]dist]; (* Probability of x being an even number: *) p8=Probability[EvenQ[x],x\[Distributed]dist]; (* Probability of x being divisible by 3: *) p9=Probability[Mod[x,3]==0,x\[Distributed]dist]; (* Probability of x being less than or equal to 2 or greater than or equal to 5: *) p10=Probability[x<=2||x>=5,x\[Distributed]dist]; (* Probability of x being an odd number and less than or equal to 4: *) p11=Probability[OddQ[x]&&x<=4,x\[Distributed]dist]; (* Probability of x being a prime number: *) [x],x\[Distributed]dist]; (* Probability of x being between 2 and 4 (inclusive): *) p13=Probability[2<=x<=4,x\[Distributed]dist]; (* Probability of x being an even number or a multiple of 3: *) p14=Probability[EvenQ[x]||Mod[x,3]==0,x\[Distributed]dist]; (* Probability of x being a multiple of 4: *) p15=Probability[Mod[x,4]==0,x\[Distributed]dist]; (* Probability of x being an even number and less than 4: *) p16=Probability[EvenQ[x]&&x<4,x\[Distributed]dist]; (* Probability of x being a perfect square: *) p17=Probability[Sqrt[x]\[Element]Integers,x\[Distributed]dist]; (* Probability of the square of x being greater than 10: *) p18=Probability[x^2>10,x\[Distributed]dist]; (* Probability of the logarithm of x being greater than 2: *) p19=Probability[Log[x]>2,x\[Distributed]dist]; (* Probability of the reciprocal of x being less than 0.2: *) p20=Probability[1/x<0.2,x\[Distributed]dist];

6

 6 probability of an impossible event is 0: *) Probability[x==7,x\[Distributed]{1,2,3,4,5,6}] Output 0 Input (* The probability of a certain event is 1: *) Probability[1<=x<=6,x\[Distributed]{1,2,3,4,5,6}] Output 1 Input (* The probability of an arbitrary event must lie between 0 and 1: *) Probability[1<x<4,x\[Distributed]{1,2,3,4,5,6}] Output 1/3 Input (* The probability of a discrete univariate distribution is given by the PDF: *) PDF[PoissonDistribution[m],5] Probability[x==5,x\[Distributed]PoissonDistribution[mthe probability of a simple event: *) Probability[x<=5,x\[Distributed]PoissonDistribution[m]] E^-m (120+120 m+60 m^2+20 m^3+5 m^4+m^5) Output 1/120 E^-m (120+120 m+60 m^2+20 m^3+5 m^4+m^5)Input (* Compute the probability of nonlinear and logical combination of inequalities: *) Probability[x^2>3\[Or]Abs[x]<1,x\[Distributed]{1,2no Assumptions, conditions are generated: *) Probability[x<a,x\[Distributed]DiscreteUniformDistribution[{2,Assumptions, a result valid under the given assumptions is returned: *) Probability[x<a,x\[Distributed]DiscreteUniformDistribution[{2,8}],Assumptions->5<a<7] Assuming[5<a<7,Probability[x<a,x\[Distributed]DiscreteUniformDistribution[{2,8}]NProbability to find the numerical value for the probability of an event: *) dist=PoissonDistribution[1]; {N[Probability[x<=2,x\[Distributed]dist]],NProbability[x<=2,x\[Distributed]dist]} Output {0.919699,0.919699} Input (* The code demonstrates the principle that the probability of the union of disjoint events is the sum of the individual probabilities, and when the events are not disjoint, the intersection probability needs to be subtracted to calculate the correct union probability: *) (* Define the individual events: the probability distributions for the events: *) dist=DiscreteUniformDistribution[{0,20}]; (* Calculate the individual probabilities: *) prob1=Probability[event1,x\[Distributed]dist]; prob2=Probability[event2,x\[Distributed]dist]; prob3=Probability[event3,x\[Distributed]dist]; prob4=Probability[event2\[And]event3,x\[Distributed]dist]; (* Calculate the union probability: *) unionProbability1=Probability[event1||event2,x\[Distributed]dist]; (* The probability of the union of disjoint events is the sum of the individual probabilities: *) unionProbability2=prob1+prob2; (* Calculate the union probability: *) unionProbability3=Probability[event2||event3,x\[Distributed]dist]; (* For non-disjoint events, one needs to subtract the probability of an intersection event: *) unionProbability4=prob2+prob3-prob4; (*Display the results*) Print["Probability of event 1: ",prob1]; Print["Probability of event 2: ",prob2]; Print["Probability of event 3: ",prob3]; Print["Probability of event 4 (intersection event): ",prob4]; Print["Probability of the union of disjoint events (event1 and event2): ",unionProbability1," , ",unionProbability2]; Print["Probability of the union of non-disjoint events (event2 and event3): ",unionProbability3," , ",unionProbability4]; Output Probability of event 1: 5/21 Output Probability of event 2: 10/21 Output Probability of event 3: 2/7 Output Probability of event 4 (intersection event): 4/21 Output Probability of the union of disjoint events (event1 and event2): 5/7, 5/7 Output Probability of the union of non-disjoint events (event2 and event3): 4/7, 4/7 Input (* Define the probability distribution for random variable X: *) d={1,2,3,4,5,6,7,8,9};(* Define the events a and b: *) a=x>=2; b=x<4; (* Calculate the conditional probability of A given B: *) pAgivenB1=Probability[a\[Conditioned]b,x\[Distributed]d]; pAgivenB2=Probability[a\[And]b,x\[Distributed]d]/Probability[b,x\[Distributed]d]; pAgivenB1==pAgivenB2 (* Calculate the conditional probability of B given A:*) pBgivenA3=Probability[b\[Conditioned]a,x\[Distributed]d]; pBgivenA4=Probability[a\[And]b,x\[Distributed]d]/Probability[a,x\[Distributed]d]; pBgivenA3==pBgivenA4 (*Display the results*) Print["Conditional probability P(A|B) = ",pAgivenB1,", Conditional probability P(B|A) = ",pBgivenA3]; Output True Output True Output Conditional probability P(A|B) = 2/3 , Conditional probability P(B|A) = 1/4 Input (* The code generates a list of 1000 random values from a discrete uniform distribution between 1 and 6. It defines two events, A and B, where event A represents values greater than 3 and less than 5,and event B represents values greater than 2 and less than 5. The code then estimates the conditional probability P(A|B) and P(B|A) using the Probability function with the sample data. It also calculates the frequency of each value in the sample data using Tally. The results are displayed, showing the frequency of each value in the sample data, the estimated conditional probability P(A|B), and the estimated conditional probability P(B|A).*) (* Generate a list of 1000 random values from a discrete uniform distribution: events A and B: *) A[x_]:=5>x>3; (* Event A:5>x>3.*) B[x_]:=5>x>2; (* Event B:5>x>2.*) 329 (* Estimate the conditional probability P(A|B): *) conditionalProbab=Probability[A[x]\[Conditioned]B[x],x\[Distributed]sampleData]; (* Estimate the conditional probability P(B|A): *) conditionalProbba=Probability[B[x]\[Conditioned]A[x],x\[Distributed]sampleData]; (* Calculate frequency of each value in the sample data: *) freq=Tally[sampleData]; (* Display the results: *) Print["freq = ",freq] (* Display the frequency of each value in the sample data. *) Print["Estimated conditional probability P(A|B) = ",conditionalProbab] (* Display the estimated conditional probability P(A|B). *) Print["Estimated conditional probability P(B|A) = ",conditionalProbba] (* Display the estimated conditional probability P(B|A). *) Output freq = {{2,168},{5,146},{3,166},{6,162},{1,177},{4,181}} Output Estimated conditional probability P(A|B) = 181/347 Output Estimated conditional probability P(B|A) = 1 Input (* In this example, the sample data represents the grades of 100 students, randomly chosen from the set {"A","B","C","D","F"}. The events A and B are defined based on the grades, where event A represents getting an A or B grade, and event B represents getting a B or C grade. The conditional probabilities P(A|B) and P(B|A) are estimated using the Probability function with the sample data. The frequency of each grade value in the sample data is calculated using Tally, and the results are displayed using Print: *) (*Generate sample data*) sampleData=RandomChoice[{"A","B","C","D","F"},100]; (*Define events A and B*) A[x_]:=x=="A"||x=="B"; (* Event A: Getting an A or B grade. *) B[x_]:=x=="B"||x=="C"; (* Event B: Getting a B or C grade. *) (* Estimate the conditional probability P(A|B): *) conditionalProbab=Probability[A[x]\[Conditioned]B[x],x\[Distributed]sampleData]; (* Estimate the conditional probability P(B|A): *) conditionalProbba=Probability[B[x]\[Conditioned]A[x],x\[Distributed]sampleData]; (* Calculate frequency of each value in the sample data: *) freq=Tally[sampleData]; (* Display the results: *) Print["freq = ",freq] (* Display the frequency of each value in the sample data. *) Print["Estimated conditional probability P(A|B) = ",conditionalProbab] (* Display the estimated conditional probability P(A|B).*) Print["Estimated conditional probability P(B|A) = ",conditionalProbba] (* Display the estimated conditional probability P(B|A). *) Output freq = {{B,21},{A,20},{F,18},{C,21},{D,20}} Output Estimated conditional probability P(A|B) = 1/2 Output Estimated conditional probability P(B|A) = 21/41 Input (* A conditional probability is a ratio of two probabilities:*) expr1=x^2<30; expr2=x>1; Probability[expr1\[Conditioned]expr2,x\[Distributed]PoissonDistribution[2]] Probability[expr1&&expr2,x\[Distributed]PoissonDistribution[2]]/Probability[expr2,x \[Distributed]PoissonDistribution[2]] Output 64/(15 (-3+E^2)) conditional probability is 0 if the events are mutually exclusive:*) expr1=3<x<5; expr2=x>7; Probability[expr1\[Conditioned]expr2,x\[Distributed]PoissonDistribution[2]] Probability[expr2\[Conditioned]expr1,x\[Distributed]PoissonDistribution[univariate distribution:*) p=Probability[x^2>12\[Conditioned]x>2,x\[Distributed]PoissonDistribution[m]] E^m+6 m+3 m^2+m^3)/(6-6 E^m+6 m+3 m^2) Output PDF[dist,x]

Examples 11. 3

 3 PDF Input (* The first line defines the Negative Binomial distribution with parameters 20 and 1/3, the second line calculates the PDF for a specific value (5), and the third line defines a symbolic expression for the PDF as a function of the variable x: *) dist=NegativeBinomialDistribution[20,1/3] PDF[NegativeBinomialDistribution[20,1/3],5] PDF[NegativeBinomialDistribution[20,1/3]code creates a Binomial distribution and plots its PDF over the range of 0 to 20: *) pdf1=PDF[BinomialDistribution[n,p],x] dist=BinomialDistribution[20,1/2](* Create a Binomial distribution with n=20 and p=1/2. *) pdf=PDF[BinomialDistribution[20,1/2],x] (* Generate PDF of a Binomial distribution with n=20 and p=1/2. *) DiscretePlot[ pdf, {x,0,20}, ExtentSize->0.5, resulting 3D plot visualizes the PMF of the Multivariate Poisson distribution with specific parameter values n=1, a=2,and b=3. The plot allows you to observe the PMF values for different combinations of x and y within the specified ranges. Each cell in the plot represents the PMF value for a specific x and y combination: *) pdf1=PDF[MultivariatePoissonDistribution[n,{a,b}],{x,y}] pdf=PDF[MultivariatePoissonDistribution[1,{2,3}],{x,y}] 𝑒 -a-b-n (-n) x HypergeometricU[-x, 1 -x + y, -((a b)/n)

Input ( *

 * The code demonstrates the equivalence between Expectation and Mean in finding the expected value of an expression in a distribution specified by a list. The code begins by generating a list r of random variates drawn from a Poisson distribution with a mean of 0.5. Then, it calculates the expectation of the expression x^2+3 x+11 by using the Expectation function and specifying x as distributed according to the list r. To compare this with the mean of the expression, the code explicitly constructs a table where each element is obtained by evaluating the expression for each value in the list r. The Mean function is then used to calculate the arithmetic average of these values: *) NExpectation to find the numerical value of an expectation: *) dist=PoissonDistribution[1];N[Expectation[E^(-x^2),x\[Distributed]dist]] NExpectation[E^(-x^2),x\[Distributed]distcode computes the conditional expectation of the expression x^2+1, considering a specific condition x>1/2. It utilizes the Expectation function and specifies the variable x to follow a Poisson distribution with a mean of 0.5. By using the conditioning operator \ [Conditioned], the code narrows down the calculation to values of x that satisfy the given condition. The result is the average value of x^2+1 under the specified condition: *) Expectation[x^2+1\[Conditioned]x>1/2,x\[Distributed]PoissonDistribution[0.the conditional expectation with general nonzero probability conditioning: *) e=Expectation[x^2+12\[Conditioned]x>2,x\[Distributed]PoissonDistribution[λ]] 2 (-12-13 λ-8 λ^2+E^λ (12+λ+λ^2)))/(2-2 E^λ+2 λ+λ^2)) Output Input (* A conditional expectation is defined by a ratio of expectation and probability: *) d=ExponentialDistribution[λ]; expr=x^2; cond=x>1; Expectation[expr\[Conditioned]cond,x\[Distributed]d]==Expectation[Piecewise[{{expr, cond}}],x\[Distributed]d]/Probability[cond,x\[Distributed]d] Output True

  the PMF: *) pmf[k_]:=PDF[dist,k] (* Calculate the CDF: *) cdf[n_]:=Sum[ pmf[k], {k,0,n} ] (* Plot the PMF and CDF: *) DiscretePlot[ {pmf[k],cdf[k]}, {k,0,10}, PlotRange->All, PlotLegends->{"PMF","CDF"}, ImageSize->200 ] Output Input (* The CDF of a univariate discrete distribution:*) CDF for a multivariate Poisson distribution:*) DiscretePlot3D[ CDF[MultivariatePoissonDistribution[5,{2,3}],{x,y}], {x,probability of x<=a for a univariate distribution is given by its CDF:*) { Probability[x<=5,x\[Distributed]GeometricDistribution[1univariate CDF is 0 at -∞ and 1 at ∞:*) CDF[DiscreteUniformDistribution[{0,5}],-∞] CDF[DiscreteUniformDistribution[{0,5}],∞] Output 0 Output 1

  [dist])),x\[Distributed]dist] } ] Output {e 3(-1+e 𝑡 ) , e 3(-1+e 𝑡 ) } Output {e 3(-1+e 𝑡 -𝑡) , e 3(-1+e 𝑡 -𝑡) } EstimatedDistribution[data,dist] estimates the parametric distribution dist from data. Mathematica Examples 11.7 EstimatedDistribution Input (* The code generates a sample of 10000 values from a discrete Poisson distribution and estimates the distribution parameters (μ) from the sample using the EstimatedDistribution function. It then compares the density histogram of the sample with the PDF of the estimated distribution: the density histogram of the sample with the PDF of the estimated distribution: *) Show[ Histogram[ sampledata, {1}, "PDF", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple, this example, we use the binomial function with parameters n=10 (number of trials) and p=0.5 (probability of success). We calculate the probability mass function (PMF) using the Binomial function and plot it using ListPlot: *) n=10; (* Number of trials. *) p=0.5; (* Probability of success. *) (* Define a discrete random variable with a binomial distribution: *) x=Range[0,n]; pmf=Table[ Binomial[n,k]*p^k*(1-p)^(n-k), {k,0,n} ]; (* Plot the PMF: *) ListPlot[ Transpose[{x,pmf}], Filling->Axis, PlotRange->All, PlotStyle->Purple, AxesLabel->{"x","P(X = x)"}, PlotLabel->"Binomial Distribution PMF", code generates a discrete plot of the PMF for a binomial distribution with parameters n=30 and three different values of p (0.2, 0.5, and 0.7). The plot shows the values of the PMF for all possible values of k between 0 and 37: , PlotLegends->Placed[{"n=30,p=0.2","n=30,p=0.5","n=30,p=0.7"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PMF"} ] Output Mathematica Examples 11.10 Input (* The code generates a discrete plot of the cumulative distribution function (CDF) for a binomial distribution with parameters n=30 and three different values of p (0.2, 0.5, and 0.7). The plot shows the values of the CDF for all possible values of k between 0 and 37: , PlotRange->All, PlotMarkers->Automatic, PlotLegends->Placed[{"n=30,p=0.2","n=30,p=0.5","n=30,p=0.7"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"code generates a discrete plot of the PMF for a binomial distribution with three different values of n (10, 20, and 30) and p=0.5. The plot shows the values of the PMF for all possible values of k between 0 and 37: , PlotLegends->Placed[{"p=0.5,n=10","p=0.5,n=20","p=0.5,n=30"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PMF"} ] Output Mathematica Examples 11.12 Input (* The code generates a discrete plot of the CDF for a binomial distribution with three different values of n (10, 20, and 30) and p=0.5. The plot shows the values of the CDF for all possible values of k between 0 and 37: *) , PlotMarkers->Automatic, PlotLegends->Placed[{"p=0.5,n=10","p=0.5,n=20","p=0.5,n=30"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} code generates a histogram and a discrete plot of the PMF for a binomial distribution with parameters n=10, p=0.4 and sample size 10000: *)

Input ( *

 * This code generates a random sample of size 10,000 from a binomial distribution with parameters n=40 and p=0.5, estimates the distribution parameters using the EstimatedDistribution function, and then compares the histogram of the sample with the estimated PDF of the binomial distribution using a histogram and a discrete plot of the PDF: *) sampledata=RandomVariate[ BinomialDistribution[40,.5], 10^4 ]; 347 (* Estimate the distribution parameters from sample data: *) ed=EstimatedDistribution[ sampledata, BinomialDistribution[n,p] ] (* Compare a density histogram of the sample with the PDF of the estimated distribution:

  Input (* The code generates a dataset of 1000 observations from a binomial distribution with parameters n=30 and p=0.3. Then, it computes the sample mean and quartiles of the data, and plots a histogram of the data using the "PDF" option to display the probability density function. Additionally, the code adds vertical lines to the plot corresponding to the sample mean and quartiles: *) ,Thickness[0.006]], Line[{{mean,0},{mean,0.25}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.25}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.25}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.25}}] }, ColorFunction->Function[{height},Opacity[height]], ImageSize->320, ChartStyle->Purple, PlotRange->{{0,20},{0,0.2}} ] Output Mathematica Examples 11.18 Input (* The code creates a dynamic histogram of data generated from a binomial distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of n, p, and m, which are the parameters of the binomial distribution and the sample size: *) ,"n"},1,100,1}, {{p,0.5,"p"},0,1,0.01}, {{m,100,"m"},10,1000,10} ] 349 Output Mathematica Examples 11.19 Input (* The code creates a plot of the CDF of a binomial distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters n and p, respectively: *) ,n},{0,1}}, Epilog->{Text[StringForm["n = `` & p = ``",n,p],{n/2,0.9}]}, AxesLabel->{"x","CDF"}, ImageSize->320, PlotStyle->Purple ], {{n,10},1,100,1}, {{p,0.5},0,1,0.01} ] Output Mathematica Examples 11.20 Input (* The code uses the Grid function to create a grid of two plots, one for the PDF and one for the CDF, both of which are discrete plots. The DiscretePlot function is used to create the plots, with the probability density or cumulative probability on the y-axis and the number of successes (k) on the x-axis. The code uses slider controls to adjust the values of n and p: n}, PlotRange->{{0,n},{0,1}}, PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"PDF of Binomial Distribution", AxesLabel->{"k","PDF"} ]n}, PlotRange->{{0,n},{0,1}}, PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"CDF of Binomial Distribution", AxesLabel->{"k","CDF"} ] } }, Spacings->{5,5} ], {{n,10,"n"},1,50,1}, {{p,0.5,"p"},0,1,0a basketball player has a free throw success rate of 80%. Simulate 15 free throws. Also, we can use the binomial distribution to calculate the probability of the player hits 2 out of 4 free throws in a game: *) RandomVariate[BernoulliDistribution[0.8],15]/. {0->"Miss",1->"Hit"} Probability[x==2,x\[Distributed]BinomialDistribution[4,0.8]] Output {Miss,Hit,Hit,Hit,Hit,Hit,Hit,Hit,Hit,Hit,Hit,Hit,Hit,Hit,we flip a fair coin 100 times. We can use the binomial distribution to compute the probability that there are between 60 and 70 heads in 100 coin flips: *) h[n_]:=BinomialDistribution[n,0, suppose that for an unfair coin the probability of heads is 0.58: *) uh[n_]:=BinomialDistribution[n,0.58]; code computes the probability that there are between 60 and 80 heads in n coin flips of an unfair coin with probability of heads given by p and generates a table of probabilities for different values of n between 100 and 200 in steps of 25. The plot shows how the probability varies with the value of p, the probability of heads: *) (* Compute the probability that there are between 60 and 80 heads in n coin flips of an unfair coin with the probability of heads is p: *) coin flips takes the values 100, 125, 150, 175 and 200: of an unfair coin with {p,0.1,0.9}: *) Plot[ newprob, {p,0.1,0.9}, PlotRange->All, Filling->Axis, ImageSize->320, 352 PlotLegends->Placed[{"n=100","n=125","n=150","n=175","n=200"},{0.15,0.7}] ] Output Mathematica Examples 11.24 Input (* Two players, A and B, are playing a game where their chances of winning are in the ratio of 3 to 2. We want to determine the probability that A wins at least three games out of a total of five games played: *) p=3/5;(* probability that A wins a game. *) q=1-p;(* probability that A loses a game. *) n=5;(* total number of games played. *) (* The probability that out of n games played, A wins 'r' games is given by binomial distribution. *) (* create binomial distribution with parameters n and p. *) dist=BinomialDistribution[n,p]; , by specifying the event r>=3 (i.e., A wins three, four, or five games): *) f[i_]=N[ number of heads in n flips with a fair coin can be modeled with BinomialDistribution: *) heads[n_]:=BinomialDistribution[n,1/2] (* Show the distribution of heads for 100 coin flips: *) DiscretePlot[ PDF[heads[100],k], {k,0,100}, PlotRange->All, PlotStyle->{Purple,PointSize[0.005]}, ImageSize->250 ] (* Compute the probability that there are between 60 and 80 heads in 100 coin flips: *) NProbability[60<=x<=80,x\[Distributed]heads[100]] (* Now, suppose that for an unfair coin the probability of heads is 0.6: *) uheads[n_]:=BinomialDistribution[n,0.6]; (* The distribution and the corresponding probabilities have changed: *) DiscretePlot[ PDF[uheads[100],k], {k,0,100}, PlotRange->All, PlotStyle->{Purple,PointSize[0.005]}, ImageSize->250 ] Probability[60<=x<=80,x\[Distributed]uheads[100this example, we assume a binomial distribution with parameters n=10 and p=0.5. We define the distribution using dist=BinomialDistribution[10,0.5]. We define the support of the distribution using support=Range[0,10]. We calculate the PMF for each support value using pmf=PDF[dist,#]&/@support. This applies the PDF function to each value in the support list and stores the results in the pmf list. We sum the PMF values using Total[pmf]. This sums all the elements in the pmf list, providing the sum over the support of the distribution. The result should be 1, indicating that the sum over the support of the distribution is equal to unity: *) dist=BinomialDistribution[10,0.5]; (* Example distribution. *) support=Range[0,10] (* Support of the distribution. *) pmf=PDF[dist,#]&/@support (* Calculate the PMF for each support value. *) Total[pmf] (* Sum the PMF values. this example, we calculate the probability mass function (PMF) using the formula Exp[-lambda]*lambda^k/k! and plot it using ListPlot, lambda=4 (average number of events): *) lambda=4; (* Average number of events. *) (* Define a discrete random variable and calculate the PMF: *) x=Range[0,10]; pmf=Table[ Exp[-lambda]*lambda^k/k!, {k,0,10} ]; (* Plot the PMF: *) ListPlot[ Transpose[{x,pmf}], Filling->Axis, PlotRange->All, PlotStyle->Purple, AxesLabel->{"x","P(X = x)"}, PlotLabel->"Poisson Distribution PMF", code generates a discrete plot of the PMF for a Poisson distribution with three different values of parameter λ= (4, 8, and 16). The plot shows the values of the PMF for all possible values of i between 0 and 32: , PlotLegends->Placed[{"λ=4","λ=8","λ=16"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PMF"} ] Output Mathematica Examples 11.29 Input (* The code generates a discrete plot of the cumulative distribution function (CDF) for a Poisson distribution with three different values of parameter λ= (4, 8, and 16). The plot shows the values of the CDF for all possible values of k between 0 and 3232}, ExtentSize->Right, PlotRange->All, PlotMarkers->Automatic, PlotLegends->Placed[{"λ=4","λ=8","λ=16"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"code generates a histogram and a discrete plot of the PMF for a Poisson distribution with parameters λ=4 and sample size 10000: *) code calculates and displays some descriptive statistics (mean, variance, standard deviation, kurtosis, and skewness) for a Poisson distribution with parameter λ: *) Grid[

  "Poisson with mean 3","Poisson with mean 6"}, ChartStyle->{Directive[Opacity[0.5],Red],Directive[Opacity[0.6],Purple]}, ImageSize->Medium, ImageSize->320 ] Output Mathematica Examples 11.36 Input (* The code defines a Manipulate that creates a discrete Poisson distribution with parameter lambda, generates n random variates from the distribution, and plots a histogram of the sample. The Manipulate includes sliders to control the value lambda and n: *) code creates a plot of the CDF of a Poisson distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameter (λ) lambda: *) Function of Poisson Distribution with λ = ``" ,lambda], Filling->Axis, FillingStyle->LightPurple, ImageSize->320, PlotStyle->Purple 362 code uses the Manipulate function to create an interactive plot that shows the PMF and CDF of a Poisson distribution with parameter λ. The user can adjust the value of λ using a slider: *) ,x], {x,0,40}, PlotRange->{{0,40},{0,0.4}}, PlotStyle->{Purple,PointSize[0.02]}, ExtentSize->Full, AxesLabel->{"x","PMF"}, ImageSize->250, Filling->Axis, FillingStyle->Purple, PlotLabel->StringForm[" λ = ``",lambda] ], Plot[ CDF[dist,x], {x,0,40}, PlotStyle->{Purple,Thickness[0.007]}, AxesLabel->{"k","CDF"}, ImageSize->250, PlotLabel->StringForm[" λ = ``",lambda] code generates 10,000 random samples from both the binomial and Poisson distributions, and then plots their histograms using the Histogram function. The resulting plot shows that the two histograms are nearly identical, indicating that the two distributions converge as n becomes large and p becomes small: code uses Manipulate to allow the user to adjust the number of trials n and the success probability p of the binomial distribution. The code then generates 10000 samples from both the binomial and Poisson distributions, and plots the histograms of these samples on the same graph, with different colors: ChartStyle->Directive[Opacity[0.5],Blue], PlotRange->Full, PlotLabel->"Binomial and Poisson Distributions" ,"Number of trials"},1,200,10}, {{p,0.5,"Success probability"},0.05,1,0code uses Manipulate to allow the user to adjust the rate parameter lambda of the Poisson distribution. The code then generates 10000 samples from both the binomial and Poisson distributions with fixed values of n=50 and p=0.2, and plots the histograms of these samples on the same graph, showing how the Poisson distribution becomes a better approximation of the binomial distribution as lambda increases: PlotRange->Full, ImageSize->320, ChartStyle->Directive[Opacity[0.5],Blue], PlotLabel->"Binomial and Poisson Distributions" that Poisson distribution is a limiting case for binomial distribution with p=μ/n: *) bd=PDF[BinomialDistribution[n,μ/n],k] lbd=Limit[bd,n->∞] FullSimplify[lbd-PDF[PoissonDistribution[μ],k],k>=0] Output { {\[Piecewise], { {(μ/n)^k (1-μ/n)^(-k+n) Binomial[n,k], 0<=k<=n}, the daily accidents: *) (* The first part of the code generates a list of 20 random values from a Poisson distribution with λ=50, which simulates the number of accidents in a city on a daily basis: second part of the code calculates the probability of having 40 or more accidents in a single day: *) Probability[ x>=40, x\[Distributed]PoissonDistribution[50.] ] (* The third part of the code calculates the standard deviation of the Poisson distribution with λ=50: *) StandardDeviation[ PoissonDistribution[50.] ] Output {41,52,55,62,58,57,49,53,50,47,53,68,50,55,45,54,45,64,59,54} the raindrop count for each 5-second interval*) (* The code simulates the count of raindrops falling into a bucket in a 5 -second interval based on a Poisson distribution with a mean of 50. It then plots the simulated data using ListPlot. The code then calculates the probability of exactly 20 raindrops falling into the bucket in a 5-second interval: *) ,51,47,52,49,50,42,49,48,47,52,42,46,57,46,51,60,62,45,52,55,61,46,47,56,47,a book of 650 pages 200 typographical errors occur. Assuming Poisson law for the number of errors per page: *) (* Tbe average number of typograpbical errors per page in the book is given by: *) λ=200/650.0 (* The probability that a page will contain no error is: *) Probability[x==0,x\[Distributed]PoissonDistribution[λ]] (* The probabilities that a page will contain {0,1,2,...,10} errors are: *) errorsofapage=Table[ Probability[x==i,x\[Distributed]PoissonDistribution[λ]following code will simulate the above results by generating a large number of trials (in this case, 1 million trials). For each trial, it simulates the number of errors on 1 page using the Poisson distribution with an average of λ. It then counts the number of trials where there are no errors in the 1 page. Finally, it calculates the estimated probability by dividing the count of no errors by the total number of trials: *) λ=200/650; (*Average number of errors per page*) numTrials=10^6; (*Number of trials for simulation*) countNoErrors=0; (*Counter for no errors in 1 page*) Do[ errors=RandomVariate[PoissonDistribution[λ],1];(*Simulate errors for 1 page*) If[Total[errors]==0,countNoErrors++],(*Check if no errors*) {numTrials} ] countNoErrors estimatedProbability=N[countNoErrors/numTrials] (*Estimate the probability*,0.226197,0.0347996,0.00356919,0.000274553,0.0000168956,8.6644*10^-7,3.80853*10^-8,1.46482*10^-9,5.00792*10^-11,1.5409*10^a book of 650 pages 200 typographical errors occur. Assuming Poisson law for the number of errors per page: *) (* Tbe average number of typograpbical errors per 3 page in the book is given by: *) λ=(200/650.0); (* The required probability that a random sample of 3 pages will contain no error is: *) (Probability[x==0,x\[Distributed]PoissonDistribution[λ]])^3 (* Also we can use the following code: *) probabilities that 3 pages will contain {0,1,2,...,10} errors are: *) errorsof3page=Table[ Probability[x==i,x\[Distributed]PoissonDistribution[(200/650.0)*3]following code will simulate the above results by generating a large number of trials (in this case, 1 million trials). For each trial, it simulates the number of errors on 3 pages using the Poisson distribution with an average of λ. It then counts the number of trials where there are no errors in the 3 pages. Finally, it calculates the estimated probability by dividing the count of no errors in the 3 pages by the total number of trials: *) λ=200/650; (*Average number of errors per page*) numTrials=10^6; (*Number of trials for simulation*) countNoErrors=0; (*Counter for no errors in 3 pages*) Do[ errors=RandomVariate[PoissonDistribution[λ],3];(*Simulate errors for 3 pages*) If[Total[errors]==0,countNoErrors++],(*Check if no errors*) {numTrials} ] countNoErrors estimatedProbability=N[countNoErrors/numTrials] (*Estimate the probability*,0.366734,0.169262,0.0520805,0.0120186,0.00221881,0.000341356,0.000045014, 5.19392*10^-6,5.3271*10^-7,4.91732*10^that the quantity of phone calls received by a phone exchange within a particular time frame is random, let us say that the number of calls received between 10 A.M. and 11 A.M. is represented by X1, and it follows a Poisson distribution with a parameter of 2. In the same way, the number of calls received between 11 A.M. and 12 noon, X2, follows a Poisson distribution with a parameter of 6

  , PlotLegends->Placed[{"r=2,p=0.1","r=2,p=0.2","r=2,p=0.3"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->250, AxesLabel->{None,"PMF"code generates a discrete plot of the cumulative distribution function (CDF) for a negative binomial distribution with parameters r=2 and three different values of p (0.1, 0.2, and 0.3). The plot shows the values of the CDF for all possible values of k between 0 and 25: , PlotLegends->Placed[{"r=2,p=0.1","r=2,p=0.2","r=2,p=0.3"},{0.8,0.3}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->250, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 11.50 Input (* The code generates a histogram and a discrete plot of the PMF for a negative binomial distribution with parameters r=10, p=0.3 and sample size 10000: *) data=RandomVariate[NegativeBinomialDistribution[10,0.3],10^4]; code calculates and displays some descriptive statistics (mean, variance, standard deviation, kurtosis, and skewness) for a negative binomial distribution with parameters r and p: *) code calculates and displays some additional descriptive statistics (moments, central moments, and factorial moments) for a negative binomial distribution with parameters r and p: /p) r ((-1+p) r (-1+(-1+p) r))/p^2 CentralMoment 0 (r-p r)/p^2 FactorialMoment (-1+1/p) r (-1+1/p)^2 r (1+r) Mathematica Examples 11.53 Input (* This code generates a random sample of size 10,000 from a negative binomial distribution with parameters r=30 and p=0.5, estimates the distribution parameters using the EstimatedDistribution function, and then compares the histogram of the sample with the estimated PDF of the negative binomial distribution using a histogram and a discrete plot of the PDF: the distribution parameters from sample data: *) ed=EstimatedDistribution[ sampledata, NegativeBinomialDistribution[r,p] ] (* Compare a density histogram of the sample with the PDF of the estimated distribution: code generates a dataset of 1000 observations from a negative binomial distribution with parameters r=30 and p=0.3. Then, it computes the sample mean and quartiles of the data, and plots a histogram of the data using the "PDF" option to display the probability density function. Additionally, the code adds vertical lines to the plot corresponding to the sample mean and quartiles: Directive[Red,Thickness[0.006]], Line[{{mean,0},{mean,0.25}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.25}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.25}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.25}}] }, ColorFunction->Function[{height},Opacity[height]]code creates a dynamic histogram of data generated from a negative binomial distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of r, p, and m, which are the parameters of the negative binomial distribution and the sample size: ,"r"},1,50,1}, {{p,0.5,"p"},0,1,0.01}, {{m,500,"m"},100,10000,100} ] Output Mathematica Examples 11.56 Input (* The code creates a plot of the CDF of a negative binomial distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters r and p, respectively: ,r},{0,1}}, Epilog->{Text[StringForm["r = `` & p = ``",r,p],{r/2,0.9}]}, AxesLabel->{"x","CDF"}, ImageSize->320, PlotStyle->Purple ], {{r,10},1,100,1}, {{p,0.5},0,1,0.01} ] code uses the Grid function to create a grid of two plots, one for the PDF and one for the CDF, both of which are discrete plots. The DiscretePlot function is used to create the plots, with the probability density or cumulative probability on the y-axis and the number (k) on the x-axis. The code uses slider controls to adjust the values of r and p: *) r}, PlotRange->{{0,r},{0,1}}, PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"PDF of Negative Binomial Distribution", AxesLabel->{"k","PDF"}, ,r},{0,1}}, PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"CDF of Negative Binomial Distribution", AxesLabel->{"k","CDF"}, ImageSize-number of tails before getting 3 heads with a fair coin: *) heads3=NegativeBinomialDistribution[3,1/2]; (* Plot the distribution of tail counts: the probability of getting at least 7 tails before getting 3 heads: *) this example, we calculate the probability mass function (PMF)of the geometric distribution with parameter p=0.3 (probability of success) using the formula p*(1p)^k and plot it using ListPlot: *) p=0.3; (* Probability of success: *) (* Define a discrete random variable with a geometric distribution: *) x=Range[0,10]; pmf=Table[ p*(1-p)^k, {k,0,10} ]; (* Plot the PMF: *) ListPlot[ Transpose[{x,pmf}], PlotRange->All, AxesLabel->{"x","P(X = x)"}, PlotLabel->"Geometric Distribution PMF"code generates a discrete plot of the PMF for a geometric distribution with three different values of parameter p= (0.1, 0.2, and 0.4). The plot shows the values of the PMF for all possible values of k between 0 and 15: , PlotLegends->Placed[{"p=0.1","p=0.2","p=0.4"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->250, AxesLabel->{None,"PMF"} ] Output Mathematica Examples 11.61 Input (* The code generates a discrete plot of the cumulative distribution function (CDF) for a geometric distribution with three different values of parameter p= (0.1, 0.2, and 0.4). The plot shows the values of the CDF for all possible values of k between 0 , PlotRange->All, PlotMarkers->Automatic, PlotLegends->Placed[{"p=0.1","p=0.2","p=0.4"},{0.8,0.3}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->250, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 11.62 Input (* The code generates a histogram and a discrete plot of the PMF for a Geometric Distribution with parameters p=0.1 and sample size 10000: code generates a sample of 10000 values from a discrete geometric distribution and estimates the distribution parameters (p) from the sample using the EstimatedDistribution function. It then compares the density histogram of the sample with the PDF of the estimated distribution: *) the distribution parameters from sample data: *) ed=EstimatedDistribution[ sampledata, GeometricDistribution[p] ] (* Compare the density histogram of the sample with the PDF of the estimated distribution: *) code calculates and displays some descriptive statistics (mean, variance, standard deviation, kurtosis, and skewness) for a geometric distribution with parameter λ: *) Grid[

  Epilog->{ Directive[Red,Thickness[0.005]], Line[{{Mean[data],0},{Mean[data],0.1}}], Directive[Green,Dashed], Line[{{Quantile[data,0.25],0},{Quantile[data,0.25],0.1}}], Line[{{Quantile[data,0.5],0},{Quantile[data,0.5],0.1}}], Line[{{Quantile[data,0.75],0},{Quantile[data,0.75],0.1}}] }, Frame->True, FrameLabel->{"x","PDF"}, LabelStyle->Directive[Bold,Medium], ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple, ImageSize->320, AxesLabel->{None,"PDF"} ] code generates two sets of random data from geometric distributions with different means (p1=0.2 and p2=0.4) and creates a histogram to compare the distributions: "p1=0.2","p2=0.4"}, ChartStyle->{Directive[Opacity[0.5],Red],Directive[Opacity[0.6],Purple]}, ImageSize->Medium, ImageSize->320 ] Output Mathematica Examples 11.68 Input (* The code defines a Manipulate that creates a discrete geometric distribution with parameter p, generates n (Sample size) random variates from the distribution, and plots a histogram of the sample. The Manipulate includes sliders to control the value p and n (Sample size): *) 3,"p"},0.1,0.9,0.05}, {{n,1000,"Sample size"},100,5000,100} ] Output Mathematica Examples 11.69 Input (* The code creates a plot of the CDF of a geometric distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameter p: *) Function of Geometric Distribution with p = ``" code uses the Manipulate function to create an interactive plot that shows the PMF and CDF of a geometric distribution with parameter p. The user can adjust the value of p using a slider: *) [dist,x], {x,0,40}, PlotStyle->{Purple,Thickness[0.007]}, AxesLabel->{"k","CDF"}, ImageSize->250, coin-tossing experiment consists of tossing a fair coin repeatedly until a tail results. Simulate the process: the probability that at least 4 coin tosses will be necessary: sum over the support of the distribution is unity: *) PDF[GeometricDistribution[p],k] code generates a discrete plot of the probability mass function (PMF) for a hypergeometric distribution with K=50, N=100 and three different values of n= (10, 20 and 50). The plot shows the values of the PMF for all possible values of x between 0 , PlotLegends->Placed[{"n=10, K=50, N=100","n=20, K=50, N=100","n=50, K=50, N=100"},{0.6,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7]code generates a discrete plot of the cumulative distribution function (CDF) for a hypergeometric distribution with K=50, N=100 and three different values of n= (10, 20 and 50). The plot shows the values of the CDF for all possible values of x between , PlotLegends->Placed[{"n=10, K=50, N=100","n=20, K=50, N=100","n=50, K=50, N=100"},{0.7,0.5}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7]code generates a discrete plot of the PMF for a hypergeometric distribution with three different values of K= (10,20,50), N=100 and n=40. The plot shows the values of the PMF for all possible values of x between 0 and 35: , PlotMarkers->Automatic, PlotLegends->Placed[{"K=10, n=40, N=100","K=20, n=40, N=100","K=50, n=40, N=100"},{0.6,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7]code generates a discrete plot of the CDF for a hypergeometric distribution with three different values of K= (10,20,50), N=100 and n=40. The plot shows the values of the CDF for all possible values of x between 0 and 35: , PlotMarkers->Automatic, PlotLegends->Placed[{"K=10, n=40, N=100","K=20, n=40, N=100","K=50, n=40, N=100"},{0.7,0.5}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->300, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 11.77 Input (* The code generates a discrete plot of the PMF for a hypergeometric distribution with K=50, three different values of N= (60,80,100) and n=40. The plot shows the values of the PMF for all possible values of x between 15 and 40: *) PlotRange->All, PlotMarkers->Automatic, PlotLegends->Placed[{"n=40, K=50, N=60","n=40, K=50, N=80","n=40, K=50, N=100"},{0.25,0.8}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, code generates a discrete plot of the CDF for a hypergeometric distribution with K=50, three different values of N= (60,80,100) and n=40. The plot shows the values of the CDF for all possible values of k between 15 and 40: *) , PlotLegends->Placed[{"n=40, K=50, N=60","n=40, K=50, N=80","n=40, K=50, N=100"},{0.7,0.5}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 11.79 Input (* The code generates a histogram and a discrete plot of the PMF for a hypergeometric distribution with parameters n=20, K=50, N=100 and sample size 10000: *) code calculates and displays some descriptive statistics (mean, variance, standard deviation, kurtosis, and skewness) for a hypergeometric distribution with parameters n, K, and N: *) cvmit: Failed to converge to the requested accuracy or precision within 100 iterations. HypergeometricDistribution[10,31,62] Output Mathematica Examples 11.83 Input (* The code generates a dataset of 1000 observations from a hypergeometric distribution with parameters n=10, K=30 and N=60. Then, it computes the sample mean and quartiles of the data, and plots a histogram of the data using the "PDF" option to display the probability density function. Additionally, the code adds vertical lines to the plot corresponding to the sample mean and quartiles: *) ,Thickness[0.006]], Line[{{mean,0},{mean,0.3}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.3}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.3}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.3}}] 396 }, ColorFunction->Function[{height},Opacity[height]], ImageSize->320, ChartStyle->Purple, PlotRange->{{0,10},{0,0.3}} ] Output Mathematica Examples 11.84 Input (* The code creates a dynamic histogram of data generated from a hypergeometric distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of n, K, N, and m, which are the parameters of the Hypergeometric Distribution and the sample size: *) "n"},5,10,1}, {{K,10,"K"},10,20,1}, {{N,20,"N"},20,60,1}, {{m,100,"m"},10,1000,10} ] Mathematica Examples 11.87 Input (* Suppose there are 5 defective items in a batch of 10 items, and 6 items are selected for testing. Simulate the process of testing when the number of defective items found is counted: the probability that there are 2 defective items in the sample: *) NProbability[ x==2, x\[Distributed]HypergeometricDistribution[6,5,10] ] Output {2,2,4,2,3,3,2,2,3,4,3,2,4,2,4,4,2,3,3US citizens and 40 non-US citizens pass through a security line at an airport. Ten are randomly selected for further screening. What is the probability that 3 or fewer of the selected passengers are US citizens: *) (* Create the Hypergeometric distribution: *) dist=HypergeometricDistribution[10,30,70]; (* Find the probability that 3 or fewer US citizens are selected: this example, we define the random variable x as a range from 1 to n and set the probability mass function (PMF) pmf as a uniform distribution. Each outcome has an equal probability of 1/n. We then plot the PMF using ListPlot: *) n=5; (* Number of outcomes. *) (* Define a discrete random variable with a uniform distribution: *) x=Range[code generates a discrete plot of the PMF for a discrete uniform distribution with parameters a=1 and three different values of b (8, 12, and 16). The plot shows the values of the PMF for all possible values of j between 0 and 26: , PlotLegends->Placed[{"a=1,b=8","a=1,b=12","a=1,b=16"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->250, AxesLabel->{None,"PMF"} ] Output Mathematica Examples 11.92 Input (* The code generates a discrete plot of the cumulative distribution function (CDF) for a discrete uniform distribution with parameters a=1 and three different values of b (8, 12, and 16). The plot shows the values of the CDF for all possible values of k between 0 and 26: *) DiscretePlot[ Evaluate[

  (a+b)/2 1/3 (a^2+a (-2+b)+(-1+b) b) Mathematica Examples 11.96 Input (* The code generates a histogram of 500 random samples drawn from a discrete uniform distribution with a range of -10 to 10. The histogram is displayed with the "PDF" option, which normalizes the bin heights to represent a probability density function. The x-axis ranges from -10.5 to 10.5 with a bin size of 1. The mean and quartiles of the data are also displayed as vertical lines in red and green, respectively: ,Thickness[0.006]], Line[{{Mean[data],0},{Mean[data],0.04}}], Directive[Green,Dashed], Line[{{Quantile[data,0.25],0},{Quantile[data,0.25],0.04}}], Line[{{Quantile[data,0.5],0},{Quantile[data,0.5],0.04}}], Line[{{Quantile[data,0.75],0},{Quantile[data,0.75],0.04}}] }, Frame->True, FrameLabel->{"x","PDF"}, 405 LabelStyle->Directive[Bold,Medium], ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple, ImageSize->320, AxesLabel->{None,"PDF"} ] Output Mathematica Examples 11.97 Input (* The code defines a Manipulate that creates a discrete uniform distribution with parameters a and b, generates m random variates from the distribution, and plots a histogram of the sample. The Manipulate includes sliders to control the values of a, b, and m. The Epilog option of the Show function adds a text label to the plot that displays the mean of the distribution. The mean is calculated as the average of a and b, and is formatted using ToString and Style: *) 10,"Minimum Value a"},-10,10,1}, {{b,11,"Maximum Value b"},-9,11,1}, {{m,1000,"Sample Size"},10,1000,10}, Initialization:>(dist=DiscreteUniformDistribution[{a,b}];) ] code defines a Manipulate that creates a discrete uniform distribution with minimum value 1 and maximum value n, and plots its CDF using the Plot function. The Manipulate includes a slider to control the value of n. The plot displays the CDF of the distribution, which is the probability that a random variate from the distribution is less than or equal to a given value x: ,"Number of Elements"},2,30,1}, Initialization:>(dist=DiscreteUniformDistribution[{1,n}];) code creates a Manipulate with sliders for the lower and upper bounds of the discrete uniform distribution. As you move the sliders, the code generates plots of both the PDF and CDF for the new parameters: code generates a sample of 500 values from a discrete uniform distribution with support {2, 3, 4, 5} and estimates the distribution parameters (a and b) from the sample using the EstimatedDistribution function. It then compares the density histogram of the sample with the PDF of the estimated distribution: *) sampledata=RandomVariate[ DiscreteUniformDistribution[{2,5}], the density histogram of the sample with the PDF of the estimated distribution: code defines a discrete uniform distribution on the integers 1 through 6 and generates a random sample of size 1000 from the distribution. It then counts the number of times each possible outcome occurs in the sample: *) dist=DiscreteUniformDistribution[{1,6}]; data=RandomVariate[dist,1000]; Count[data,#]&/@Range[6] Output {174,187,162,158,152,167} Mathematica Examples 11.102 Input (* The code defines a discrete uniform distribution on the integers 1 through 6 and generates a random sample of size 1000 from the distribution. It then calculates the empirical and exact probabilities of each possible outcome and plots them on a bar chart: *)

  Suppose you have a set of measurements on a continuous RV, and you create a relative frequency histogram to describe their distribution. For a small number of measurements, you could use a small number of classes; then as more and more measurements are collected, you can use more classes and reduce the class width. The outline of the histogram will change slightly, for the most part becoming less and less irregular, as shown in Figure 12.1.a As the number of measurements becomes very large and the class widths become very narrow, the relative frequency histogram appears more and more like the smooth curve shown in Figure 12.1.c. This smooth curve describes the probability distribution of the continuous RV.

Figure 12 . 1 .

 121 Figure 12.1. Relative frequency histograms for increasingly large sample sizes.
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  Definition (PDF): For a continuous RV 𝑋, a PDF is a function such that 𝑓(𝑥) ≥ 0, ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥 𝑏 𝑎 = area under 𝑓(𝑥) from 𝑎 to 𝑏 for any 𝑎 and 𝑏. (12.1.3) (See Figure 12.2.).

Figure 12 . 2 .

 122 Figure 12.2. Probability as an area under a curve.

2 .

 2 If 𝑋 and 𝑌 are independent, then 𝑀 𝑋+𝑌 = 𝑀 𝑋 (𝑡)𝑀 𝑌 (𝑡).(12.7) That is, the MGF of the sum of two independent RVs is the product of the MGFs of the individual RVs. The result can be extended to 𝑛 RVs. 3. Let 𝑌 = 𝑎𝑋 + 𝑏. Then 𝑀 𝑌 (𝑡) = 𝐸[𝑒 (𝑎𝑋+𝑏)𝑡 ] = 𝐸[𝑒 𝑎𝑡𝑋+𝑏𝑡 ] = 𝐸[𝑒 𝑏𝑡 𝑒 𝑎𝑡𝑋 ] = 𝑒 𝑏𝑡 𝑀 𝑋 (𝑎𝑡). (12.8) 419 12.

9 )

 9 ): A RV 𝑋 is said to have a continuous uniform distribution over an interval [𝑎, 𝑏] if its PDF is given by 𝑓 𝑋 (𝑥) Definition (CDF of Uniform Continuous Distribution): The CDF 𝐹(𝑥) of U(𝑎, 𝑏) is given by 𝐹 𝑋 (𝑥) = { 0 ; 𝑥 < 𝑎 , 𝑥 -𝑎 𝑏 -𝑎 ; 𝑎 ≤ 𝑥 ≤ 𝑏, 1 ; 𝑥 > 𝑏. (12.10) Since 𝐹 𝑋 (𝑥) is not continuous at 𝑥 = 𝑎 and 𝑥 = 𝑏, it is not differentiable at these points. Thus 𝑑 𝑑𝑥 𝐹(𝑥) = 𝑓(𝑥) = 1 𝑏 -𝑎 ≠ 0, exists everywhere except at the points 𝑥 = 𝑎 and 𝑥 = 𝑏 and consequently we get the PDF 𝑓(𝑥), (see Figure 12.3).

Figure 12 . 3 .

 123 Figure 12.3. PMF (left) and CDF (right) of continuous uniform distribution. The curve of the continuous uniform distribution depends on the two parameters 𝑎 and 𝑏.

2 . 2 Example 12 . 4 583333 Example 12 . 5

 22124583333125 Thus, there is a 20% chance of this solid melting between 125 and 130 C.NProbability[125<x<130,x \[Distributed] UniformDistribution[{120,145}]] 0.If 𝑋 is uniformly distributed over the interval [0,12], compute the probability that (a) 3 < 𝑋 < 8, (b) 1 < 𝑋 < 7, (c) 𝑋 < 10, (d) 𝑋 > 5.SolutionThe PDF is given by: ,x \[Distributed] UniformDistribution[{0,12}]] 0.833333 NProbability[5<x,x \[Distributed] UniformDistribution[{0,12}]] 0.If 𝑋 is uniformly distributed over the interval [0,10], compute the probability that (a) 2 < 𝑋 < 5 and 𝑋 > 3, (b) |𝑋 -4| < 2, Solution The PDF is given by: the continuous random variable*) ux=UniformDistribution[{0,10}]; (*Calculate the probabilities of complex events*) prob1=N[Probability[2<x<5&&x>3,x\[Distributed]ux]] prob2=N[Probability[Abs[x-4]<2,x\[Distributed]ux]] (*Plot the results*) [Blue,Thickness[0.025]],Directive[Red,Thickness[0.015]],Purple},Filling->Axis, PlotLegends->{"Event 1","Event 2","PDF"},

Figure 12 . 4 .

 124 Figure 12.4. PMF (left) and CDF (right) of continuous exponential distribution. The curve of the continuous exponential distribution depends on the one parameter 𝜆.

7

 7 Suppose you are studying the time between earthquakes occurring in a particular region. Historical data suggests that earthquakes occur randomly and independently with an average interarrival time of 20 years. What is the probability that the waiting time until the next earthquake occurs between 10 to 25 years.

𝑃( 10 ≤

 10 𝑋 ≤ 25) = 𝐹(25) -𝐹(10) = 0.320026. dist=ExponentialDistribution[1/20]; NProbability[10<=x<=25,x \[Distributed] dist] N[CDF[ dist,25]-CDF[ dist,10]] 0.320026 0.320026

4 :

 4 𝑃(min(𝑋 1 , 𝑋 2 , … , 𝑋 𝑛 ) > 𝑥) = 𝑃(𝑋 1 > 𝑥, 𝑋 2 > 𝑥, … , 𝑋 𝑛 > 𝑥) = ∏ 𝑃(𝑋 𝑖 > 𝑥) 𝑐𝑋 is exponential RV with parameter 𝜆/𝑐 when 𝑋 is exponential RV with parameter 𝜆, and 𝑐 > 0.

1 ))

 1 𝐹 𝑋 (𝑥) = 𝐹 𝑋 (𝑥; 𝑘, 𝜃) = ∫ 𝑓(𝑢; 𝑘, 𝜃)𝐹 𝑋 (𝑥) = 𝐹 𝑋 (𝑥; 𝛼, 𝛽) = ∫ 𝑓(𝑢; 𝛼, 𝛽)or 𝛾(𝛼, 𝛽𝑥) is the lower incomplete gamma function.

Figure 12 . 5 .

 125 Figure 12.5. PMF (left) and CDF (right) of continuous gamma distribution. The curve of the continuous gamma distribution depends on the two parameters 𝑘 and 𝜃.

For a normal 2 √𝜋Figure 12 . 6 .

 2126 Figure 12.6. PMF (left) and CDF (right) of normal distribution. The curve of the normal distribution depends on the two parameters 𝜇 and 𝜎.

10 . 12 .

 1012 All odd-order central moments are zero. i.e., 𝜇 2𝑟+1 = 0, 𝑟 = 0,1,2, . .. 11. Even order central moments are given by 𝜇 2𝑟 = 1.3.5 . . . (2𝑟 -1)𝜎 2𝑟 , 𝑟 = 0, 1, 2, . ..435The points of inflection of the curve are 𝑥 = 𝜇 ± 𝜎 13. The lower and upper quartiles are equidistant from the median. 14. The area under the normal curve is distributed as:(a) 68.27% of the items lie between 𝜇 -𝜎 and 𝜇 + 𝜎. i. e. , 𝑃(𝜇 -𝜎 ≤ 𝑋 ≤ 𝜇 + 𝜎) = 0.6827. (b) 95.45% of the items lie between 𝜇 -2𝜎 and 𝜇 + 2𝜎.

Theorem 12 . 8 :

 128 The mean and variance of 𝑋 ∼ 𝑁(𝜇, 𝜎) are 𝐸[𝑋] = 𝜇, (12.30) 𝑉(𝑋) = 𝜎 2 .

∎Theorem 12 . 10 :

 1210 (being the integral of an odd function) = 0 If 𝑋 is a normal RV with parameters 𝜇 and 𝜎, then the even order central moments are given by, 𝜇 2𝑟 = (1)(3)(5) … (2𝑟 -1)𝜎 2𝑟 .(12.33) Proof:

11 (

 11 Third and Fourth Raw Moment): If 𝑋 is a normal RV with parameters 𝜇 and 𝜎, 𝜇 2 = 𝜎 2 and 𝜇 4 = 3𝜎 4 .

  , then for any constants 𝑎 and 𝑏, 𝑏 ≠ 0, the RV 𝑌 = 𝑎 + 𝑏𝑋 is also a normal RV with parameters, 𝐸[𝑌] = 𝐸[𝑎 + 𝑏𝑋] = 𝑎 + 𝑏𝐸[𝑋] = 𝑎 + 𝑏𝜇, (12.39) and variance 𝑉(𝑌) = 𝑉(𝑎 + 𝑏𝑋) = 𝑏 2 𝑉(𝑋) = 𝑏 2 𝜎 2 . (12.40) Proof: Let 𝐹 𝑌 (𝑦) be the distribution function of 𝑌. Then, for 𝑏 > 0 𝐹 𝑌 (𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑎 + 𝑏𝑋 ≤ 𝑦) 𝐹 𝑋 is the distribution function of 𝑋. Similarly, if 𝑏 < 0, then 𝐹 𝑌 (𝑦) = 𝑃(𝑎 + 𝑏𝑋 ≤ 𝑦)

∎ 12 . 2 . 5 1 𝜎Theorem 12 . 18 (

 122511218 Standard Normal DistributionFrom (12.39) and(12.40), if 𝑏 = Standardizing a Normal RV): If 𝑋 is a normal RV with 𝐸[𝑋] = 𝜇 and 𝑉(𝑋) = 𝜎 2 , the RV RV with 𝐸[𝑍] = 0 and 𝑉(𝑍) = 1. 𝑍 is called a standard normal RV. We write 𝑍 ∼ 𝑁(0,1).

  satisfies all the properties of normal distribution provided 𝜇 = 0 and 𝜎 = 1. Some of them are the following.1. The curve of 𝑓(𝑧) is symmetrical about the ordinate at 𝑧 = 0. 2. The curve of 𝑓(𝑧) is maximum at 𝑧 = 0 and the maximum ordinate is

1 - 11 1 (* 2 444

 11112 Determine the standard scores of students receiving the grades (a) 65, (b) 92, and (c) 74. 2-Find the grades corresponding to the standard scores (a) -1 and (b) 1.6. + 𝑧𝜎 = 70 + (-1)14 = 56. (b) 𝑋 = 𝜇 + 𝑧𝜎 = 70 + (1.6)14 = 92.4. Example 12.10 𝑋 ∼ 𝑁(20,4). Find the probability that the value taken by 𝑋 is (a) less than 24. (b) greater than 24. (c) between 18 and 22. Solution: (a) Given 𝑋 ∼ 𝑁(20,4). Therefore, 𝜇 = 20 and 𝜎 = 2. -1 < 𝑍 < 1). NProbability[18<x<22,x \[Distributed] NormalDistribution[20,2]] NProbability[-1<x<1,x \[Distributed] NormalDistribution[0Find the 𝑧 𝛼 , 𝛼 = {0.025, 0.05, 0.10, 0.5, 0.90, 0.95, 0.975}. Solution Part The symbol αleft denotes the areas under the standard normal curve to the left of the corresponding z-score: *) αleft={0.025,0.05,0.10,0.5,0.90,0.95,0.975} (* The variable αright represents the complement of the αleft, which denotes the areas under the standard normal curve to the right of the corresponding z-score: *) αright=1-αleft (* The Quantile function is used to calculate the z-scores corresponding to the specified αleft under the standard normal curve. This provides the critical values for confidence intervals or hypothesis testing: *) N[Quantile[NormalDistribution[0,1],αleft]] (* The InverseCDF function is an alternative method to compute the z-scores corresponding to the αleft under the standard normal curve. It yields the same critical values as the Quantile function: *) InverseCDF[NormalDistribution[0,1],αleft] {0.025,0.05,0.1,0.5,0.9,0.95,0.975} {0.975,0.95,0.9,0.5,0.1,0.05,0.025} {-1.95996,-1.64485,-1.28155,0.,1.28155,1.64485,1.95996} {-1.95996,-1.64485,-1.28155,0.,1.28155,1.64485,1.95996} Part dist=NormalDistribution[0,1]; (*Define a normal distribution with mean 0 and standard deviation 1*) αleft={0.025,0.05,0.10,0.5,0.90,0.95,0.975}; αright=1-αleft; q=N[Quantile[dist,αleft]]; (*Calculate quantiles based on the αleft*) Plot[ PDF[dist,x],(*Plot the probability density function (PDF) of the normal distribution*) {x,-3,3}, (* The'Epilog' option adds white vertical lines at the quantiles corresponding to the αleft, and blue text labels indicating the complement αleft:
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 7 Figure12.7. Plot of binomial for 𝑛 = 30 and 𝑝 = 0.5 and normal curve with mean 𝜇 = 𝑛𝑝 and standard deviation 𝜎 = √𝑛𝑝𝑞.
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 6 The number of trials in the binomial distribution *) n=12; (* The probability of success in each trial *) p=1/2; (* Calculating the mean of the normal approximation distribution *) μ=n*p (* Calculating the standard deviation of the normal approximation distribution *) σ=Sqrt[n*p*(1-p)] p4=Probability[x==4,x\[Distributed]BinomialDistribution[n,p]] (* Probability of exactly 4 successes *) p5=Probability[x==5,x\[Distributed]BinomialDistribution[n,p]] (* Probability of exactly 5 successes *) p6=Probability[x==6,x\[Distributed]BinomialDistribution[n,p]](* Probability of exactly 6 successes *) p7=Probability[x==7,x\[Distributed]BinomialDistribution[n,p]] (* Probability of exactly 7 successes *) (* Total probability by summing individual probabilities *) total=N[p4+p5+p6+p7] (* Probability of getting a value between 4 and 7 (inclusive) in the binomial distribution *) NProbability[4<=x<=7,x\[Distributed]BinomialDistribution[n,p]] (* Probability of getting a value between 3.5 and 7.5 (inclusive) in a normal distribution *) Probability[3.5<=x<=7.5,x\[Distributed]NormalDistribution[μ,σ]] code plots the PMF of the binomial distribution with parameters n (number of trials) and p (probability of success). It also plots the PDF of the normal distribution with parameters μ=n*p (mean) and σ=Sqrt[n*p*(1-p)] (standard deviation): *) n=12;(* The number of trials in the binomial distribution*) p=0.5; (* The probability of success in each trial*) μ=n*p;(* Calculating the mean of the normal approximation distribution *) σ=Sqrt[n*p*(1-p)]; (* Calculating the standard deviation of the normal approximation distribution *) Show[ (* Plotting the PDF of the normal distribution: *) Plot[ PDF[NormalDistribution[μ,σ],x], {x,0,12}, PlotRange->All, 448 PlotLegends->Placed[{"μ=np,σ2=npq"},{0.8,0.75}], PlotStyle->Blue, ImageSize->300 ], (* Plotting the PMF of the binomial distribution: *) DiscretePlot[ Evaluate[ PDF[BinomialDistribution[n,p],k] ], {k,0,12}, PlotRange->All, PlotMarkers->Automatic, PlotStyle->Purple, PlotLegends->Placed[{"n=12,p=0.5"},{0.8,0.85}], ImageSize->300, AxesLabel->{None,"PMF"} ] ] 12.4 Normal Distribution as a Limiting Form of Poisson Distribution The relation between the Poisson and normal distributions is another important concept in probability and statistics. It arises from the approximation of the Poisson distribution by the normal distribution under certain conditions. When the average rate parameter 𝜆 of the Poisson distribution is large, the Poisson distribution can be approximated by a normal distribution with the same mean and variance. That is, a Poisson RV 𝑋 with parameter 𝜆 is approximately normally distributed with mean 𝜇 = 𝜆 and standard deviation 𝜎 = √𝜆. Definition (Normal Approximation to the Poisson Distribution): If 𝑋 is a Poisson RV with 𝐸[(𝑋)] = 𝜆 and 𝑉(𝑋) = 𝜆, is approximately a standard normal RV. The same continuity correction used for the binomial distribution can also be applied. The approximation is good for 𝜆 > 5. Example 12.13 Let 𝑋 is a Poisson RV with rate parameter 𝜆 = 20, find the probability of 𝑋 getting between 12 and 15 by using (a) the Poisson distribution and (b) the normal approximation to the Poisson distribution. Solution Note that even though the Poisson distribution is discrete, it has the shape of the continuous normal distribution. When approximating the Poisson probability at 𝑋 = 12, 𝑋 = 13, 𝑋 = 14, and 𝑋 = 15 by the area under the normal curve, find the normal curve area from 𝑋 = 11.5 to 𝑋 = 15.5. The 0.5 that you go on either side of 𝑋 = 12 and 𝑋 = 15 is the continuity correction. The following are the steps to follow when approximating the Poisson with 449 the normal. Choose the normal curve with mean 𝜆 = 20 and standard deviation √𝜆 = √20. You are choosing the normal curve with the same center and variation as the binomial distribution. Then find the area under the curve from 11.5 to 15.5. This is the normal approximation to the Poisson distribution. λ=20; (* Poisson rate parameter*) μ=λ;(* Calculating the mean of the normal approximation distribution *) σ=Sqrt[λ];(* Calculating the standard deviation of the normal approximation distribution *) p12=NProbability[x==12,x\[Distributed]PoissonDistribution[λ]] (* Probability of exactly 4 successes *) p13=NProbability[x==13,x\[Distributed]PoissonDistribution[λ]] (* Probability of exactly 5 successes *) p14=NProbability[x==14,x\[Distributed]PoissonDistribution[λ]](* Probability of exactly 6 successes *) p15=NProbability[x==15,x\[Distributed]PoissonDistribution[λ]] (* Probability of exactly 7 successes *) (* Total probability by summing individual probabilities *) total=N[p12+p13+p14+p15] (* Probability of getting a value between 4 and 7 (inclusive) in the binomial distribution *) NProbability[12<=x<=15,x\[Distributed]PoissonDistribution[λ]] (* Probability of getting a value between 3.5 and 7.5 (inclusive) in a normal distribution *) Probability[11.5<=x<=15.5,x\[Distributed]NormalDistribution[μ,σ]] code plots the PMF of the Poisson distribution with parameter λ. It also plots the PDF of the normal distribution with parameters μ=λ (mean) and σ=Sqrt[λ] (standard deviation). :*) λ=20; (* Poisson rate parameter *) μ=λ;(* Calculating the mean of the normal approximation distribution *) σ=Sqrt[λ];(* Calculating the standard deviation of the normal approximation distribution *) Show[ (*Plotting the PDF of the normal distribution*) Plot[ PDF[NormalDistribution[μ,σ],x], {x,0,40}, PlotRange->All, PlotLegends->Placed[{"μ=λ,σ2=λ"},{0.8,0., PlotMarkers->Automatic, PlotStyle->Purple, PlotLegends->Placed[{"λ=15"},{0.8,0.85}], ImageSize->300, AxesLabel->{None,"PMF"} 450 ] ]
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 128 Figure 12.8. Histogram, ProbabilityPlot, and QuantilePlot of normal distribution (first column), gamma distribution (second column) and uniform distribution (third column). ProbabilityPlot[list] generates a plot of the CDF of list against the CDF of a normal distribution. QuantilePlot[list] generates a plot of quantiles of list against the quantiles of a normal distribution.

  * Define a continuous distribution: *) dist=NormalDistribution[0,1]; (* Define the PDF and CDF functions: *) pdf[x_]:=PDF[dist,x] cdf[x_]:=Integrate[pdf[t],{t,-Infinity,x}] (* Choose a specific value to evaluate: *) x=1.5; (* Compute the CDF using the manual integration: *) manualCDF=cdf[x] (* Compute the CDF using the built-in CDF function: *) builtInCDF=CDF[dist,x] (* Compare the results: *) CDF is the integral of the PDF for continuous distributions F(x)=∫ 𝑓(ξ[λ],x], {x,0,y}, Assumptions->λ>0&&y\[Element]Reals ]] CDF[ExponentialDistribution[λ],y] Output { 1 -𝑒 -y λ y > PDF and CDF of a univariate continuous distribution: *) PDF[NormalDistribution[μ,σ],x] CDF[NormalDistribution[μ,σ],x] MomentGeneratingFunction[NormalDistribution[μ,σ],x] Mean[NormalDistribution[μ,σ]] Variance[NormalDistribution[μ,σ]] probability of x<=a for a univariate distribution is given by its CDF: *) { Probability[x<=a,x\[Distributed]NormalDistribution[]], CDF[NormalDistribution[]univariate CDF is 0 at -∞ and 1 at ∞:*) CDF[NormalDistribution[],-∞] CDF[NormalDistribution[],∞] the probability of x<=3.5 for normal distribution with μ=3, σ=1: *) p01=NProbability[x<=3.5,x\[Distributed]NormalDistribution[3,1]]; p02=N[CDF[NormalDistribution[3,1],3.5]]; p03=N[1-CDF[NormalDistribution[3,1],2.5]];(* From symmetry of normal distribution about the mean at μ=3: *) the probability of x<=1 for normal distribution with μ=0, σ=2: *) p04=NProbability[x<=1,x\[Distributed]NormalDistribution[0,2]]; p05=N[CDF[NormalDistribution[0,2],1]]; p06=N[1-CDF[NormalDistribution[0,2],-1]];(* From symmetry of normal distribution about the mean at μ=0: *) the probability x>3.5 for normal distribution with μ=3, σ=1: *) p07=NProbability[x>3.5,x\[Distributed]NormalDistribution[3,1]]; p08=1-CDF[NormalDistribution[3,1],3.5]; p09=CDF[NormalDistribution[3,1],2.5];(* From symmetry of normal distribution about the mean at μ=3: *) {p07,p08,p09} Output {0.308538,0.308538,0.308538} Mathematica Examples 13.9 Input (* Compute the probability of x>1 for normal distribution with μ=0, σ=2: *) p010=NProbability[x>1,x\[Distributed]NormalDistribution[0,2]]; p011=N[1-CDF[NormalDistribution[0,2],1]]; p012=N[CDF[NormalDistribution[0,2],-1]];(* From symmetry of normal distribution about the mean at μ=0: *) the probability of |𝑥|<3.5 for normal distribution with μ=3, σ=1: *) p013=NProbability[Abs[x]<3.5,x\[Distributed]NormalDistribution[3,1]]; p014=NProbability[-3.5<x<3.5,x\[Distributed]NormalDistribution[3,1]]; p015=CDF[NormalDistribution[3,1],3.5]-CDF[NormalDistribution[3,1],-3.5]; (* Note that CDF[NormalDistribution[3,1],-3.5]=4.016000583859125`*10^-11=0 since the mean at μ=3: *) p016= CDF[NormalDistribution[3,1],3.5]; p017=1-CDF[NormalDistribution[3,1],2.5]; (* From symmetry of normal distribution about the mean at μ=3: *) {p013,p014,p015,p016,p017} Output {0.691462,0.691462,0.691462,0.691462,0.691462} Mathematica Examples 13.11 Input (* Compute the probability of |𝑥|<1 for normal distribution with μ=0, σ=2: *) p018=NProbability[Abs[x]<1,x\[Distributed]NormalDistribution[0,2]]; p019=NProbability[-1<x<1,x\[Distributed]NormalDistribution[0,2]]; p020=N[CDF[NormalDistribution[0,2],1]-CDF[NormalDistribution[0,2],-1]]; p021=N[1-CDF[NormalDistribution[0,2],-1]-(1-CDF[NormalDistribution[0,2],1])]; p022=N[1-2 CDF[NormalDistribution[0,2],-1]]; (* From symmetry of normal distribution about the mean at μ=0: *) p023=N[1-2(1-CDF[NormalDistribution[0,2],1])];(* From symmetry of normal distribution about the mean at μ=0: *) {p018,p019,p020,p021,p022, p023} Output {0.382925,0.382925,0.382925,0.382925,0.382925,0.382925} the probability of |𝑥|>3.5 for normal distribution with μ=3, σ=1: *) p024=NProbability[Abs[x]>3.5,x\[Distributed]NormalDistribution[3,1]]; p025=NProbability[x<-3.5||3.5<x,x\[Distributed]NormalDistribution[3,1]]; p026=CDF[NormalDistribution[3,1],-3.5]+(1-CDF[NormalDistribution[3,1],3.5]); (* Note that CDF[NormalDistribution[3,1],-3.5]=4.016000583859125`*10^-11=0 since the mean at μ=3: *) p027=(1-CDF[NormalDistribution[3,1],3.5]); p028=CDF[NormalDistribution[

  8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PDF"} ] Output Mathematica Examples 13.19 Input (* The code generates a plot of the CDF of Uniform distribution with different values of max= (2, 3 and 4) and min=0: *) , PlotLegends->Placed[{"a=0,b=2","a=0,b=3","a=0,b=4"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 13.20 Input (* The code generates a histogram and a plot of the PDF for Uniform distribution with parameters min=1 and max=3 and sample size 10000: *) code creates a dynamic histogram of data and a plot of the PDF generated from Uniform distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of min and max, which are the parameters of the Uniform distribution and the sample size: *) "min"},1,4,0.1}, {{max,4.5,"max"},4.5,7,0.1}, {{n,300,"n"},100,1000,10} ] code creates a plot of the CDF of Uniform distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters min and max, respectively: *) , PlotLabel->Row[{"min = ",min,", max = ",max}], AxesLabel->{"x","CDF"}, ImageSize->320, PlotStyle->Purple ], {{min,1,"min"},1,4,0.1}, {{max,4.5,"max"},4.5,7,0code uses the Grid function to create a grid of two plots, one for the PDF and one for the CDF of Uniform distribution. The code uses slider controls to adjust the values of min and max: , PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"PDF of Uniform distribution", AxesLabel->{"x","PDF"} ], Plot[ CDF[ UniformDistribution[{min,max}], x ], {x,0,8}, PlotRange->All, PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"CDF of Uniform distribution", AxesLabel->{"x","CDF"
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 1 12 (a-b)^2 FactorialMoment (a+b)/2 1/6 (2 a^2+a (-3+2 b)+b (-3+2 b)) Mathematica Examples 13.26 Input (* The code generates a dataset of 1000 observations from Uniform distribution with parameters min=1 and max=7. Then, it computes the sample mean and quartiles of the data, and plots a histogram of the data and plot of the PDF. Additionally, the code adds vertical lines to the plot corresponding to the sample mean and quartiles: *) Directive[Red,Thickness[0.006]], Line[{{mean,0},{mean,0.25}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.25}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.25}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.25}}] }, ColorFunction->Function[{height},Opacity[height]], ImageSize->320, ChartStyle->Purple, PlotRange->{{0,8},{0,0code generates a random sample of size 10,000 from Uniform distribution with parameters min=1 and max=7, estimates the distribution parameters using the EstimatedDistribution function, and then compares the histogram of the sample with the estimated PDF of the normal distribution using a histogram and a plot of the PDF: the distribution parameters from sample data: *) ed=EstimatedDistribution[ sampledata, UniformDistribution[{min,max}] ] (* Compare a density histogram of the sample with the PDF of the estimated distribution: code generates a 2D dataset with 1000 random points that follow Uniform distribution with min=0 and max=6. The dataset is then used to create a row of three plots. The first plot is a histogram of the X-axis values of the dataset. The second plot is a histogram of the Y-axis values of the dataset. It is similar to the first plot, but shows the distribution of the Y-axis values instead. The third plot is a scatter plot of the dataset, with the X-axis values on the horizontal axis and the Y-axis values on the vertical axis. Each point in the plot represents a pair of X and Y values from the dataset: *) "X-axis", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple ], Histogram[ data[[All,2]], {0.1}, PlotLabel->"Y-axis", ColorFunction->Function[{height},Opacity[height]code generates a set of random data points with Uniform distribution in three dimensions, and then creates three histograms, one for each dimension, showing the distribution of the points along that axis. Additionally, it creates a 3D scatter plot of the data points: *) PlotLabel->"Z-axis", ColorFunction->Function[{height},Opacity[height]], code generates a 3D scatter plot of Uniform distributed points, where the xaxis is red, y-axis is green, and z-axis is blue: *) 006],Purple,Point[data]}, Thin, {Red,Opacity[0.4],Line[{{#,0,0},{#,0,-0.5}}]&/@data[[All,1]]}, Thin, {Green,Opacity[0.4],Line[{{0,#,0},{0,#,-0.5}}]&/@data[[All,2]]}, Thin, {Blue,Opacity[0.4],Line[{{0,0,#},{0,-0.5,#}}]&/@data[[All,3]]} }, BoxRatios->{1,1,1}, Axes->True, AxesLabel->{"X","Y","Z"},

  Output {UniformDistribution[{0.00582607,5.94128}],UniformDistribution[{0.0373937,5.94007}] ,UniformDistribution[{0.0214787,5.90539}],UniformDistribution[{0.0693686,5.98272}], UniformDistribution[{0.0824826,5.96349}],UniformDistribution[{0.0746822,5.83899}],U niformDistribution[{0.15242,5.92519}],UniformDistribution[{0.113827,5.88749}],Unifo rmDistribution[{0.0358717,5.86178}],UniformDistribution[{0.000896283,5.95311}],Unif ormDistribution[{0.00413594,5.84059}],UniformDistribution[{0.0657736,5.97573}],Unif ormDistribution[{0.0699305,5.94454}],UniformDistribution[{0.118469,5.94359}],Unifor mDistribution[{0.173582,5.88439}],UniformDistribution[{0.000923629,5.93441}],Unifor mDistribution[{0.0285627,5.96516}],UniformDistribution[{0.0358934,5.96964}],Uniform Distribution[{0.0334921,5.98387}],UniformDistribution[{0.0855911,5.97137}]} Output Output Output Mathematica Examples 13.32 Input (* The code generates and compares the means of random samples drawn from Uniform distribution with the given parameters a and b. The code uses the Manipulate function to create a user interface with sliders to adjust the values of the a, b, number of samples, and sample size. By varying the values of "Number of Samples" and "Sample

  ,m},{n,m}}}, Joined->{False,True}, Filling->Axis, PlotRange->{{1,50},{0,6}}, PlotStyle->{Purple,Red}, AxesLabel->{"Number of Samples","Sample Mean"}, PlotLabel->Row[{"a = ",a,", b = ",b}], ImageSize->320 ] ], {{a,2,"Shape"},0.1,4,0.1}, {{b,4.5,"Scale"},4.5,6,0.1}, {{n,50,"Number of Samples"},3,50,1}, {{samples,50,"Sample Size"},1,100,1}, TrackedSymbols:>{n,samples,a,b} ] code is designed to compare two Uniform distributions. It does this by generating random samples from each distribution and displaying them in a histogram, as well as plotting the PDFs of the two distributions. The code allows the user to manipulate the parameters a, and b of both Uniform distributions through the sliders for a1, b1, a2 and b2. By changing these parameters, the user can see how the distributions change and how they compare to each other. The histograms display the sample data for each distribution, with the first histogram showing the sample data for the first Uniform distribution and the second histogram showing the sample data for the second Uniform distribution. The histograms are overlaid on each other, with the opacity of each histogram set to 0.2 to make it easier to see where the data overlap. The PDFs of the two distributions are also plotted on the same graph, with the first distribution shown in blue and the second distribution shown in red. The legend indicates which color corresponds to which distribution. By looking at the histograms and the PDFs, the user can compare the two Uniform distributions and see how they differ in terms of shape, scale, and overlap of their sample data: *) Manipulate[ Module[ {dist1,dist2,data1,data2}, SeedRandom[seed]; dist1=UniformDistribution[{a1,b1}]; dist2=UniformDistribution[{a2,b2}]; data1=RandomVariate[dist1,n]; data2=RandomVariate[dist2,n]; ,x],PDF[dist2,x]}, {x,Min[{data1,data2}],Max[{data1,data2}]}, PlotLegends->{"Distribution 1","Distribution 2"sample data1","sample data2"}, ChartStyle->{Directive[Opacity[0.2],Red],Directive[Opacity[0.2],Purple],1,5,0.1}, 474 {{b1,10},5.5,10,0.1}, {{a2,1},1,5,0.1}, {{b2,10},5.5,10,0.1}, {{n,500},{100,500,1000,2000}}, {{seed,1234},ControlType->None} ]

  Filling->Axis, PlotLegends->Placed[{"λ=1/2","λ=1","λ=2"},{0.25,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PDF"} ] Output Mathematica Examples 13.37 Input (* The code generates a plot of the CDF of the Exponential distribution with different values of the parameter λ= (1/2, 1, 2). The CDF is evaluated at various values of the random variable x between 0 and 3, PlotLegends->Placed[{"λ=1/2","λ=1","λ=2"},{0.25,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 13.38 Input (* The code generates a histogram and a plot of the PDF for a Exponential distribution with parameters λ=3.5 and sample size 10000: *) code creates a dynamic histogram of data and a plot of the PDF generated from a Exponential distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of λ and n, which are the parameter of the Exponential distribution and the sample size: *) code creates a plot of the CDF of a Exponential distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters λ: *) "x","CDF"}, ImageSize->320, PlotStyle->Purple, PlotLabel->Row[{"λ = ",λ}] ], {{λ,1},1,6,0.1} ] Output Grid[

  Directive[Red,Thickness[0.006]], Line[{{mean,0},{mean,3}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],3}}], Line[{{quartiles[[2]],0},{quartiles[[2]],3}}], Line[{{quartiles[[3]],0},{quartiles[[3]],3}}] }, ColorFunction->Function[{height},Opacity[height]], ImageSize->320, ChartStyle->Purple, PlotRange->{{0,3},{0,3}} ]code generates a random sample of size 10,000 from an Exponential distribution with and then compares the histogram of the sample with the estimated PDF of the Exponential distribution using a histogram and a plot of the PDF: *) sampledata=RandomVariate[ ExponentialDistribution[3], 10^4 ]; (* Estimate the distribution parameters from sample data: *) a density histogram of the sample with the PDF of the estimated distribution: code generates a 2D dataset with 1000 random points that follow an Exponential distribution with λ=3. The dataset is then used to create a row of three plots. The first plot is a histogram of the X-axis values of the dataset. The second plot is a histogram of the Y-axis values of the dataset. It is similar to the first plot, but shows the distribution of the Y-axis values instead. The third plot is a scatter plot of the dataset, with the X-axis values on the horizontal axis and the Y-axis values on the vertical axis. Each point in the plot represents a pair of X and Y values from the dataset[[All,1]], {0.1}, ImageSize->170, PlotLabel->"X-axis", ColorFunction->Function[{height},Opacity[height]], code generates a set of random data points with an Exponential distribution with λ=3 in three dimensions, and then creates three histograms, one for each dimension, showing the distribution of the points along that axis. Additionally, it creates a 3D scatter plot of the data points: *) "X-axis", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple ], Histogram[ data[[All,2]], Automatic, "PDF", PlotLabel->"Y-axis", ColorFunction->Function[{height},Opacity[height]code generates a 3D scatter plot of an Exponential distribution points with λ=3, where the x-axis is red, y-axis is green, and z-axis is blue: *) 006],Purple,Opacity[0.6],Point[data]}, Thin, {Red,Opacity[0.4],Line[{{#,0,0},{#,0,-0.3}}]&/@data[[All,1]]}, Thin, {Green,Opacity[0.4],Line[{{0,#,0},{0,#,-0.3}}]&/@data[[All,2]]}, Thin, {Blue,Opacity[0.4],Line[{{0,0,#},{0,-0.3,#}}]&/@data[[All,3code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from Exponential distribution with λ=3, and then using these samples to estimate the parameters of another Exponential distribution with unknown λ. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from-0 to 1.5. The code also generates a list plot of 2 sets of random samples from the Exponential distribution with λ=3. The plot shows the 100 random points generated from two random samples. The code generates also a histogram of the PDF for Exponential distribution of the two samples: *)

  code generates and compares the means of random samples drawn from a Exponential distribution with the given parameter λ. The code uses the Manipulate function to create a user interface with sliders to adjust the values of the parameter λ, number of samples, and sample size. By varying the values of "Number of Samples" and "Sample Size" sliders, the code allows the user to explore how changing these parameters affects the means of the random samples. Specifically, increasing the number of samples n tends to make the distribution of the means narrower and more concentrated around the true mean of the underlying distribution. On the other hand, increasing the sample size tends to reduce the variability in the means and make them more precise estimators of the true mean: *) ,m},{n,m}}}, Joined->{False,True}, Filling->Axis, PlotRange->{{1,50},{0,10}}, PlotStyle->{Purple,Red}, AxesLabel->{"Number of Samples","Sample Mean"}, PlotLabel->Row[{"λ = ",λ}], ImageSize->320 ] ], {{λ,2,"λ"},0.6,4,0.1}, {{n,50,"Number of Samples"},3,50,1}, {{samples,50,"Sample Size"},1,100,1}, TrackedSymbols:>{n,samples,λ} ] code is designed to compare two Exponential distributions. It does this by generating random samples from each distribution and displaying them in a histogram, as well as plotting the PDFs of the two distributions. The code allows the user to manipulate the parameters λ1 and λ2 of both Exponential distributions through the sliders for λ1 and λ2. By changing these parameters, the user can see how the distributions change and how they compare to each other. The histograms display the sample data for each distribution, with the first histogram showing the sample data for the first Exponential distribution and the second histogram showing the sample data for the second Exponential distribution. The histograms are overlaid on each other, with the opacity of each histogram set to 0.2 to make it easier to see where the data overlap. The PDFs of the two distributions are also plotted on the same graph, with the first distribution shown in blue and the second distribution shown in red. The legend indicates which color corresponds to which distribution. By looking at the histograms and the PDFs, the user can compare the two Exponential distributions and see how they differ in terms of shape, scale, and overlap of their sample data:

  25,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PDF"} ] Output Mathematica Examples 13.54 Input (* The code generates a plot of the cumulative distribution function (CDF) of the Gamma distribution with different values of the parameter k= (1, 4, 6) and a fixed θ=2. The CDF is evaluated at various values of the random variable x between 0 , PlotLegends->Placed[{"k=1,θ=2","k=4,θ=2","k=6,θ=2"},{0.25,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 13.55 Input (* This code generates a plot of the PDF for a Gamma distribution with different values of the parameter θ= (2, 4, 6) and a fixed k=2. The PDF is evaluated at various values of the random variable x between 0 and 20: 20}, Filling->Axis, PlotLegends->Placed[{"k=2,θ=2","k=2,θ=4","k=2,θ=6"},{0.4,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PDF"code generates a plot of the CDF of the Gamma distribution with different values of the parameter θ= (2, 4, 6) and a fixed k=2. The CDF is evaluated at various values of the random variable x between 0 and 20: , PlotLegends->Placed[{"k=2,θ=2","k=2,θ=4","k=2,θ=6"},{0.2,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 13.57 Input (* The code generates a histogram and a plot of the PDF for a Gamma distribution with parameters α=4 and β=2 and sample size 10000: *) [data],Max[data]}, PlotStyle->RGBColor[0.88,0.61,0code creates a dynamic histogram of data and a plot of the PDF generated from a Gamma distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of α, β and n, which are the parameters of the Gamma distribution and the sample size: *) 1,"α"},0.1,4,0.1}, {{β,0.5,"β"},0.1,4,0.1}, {{n,300,"n"},100,1000,10} ] Output Mathematica Examples 13.59 Input (* The code creates a plot of the CDF of a Gamma distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters α and β, respectively: *) "x","CDF"}, ImageSize->320, PlotStyle->Purple, PlotLabel->Row[{"α = ",α,", β = ",β}] ], {{α,0.1},0.1,4,0.1}, {{β,0.5},0.1,4,0.1} ] code calculates and displays some descriptive statistics (mean, variance, standard deviation, kurtosis and skewness) for a Gamma distribution with parameters α and β: *) Grid[

  [{{mean,0},{mean,0.25}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.25}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.25}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.25}}] }, ColorFunction->Function[{height},Opacity[height]], ImageSize->320, ChartStyle->Purple, PlotRange->{{0,20},{0,0code generates a random sample of size 10,000 from a Gamma distribution with parameters α=1.7 and β=2, estimates the distribution parameters using the EstimatedDistribution function, and then compares the histogram of the sample with the estimated PDF of the Gamma distribution using a histogram and a plot of the PDF: the distribution parameters from sample data: *) ed=EstimatedDistribution[ sampledata, GammaDistribution[α,β]] (* Compare a density histogram of the sample with the PDF of the estimated distribution: code creates a Manipulate interface where the user can adjust the parameters of two Gamma distributions (dist1 and dist2) and see the resulting sum of these distributions (distSum) plotted on the same graph. The plot shows the PDFs of each distribution as well as the PDF of the sum of the distributions. The TransformedDistribution function is used to create the sum of two distributions by defining the distribution of the sum of two random variables, x and y, where x follows dist1 and y follows dist2. Hence, we prove that Gamma distribution is closed under addition

  code generates a 2D dataset with 1000 random points that follow a Gamma distribution with α=1.7 and β=2. The dataset is then used to create a row of three plots. The first plot is a histogram of the X-axis values of the dataset. The second plot is a histogram of the Y-axis values of the dataset. It is similar to the first plot, but shows the distribution of the Y-axis values instead. The third plot is a scatter plot of the dataset, with the X-axis values on the horizontal axis and the Y-axis values on the vertical axis. Each point in the plot represents a pair of X and Y values from the dataset: All,1]], {0.1}, ImageSize->170, PlotLabel->"X-axis", ColorFunction->Function[{height},Opacity[height]], code generates a set of random data points with a Gamma distribution with α=1.7 and β=2 in three dimensions, and then creates three histograms, one for each 503 dimension, showing the distribution of the points along that axis. Additionally, it creates a 3D scatter plot of the data points: *) "X-axis", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple ], Histogram[ data[[All,2]], Automatic, "PDF", PlotLabel->"Y-axis", ColorFunction->Function[{height},Opacity[height]], code generates a 3D scatter plot of Gamma distribution points, where the xaxis is red, y-axis is green, and z-axis is blue: *) data=RandomVariate[ GammaDistribution[1.7,2], 006],Purple,Opacity[0.6],Point[data]}, Thin, {Red,Opacity[0.4],Line[{{#,0,0},{#,0,-1}}]&/@data[[All,1]]}, Thin, {Green,Opacity[0.4],Line[{{0,#,0},{0,#,-1}}]&/@data[[All,2]]}, Thin, {Blue,Opacity[0.4],Line[{{0,0,#},{0,-1,#}}]&/@data[[All,3]]} }, BoxRatios->{1,1,1}, Axes->True, AxesLabel->{"X","Y","Z"}, ImageSize->320 ] Output Mathematica Examples 13.69 Input (* The code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from a Gamma distribution with α=1.7 and β=2, and then using these samples to estimate the parameters of another Gamma distribution with unknown α and β. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from-0 to 15. The code also generates a list plot of 2 sets of random samples from the Gamma distribution with α=1.7 and β=2. The plot shows the 100 random points generated from two random samples. The code generates also a histogram of the PDF for Gamma distribution of the two samples: *)

Input ( *

 * The code generates and compares the means of random samples drawn from a gamma distribution with the given shape and scale parameters. The code uses the Manipulate function to create a user interface with sliders to adjust the values of the shape, scale, number of samples, and sample size. By varying the values of "Number of Samples" and "Sample Size" sliders, the code allows the user to explore how changing these parameters affects the means of the random samples. Specifically, increasing the number of samples n tends to make the distribution of the means narrower and more concentrated around the true mean of the underlying distribution. On the other hand, increasing the sample size tends to reduce the variability in the means and make them more precise estimators of the true mean: ,m},{n,m}}}, Joined->{False,True}, Filling->Axis, PlotRange->{{1,50},{0,20}}, PlotStyle->{Purple,Red}, AxesLabel->{"Number of Samples","Sample Mean"}, PlotLabel->Row[{"Shape = ",shape,", Scale = ",scale}], ImageSize->320 ] ], {{shape,2,"Shape"},0.1,4,0.1}, {{scale,2,"Scale"},0.1,4,0.1}, {{n,50,"Number of Samples"},3,50,1}, {{samples,50,"Sample Size"},1,100,1}, TrackedSymbols:>{n,samples,shape,scale} ] Output Mathematica Examples 13.71 Input (* The code is designed to compare two gamma distributions. It does this by generating random samples from each distribution and displaying them in a histogram, as well as plotting the PDFs of the two distributions. The code allows the user to manipulate the shape and scale parameters of both gamma distributions through the sliders for α1, β1, α2 and β2. By changing these parameters, the user can see how the distributions change and how they compare to each other. The histograms display the sample data for each distribution, with the first histogram showing the sample data for the first gamma distribution and the second histogram showing the sample data for the second gamma distribution. The histograms are overlaid on each other, with the opacity of each histogram set to 0.2 to make it easier to see where the data overlap. The PDFs of the two distributions are also plotted on the same graph, with the first distribution shown in blue and the second distribution shown in red. The legend indicates which color corresponds to which distribution. By looking at the histograms and the PDFs, the user can compare the two gamma distributions and see how they differ in terms of shape, scale, and overlap of their sample data: *)

  code generates a plot of the probability density function (PDF) for a normal distribution with different values of standard deviation σ= (0.75, 1 and 2) and a fixed mean (μ=0). The plot shows the values of the PDF for all possible values of x between -7 and 7. The resulting plot shows the bell-shaped curve of the normal distribution with different shapes, reflecting the impact of varying the value of the standard deviation: , PlotLegends->Placed[{"μ=0,σ=0.75","μ=0,σ=1","μ=0,σ=2"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PDF"} ] Output Mathematica Examples 13.76 Input (* The code generates a plot of the cumulative distribution function (CDF) of the normal distribution with different values of standard deviation σ= (0.75, 1 and 2) and a fixed mean (μ=0). The resulting plot shows the S-shaped curve of the normal distribution with different shapes, reflecting the impact of varying the value of the standard deviation: *) , PlotLegends->Placed[{"μ=0,σ=0.75","μ=0,σ=1","μ=0,σ=2"},{0.25,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 13.77 Input (* The code generates a plot of the PDF for a normal distribution with a fixed value of standard deviation σ=1.2 and different values of mean (μ=-0.5, 1, 2). The plot shows the values of the PDF for all possible values of x between -7 and 7. The resulting plot shows the bell-shaped curve of the normal distribution with different locations, reflecting the impact of varying the value of the mean: *) , PlotLegends->Placed[{"σ=1.2,μ=-0.5","σ=1.2,μ=1","σ=1.2,μ=2"},{0.25,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PDF"} ] given code generates a plot of the CDF of the normal distribution with a fixed value of standard deviation σ=1.2 and different values of mean (μ=-0.5, 1, 2). The resulting plot shows the S-shaped curve of the normal distribution with different shapes, reflecting the impact of varying the value of the mean: *) , PlotLegends->Placed[{"σ=1.2,μ=-0.5","σ=1.2,μ=1","σ=1.2,μ=2"},{0.25,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"CDF"} ] Output Mathematica Examples 13.79 Input (* The code generates a histogram and a plot of the PDF for a Normal Distribution with parameters μ=1 and σ=3 and sample size 10000: *) data=RandomVariate[ NormalDistribution[1,3], PlotStyle->RGBColor[0.88,0.61,0.14], PlotRange->{0,4} ] ] Output Mathematica Examples 13.80 Input (* The code creates a dynamic histogram of data and a plot of the PDF generated from a normal distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of μ, σ, and n, which are the parameters of the normal distribution and the sample size: *) PlotRange->{{-11,11},All}, ColorFunction->Function[{height},Opacity[height]], "μ"},-3,3,0.1}, {{σ,1,"σ"},0.1,3,0.1}, {{n,100,"n"},100,1000,10} ] Output Mathematica Examples 13.81 Input (* The code creates a plot of the CDF of a normal distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters n and p, respectively: *) , FillingStyle->LightPurple, PlotRange->All, Epilog->{Text[StringForm["μ = `` & σ = ``",μ,σ],{μ/2,0.9}]}, AxesLabel->{"x","CDF"}, ImageSize->320, code uses the Grid function to create a grid of two plots, one for the PDF and one for the CDF of normal distribution. The code uses slider controls to adjust the values of μ and σ: *) , PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"PDF of normal distribution", AxesLabel->{"x","PDF"10,10}, PlotRange->All, PlotStyle->{Purple,PointSize[0.03]}, PlotLabel->"CDF of normal distribution", AxesLabel->{"x","CDF"} ] code calculates and displays some descriptive statistics (mean, variance, standard deviation, kurtosis and skewness) for a normal distribution with parameters μ and σ: *) Grid[

  [{{mean,0},{mean,0.25}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.25}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.25}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.25}}] }, ColorFunction->Function[{height},Opacity[height]], ImageSize->320, ChartStyle->Purple, PlotRange->{{-10,10},{0,0code generates a random sample of size 10,000 from a normal distribution with parameters μ=1 and σ=3, estimates the distribution parameters using the EstimatedDistribution function, and then compares the histogram of the sample with the estimated PDF of the normal distribution using a histogram and a plot of the PDF: the distribution parameters from sample data: *) ed=EstimatedDistribution[ sampledata, NormalDistribution[μ,σ] ] (* Compare a density histogram of the sample with the PDF of the estimated distribution: code creates a Manipulate interface where the user can adjust the parameters of two normal distributions (dist1 and dist2) and see the resulting sum of these distributions (distSum) plotted on the same graph. The plot shows the PDFs of each distribution as well as the PDF of the sum of the distributions. The TransformedDistribution function is used to create the sum of two distributions by defining the distribution of the sum of two random variables, x and y, where x follows dist1 and y follows dist2. Hence, we prove that Normal distribution is closed under addition: "x","f(x)"}, Filling->{1->{2},2->{3}}, FillingStyle->{LightBlue,LightPurple}, PlotLegends->{"Distribution 1","Distribution 2","Sum of Distributions"} ], {{mean1,0,"Mean 1"},-5,5,Appearance->"Labeled"}, {{sd1,1,"Standard Deviation 1"},0.1,5,Appearance->"Labeled"}, {{mean2,0,"Mean 2"},-5,5,Appearance->"Labeled"}, {{sd2,1,"Standard Deviation 2"},0.1,5,Appearance->"Labeled"code demonstrate that the normal distribution is symmetric about its mean.

  10,10}, Filling->{1->Axis}, FillingStyle->LightPurple, PlotStyle->Purple, PlotRange->{{-10,10},{0,0.45}}, Epilog->{ Directive[Red,Dashed], Line[{{μ-σ,0},{μ-σ,0.4}}], Line[{{μ+σ,0},{μ+σ,0.4}}], Line[{{μ,0},{μ,0.4}}] }, PlotLabel->Row[{"μ = ",μ,", σ = ",σ,", Distance = ",σ}] code generates a 2D dataset with 1000 random points that follow a normal distribution with a mean of 0 and a standard deviation of 1. The dataset is then used to create a row of three plots. The first plot is a histogram of the X-axis values of the dataset. The second plot is a histogram of the Y-axis values of the dataset. It is similar to the first plot, but shows the distribution of the Y-axis values instead. The third plot is a scatter plot of the dataset, with the X-axis values on the horizontal axis and the Y-axis values on the vertical axis. Each point in the plot represents a pair of X and Y values from the dataset: PlotLabel->"X-axis", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple ], Histogram[ data[[All,2]], {0.1}, PlotLabel->"Y-axis", ColorFunction->Function[{height},Opacity[height]code generates a set of random data points with a normal distribution in three dimensions, and then creates three histograms, one for each dimension, showing the distribution of the points along that axis. Additionally, it creates a 3D scatter plot of the data points: *) "Y-axis", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple ], Histogram[ data[[All,3]], Automatic, "PDF", PlotLabel->"Z-axis", ColorFunction->Function[{height},Opacity[height]code generates a 3D scatter plot of normally distributed points, where the xaxis is red, y-axis is green, and z-axis is blue: *) .006],Purple,Point[data]}, Thin, {Red,Opacity[0.4],Line[{{#,0,0},{#,0,-0.5}}]&/@data[[All,1]]}, 524 Thin, {Green,Opacity[0.4],Line[{{0,#,0},{0,#,-0.5}}]&/@data[[All,2]]}, Thin, {Blue,Opacity[0.4],Line[{{0,0,#},{0,-0.5,#}}]&/@data[[All,3]]} }, BoxRatios->{1,1,1}, Axes->True, AxesLabel->{"X","Y","Z"}, code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from a normal distribution with mean 0 and standard deviation 1, and then using these samples to estimate the parameters of another normal distribution with unknown mean and standard deviation. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from-3.5 to 3.5. The code also generates a list plot of 2 sets of random samples from the normal distribution with mean 0 and standard deviation 1. The plot shows the 100 random points generated from two random samples. The code generates also a histogram of the PDF for Normal distribution of the two samples: *) code generates and compares the means of random samples drawn from a Normal distribution with the given parameters μ and σ. The code uses the Manipulate function to create a user interface with sliders to adjust the values of the μ, σ, number of samples, and sample size. By varying the values of "Number of Samples" and "Sample Size" sliders, the code allows the user to explore how changing these parameters affects the means of the random samples. Specifically, increasing the number of samples n tends to make the distribution of the means narrower and more concentrated around the true mean of the underlying distribution. On the other hand, increasing the sample size tends to reduce the variability in the means and make them more precise estimators of the true mean: *) ,m},{n,m}}}, Joined->{False,True}, Filling->Axis, PlotRange->{{1,50},{0,20}}, PlotStyle->{Purple,Red}, AxesLabel->{"Number of Samples","Sample Mean"}, PlotLabel->Row[{"μ = ",μ,", σ = ",σ}], ImageSize->320 ] ], {{μ,2,"Shape"},0.1,4,0.1}, {{σ,2,"Scale"},0.1,4,0.1}, {{n,50,"Number of Samples"},3,50,1}, {{samples,50,"Sample Size"},1,100,1}, TrackedSymbols:>{n,samples,μ,σ} ] Output Mathematica Examples 13.94 Input (* The code is designed to compare two Normal distributions. It does this by generating random samples from each distribution and displaying them in a histogram, as well as plotting the PDFs of the two distributions. The code allows the user to manipulate the parameters μ and σ of both Normal distributions through the sliders for μ1, σ1, μ2 and σ2. By changing these parameters, the user can see how the distributions change and how they compare to each other. The histograms display the sample data for each distribution, with the first histogram showing the sample data for the first Normal distribution and the second histogram showing the sample data for the second Normal distribution. The histograms are overlaid on each other, with the opacity of each histogram set to 0.2 to make it easier to see where the data overlap. The PDFs of the two distributions are also plotted on the same graph, with the first distribution shown in blue and the second distribution shown in red. The legend indicates which color corresponds to which distribution. By looking at the histograms and the PDFs, the user can compare the two Normal distributions and see how they differ in terms of shape, scale, and overlap of their sample data: ,x],PDF[dist2,x]}, {x,Min[{data1,data2}],Max[{data1,data2}]}, PlotLegends->{"Distribution 1","Distribution 2"sample data1","sample data2"}, ChartStyle->{Directive[Opacity[0.2],Red],Directive[Opacity[0.2],Purple]}, ,0.1,10,0.1}, {{σ1,2},0.1,10,0.1}, {{μ2,6},0.1,10,0.1}, {{σ2,2},0.1,10,0.1}, {{n,500},{100,500,1000,2000}}, {{seed,1234},ControlType->None} ] T Distribution goes to a normal distribution as ν goes to ∞: *) battery's lifespan has a mean of 1000 hours and a standard deviation of 50 hours, which is roughly normal distributed. What percentage has a lifetime between 800 and 1000 hours: *) p=N[ Probability[ Quantity[800,"Hours"]<x<Quantity[1000,"Hours"], Distributed[x,NormalDistribution[Quantity[1000,"Hours"],Quantity[50,"Hours"

  ]. It then plots the data points as a scatter plot for the normal distribution and as a histogram with a probability density function (PDF) plot overlay for the binomial distribution. The plot for the normal distribution shows a bell-shaped curve, which is a characteristic of the normal distribution. The code also includes a slider for adjusting the value of n and p and another slider for adjusting the sample size n. This allows the user to interactively explore how the shape of the distributions change as the value of n and p and the sample size n are varied: *) Manipulate[ Module[ {dataN,dataB}, μ=n*p; σ=Sqrt[n*p*(1-p)]; dataN=RandomVariate[NormalDistribution[μ,σ],no]; dataB=RandomVariate[BinomialDistribution[n,p],no][{"Normal Distribution μ = ",μ,", σ = ",σ}] ], ListPlot[ dataB, PlotStyle->Red, ImageSize->300, PlotRange->All, PlotLabel->Row[{"Binomial Distribution n = ",n,", p = ",p}]

  the average rate of occurrence (λ) in a Poisson distribution is large, the distribution becomes increasingly bell-shaped and starts to resemble a normal distribution. Specifically, when λ is large (typically λ>20),the Poisson distribution can be approximated by a normal distribution with the same mean and standard deviation. The code generates two sets of random data points, one from a normal distribution and another from a Poisson distribution with the same mean value λ. It then plots the data points as a scatter plot for the normal distribution and as a histogram with a probability density function (PDF) plot overlay for the Poisson distribution. The plot for the normal distribution shows a bell-shaped curve, which is a characteristic of the normal distribution. The plot for the Poisson distribution shows a skewed curve with a peak at λ, which is a characteristic of the Poisson distribution. The code also includes a slider for adjusting the value of λ and another slider for adjusting the sample size n. This allows the user to interactively explore how the shape of the distributions change as the value of λ and the sample size n are varied: *) Manipulate[ Module[ {dataN,dataP}, dataN=RandomVariate[NormalDistribution[λ,Sqrt[λ]],n]; dataP=RandomVariate[PoissonDistribution[λ],n]; [{"Normal Distribution μ = ",λ,", σ = ",Sqrt[λ]}] , PlotLabel->Row[{"Poisson Distribution λ = ",λ}] [λ,Sqrt[λ]],x], {x,Min[dataN],Max[dataN][Opacity[0.5],Purple], ImageSize->300 ], Epilog->{Red,PointSize[Large],Point[{λ,0}]} ] } ,"λ"},4,40,0.1,Appearance->"Labeled"}, {{n,3000,"n"},100,5000,100,Appearance->"Labeled"} ] Output Mathematica Examples 13.99 Input (* The code generates a Manipulate that displays the normal probability density function (PDF) of a normal distribution with mean μ=0 and σ=1 and computes the area under the curve for a given value of z in terms of the cumulative distribution function (CDF). The PDF is shown in two parts, where the shaded area represents the area under the curve from-∞ to z. The value of z can be changed using a slider, and the area under the curve from-∞ to z is computed and displayed on the top of the plot using the CDF function: *) ,μ+z*σ,μ+5σ}, Filling->Axis, FillingStyle->Directive[Opacity[0.8],Purple], 534 PlotLabel->Row[{"μ = ",μ,", σ = ",σ, ", z=",z," Area: ",N[CDF[dist,z]]-5σ,μ+z*σ}, Filling->Axis, FillingStyle->Directive[Opacity[0.8],RGBColor[0.12, 0.61, .78]] ] }, PlotRange->{{-5,5},{0,.4}},Axes->{Automatic,False} ] ], {{z,-3.9},-3.9,4.9,0.1,Appearance->"Labeled"] generates a plot of the CDF of list against the CDF of a normal distribution. ProbabilityPlot[dist] generates a plot of the CDF of the distribution dist against the CDF of a normal distribution. ProbabilityPlot[data,rdata] generates a plot of the CDF of data against the CDF of rdata. ProbabilityPlot[data,rdist] generates a plot of the CDF of data against the CDF of symbolic distribution rdist. ProbabilityPlot[ {data1,data2,…}, ref] generates a plot of the CDF of datai against the CDF of a reference distribution ref. Mathematica Examples 13.100 Input (* Generate 100 random variates from a uniform distribution on [0,2] and store them in the variable 'originaldata': *) originaldata=RandomVariate[UniformDistribution[{0,2}],100]; (* Estimate a normal distribution based on the generated data. The estimated distribution is assumed to be a normal distribution with mean 'μ' and standard deviation 'σ'. Store the estimated distribution in the variable 'ref': *) ref=EstimatedDistribution[originaldata,NormalDistribution[μ,σ]]; (* Create two Probability plots , the first plot shows the CDFs of the original data 'originaldata'. The default reference distribution used in this plot is the closest estimated normal distribution. The second plot compares the CDFs of the original data 'originaldata' with the CDFs of the estimated distribution 'ref'. From the results, you can see that the default reference distribution is the closest estimated NormalDistribution: code demonstrates the flexibility of the ProbabilityPlot function by showcasing how both numeric data and symbolic distributions can be used: *) (* ProbabilityPlot works with numeric data:code demonstrates the flexibility of the ProbabilityPlot function by showcasing how both data and distributions can be used as references:*) ] generates a plot of quantiles of list against the quantiles of a normal distribution. QuantilePlot[dist] generates a plot of quantiles of the distribution dist against the quantiles of a normal distribution. QuantilePlot[data,rdata] generates a plot of the quantiles of data against the quantiles of rdata. QuantilePlot[data,rdist] generates a plot of the quantiles of data against the quantiles of a symbolic distribution rdist. QuantilePlot[ {data1,data2,…}, ref] generates a plot of quantiles of datai against the quantiles of a reference distribution ref. data to an estimated distribution:*) (* Generate 200 random variates from a Student's t-distribution with parameters (5,3,2) and store them in the variable'data'*) data=RandomVariate[StudentTDistribution[5,3,2],200]; (* QuantilePlot[data,dist[θ1,…]] with symbolic parameters θi is equivalent to QuantilePlot[data,EstimatedDistribution[data,dist[θ1,…]]]. Using a symbolic parameterized distribution in `QuantilePlot` is equivalent to using `EstimatedDistribution` with the same distribution and the dataset'data'.*) (* Create a quantile plot to compare the quantiles of the data to the quantiles of an estimated Student's t-distribution.*) QuantilePlot[ data, StudentTDistribution[μ,σ,ν], PlotStyle->Purple, ImageSize->250 ] (*Estimate the parameters (μ,σ,ν) of the Student's t-distribution that best fit the data.*) EstimatedDistribution[data,StudentTDistribution[μ,σ,ν]] code demonstrates the flexibility of the QuantilePlot function by showcasing how both numeric data and symbolic distributions can be used: *) (*QuantilePlot works with numeric data:code demonstrates the flexibility of the QuantilePlot function by showcasing how both data and distributions can be used as references:

  [expr,x \[Distributed]dist] represents the transformed distribution of expr where the random variable x follows the distribution dist. TransformedDistribution[expr, {x1,x2,…} \[Distributed]dist] represents the transformed distribution of expr where {x1,x2,…} follows the multivariate distribution dist. TransformedDistribution[expr,x \[Distributed]proc] represents the transformed distribution where expr contains expressions of the form x[t], referring the value at time t from the random process proc. TransformedDistribution[expr,{x1 \[Distributed]dist1,x2 \[Distributed]dist2 ,…}] represents a transformed distribution where x1, x2, … are independent and follow the distributions dist1, dist2, …. Mathematica Examples 13.112 Input (* Simple transformations of random variables: *) TransformedDistribution[2 u+1,u\[Distributed]NormalDistribution[μ,σ]] TransformedDistribution[3 x+2,x\[Distributed]UniformDistribution[{2,3}]] TransformedDistribution[a u+b,u\[Distributed]NormalDistribution[μ,σ]] TransformedDistribution[Exp[u],u\[Distributed]NormalDistribution[μ,σ]] Output NormalDistribution[1+2 μ,2 σ] UniformDistribution[{8,11}] NormalDistribution[b+a μ,σ Abs[a]] LogNormalDistribution[μ,σ] Simplifications: *) TransformedDistribution[x+y,{x\[Distributed]NormalDistribution[μ1,σ1],y\[Distribute d]NormalDistribution[μ2,σ2]}] TransformedDistribution[u+v,{u\[Distributed]PoissonDistribution[μ1],v\[Distributed] PoissonDistribution[μ2]}]TransformedDistribution[x^2+y^2,{x\[Distributed]NormalDistribution[0,1],y\[Distribu ted]NormalDistribution[0,1]}] TransformedDistribution[x/y,{x\[Distributed]NormalDistribution[0,1],y\[Distributed] NormalDistribution[0,1]}] TransformedDistribution[Min[x,y],{x\[Distributed]GeometricDistribution[p1],y\[Distr ibuted]GeometricDistribution[p2]}] Output NormalDistribution[μ1+μ2,√σ1 2 + σ1 2 ] PoissonDistribution[μ1+μ2] ChiSquareDistribution[2] CauchyDistribution[0,1] GeometricDistribution[1-(1-p1) (1-p2)]MathematicaExamples 13.114 Input (* Applying the identity transformation to a distribution leaves it unchanged: *) TransformedDistribution[x,x\[Distributed]ExponentialDistribution[distributions can be used like any other distribution. PDF and CDF of a Transformed Distribution: *) dist=TransformedDistribution[u^2,u\[Distributed]BetaDistribution[3distributions can be used like any other distribution. Statistical Analysis of a Transformed Distribution: *) dist=TransformedDistribution[x+y,{x\[Distributed]NormalDistribution[0,1],y\[Distrib uted]NormalDistribution[0,2]}]; mean=Mean[dist]; variance=Variance[dist]; skewness=Skewness[dist]; kurtosis=Kurtosis[dist]; Grid[ {{" Mean:",mean}, {"Variance:",variance}, {"Skewness:",skewness}, {"Kurtosis:",kurtosis}} ] this code, we first define the original distribution as a normal distribution with mean 2 and standard deviation 1. Then, we use the TransformedDistribution function to create a new distribution transformedDistribution. After that, we generate 1000 random samples from the transformed distribution using the RandomVariate function. Finally, we plot the PDF and histogram of the transformed distribution and display a histogram of the original distribution: *) (* Define the original distribution: *) originalDistribution=NormalDistribution[2,1]; (* Create the transformed distribution: *) transformedDistribution=TransformedDistribution[3*x+1,x\[Distributed]originalDistri bution]; (* Generate random samples from the original distribution: *) randomSampleso=RandomVariate[originalDistribution,500]; (* Generate random samples from the transformed distribution: *) randomSamplest=RandomVariate[transformedDistribution,500]; (* Display the transformed distribution and random samples: ChartStyle->Directive[Purple,Opacity[0.5]], PlotRange->All, PlotLabel->"Original and Transformed Distributions", code compares an original Poisson distribution with a shifted version of the distribution. It visualizes the PMFs of the two distributions and generates random numbers from each distribution for further comparison. Additionally, the code generates random numbers from both distributions and plots them as points on a graph. It also includes lines representing the means of each distribution. This allows for a visual comparison of the mean values between the original and shifted distributions: *) (* Original and shifted distribution: *) originaldistribution=PoissonDistribution[5]; shifteddistribution=TransformedDistribution[x+3,x\[Distributed]originaldistribution ]; (* Compare the PDFs: *) DiscretePlot[ {PDF[originaldistribution,x],PDF[shifteddistribution,x]}, {x,0,16}, PlotStyle->{Purple,RGBColor[0.88,0.61,0.14]}, PlotLegends->Placed[{"X","X + 3"},{0.8,0.75}], ImageSize->250 ] (* Simulation of original and shifted distributions: *) ListPlot[ { RandomVariate[originaldistribution,100], RandomVariate[shifteddistribution,100], {{0,Mean[originaldistribution]},{100,Mean[originaldistribution]}}, {{0,Mean[shifteddistribution]},{100,Mean[shifteddistribution]}} }, PlotStyle->{Purple,RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Red}, PlotLegends->{"Original Distribution","Shifted Distribution","Mean Original","Mean Shifted"}, Joined->{False,False,True,True}, Filling->{1->Axis,2->Axis}, the distribution of the sum of two different variables: *) originaldistribution1=GammaDistribution[α,β]; originaldistribution2=NormalDistribution[μ,σ]; transformedDistribution=TransformedDistribution[u+v,{u\[Distributed]originaldistrib ution1,v\[Distributed]originaldistribution2}]; (* Probability density function: *) pdf=Simplify[PDF[transformedDistribution,x]] (* Compare the resulting distribution with the summands: *) Block[ {α=3,β=1,μ=0,σ=1}, Plot[ {pdf,PDF[originaldistribution1,x],PDF[originaldistribution2,x]}, {x,-4,10}, Filling->Axis, PlotStyle->{Purple,RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7]}, PlotLegends->Placed[{"Transformed Dist.","Gamma Dist.","Normal Dist."},{0.8,0.78}], ImageSize->300 ] ] (*The mean of dist is the sum of the means: *

  + -𝑥 + 𝜇 𝜎 2 ) 2 𝜎 2 ]) 551 }, {{expr,x,"Transformation"},{x,x^2,Sin[x],Exp[x]}} ] Output Mathematica Examples 13.126 Input (* In this example, the TransformedDistribution takes an original distribution dist (in this case, a normal distribution) and applies the transformation a+b*x to it. The Manipulate function allows you to interactively change the parameters mu, sigma, a, b, and numSamples. It generates random samples from the transformed distribution and displays a histogram of these samples: *) Manipulate[ Module[ {dist,randomSamples,plot}, (* Define the original distribution: *) dist=NormalDistribution[mu,sigma]; (* Generate random samples from the transformed distribution: *) randomSamples=RandomVariate[ TransformedDistribution[a+b*x,x\[Distributed]dist]parameters: *) {{mu,0,"Mean of Original Distribution"},-10,10,0.1}, for the weights*) {{weight1,initialWeight1,"Weight 1"},0,1,0.1}, {{weight2,initialWeight2,"Weight 2"},0,1,0distributions can be used like any other distribution. Statistical Analysis of a mixture distribution: *) mean=N[Mean[mixdist]]; variance=N[Variance[mixdist]]; skewness=N[Skewness[mixdist]]; kurtosis=N[Kurtosis[mixdist]];559Frame->True, FrameLabel->{"x","Probability"}, PlotLegends->{"PDF","CDF"}, the parameters and their ranges*) {{w1,0.5,"Weight 1"},0,1,0.1}, {{w2,0.5,"Weight 2"},0,1,0.1}, {{μ1,0,"Mean 1"},-5,5,0.1}, {{μ2,0,"Mean 2"},-5,5,0.1}, {{σ1,1,"Standard Deviation 1"},0.1,5,0.1}, {{σ2,1,"Standard Deviation 2"},0.1,5,0

  𝑥, 𝑦) = 𝐹 𝑋𝑌 (-∞, 𝑦) = 0, (14.6.1) lim 𝑦→-∞ 𝐹 𝑋𝑌 (𝑥, 𝑦) = 𝐹 𝑋𝑌 (𝑥, -∞) = 0. (14.6.2) lim 𝑥→𝑎 + 𝐹 𝑋𝑌 (𝑥, 𝑦) = 𝐹 𝑋𝑌 (𝑎 + , 𝑦) = 𝐹 𝑋𝑌 (𝑎, 𝑦), (14.7.1) lim 𝑦→𝑏 + 𝐹 𝑋𝑌 (𝑥, 𝑦) = 𝐹 𝑋𝑌 (𝑥, 𝑏 + ) = 𝐹 𝑋𝑌 (𝑥, 𝑏). (14.7.2) 𝑃(𝑥 1 ≤ 𝑋 ≤ 𝑥 2 , 𝑌 ≤ 𝑦) = 𝐹 𝑋𝑌 (𝑥 2 , 𝑦) -𝐹 𝑋𝑌 (𝑥 1 , 𝑦), (14.8.1) 𝑃(𝑋 ≤ 𝑥, 𝑦 1 ≤ 𝑌 ≤ 𝑦 2 ) = 𝐹 𝑋𝑌 (𝑥, 𝑦 2 ) -𝐹 𝑋𝑌 (𝑥, 𝑦 1 ).

  𝑐, and 𝑦 2 = 𝑑, we get 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑) = 𝐹 𝑋𝑌 (𝑏, 𝑑) -𝐹 𝑋𝑌 (𝑎, 𝑑) -𝐹 𝑋𝑌 (𝑏, 𝑐) + 𝐹 𝑋𝑌 (𝑎, 𝑐) = 𝐹 𝑋 (𝑏)𝐹 𝑌 (𝑑) -𝐹 𝑋 (𝑎)𝐹 𝑌 (𝑑) -𝐹 𝑋 (𝑏)𝐹 𝑌 (𝑐) + 𝐹 𝑋 (𝑎)𝐹 𝑌 (𝑐) = [𝐹 𝑋 (𝑏)𝐹 𝑌 (𝑑) -𝐹 𝑋 (𝑎)𝐹 𝑌 (𝑑)] -[𝐹 𝑋 (𝑏)𝐹 𝑌 (𝑐) -𝐹 𝑋 (𝑎)𝐹 𝑌 (𝑐)] = [𝐹 𝑋 (𝑏) -𝐹 𝑋 (𝑎)]𝐹 𝑌 (𝑑) -[𝐹 𝑋 (𝑏) -𝐹 𝑋 (𝑎)]𝐹 𝑌 (𝑐) = [𝐹 𝑋 (𝑏) -𝐹 𝑋 (𝑎)][𝐹 𝑌 (𝑑) -𝐹 𝑌 (𝑐)] = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏)𝑃(𝑐 ≤ 𝑌 ≤ 𝑑),

  CDF): Now lim 𝑦→∞ (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = (𝑋 ≤ 𝑥, 𝑌 ≤ ∞) = (𝑋 ≤ 𝑥), since the condition 𝑦 ≤ ∞ is always satisfied. Then lim 𝑦→∞ 𝐹 𝑋𝑌 (𝑥, 𝑦) = 𝐹 𝑋𝑌 (𝑥, ∞) = 𝐹 𝑋 (𝑥), (14.10.1) lim 𝑥→∞ 𝐹 𝑋𝑌 (𝑥, 𝑦) = 𝐹 𝑋𝑌 (∞, 𝑦) = 𝐹 𝑌 (𝑦).

6

 6 Definition (Joint CDF): The joint CDF of a discrete bivariate RV (𝑋, 𝑌) is given by 𝐹 𝑋𝑌 (𝑥, 𝑦) = ∑ ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) The joint PMF of a bivariate RV (𝑋, 𝑌) is given by 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) = { 2𝑘𝑥 𝑖 𝑦 𝑗 , 𝑥 𝑖 = 1,2,3; 𝑦 𝑗 = 1,2,3, 0, otherwise, where 𝑘 is a constant. (a) Find the value of 𝑘. (b) Find the marginal PMF of 𝑋 and 𝑌. (c) Are 𝑋 and 𝑌 independent? Solution (a) The joint PMF of a bivariate RV (𝑋, 𝑌) should be satisfy the condition ∑ ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑦 𝑗 𝑥 𝑖 = 1. Hence,

  𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑖 ) = 𝑥 𝑖 𝑦 𝑗 36 = 𝑓 𝑋 (𝑥 𝑖 )𝑓 𝑌 (𝑦 𝑗 ), hence 𝑋 and 𝑌 are independent.

. 2 )

 2 𝑓 𝑋𝑌 (𝑥, 𝑦) is continuous for all values of 𝑥 or 𝑦 except possibly a finite set. (14.15.3) 𝑃((𝑋, 𝑌) ∈ 𝐴) = ∬ 𝑓 𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 𝑅 𝐴 , (14.15.4) 𝑃(𝑎 < 𝑋 ≤ 𝑏, 𝑐 < 𝑌 ≤ 𝑑) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑) = 𝑃(𝑎 ≤ 𝑋 < 𝑏, 𝑐 ≤ 𝑌 < 𝑑) = 𝑃(𝑎 < 𝑋 < 𝑏, 𝑐 < 𝑌 < 𝑑) = ∫ ∫ 𝑓 𝑋𝑌 (𝑥, 𝑦)The joint CDF of a continuous bivariate RV (𝑋, 𝑌) is given by 𝐹 𝑋𝑌 (𝑥, 𝑦) = ∫ ∫ 𝑓 𝑋𝑌 (𝑢, 𝑣)If the joint PDF of a continuous bivariate RV (𝑋, 𝑌) is 𝑓 𝑋𝑌 (𝑥, 𝑦), the marginal PDFs of 𝑋 and 𝑌 are,

. 2 )Example 14 . 7

 2147 Definition (Independence): If 𝑋 and 𝑌 are independent continuous RVs 𝑓 𝑋𝑌 (𝑥, 𝑦) = 𝑓 𝑋 (𝑥)𝑓 𝑌 (𝑦) for all 𝑥 and 𝑦. (14.18) The joint PDF of a bivariate RV (𝑋, 𝑌) is given by 𝑓 𝑋𝑌 (𝑥, 𝑦) = { 𝑘𝑥𝑦, 0 < 𝑥 < 1,0 < 𝑦 < 1, 0, otherwise, where 𝑘 is a constant. (a) Determine the value of 𝑘. (b) Find the marginal PDFs of 𝑋 and 𝑌. (c) Find 𝑃(𝑋 + 𝑌 < 1). Solution (a)

. 19 )

 19 If 𝑛 = 0, we obtain the 𝑘th moment of 𝑋, and if 𝑘 = 0, we obtain the 𝑛th moment of 𝑌. Thus, 𝑚 10 = 𝐸[𝑋] = 𝜇 𝑋 and 𝑚 01 = 𝐸[𝑌] = 𝜇 𝑌 .

.24. 2 )

 2 The variances of 𝑋 and 𝑌 are given by Var(𝑋) = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 , (14.25.1) Var(𝑌) = 𝐸[𝑌 2 ] -(𝐸[𝑌]) 2 . (14.25.2) Definition (Correlation): The (1,1)th joint moment of (𝑋, 𝑌), 𝑚 11 = 𝐸[𝑋 𝑌], (14.26) is called the correlation of 𝑋 and 𝑌. Definition (Orthogonal RVs): If 𝐸[𝑋 𝑌] = 0, then we say that 𝑋 and 𝑌 are orthogonal.

Figure 14 . 1 .

 141 Figure 14.1. The sign of the covariance of two RVs 𝑋 and 𝑌.

  𝐸[𝑋𝑌] = ∑ ∑ 𝑥 𝑖 𝑦 𝑗 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑥 𝑖 𝑦 𝑗 = ∑ ∑ 𝑥 𝑖 𝑦 𝑗 𝑓 𝑋 (𝑥 𝑖 )𝑓 𝑌 (𝑦 𝑗 ) 𝑥 𝑖 𝑦 𝑗 = (∑ 𝑥 𝑖 𝑓 𝑋 (𝑥 𝑖 ) 𝑥 𝑖 ) (∑ 𝑦 𝑗 𝑓 𝑌 (𝑦 𝑗 ) 𝑦 𝑗 ) = 𝐸[𝑋]𝐸[𝑌].

. 29 )

 29 • If 𝑋, 𝑌, 𝑊, and 𝑉 are real-valued RVs and 𝑎,𝑏,𝑐,𝑑 are real-valued constants, then the following facts are a consequence of the definition of covariance: Cov(𝑋, 𝑎) = 0, (14.30) Cov(𝑋, 𝑋) = Var(𝑋), (14.31) Cov(𝑋, 𝑌) = Cov(𝑌, 𝑋), (14.32) Cov(𝑎𝑋, 𝑏𝑌) = 𝑎𝑏 Cov(𝑋, 𝑌), (14.33) Cov(𝑋 + 𝑎, 𝑌 + 𝑏) = Cov(𝑋, 𝑌), (14.34) Cov(𝑎𝑋 + 𝑏𝑌, 𝑐𝑊 + 𝑑𝑉) = 𝑎𝑐 Cov(𝑋, 𝑊) + 𝑎𝑑 Cov(𝑋, 𝑉) + 𝑏𝑐 Cov(𝑌, 𝑊) + 𝑏𝑑 Cov(𝑌, 𝑉). (14.35) • The variance of the sum 𝑋 + 𝑌 is given by Var

•+ 2 ∑

 2 For a sequence 𝑋 1 , 𝑋 2 ,…, 𝑋 𝑛 of RVs in real-valued, and constants 𝑎 1 , 𝑎 2 ,…, 𝑎 𝑛 , we have Var (∑ 𝑎 𝑖 𝑋 𝑖 𝑎 𝑖 𝑎 𝑗 Cov(𝑋 𝑖 , 𝑋 𝑗 ) 𝑛 𝑖,𝑗;𝑖<𝑗 = ∑ 𝑎 𝑖 𝑎 𝑗 Cov(𝑋 𝑖 , 𝑋 𝑗 )

Definition( 9

 9 Correlation Coefficient): The correlation coefficient, denoted by 𝜌(𝑋, 𝑌) or 𝜌 𝑋𝑌 , or Corr(𝑋, 𝑌) is defined by 𝜌(𝑋, 𝑌) = 𝜌 𝑋𝑌 = Corr(𝑋, 𝑌) = Cov(𝑋, 𝑌) 𝜎 𝑋 𝜎 𝑌 = 𝜎 𝑋𝑌 𝜎 𝑋 𝜎 𝑌 . (14.38) For any two RVs 𝑋 and 𝑌, |𝜌 𝑋𝑌 | ≤ 1 or -1 ≤ 𝜌 𝑋𝑌 ≤ 1. (14.39) Suppose the joint PMF of a bivariate RV (𝑋, 𝑌) is given by

.48. 2 )

 2 Notice that if 𝑋 and 𝑌 are independent, then 𝑓 𝑌|𝑋 (𝑦|𝑥) = 𝑓 𝑌 (𝑦), 𝑓 𝑋|𝑌 (𝑥|𝑦) = 𝑓 𝑋 (𝑥). (14.49) Definition (Conditional Mean and Variance): If (𝑋, 𝑌) is a continuous bivariate RV with joint PDF 𝑓 𝑋𝑌 (𝑥, 𝑦), the conditional mean of 𝑌, given that 𝑋 = 𝑥, is defined by 𝜇 𝑌|𝑥 = 𝐸(𝑌|𝑥) = ∫ 𝑦𝑓 𝑌|𝑥 (𝑦|𝑥) ∞ -∞ 𝑑𝑦. (14.50) The conditional variance of 𝑌 given 𝑋 = 𝑥, is defined by 581

6 ∑

 6 Similarly, the conditional PMF of 𝑋 given 𝑌 = 𝑦 𝑗 , 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 ), can be written as the following. 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 )

18 .

 18 (a) Find the value of 𝑘. (b) Find the marginal PMF of 𝑋 and 𝑌. (c) Find the conditional PMFs. Solution ∑ ∑ 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) The marginal PMF of 𝑋 are

Figure 14 . 2 .Figure 14 . 3 .

 142143 Figure 14.2. 3d plot (upper left panel), 3d histogram (upper right panel), scatter plot (lower left panel) and 2d contour plot (lower right panel) of bivariate normal distributions. The density function of bivariate normal distribution is a generalization of the familiar bell curve and graphs in three dimensions as a sort of bell-shaped hump. A bivariate normal density has elliptical contours. For each height 𝑐 > 0 the set {(𝑥, 𝑦): 𝑓 𝑋𝑌 (𝑥, 𝑦) = 𝑐} is an ellipse. A scatter plot of (𝑥, 𝑦) pairs generated from a bivariate normal distribution will have a rough linear association and the cloud of points will resemble an ellipse. If 𝑋 and 𝑌 have a bivariate normal distribution, then the marginal distributions are also normal: 𝑋 has a normal (𝜇 𝑋 , 𝜎 𝑋 ) distribution and 𝑌 has a Normal (𝜇 𝑌 , 𝜎 𝑌 ).

∎ CHAPTER 14 BIVARIATE RANDOM VARIABLES AND DISTRIBUTIONS 587 Theorem 14 . 5 (

 14587145 Marginal Distribution of Bivariate Normal Distribution): Let (𝑋, 𝑌)~BVN (𝜇 1 , 𝜇 2 , 𝜎 1 2 , 𝜎 2 2 , 𝜌), then the marginal PDFs of 𝑋 and 𝑌 are also normal. The marginal PDFs of RVs 𝑋 and 𝑌 are given by

  .56) for 𝑥 1 + 𝑥 2 + ⋯ + 𝑥 𝑘 = 𝑛 and 𝑝 1 + 𝑝 2 + ⋯ + 𝑝 𝑘 = 1. See Figure 14.4.

Figure 14 . 4 .

 144 Figure 14.4. 3d plot of PDFs of the multinomial distributions with 𝑛 = 4,5,10, 𝑝 1 = 0.7 and 𝑝 2 = 0.3 (upper panel). 3d plot of CDFs of the same multinomial distributions (lower panel).

14 BIVARIATE RANDOM VARIABLES AND DISTRIBUTIONS 592 =

 14592 𝑖 , 𝑋 𝑗 ) = 𝐸[𝑋 𝑖 𝑋 𝑗 ] -𝐸[𝑋 𝑖 ]𝐸[𝑋 𝑗 ] = 𝑛(𝑛 -1)𝑝 𝑖 𝑝 𝑗 -𝑛𝑝 𝑖 𝑛𝑝 𝑗 = (𝑛 2 -𝑛 -𝑛 2 )𝑝 𝑖 𝑝 𝑗 CHAPTER -𝑛𝑝 𝑖 𝑝 𝑗 .

Chapter 15 Outline 1 :

 151 Unit 15.1. Marginal Distribution, Covariance, and Correlation Unit 15.2. Binormal Distribution Unit 15.3. Multinomial Distribution 597 respectively, and store them in marginalSamples1 and marginalSamples2. Finally, we create plots to visualize the joint distribution and the marginal distributions using Histogram and Histogram3D: *) (* Define a joint distribution: *) jointDist=MultinormalDistribution[{0,0},{{1,0.5},{0.5,2}}]; (* Compute the marginal distribution of the first variable: *) marginalDist1=MarginalDistribution[jointDist,1]; (* Compute the marginal distribution of the second variable: *) marginalDist2=MarginalDistribution[jointDist,2]; (*Generate random samples from the joint distribution: *) samples=RandomVariate[jointDist,1000]; (* Generate random samples from the marginal distribution of the first variable: *) marginalSamples1=RandomVariate[marginalDist1,1000]; (* Generate random samples from the marginal distribution of the second variable: *) marginalSamples2=RandomVariate[marginalDist2,1000]; (* Plot the joint distribution: *Define the joint distribution*) jointDistribution=MultinormalDistribution[{0,0,0},{{2,1,0.5},{1,3,-0.2},{0.5,-0.2,1.5}}]; (* Step 2: Calculate the marginal distributions*) marginalX=MarginalDistribution[jointDistribution,1]; marginalY=MarginalDistribution[jointDistribution,2]; marginalZ=MarginalDistribution[jointDistribution,3]; (* Step 3: Plot the marginal distributions*) Plot[ { PDF[marginalX,x], PDF[marginalY,x], PDF[marginalZ,x]}, {x,-6,6}, PlotLegends->{"Marginal X","Marginal Y","Marginal Z"}, PlotRange->All, Frame->True, FrameLabel->{"X, Y, or Z","Density"}, ImageSize->250 ] represents a multivariate normal distribution with three variables. We generate random samples from the multivariate distribution using RandomVariate and then extract the marginal distribution of the first two variables using MarginalDistribution. We plot a scatter plot of the marginal distribution using ListPlot. Finally, we calculate the means of the marginal distribution using Mean and display them: *) (* Define a multivariate distribution: *) random samples from the multivariate distribution: *) samples=RandomVariate[multivariateDist,1000]; (* Extract the marginal distribution of the first two variables: *) marginalDist=MarginalDistribution[multivariateDist,{1,2}] (* Calculate the means of the marginal distribution: *) mean=Mean[marginalDist]; (* Display the means: *) Row[{"Mean of Marginal Distribution: ",mean}] (* Plot the scatter plot of the marginal distribution: *) ListPlot[ samples[[All,{1,2}]], PlotStyle->Directive[PointSize[0.02],Purple,Opacity[0.3]], AspectRatio->1, PlotLabel->"Marginal Distribution", ImageSize->220 ] Output MultinormalDistribution[{0,0},{{1,0.5},{0.5,2}}] Output Mean of Marginal Distribution: {0,0} 600 Output Covariance[v1,v2]

  covariance of a list with itself is the variance: *) (* Define a sample list: *) list={a,b,c,d,e}; (* Compute the covariance matrix: *) covariance=Covariance[list,list]; (* Compute the variance: *) variance=Variance[list]; (* Check if the covariance and variance are equal: covariance matrix is symmetric and positive semidefinite: *) (* Define a sample dataset: *) data=RandomVariate[BinormalDistribution[1/3],10^3]; (* Compute the covariance matrix: *) covMatrix=Covariance[data]; (* Display the covariance matrix: *) MatrixForm[covMatrix] (* Check if the covariance matrix is symmetric: *) symmetric=SymmetricMatrixQ[covMatrix] (* Check if the covariance matrix is positive semidefinite: *) positiveSemidefinite=PositiveSemidefiniteMatrixQ[covMatrix]603(* Matrix plot of the covariance matrix: covariance tends to be large only on the diagonal of a random matrix:

  Input (* A covariance matrix scaled by standard deviations is a correlation matrix: *) data=RandomReal[5,{20,5}]; s=DiagonalMatrix[1/StandardDeviation[data]]; Correlation[data]==s.Covariance[data].s Output True 605 (*Calculate the covariance matrix*) cov=Covariance[data]; (*Create the ListPlot*) plot=ListPlot[ data, PlotStyle->Directive[Purple,PointSize[0.015],Opacity[0.5]], Frame->True, Axes->False, PlotLabel->StringForm["ρ = ``\nCovariance = ``",ρ,cov[[1,2]]] ]; (*Return the plot*) plot ], {{ρ,-0.9},-0.9,0.9,0.01,Appearance->"Labeled"} ] Output Mathematica Examples 15.20 Input (* In this code, the distPlot function generates a sample of 1000 random variates from the specified distribution and calculates the covariance matrix. It then displays a 3D histogram of the data and a matrix plot of the covariance matrix. The Manipulate function allows the user to interactively change the parameters μ1,μ2,σ1,σ2,and ρ, which define the covariance matrix of a Binormal distribution. The resulting changes are immediately reflected in the plots: *) distPlot[dist_,covRange_]:=Module[ {data,cov}, SeedRandom[123]; (*for reproducibility*) data=RandomVariate[dist,1000]; cov=Covariance[data];

  [[1]][[1]],-10,0},{quartiles[[1]][[1]],10,0}}], Line[{{quartiles[[1]][[2]],-10,0},{quartiles[[1]][[2]],10,0}}], Line[{{quartiles[[1]][[3]],-10,0},{quartiles[[1]][[3]],10,0}}], Green, Thickness[0.003], Line[{{-10,quartiles[[2]][[1]],0},{10,quartiles[[2]][[1]],0}}], Line[{{-10,quartiles[[2]][[2]],0},{10,quartiles[[2]][[2]],0}}], Line[{{-10,quartiles[[2]][[3]],0},{10,quartiles[[2]][[3]],0}}] } ]; Show[histogram,meanLine,quartileLines] Output {0.84332,0.8155} Output {{-0.440248,0.795172,2.32133},{-0.519394,0.857103,2.15124}} Output 614 Lighting->"Neutral" ];(* Create a 3D contour plot of the distribution at z=0: the 3D plot and the contour plot into a single visualization: *) code generates a random sample of size 10,000 from a binormal distribution with parameters {μ1,μ2}={1,1}, {σ1,σ2}={2,2}, ρ=0.6, estimates the distribution parameters using the EstimatedDistribution function, and then compares the histogram of the sample with the estimated PDF of the binormal distribution using a 3D histogram and a 3D plot of the PDF: *) sampledata=RandomVariate[ code generates a bivariate dataset consisting of 10,000 random samples drawn from a binormal distribution with mean (1,2), standard deviations (1.5,2), and correlation coefficient 0.6. The code generates a scatter plot of the bivariate dataset (each point in the plot represents a pair of X and Y values from the dataset) with additional histograms as frame labels to provide insights into the individual variable distributions (marginal distribution in x-axis and marginal distribution in y-axis). The three plots are integrated into one plot: *) data=RandomVariate[ BinormalDistribution[{1,2},{1.5,2},0.6code generates 3D histograms and scatter plot for a bivariate dataset. The dataset data is generated using the RandomVariate function, creating 1,000 random samples from a binormal distribution. The binormal distribution is characterized by a mean of (0,0), standard deviations of (2,2), and a correlation coefficient of 0.7. The histogram2dplot function takes two arguments, xrange and yrange, which determine the range of the plot along the x-axis and y-axis, respectively. Inside the function, three sets of data points are created for plotting. dataforListPointPlot3D contains the original data points in 3D space, setting the z-coordinate to 0. dataforxHistogram3D and dataforyHistogram3D are used to create histograms along the x-axis and y-axis, respectively. The Show function is then used to combine the plots of the data points and the histograms. The ListPointPlot3D function creates a scatter plot of the data points. The Histogram3D function is used to generate the 3D histograms for the x-axis and y-axis data separately: *) data=RandomVariate[ BinormalDistribution[{0,0},{2,2},0.7-xrange,xrange},{-yrange,yrange},All}, AxesEdge->{{-1,-1},{1,-1},{-1,1}}, FaceGrids->{{-1,0,0},{0,0,-1},{0,1,0}}, code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from a BinormalDistribution[{1,0},{0.5,1},0.6],and then using these samples to estimate the parameters of another binormal distribution with unknown {μ1,μ2},{σ1,σ2}, and ρ. This process is repeated 20 times, resulting in 20 different estimated distributions. The code plots the PDFs of the marginal distribution of estimated distributions using the PDF function and the estimated parameters: *) dist=BinormalDistribution[{1,0},{0.

(

  * Visualizes the resulting PDF marginals distributions of estimated distributions *,Opacity[0.3],Thickness[0.001]],Directive[Red,Opacity[0.3],Thickn ess[0.001]code creates a dynamic histogram of data and a plot of the PDF generated from a binormal distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of μ1,μ2,σ1,σ2, ρ and n, which are the parameters of the normal distribution and the sample size: *) Manipulate[ Module[ { data=RandomVariate[ d=BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ], n ]

  7,0.3}], {x,y} ], {y,0,n}, {x,0,n}, PlotLabel->Row[{"n = ",n}], ExtentSize->0.6plot, Histogram of Y-axis values and PDF of marginal distribution: *plot, Scatter plot of the dataset: *) ListPlot[ data, PlotStyle->Directive[Purple,PointSize[0.05],Opacity[0.002]code generates a bivariate dataset consisting of 10,000 random samples drawn from a multinomial distribution with mean n=10, p1=0.6 and p2=0.4. The code generates a scatter plot of the bivariate dataset (each point in the plot represents a pair of X and Y values from the dataset) with additional histograms as frame labels to provide insights into the individual variable distributions (marginal distribution in x-axis and marginal distribution in y-axis). The three plots are integrated into one plot: code creates a dynamic histogram of data and a plot of the PDF generated from a multinomial distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of n and p1, which are the parameters of the multinomial distribution and the sample size: *) ,"n"},1,100,1}, {{p1,0.5,"Probability 1"},0.1,0.9,0.1}, {{Size,1000,"sample size"},500,5000,100} ] Output 634 CHAPTER 16

  Sampling theory studies relationships between a population and samples drawn from the population.

  where 𝐸(𝑋 1 ) = 𝐸(𝑋 2 ) = ⋯ = 𝐸(𝑋 𝑛 ) = 𝜇 and

Figure 16 .

 16 2 plots the PDF of the sample mean from a normal population 𝑁(0,2) for a variety of sample sizes. • Property (16.2.2) shows that the 𝑋 ̅ distribution becomes more concentrated about 𝜇 as the sample size 𝑛 increases, because its standard deviation decreases. • The expression 𝜎 √𝑛 for the standard deviation of 𝑋 ̅ is called the standard error of the mean, and it indicates the typical amount by which a value of 𝑋 ̅ will deviate from the true mean, 𝜇 (in contrast, 𝜎 itself represents the typical difference between an individual 𝑋 𝑖 and 𝜇).

Figure 16 . 2 ..

 162 Figure 16.2. Densities of sample means from a normal population 𝑁(0,2).

2 .

 2 Let 𝑀 𝑍 (𝑡) denote the MGF of 𝑍. It is our purpose to show that 𝑀 𝑍 (𝑡) must approach 𝑀(𝑡) when 𝑛, the sample size, becomes large. Now 𝑀 𝑍 (𝑡) = 𝐸(𝑒 𝑡𝑍 ) = 𝐸 [exp (𝑡 𝑋 ̅ of 𝑋 1 ..., 𝑋 𝑛 . Since 𝑋 𝑖 's are identically distributed, we have 𝑀 𝑍 (𝑡) = [𝐸 [exp ( 2 ), where 𝑂 ( 1 𝑛 3/2 ) denotes terms with 𝑛

Figure 16 . 3 .

 163 Figure 16.3. The figure represents histograms of sample means drawn from a uniform distribution on the interval [1,5]. The sample sizes 𝑛 = 1, 2, 3, 10 and the number of samples is set to 100,000. The histograms display the PDF of the sample means. The plot labels indicate the sample size for each histogram.

Figure 16 . 4 .Theorem 16 . 5 :

 164165 Figure 16.4. Histograms of a sample mean from three different distributions: exponential, gamma, and beta. The sample size is fixed at 𝑛 = 30, and the number of samples is set to 100,000.

Figure 16 . 5 . 3 4

 16534 Figure 16.5. Flow chart of sample distribution of mean, 𝑋 ̅ . It shows when you should use normal and student distributions.

Theorem 16 . 6 :

 166 We find that: 𝑃(|𝑋 ̅ -15| ≤ 0.3) = 𝑃(-0.3 ≤ (𝑋 ̅ -15) ≤ 0-1.6769 ≤ 𝑍 ≤ 1.6769) = 0.906438. Therefore, there is a 0.90 percent probability that the average drink volume in any 20 randomly selected bottles will be between 14.7 and 15.3 oz. NProbability[-1.6769<z<1.6769,z\[Distributed]NormalDistribution[0,1]] CDF[NormalDistribution[0,1],1.6769]-CDF[NormalDistribution[0,1],-1claims that the new line of its hybrid cars has an average gas mileage of 70 miles per gallon with a standard deviation of 5 miles per gallon. 68 miles per gallon was the average found in a randomly selected sample of 25 cars. What is the probability that the sample mean is less than or equal to 68 miles per gallon, assuming the company's claim is true? Solution 646 If the company's claim is true, then from CLT, 𝑋 ̅ is normally distributed with mean 𝜇 = 70 and variance Hence, 𝑃(𝑋 ̅ ≤ 68) = 𝑃(𝑋 ̅ -70 ≤ 68 -70) = 𝑃(𝑍 ≤ -2) = 0.022. It is, therefore, extremely unlikely that the mean value of the random sample of 25 cars will equal 68 miles per gallon if the company's claim is true. We come to the conclusion that the company's claim is most likely incorrect because the mean is, in fact, 68 miles per gallon. NProbability[z<-2,z\[Distributed]NormalDistribution[0,1]] N[CDF[NormalDistribution[0,1],-2Suppose that all possible samples of size 𝑛 are drawn without replacement from a finite population of size 𝑁 > 𝑛. If we denote the mean and standard deviation of the sampling distribution of means by 𝜇 𝑋 ̅ and 𝜎 𝑋 ̅ and the population mean and standard deviation by 𝜇 and 𝜎, respectively, then 𝜇 𝑋 ̅ = 𝜇, (16.7.1)

  Corresponding to the value 𝑥̅ 1 -𝑥̅ 2 = 1.0, we find that

  𝑋 𝑖 ∼ 𝑁(𝜇, 𝜎 2 ) ⇒ 𝑍 𝑖 = 𝑋 𝑖 -𝜇 𝜎 ∼ 𝑁(0,1). (16.12) Definition (𝝌 𝟐 Distribution): We define 𝜒 2 with 𝑛 degrees of freedom as the sum of the squares of 𝑛 independent standard normal variates. That is, 2 (𝑛). (16.13) 648 Now, we shall use MGF to obtain the distribution of 𝜒 2 . 𝑍 2 (𝑡)] 𝑛 . Since 𝑀 𝑔(𝑋) (𝑡) = ∫ 𝑒 𝑡𝑔(𝑥) 𝑥 𝑓 𝑋 (𝑥)𝑑𝑥, 𝑀 𝑍 2 (𝑡) = 𝐸(𝑒 𝑡𝑍 2 )

1 .

 1 Therefore, we have,𝑀 𝜒 2 (𝑡) = (1 -2𝑡) -𝑛2 , (16.14) which is the MGF of a gamma distribution with 𝛼 = 𝑛/2 (shape parameter) and 𝛽 = 2 (scale parameter) (shape-scale parameters). Hence, the PDF of 𝜒 2 is 𝑓 𝜒 2 (

  It is usually denoted by 𝜈. The shape of a specific chi-square distribution depends on the number of degrees of freedom.• The RV 𝜒 2 assumes nonnegative values only. Hence, a chi-square distribution curve starts at the origin (zero point) and lies entirely to the right of the vertical axis, see Figure16.6. • As we can see from Figure16.6, the shape of a chi-square distribution curve is skewed for very small degrees of freedom, and it changes drastically as the degrees of freedom increase. Eventually, for large degrees of freedom, the chi-square distribution curve looks like a normal distribution curve. The peak of a chi-square distribution curve with 1 or 2 degrees of freedom occurs at zero and for a curve with 3 or more degrees of 649 freedom occurs at 𝜈 -2. For instance, the peak of the chi-square distribution curve with 𝜈 = 3 in Figure16.6 occurs at 3 -2 = 1. The peak for the curve with 𝜈 = 5 occurs at 5 -2 = 3. Finally, the peak for the curve with 𝜈 = 10 occurs at 10 -2 = 8. • The total area under a 𝜒 2 -curve equals 1.

Figure 16 . 6 .

 166 Figure 16.6. The shape of the Chi-Square distribution depends on the degrees of freedom parameter.When the degrees of freedom parameter is small, the Chi-Square distribution is skewed and has a long tail. As the degrees of freedom parameter increases, the distribution becomes more symmetric and bellshaped. Specifically, as the degrees of freedom become large, the Chi-Square distribution approaches a normal distribution. Also, the shape of the CDF depends on the number of degrees of freedom 𝜈 of the Chi-Square distribution.

Theorem 16 . 7 :

 167 The mean and variance of the RV 𝑋 having a chi-squared distribution with 𝑛 degrees of freedom are 𝐸[𝑋] = 𝑛, (16.17.1) Var(𝑋) = 2𝑛.

Theorem 16 . 11 :

 1611 Let 𝑋 1 , 𝑋 2 , . .. , 𝑋 𝑛 be IID 𝑁(𝜇, 𝜎 2 ) RVs. Then 𝑋 ̅ and ((𝑋 1 -𝑋 ̅ ), (𝑋 2 -𝑋 ̅ ),… (𝑋 𝑛 -𝑋 ̅ )) are independent.Proof:Let 𝑀(𝑡, 𝑡 1 , 𝑡 2 , … , 𝑡 𝑛 ) be the MGF of (𝑋 ̅ , (𝑋 1 -𝑋 ̅ ), (𝑋 2 -𝑋 ̅ ),… (𝑋 𝑛 -𝑋 ̅ )).𝑀(𝑡, 𝑡 1 , 𝑡 2 , … , 𝑡 𝑛 ) = 𝐸[exp{𝑡𝑋 ̅ + 𝑡 1 (𝑋 1 -𝑋 ̅ ) + 𝑡 2 (𝑋 2 -𝑋 ̅ ) + ⋯ + 𝑡 𝑛 (𝑋 𝑛 -𝑋 ̅ )}] = 𝐸 [exp {∑ 𝑡 𝑖 𝑋 𝑖 exp {∑ 𝑋 𝑖 𝑛 𝑖=1

  -1)𝑆2 + 𝑛(𝑋 ̅ -𝜇) 2 + 2(𝑋 ̅ -𝜇)(𝑛𝑋 ̅ -𝑛𝑋 ̅ ) = (𝑛 -1)𝑆 2 + 𝑛(𝑋 ̅ -𝜇)2 .

3 . 2 (

 32 Since the chi-squared distribution is a continuous distribution, we can find the values of 𝑎 and 𝑏 that satisfy the given probability by finding the critical values (x1 and x2) of the chi-squared distribution for a given probability. 4. Since 𝑃(𝑎 ≤ 𝑆 2 ≤ 𝑏) = 0.90, we need to find the critical values that leave a probability of 0.10 in the tails of the distribution. We can split the probability between the two tails, giving us a probability of (1 -0.90)/2 = 0.05 for each tail. 5. We can use the InverseCDF function in Mathematica to find the critical values of the chi-squared distribution with (𝑛 -1) degrees of freedom corresponding to a probability 0.05. Specifically, we can find the critical values x1 and x2 such that 𝑃(𝑋 ≤ x1) = 0.05 and 𝑃(𝑋 ≥ x2) = 0.05, where 𝑋 is the chisquared distribution with (𝑛 -1) degrees of freedom. 6. Once we have the critical values x1 and x2, we can calculate the values of 𝑎 and 𝑏 by multiplying them by 𝜎 𝑛-1) . 7. Therefore, the values of 𝑎 and 𝑏 that satisfy the given probability are 𝑎 = x1 𝜎 2 (𝑛-1) and 𝑏 = x2 𝜎 2 (𝑛-1) , where x1 and x2 are the critical values of the chi-squared distribution with 12 degrees of freedom corresponding to a probability 0.05.

  659

Theorem 16 . 15 :

 1615 The PDF of the RV 𝑇 with 𝑛 degrees of freedom is given by 𝑓 𝑇 (𝑡) = Γ

∎ 661 Figure 16 . 8 .

 661168 Figure 16.8. The shape of the Student 𝑡-distribution depends on the degrees of freedom (𝑛 = 𝜈).When the 𝜈 is large (i.e., greater than 30), the 𝑡-distribution approaches a normal distribution, with a bellshaped curve and symmetrical about the mean. However, when the 𝜈 is small, the 𝑡-distribution is more spread out and has heavier tails than the normal distribution. Also, the shape of the CDF depends on the number of degrees of freedom 𝜈 of the Student t-distribution.

Figure 16 .

 16 [START_REF] Spiegel | Schaum's Outline of Theory and Problems of Statistics[END_REF] shows a graph of the 𝑡-density function with 5 degrees of freedom compared with the standard normal density. Notice that the 𝑡-density has thicker "tails," indicating greater variability, than does the normal density.• As the sample size increases, the 𝑡 distribution approaches the standard normal distribution. To understand why, recall that 𝑌 ∼ 𝜒 2 (𝑛) can be expressed as the sum of the squares of 𝑛 standard normals, and so where 𝑍 1 ,. . . , 𝑍 𝑛 are independent standard normal RVs. For large 𝑛, 𝑌/𝑛 will, with probability close to 1, be approximately equal to 𝐸[𝑍 𝑖 2 ] = 1. Hence, for 𝑛 large, 𝑇 = 𝑍/√𝑌/𝑛 will have approximately the same distribution as 𝑍.

Figure 16 . 9 .

 169 Figure 16.9. As the degrees of freedom increase, the Student 𝑡-distribution approaches the normal distribution, with the heavier tails becoming less pronounced.

  𝐸[𝑈𝑉] = 𝐸[𝑈]𝐸[𝑉] if 𝑈 and 𝑉 are independent and the expectations of 𝑈 and 𝑉 both exist. Thus, 𝐸[𝑇] = 𝐸[𝑍]

•

  (a) If 𝑟 is odd, then 𝐸(𝑋 𝑟 ) = 0. (16.36) (b) If 𝑟 is even, then 𝐸(𝑋 𝑟 ) = 𝑛 𝑟/If 𝑋 ∼ 𝑡(1), then 𝐸(𝑋) does not exist. (Cauchy) (4) Mean = Median = Mode.(5) For 𝑡 distribution MGF does not exist.Statistic following 𝒕-distributionTheorem 16.17: Let 𝑋 1 , 𝑋 2 , . .. , 𝑋 𝑛 be a random sample of size 𝑛 from 𝑁(𝜇, 𝜎 2 ), where 𝜎 2 is unknown. Let 𝑋 ̅ be the sample mean and 𝑆 2 be the sample variance. Then, -1). Also 𝑋 ̅ and 𝑆 2 are independent. Then, by the definition of 𝑇-statistic. The 𝑇-values depend on the fluctuations of two quantities, 𝑋 ̅ and 𝑆 2 , whereas the 𝑍-values depend only on the changes in 𝑋 ̅ from sample to sample.

∎ 1 (

 1 Definition (𝒕𝜶 ): The symbol 𝑡 𝛼 indicates that the 𝑡-value has an area 𝛼 to its right. Example 16.11 Find the 𝑡 𝛼 , 𝛼 = {0.025, 0.05, 0.10, 0.5, 0.90, 0.95, 0.975}. Solution Part * The symbol αleft is used to represent the significance levels, which denote the areas under the student T distribution curve to the left of the corresponding T-score: *) αleft={0.025,0.05,0.10,0.5,0.90,0.95,0.975} (* The variable αright represents the complement of the significance levels, which denotes the areas under the student T distribution curve to the right of the corresponding T-score: *) αright=1-αleft 667 Definition (PDF of 𝑭-distribution): Let 𝑈 and 𝑉 be two independent RVs having chi-squared distributions with 𝜈 1 and 𝜈 2 degrees of freedom, respectively. Then the distribution of the RV 𝐹 =

Figure 16 . 11 .

 1611 Figure 16.11. PDFs CDFs of the 𝐹-distribution. The curve of the 𝐹-distribution depends not only on the two parameters 𝜈 1 and 𝜈 2 but also on the order in which we state them since the density of the 𝐹 distribution is not symmetrical in 𝜈 1 and 𝜈 2 .

𝑆 2 2 ∼FillingFigure 16 . 12 Fisher

 21612 Figure 16.12 Fisher 𝐹 distribution, 𝐹(5,15).

Figure 16 .

 16 Figure 16.12 displays the Fisher 𝐹 distribution, 𝐹(5,15). Find the values of 𝑎 and/or b using Mathematica code so that (a) the area to the right of 𝑎 is 0.95, (b) the total shaded area is 0.95, (c) the total unshaded area is 0.1, (d) the area on the left of 𝑎 is 0.01, and (e) the area to the right of 𝑎 is 0.1. Solution

  (a) If the area to the right of 𝑎 is 0.95, the region to the left of 𝑎 is 1 -0.95 = 0.05 and 𝑎 stands for the 5th percentile. The result, 𝐹 = 0.216508. (b) If the total shaded area is 0.95, then the unshaded region is 1 -0.95 = 0.05. Thus, the region to the left of 𝑎 is 0.025 and the region to the right to 𝑏 is 0.025. Hence, the region to the left to 𝑏 is 0.95 + 0.025 = 0.975. The result, at 𝑎, 𝐹 = 1.55576 and at 𝑏, 𝐹 = 3.57642.

  Proportions):The population and sample proportions, denoted by 𝑝 and 𝑝, respectively, are calculated as where 𝑁 = total number of elements in the population 𝑛 = total number of elements in the sample 𝑌 = number of elements in the population that possess a specific characteristic 𝑋 = number of elements in the sample that possess the same specific characteristic

Theorem 16 . 20 : 21 (

 162021 The mean 𝜇 𝑝 ̂ and standard deviation 𝜎 𝑝 ̂ of a sampling distribution of proportions, 𝑝, are𝜇 𝑝 ̂= 𝑝,If a population whose elements are divided into two mutually exclusive groups-one containing the elements which possess a certain attribute (success) and other containing elements which do not possess the attribute (failure), then number of successes (elements possess a certain attribute), follows a binomial distribution with,𝐸(𝑋) = 𝑛𝑝, Var(𝑋) = 𝑛𝑝𝑞, 𝑞 = 1 -𝑝,where, 𝑝 is the probability or proportion of success in the population. Now, we can easily find the mean and variance of the sampling distribution of sample proportion by using the above expression as CLT for Sample Proportion): If 𝑛 is large and 𝑋 is a binomial RV with parameters 𝑛 and 𝑝, 𝑍 = 𝑋 -𝑛𝑝 √𝑛𝑝(1 -𝑝) ,(16.56) 

𝜇

  |𝑍|) = 2(area to the left of -1) = 2(0.158655) = 0.317311. NProbability[1<Abs[z],z\[Distributed]NormalDistribution[0,1]] NProbability[z<-1||1<z,z\[Distributed]NormalDistribution[0𝐴 and 𝐵 play ''heads and tails,'' tossing 40 coins each. If 𝐴 throws 4 or more heads than 𝐵, he wins the game; otherwise, 𝐵 wins. Determine the probabilities of 𝐴 winning any given game. Solution Let 𝑝̂𝐴 and 𝑝̂𝐵 denote the proportion of heads obtained by 𝐴 and 𝐵. Assuming that the coins are all fair, the probability, 𝑝, of heads equals 1/2. Then 𝜇 𝑝 ̂𝐴-𝑝 ̂𝐵 = 𝜇 𝑝 ̂𝐴 -𝜇 𝑝 ̂𝐵 = 0.5 -0.5 = 0, 𝜎 𝑝 ̂𝐴-𝑝 ̂𝐵 =

  , PlotLegends->Placed[{"n=1","n=5","n=10","n=20","n=30"},{0.8,0.75}], ImageSize->320, AxesLabel->{None,"PDF"} ] Output Mathematica Examples 17.2 Input (* The code demonstrates the concept of the sampling distribution of the mean and how it can be used to make inferences about the population mean. The code generates a population of 1000 values from a normal distribution with mean 170 and standard deviation 5. It then takes a sample of size 100 and calculates the sample mean. The code repeats this sampling process 1000 times and calculates the sample means. It then calculates the mean of the sampling distribution of the mean and plots the sampling distribution of the mean using Histogram. The plot includes vertical lines 680 representing the population mean, the mean of the sampling distribution and the dashed green line indicating the actual population mean: *) a sample of size 100 and calculate the sample mean: *) sample=RandomSample[population,100]; sampleMean=Mean[sample] (* Repeat the sampling process 1000 times and calculate the sample means: mean of sampling distribution of the mean: *) m=Mean[sampleMeans] (* Plot the sampling distribution of the mean: *Directive[Green,Dashed,Thickness[0.006]], Line[{{populationMean,0},{populationMean,0.8}}], Directive[Red,Dashed,Thickness[0.006]], Line[{{m,0},{m,0.8}}] }, PlotLabel->"Sampling Distribution of the Mean", ColorFunction->Function[{height},Opacity[height]],ImageSize-code generates a series of sample means of different sizes from a normal distribution with mean 5 and standard deviation 2, and comparing each sample mean to the mean of the original distribution. The absolute difference between each sample mean and the original mean is calculated and stored in a list. Finally, the list is plotted using ListPlot, where the x-axis shows the sample size and the y-axis shows the absolute difference between the sample mean and the population mean. The plot generated by this code could provide useful insights into the behavior of the mean of sample distributions as the sample size increases. It seems that the plot shows a decreasing trend in the absolute difference between the sample means and the population mean as the sample size increases, which is consistent with the central limit theorem(CLT)[RandomVariate[parent,n]],{1000}]; meanOfSampleMeans=Mean[sampleMeans]; meanOfParent=Mean[parent]; Abs[N[meanOfSampleMeans-meanOfParent]],{i,code is a demonstration of the relationship between sample size and experimental standard error, and how it compares to the theoretical standard error. This code generates a normal distribution population and then proceeds to generate 200 samples for different sample sizes, ranging from 10 to 200 with step 10. For each sample size, the sample means and experimental standard errors are calculated and compared to the theoretical standard errors, which are also calculated. It is worth noting that the theoretical standard error calculation assumes a population standard deviation of 10, which is the same as the standard deviation used to generate the population. The results are plotted in a ListPlot graph, where the experimental and theoretical standard errors are shown as blue and red points, respectively: *)

(

  * Plot the relationship between sample size and standard error: *) ListPlot[ {exprdata,thdata}, PlotRange->All, AxesLabel->{"Sample Size","Standard Error"}, ImageSize->320, PlotStyle->{Directive[Blue,PointSize[0.01]],Directive[Red,PointSize[0.01]]}, PlotLegends->Placed[{"Experimental standard error","Theoretical standard error"},{0.6,0.8}] ] code explores the CLT by comparing the standard deviation of sample means across three different population distributions: normal, exponential, and gamma. Specifically, the code generates 1000 samples of size n from three population distributions (normal, exponential, and gamma) using the RandomChoice function, and calculates the mean of each sample using the Mean function. This generates 1000 sample means for each value of n. Then, the standard deviation of the sample means is calculated for each value of n using the StandardDeviation function. The code plots the relationship between sample size (n) and the standard deviation of the sample means. The x-axis represents the sample size (n), and the y-axis represents the standard deviation of the sample means. The plot shows that as the sample size increases, the standard deviation of the sample means decreases. This relationship is in line with the CLT, which states that as the sample size increases, the distribution of the sample means approaches a normal distribution with a mean equal to the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size: *) (* Define a normal population distribution: *) normalpopulation=RandomVariate[ NormalDistribution[1,1

  , PlotLegends->Placed[{"Normal standard error","Exponential standard error","Gamma standard error"},{0.6,0.8}], PlotRange->{{0,101},{0,1.5}}, AxesLabel->{"Sample Size","Standard Deviation"}, PlotLabel->"Standard Deviation of Sample Means", PlotStyle->{Darker[Red],Darker[Blue],Green}, code demonstrates the CLT, which states that as the sample size increases, the distribution of the sample means approaches a normal distribution, regardless of the underlying distribution of the population. The histogram of the sample means approximates a bell curve, and the normal distribution curve overlaid on top shows how well the sample means fit a normal distribution. The code generates a dataset of 100,000 random values sampled from a uniform distribution with parameters {1,5}. Then, it creates a histogram of the data with bin widths of 0.02, displaying the PDF. Next, the code generates 100,000 sample means, each taken from a sample of size 10 randomly drawn from the same uniform distribution as before. It then creates a histogram of the sample means with bin widths of 0.01, displaying the PDF. Finally, the code creates a plot of the normal distribution with mean equal to the mean of the sample means and standard deviation equal to the standard deviation of the sample means. The plot shows the PDF of the normal distribution on the same scale as the histograms: *) data=RandomVariate[ UniformDistribution[{1,5}],

  code is a demonstration of the CLT, the population distribution is uniform, which is not a normal distribution, but the CLT still applies. As the sample size increases, the histograms become more bell-shaped and symmetric, indicating that the sample means are approaching a normal distribution. Additionally, the histograms become narrower, indicating that the standard deviation of the sample means is decreasing as the sample size increases. This demonstrates the practical usefulness of the CLT in allowing us to make inferences about the population mean based on sample means, even when the population distribution is not normal. The code generates 687 ChartStyle->Purple, ImageSize->170, PlotLabel->{{"sample size n=",n}}, AxesLabel->{"SM","PDF"}(*Sample Mean=SM*) code generates histograms of sample means from three different distributions: exponential, gamma, and beta. The sample size is fixed at n=30, and the number of samples is set to numSamples=100,000. For each distribution, the code generates a list of sample means using the Mean function and RandomVariate to generate random numbers from the specified distribution. The histograms display the PDF of the sample means for each distribution, with bars colored red, orange, and purple to represent the exponential, gamma, and beta distributions, respectively. This code provides an illustration of how the CLT can be used to approximate the distribution of sample means for different distributions. It also highlights the fact that the sample mean distribution becomes more normal as the sample size increases, regardless of the underlying distribution: *) n=30;(* sample size. *

  01}, "PDF", ChartLegends->Placed[{"Exponential Sample Distribution of Mean n=30","Gamma Sample Distribution of Mean n=30","Beta Sample Distribution of Mean n=30"},{0.6,0.7}],ChartStyle->{Red,Orange,Purple}, code defines a non-normal population distribution and then generates and plots the sampling distribution of the mean for different sample sizes using the Manipulate function. The population distribution is defined as an Exponential distribution with a mean of 5. The sampleMeans0 function generates 10,000 random samples of size n from this population, calculates the mean of each sample, and then plots the histogram of the means using Histogram function. The Manipulate function allows the user to vary the sample size from 5 to 100 in increments of 1 and observe how the sampling distribution of the mean changes as the sample size increases. The CLT states that the sampling distribution of the mean approaches a normal distribution as the sample size increases, regardless of the shape of the population distribution.

  code generates a 2D dataset with 5000 random points that follow a uniform distribution on the interval [0,6]. The scatter plot of the dataset shows the X-axis values on the horizontal axis and the Y-axis values on the vertical axis. Each point in the plot represents a pair of X and Y values from the dataset. The code also defines a function to generate and plot sample means. The function takes a sample size 'n', draws 5000 samples from the population with replacement, calculates the mean for each sample, and plots the means as purple points on a scatter plot. The opacity of the points is set to 0.3 to indicate overlapping points. The Manipulate function is then used to explore the sample means point. Manipulate allows the user to interactively adjust the sample size 'n' and observe the changes in the sample means point, as the sample size 'n' increases, the spread of the sample means points around the population mean decreases: *)

  samplingDist=NormalDistribution[mean,standardError]; (* The code creates a histogram of the distribution of differences between sample means. The histogram is approximately normal, as expected based on the CLT. The mean of the distribution is close to the true difference between the population means (μ1-μ2): *) PlotLabel->"Sampling Distribution of Differences of Means", Epilog->{ Text["μ1 = 10, σ1 = 2",{0,0.6}], Text["μ2 = 12, σ2 = 3",{0,0.5}], Text["n = 30",{0,0.4}], Text["Difference = "<>ToString[xbarofdifference],{-0.2,0.3}] }, ColorFunction->Function[Opacity[0.7code calculates and visualizes the differences between sample means from two populations and provides histograms, plots, and sliders to manipulate the parameters. The code generates random samples from two normal distributions and computes the mean difference for each trial. It then calculates the sample mean of the differences and the standard error. Histograms and plots are displayed to illustrate the differences, sampling distribution, and sample means. The Manipulate function enables users to adjust parameters such as population means, standard deviations, and sample size, "Mean 1"},2,7,0.1}, {{μ2,5,"Mean 2"},3,7,0.1}, {{σ1,3,"SD 1"},3,5,0.1}, {{σ2,3,"SD 2"},3,5,0.1}, {{n,30,"Sample Size"},10,50code creates a dynamic histogram of data and a plot of the PDF generated from a chi square distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of ν and n, which are the parameter of the chi square distribution and the sample size: *) code creates a plot of the CDF of a Chi Square distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters ν: *) "x","CDF"}, ImageSize->320, PlotStyle->Purple, PlotLabel->Row[{"ν = ",ν}]

  [{{mean,0},{mean,0.25}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.25}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.25}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.25}}] }, ColorFunction->Function[{height},Opacity[height]]code generates a random sample of size 10,000 from a chi square distribution with and then compares the histogram of the sample with the estimated PDF of the chi Square distribution using a histogram and a plot of the PDF: the distribution parameters from sample data: *) ed=EstimatedDistribution[ sampledata, ChiSquareDistribution[ν] ] 708 (* Compare a density histogram of the sample with the PDF of the estimated distribution: code generates a 2D dataset with 1000 random points that follow a chi square distribution with ν=3. The dataset is then used to create a row of three plots. The first plot is a histogram of the X-axis values of the dataset. The second plot is a histogram of the Y-axis values of the dataset. It is similar to the first plot, but shows the distribution of the Y-axis values instead. The third plot is a scatter plot of the dataset, with the X-axis values on the horizontal axis and the Y-axis values on the vertical axis. Each point in the plot represents a pair of X and Y values from the dataset"X-axis", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple ], Histogram[ data[[All,2]], code generates a set of random data points with a chi square distribution with ν=3 in three dimensions, and then creates three histograms, one for each dimension, showing the distribution of the points along that axis. Additionally, it creates a 3D scatter plot of the data points: *) PlotLabel->"Y-axis", ColorFunction->Function[{height},Opacity[height]], ChartStyle->Purple 711 Output Mathematica Examples 17.32 Input (* The code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from chi square distribution with ν=3, and then using these samples to estimate the parameters of another chi square distribution with unknown ν. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from-0 to 20. The code also generates a list plot of 2 sets of random samples from the chi square distribution with ν=3. It shows the 100 random points generated from two random samples. The code generates also a histogram of the PDF for Chi Square distribution of the two samples: the resulting estimated distributions: *) Plot[ pdf0ed, {x,0,20}, PlotRange->Full, code generates and compares the means of random samples drawn from a chi square distribution with the given parameter ν. The code uses the Manipulate function to create a user interface with sliders to adjust the values of the parameter ν, number of samples, and sample size. By varying the values of "Number of Samples" and "Sample Size" sliders, the code allows the user to explore how changing these parameters affects the means of the random samples: *) ,m},{n,m}}}, Joined->{False,True}, Filling->Axis, PlotRange->{{1,50},{0,10}}, PlotStyle->{Purple,Red}, AxesLabel->{"Number of Samples","Sample Mean"}, PlotLabel->Row[{"ν = ",ν}], ImageSize->320 ] ], {{ν,2,"ν"},0.6,4,0.1}, 714 {{n,50,"Number of Samples"},3,50,1}, {{samples,50,"Sample Size"},1,100,1}, TrackedSymbols:>{n,samples,ν} ] Output Mathematica Examples 17.34 Input (* The code is designed to compare two chi Square distributions. It does this by generating random samples from each distribution and displaying them in a histogram, as well as plotting the probability density functions of the two distributions. The code allows the user to manipulate the parameters ν1 and ν2 of both chi square distributions through the sliders for ν1 and ν2. By changing these parameters, the user can see how the distributions change and how they compare to each other. The histograms display the sample data for each distribution, with the first histogram showing the sample data for the first chi square distribution and the second histogram showing the sample data for the second chi square distribution. The histograms are overlaid on each other, with the opacity of each histogram set to 0.2 to make it easier to see where the data overlap. The probability density functions of the two distributions are also plotted on the same graph, with the first distribution shown in blue and the second distribution shown in red. The legend indicates which color corresponds to which distribution. By looking at the histograms and the probability density functions, the user can compare the two chi square distributions and see how they differ in terms of shape, scale, and overlap of their sample data:

  Input (* This code defines a population with a normal distribution and uses a Manipulate function to create a histogram of sample variances. The code generates a random sample from the population, computes the variance of the sample, and repeats this process multiple times (10,000 times in this case) for different sample sizes. The resulting histogram visualizes the distribution of sample variances. The Manipulate function allows the user to control the sample size, which in turn affects the spread of the distribution of sample variances. As the sample size increases, the spread of the distribution decreases, reflecting the fact that larger samples provide more precise estimates of the population variance. Note that, the shape of the histogram will resemble the shape of the chi-squared distribution with the appropriate degrees of freedom. As the sample size increases, the shape of the histogram transforms from a skewed distribution to a more symmetrical distribution that resembles a normal distribution: *) (* Define a population with normal distribution: controls: *) {{n,10,"Sample size"},2,100,1,Appearance->"Labeled"} ] 728 Frame->True, FrameLabel->{"Sample Number","Sample Variance"}, PlotLabel->"Points of Sample Variances", FrameStyle->Directive[Black], ImageSize->250 ], (* Create a histogram of sample variances: *code is a statistical simulation that generates samples from a normal distribution with given mean and standard deviation, calculates their sample variances for a given sample size, and then creates a scatter plot and histogram of the resulting sample variances. The Manipulate function allows the user to adjust the parameters of the simulation, such as the mean, standard deviation, sample size, and number of samples. The scatter plot shows the sample variances for each trial as points, with a red line indicating the mean of the sample variances across all trials. The histogram shows the distribution of the sample variances across all trials: *) Manipulate[ Module[ {data,variances}, (* Generate data from normal distribution with mean mu and standard deviation sigma: *) data=RandomVariate[ NormalDistribution[mu,sigma], 10000 ]; (* Calculate sample variances for m Sample Size: *) variances=Table[ Variance[ RandomSample[data,m]], {i,1,numTrials} ]; (* Create a scatter plot of sample variances: *) 732 Mathematica Examples 17.52 Input (* The code uses Histogram3D and SmoothDensityHistogram to visualize the 2D sample variance distributions and Manipulate to explore the effect of sample size on the distributions: "SV X","SV Y","PDF"}(* SV=Sample variance. *), ColorFunction->"Rainbow", PlotLabel->Row[{"n = ",n}], Manipulate to explore the sampling distributions of the sample variance: *code generates a 2D dataset with 5000 random points that follow a Normal distribution with mean 1 and standard deviation 6. The code also defines a function to generate and plot sample variances. The function takes a sample size 'n', draws 5000 samples from the population with replacement, calculates the variance for each sample, and plots the variances as purple points on a scatter plot. The opacity of the points is set to 0.3 to indicate overlapping points. The Manipulate function is then used to explore the sample variance points. Manipulate allows the user to interactively adjust the sample size 'n' and observe the changes in the sample variance points, as the sample size 'n' increases: *) Manipulate to explore the sample variances points: *code generates and plots sample variances for a 3D dataset with normal distribution using the Manipulate function to explore changes in the sample size: *) code creates a dynamic histogram of data and a plot of the PDF generated from a student t distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of ν and n, which are the parameter of the student t distribution and the sample size: *) code creates a plot of the CDF of a student t distribution using the Manipulate function. The Manipulate function allows you to interactively change the values of the parameters ν: *) "x","CDF"}, ImageSize->320, PlotStyle->Purple, PlotLabel->Row[{"ν = ",ν}] Directive[Red,Thickness[0.006]], Line[{{mean,0},{mean,0.35}}], Directive[Green,Dashed], Line[{{quartiles[[1]],0},{quartiles[[1]],0.35}}], Line[{{quartiles[[2]],0},{quartiles[[2]],0.35}}], Line[{{quartiles[[3]],0},{quartiles[[3]],0.35}}] }, ColorFunction->Function[{height},Opacity[height]]code generates a random sample of size 10,000 from a student t distribution with parameter ν=3, estimates the distribution parameters using the EstimatedDistribution function, and then compares the histogram of the sample with 746AxesLabel->{"X","Y","Z"}, code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from student t distribution with ν=3,and then using these samples to estimate the parameters of another student t distribution with unknown ν. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from -5 to 5. The code also generates a list plot of 2 sets of random samples from the student t distribution with ν=3. The plot shows the 100 random points generated from two random samples. The code generates also a histogram of the PDF for student t distribution of the two samples: code generates and compares the means of random samples drawn from a student t distribution with the given parameter ν. The code uses the Manipulate function to create a user interface with sliders to adjust the values of the parameter ν, number of samples, and sample size. By varying the values of "Number of Samples" and "Sample Size" sliders, the code allows the user to explore how changing these parameters affects the means of the random samples: *) ,m},{n,m}}}, Joined->{False,True}, PlotRange->{-5,5}, Filling->Axis, PlotStyle->{Purple,Red}, AxesLabel->{"Number of Samples","Sample Mean"}, PlotLabel->Row[{"ν = ",ν}], ImageSize->320 ] ], {{ν,2,"ν"},1,6,0.1}, code generates a plot of the probability density function (PDF) for a FRatio distribution with different values of m= (1, 4 and 15) and a fixed n=5. The plot shows the values of the PDF for all possible values of x between 0 and 33}, PlotRange->Automatic, Filling->Axis, PlotLegends->Placed[{"ν1=5,ν2=1","ν1=5,ν2=4","ν1=5,ν2=15"},{0.8,0.75}], PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple}, ImageSize->320, AxesLabel->{None,"PDF"} ] Output Mathematica Examples 17.85 Input (* The given code generates a plot of the cumulative distribution function (CDF) of the FRatio distribution with different values of m=(1, 4 and 15) and a fixed n=5: *) code creates a dynamic histogram of data and a plot of the PDF generated from a FRatio distribution using the Manipulate function. The Manipulate function creates interactive controls for the user to adjust the values of n, m, and no, which are the parameters of the FRatio distribution and the sample size: *) ,3,"n"},2,10,0.1}, {{m,5,"m"},3,20,0.1}, {{no,100,"no"},100,1000,10} ] 774 Output Mathematica Examples 17.99 Input (* The code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from FRatio distribution with n=5 and m=10,and then using these samples to estimate the parameters of another FRatio distribution with unknown n and m. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from-0 to 3. The code also generates a list plot of 2 sets of random samples from the normal distribution with n=5 and m=10. The plot shows the 100 random points generated from two random samples. The code generates also a histogram of the PDF for FRatio distribution of the two samples: *) square distribution is a limiting case of F-ratio distribution: -ratio is the ratio of two Chi square distribution variables: *) TransformedDistribution[ (u/n)/(v/m), {Distributed[u,ChiSquareDistribution[n]],Distributed[v,ChiSquareDistribution[m]square of student T distribution has F-ratio distribution: code demonstrates a dynamic Manipulate interface that allows users to explore the effects of changing the parameters on the sample distribution of the ratio of sample variances using the F distribution. The code sets up sliders for adjusting the sample sizes and standard deviations of two populations. Inside the Manipulate, a large number of sample ratios are generated by sampling from the populations, calculating the sample variances, and computing the ratio of the variances. The code creates a visualization that consists of a histogram and a PDF plot. The histogram represents the probability density function (PDF) of the sample ratios, while the PDF plot displays the PDF of the F ratio distribution. Users can observe the impact of parameter changes on the resulting distribution and gain insights into the relationship between sample variances: *)

  where 𝑥̅ is the sample mean. This is solved by 𝑛 𝜎 2 [𝑥̅ -𝜇] = 0 ⟹ 𝜇 = 𝑥̅ =
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 183 Figure 18.3. Parameter±1.96SE.
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 184185 Figure 18.4. Some 95% CIs.
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 186 Figure 18.6. Interpreting CIs.
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 6183 Calculate the CI: Using the sample statistic, the ME, and the desired confidence level, compute the lower and upper bounds of the CI. The interval is typically expressed as an estimate of the parameter, plus or minus the ME. 7. Interpret the CI: Interpret the CI in the context of the problem. It represents a range of plausible values for the population parameter, with the chosen confidence level indicating the likelihood of capturing the true parameter.796 Single Sample: CIs for MeansBefore going into details of this section, it is important to remember when and how to use normal and student distributions with sample distribution of mean, see Figure18.7.
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 187 Figure 18.7. Flow chart of the sample distribution of mean, 𝑋 ̅ . It shows when you should use normal and student distributions.

. 1 .

 1 Using the values of 𝜎 𝑋 ̅ = 𝜎 √𝑛 , we see that the confidence limits for the population mean are given by 𝑥̅ ± 𝑧 𝑐 𝜎 √𝑛 , (18.2.2) if the sampling is either from an infinite population or with replacement from a finite population, and are given by 𝑥̅ ± 𝑧 𝑐 𝜎 √𝑛 √ 𝑁 -𝑛 𝑁 -1 , (18.3) if the sampling is without replacement from a population of finite size 𝑁. Is the sample size 𝑛 ≥ 30. 𝜎 2 is known: 𝑋 ̅ ~𝑁 (𝜇, unknown: 𝑋 ̅ ~𝑡(𝑛 -1) CI and 𝝈 Is Unknown
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 188 Figure 18.8. 𝑃(-𝑡 𝛼/2 < 𝑇 < 𝑡 𝛼/2 ) = 1 -𝛼.
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 3 Determine the level of significance, denoted by 𝛼 and degree of freedom, denoted by 𝑑𝑓 = 𝑛 -1. 4-Use a 𝑡-distribution Mathematica function to find the critical values, -𝑡 𝛼/2 and 𝑡 𝛼/2 , for the given level of significance and degree of freedom. 5-If σ is known, calculate the CIs for the population mean using the following formula: (𝑥̅ -𝑧 𝛼/2 𝜎 √𝑛 , 𝑥̅ + 𝑧 𝛼/2 𝜎 √𝑛 ).

2 . 7 .

 27 Calculate the sample mean, denoted as 𝑥̅ . 3. Calculate the sample standard deviation, denoted as 𝑠. 4. Specify the desired confidence level for the interval. For example, if you want a 95% confidence level, you would have 𝛼 = 0.05 for a one-sided confidence bound. 5. Determine the critical value corresponding to the chosen confidence level and the chosen tail. For a onesided upper confidence bound, use the 𝑡-value from the 𝑡-distribution with (𝑛 -1) degrees of freedom that corresponds to the desired significance level 𝛼. 6. Compute the SE, which is given by 𝑠 √𝑛 . Multiply the critical value by the SE to obtain the ME.

and

  𝜒 1-𝛼/2 2 are 𝜒 2 -values with 𝜈 = 𝑛 -1 degrees of freedom, leaving areas of 𝛼/2 and 1 -𝛼/2, respectively, to the right. Proof:

  and 𝑧 𝛼/2 is the value above which we find an area of 𝛼/2 under the standard normal curve. Substituting for 𝑍, we write

7 .

 7 Subtract and add the ME from the sample proportion to get the lower and upper bounds of the CI: Lower bound = 𝑝̂-ME, Upper bound = 𝑝̂+ ME. Example 18.21 For four years or 50,000 miles, an automaker offers a bumper-to-bumper warranty on all of its new cars. 15 of its vehicles in a random sample of 50 required five or more major warranty repairs during the warranty term. With a confidence coefficient of 0.95, determine the actual percentage of vehicles from this manufacturer that require five or more major repairs throughout the warranty period. Solution (* Determine the sample proportion (p-hat): *) phat=15/50; (* Determine the sample size (n): *) n=50; (* Determine the confidence level (C): *) confidenceLevel=0.95; 821 alpha=1-confidenceLevel; (* Determine the critical value (z): *) criticalValue=Quantile[NormalDistribution[],1-alpha/2]; (* Calculate the standard error (SE): *) SE=Sqrt[phat*(1-phat)/n]; (* Calculate the margin of error (ME): *) ME=criticalValue*SE; (* Calculate the lower and upper bounds: *) lowerBound=phat-ME; upperBound=phat+ME; (* Display the confidence interval for the Proportion: *) {lowerBound,upperBound} {0.17298,0.42702}

  The Likelihood function in Mathematica calculates the likelihood of obtaining the observed data given a specific set of parameter values. It helps in assessing the plausibility of different parameter values and determining the maximum likelihood estimates. o The LogLikelihood function is used to compute the log-likelihood of the data. Taking the logarithm of the likelihood function simplifies calculations and aids in maximizing the likelihood using optimization techniques. o The EstimatedDistribution function is used to estimate the probability distribution of a dataset. It automatically selects the best-fitting distribution based on the data and provides parameter estimates for the chosen distribution. o The FindDistributionParameters function is used to estimate the parameters of a specific probability distribution given a dataset. It optimizes the parameters to maximize the likelihood of the observed data. o The FindDistribution function helps in finding the best-fitting distribution for a dataset by searching through a predefined list of distributions. It compares the goodness-of-fit for each distribution and returns the best match. • Interval Estimate:

Input ( *

 * The code demonstrates the calculation of the log-likelihood for a dataset following a normal distribution. It defines the dataset and a normal distribution object with unknown parameters. The code then calculates the log-likelihood using different approaches, including directly applying the Log function to the built-in Likelihood function and using the LogLikelihood function. It also presents an alternative method using PowerExpand and Total to compute the sum of the logarithms of the PDF values: *) (* LogLikelihood is the log of Likelihood:*) data={1.2,1.5,1.8,2.1,1.9}; dist=NormalDistribution[μ,σ]; code showcases the computation of the maximum likelihood estimate (MLE) and maximum log-likelihood estimate (MLLE) for the parameterμ in a Poisson distribution. The code defines a Poisson distribution and calculates the likelihood and loglikelihood based on the observed data. It then utilizes the Solve function to find the values of μ that satisfy the corresponding derivative equations. By solving the derivative equations for μ with the constraint that the observed data variables (x,y,z) are positive, the code obtains closed-form solutions for both the MLE and MLLE: *) (* Solve for the Poisson maximum likelihood estimate in closed form: *) Dist=PoissonDistribution[μ]; like=Likelihood[Dist,{x,y,z}]; loglike=LogLikelihood[Dist,{x,y,z}]; for the Poisson maximum log-likelihood estimate in closed form: *ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. code demonstrates the direct computation of the maximum log-likelihood estimate (MLE) for a geometric distribution. The code generates a sample from a geometric distribution, finds the MLE using the FindMaximum function, and visualizes the likelihood and log-likelihood functions with the optimal point labeled. By optimizing the log-likelihood function with respect to the parameter p using FindMaximum, the code obtains the MLE for the geometric distribution. The LogPlot and Plot functions create plots of the likelihood and log-likelihood functions, respectively: *) (* Compute a maximum log-likelihood estimate directly: using the LogLikelihood for numeric value: *) max=FindMaximum[ {LogLikelihood[GeometricDistribution[p],data],0<p<1}, p ] (* Label the optimal point on a plot of the likelihood function: *) LogPlot[ Likelihood[GeometricDistribution[p],data], {p,.01,.99}, Epilog->{Directive[Purple,PointSize[0.04]],Point[{p/. max[[2]],max[[1]]}]}, ImageSize->220, PlotStyle->Purple ] (* Label the optimal point on a plot of the LogLikelihood function: *) Plot[ LogLikelihood[GeometricDistribution[p],data], {p,0.01,0.99}, Epilog->{Directive[Purple,PointSize[0.04]],Point[{p/. max[[2]],max[[1]]}]code demonstrates the use of the Manipulate function to create an interactive tool for exploring and analyzing a normal distribution. The code allows users to vary the parameters of the distribution and observe the resulting changes in the likelihood function, data visualization, and statistical summary. The Manipulate block includes data simulation, likelihood function plotting, scatter plot and histogram generation for data visualization, and the computation of statistical measures such as mean, standard deviation, skewness, and kurtosis. The controls provided within the Manipulate block allow users to interactively adjust the mean, standard deviation, and number of data points: *) (* Manipulate to vary parameters: *) 833 {{contourPlot,plot3d},{scatter,histogram},stats} ], (* Manipulate Controls: *) {{mu,0.5,"Mean"},0,1,Appearance->"Labeled"}, {{sigma,1.5,"Standard Deviation"},1,2,Appearance->"Labeled"}, {{n,70,"Number of data points"},10,100,10} ] Output Mathematica Examples 19.9 Input (* The code showcases an interactive visualization of the likelihood function for a geometric distribution using the Manipulate function. Inside the Manipulate block, a local module generates random data from a geometric distribution with the parameter p and a specified number of data points n. The LogPlot function is then used to create a logarithmic plot of the likelihood function, representing the likelihood over a range of values for the parameter μ. The Manipulate function provides interactive controls for adjusting the parameters p and n, enabling users to dynamically explore and visualize the impact of different parameter values and sample sizes on the likelihood: *) Manipulate[ Module[ {data,plot}, data=RandomVariate[GeometricDistribution[p],n];(* Generate random data *) plot=LogPlot[ Likelihood[GeometricDistribution[μ],data], {μ,0.01,0.99}, ClippingStyle->Automatic, ColorFunction->"BlueGreenYellow", ImageSize->220 834 ] ], {{p,0.5,"p"},0.01,0.99,0.01}, {{n,10,"Number of data points"},10,100,10} ] Output EstimatedDistribution[data,dist] estimates the parametric distribution dist from data. EstimatedDistribution[data,dist, {{p,p0}, {q,q0},…}] estimates the parameters p, q, … with starting values p0, q0, ….

Examples 19. 10

 10 Input (* The code performs parameter estimation for a normal distribution using maximum likelihood estimation and the method of moments. It generates random data from a specified normal distribution and estimates the parameters based on the generated data. The code then visually compares the probability density functions (PDFs) of the original and estimated distributions using a plot. The plot allows for a visual assessment of the accuracy of the estimation: *) (* Obtain the maximum likelihood parameter estimates, assuming a normal distribution: *) dist=NormalDistribution[0,1]; data=RandomVariate[dist,500]; estimatedist=EstimatedDistribution[ parameters for a normal distribution: *) FindDistributionParameters[data,NormalDistribution[μ,σ]] (* Visually compare the PDFs for the original and estimated distributions: *) Plot[ {PDF[dist,x],PDF[estimatedist,x]}, {x,-5,5}, PlotStyle->{Blue,Purple}, PlotLegends->Placed[{"dist","estimatedist"},{0.25,0.75}] ] (* Obtain the method of moments estimates: *) EstimatedDistribution[ data, NormalDistribution[μ,σ], ParameterEstimator->"MethodOfMoments" ] Output NormalDistribution[-0.0323259,0.89941] Output {μ->-0.0323259,σ->0.89941} Output Output NormalDistribution[-0.0323259,0.89941] Mathematica Examples 19.11 Input (* The code generates a random sample of size 10,000 from a normal distribution with parameters μ=1 and σ=3, estimates the distribution parameters using the EstimatedDistribution and FindDistributionParameters functions, and then compares the histogram of the sample with the estimated PDF of the normal distribution using a histogram and a plot of the PDF: *) parameters for a normal distribution: *) FindDistributionParameters[sampledata,NormalDistribution[μ,σ]]836(* Compare a density histogram of the sample with the PDF of the estimated distribution: code demonstrates a common technique in statistics and data analysis, which is the use of random sampling to estimate population parameters. The code generates random samples from a normal distribution with mean 0 and standard deviation 1,and then using these samples to estimate the parameters of another normal distribution with unknown mean and standard deviation. This process is repeated 20 times, resulting in 20 different estimated distributions. The code also visualizes the resulting estimated distributions using the PDF function. The code plots the PDFs of these estimated distributions using the PDF function and the estimated parameters. The plot shows the PDFs in a range from-3.5 to 3.5

  [Purple,Opacity[0.3],Thickness[0.002]] ] Output {NormalDistribution[0.0275173,1.01755],NormalDistribution[-0.0844031,0.879151],NormalDistribution[0.115425,0.884917],NormalDistribution[-0.0296073,1.02259],NormalDistribution[0.0487188,0.946338],NormalDistribution[0.0986 574,1.09812],NormalDistribution[-0.0340808,1.08848],NormalDistribution[-0.0506773,1.0725],NormalDistribution[-0.138139,1.09712],NormalDistribution[0.0369571,1.05663],NormalDistribution[0.043251 2,0.95691],NormalDistribution[-0.124249,0.90998],NormalDistribution[0.045595,0.933994],NormalDistribution[0.018412 7,0.923313],NormalDistribution[-0.0303541,1.10383],NormalDistribution[0.0355708,1.03015],NormalDistribution[-0.0596503,0.992024],NormalDistribution[0.0828858,1.05965],NormalDistribution[-0.208048,0.9647],NormalDistribution[0.113367,0.931704]} Output Mathematica Examples 19.13 Input (* The code generates random data from a normal distribution, estimates the parameters of the distribution, and creates a plot of the estimated values. It iterates 100 times, generating 20 random data points each time. The FindDistributionParameters function is used to estimate the parameters of a normal distribution that best fit the generated data. The estimated values of the mean and standard deviation are stored in separate lists, and a line plot is created to visualize the changes in these estimated values over the iterations: *) code creates a Manipulate interface that allows interactive exploration of different distributions and sample sizes. It generates random data based on the selected distribution and sample size and presents it as a histogram with overlaid PDF. The interface dynamically updates the visualization as you adjust the parameters. It provides a visual tool to understand how different distribution types and sample sizes affect the data distribution and estimated PDF: *) [FindDistributionParameters[data,dist[u,v]]," "], ColorFunction->Function[{height},Opacity[height][data,dist[u,v]],x], {x,Min[data],Max[data],"Sample Size"},10,1000,10}, {{dist,NormalDistribution,"Distribution"},{NormalDistribution,GammaDistribution}}, Initialization:>(SeedRandom[123];) ]

Input ( *

 * The code performs parameter estimation for a binormal distribution based on random data. It estimates the distribution parameters using both the EstimatedDistribution and FindDistributionParameters functions. The code then visualizes the difference between the original and estimated probability density functions (PDFs) using both a 3D plot (Plot3D) and a contour plot (ContourPlot). These visualizations allow for a comparison of the accuracy of the estimated distribution and provide insights into the differences between the original and estimated PDFs: *) (* Estimate parameters for a multivariate distribution: *) data=RandomVariate[BinormalDistribution[{4,5},{1,2},0.8],100]; edist=EstimatedDistribution[ data, BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ] ] (* Estimate parameters for a Binormal distribution: *) FindDistributionParameters[data,BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ]] (* Compare the difference between the original and estimated PDFs (Plot3D): *) Plot3D[ PDF[BinormalDistribution[{4,5},{1,2},0.8],{x,y}]-PDF[edist,{x,y}], {x,0,12}, {y,0,12}, PlotRange->All, ColorFunction->"Rainbow", ImageSize->270 ] (* Compare the difference between the original and estimated PDFs (ContourPlot): *) ContourPlot[ PDF[BinormalDistribution[{4,5},{1,2},0.8],{x,y}]-PDF[edist,{x,y}], {x,0,12}, .04619,5.20397},{1.12139,1.96933},0.837671] Output {μ1->4.04619,μ2->5.20397,σ1->1.12139,σ2->1.96933,ρ->0.837671} Output Output Mathematica Examples 19.18 Input (* The code demonstrates the process of estimating parameters for a gamma distribution using a combination of visualizing the log-likelihood surface and conducting parameter estimation. It generates random data from a gamma distribution and uses rough parameter values obtained from the visualized log-likelihood surface as starting points for the estimation. The code visualizes the log-likelihood surface using a contour plot and overlays the estimated parameter values as a red point. This approach provides a useful way to explore the parameter space and refine the estimation process based on the observed log-likelihood values: *) (* Visualize a log-likelihood surface to find rough values for the parameters: *) data=RandomVariate[GammaDistribution[4,5],100]; (* Supply those rough values as starting values for the estimation: parameters for a normal distribution: *) params=FindDistributionParameters[ data, 10,8,1,5,0,8,10,1,0,7,2,10,3,7,8,6,2,10,0,4,0,0,5,6,9,5,0,4,3,7,10,5,9 ,3,4,0,10,5,6,10,3,7,5,7,5,3,2,4,10,8,0,6,5,3,5,1,6,0,9,1,5,4,8,7,4,1,8,3,0,8,5,5,9 ,4,10,3,6,4,6,2,0,2,10,8,7,2,1,10,9,5,0,1,3code generates a random sample of size 1000 from an Exponential distribution. The FindDistribution function is used to identify the best three distributions that fit the data. The data is visualized through a list plot, displaying the individual data points. Additionally, a histogram is created, representing the data in PDF format. The PDFs of the best three distributions are plotted on the same graph, each with a different color and opacity. The resulting visualization combines the histogram and the PDF plots: *) (* Set the seed for reproducible random numbers: *) SeedRandom[8123]; (* Create a random sample from an Exponential distribution: *)

•

  Confidence intervals for the mean and for the difference between means are based on a normal distribution if the population variances are assumed known. • Intervals for the mean are based on Student's t distribution with n-1 degrees of freedom when the population variance must be estimated from a list of n elements. • Confidence intervals for the difference between means are also based on Student's t distribution if the variances are not known. If the variances are assumed equal, MeanDifferenceCI is based on Student's t distribution with Length[list1]+Length[list2]-2 degrees of freedom. If the population variances are not assumed equal, Welch's approximation for the degrees of freedom is used. • The variance confidence interval is based on a 𝜒 2 distribution and the variance ratio confidence interval is based on an F-ratio distribution. • Confidence intervals can also be obtained for normal, chi-square, Student's t, or F-ratio distributions. Mathematica Examples 19.23 Input (* In this example, we first load the HypothesisTesting package using Needs["HypothesisTesting"]. Then, we generate a sample dataset data` consisting of 100 random values drawn from a normal distribution with a mean of 10 and a standard deviation of 2. Next, we specify the desired confidence level as confidenceLevel=0.95, which corresponds to a 95% confidence interval. We pass the dataset data and the the sample mean, sample standard deviation, and critical value. To visualize the confidence interval, the code generates a probability density plot (PDF) of a normal distribution centered around the sample mean. The confidence interval is displayed with vertical lines indicating the lower and upper bounds. The sample mean is marked with a blue dot for reference. The code also includes an interactive interface created using the Manipulate function. This interface allows users to input their own data and adjust the level of significance through a slider, providing a dynamic and interactive experience for exploring different datasets and confidence levels: *) Manipulate[ (* Step 1. Collect your data: *) data=ToExpression@StringSplit[dataString,","]; (* Step 2. Calculate the sample mean and standard deviation: *) sampleMean=Mean[data]; sampleStdDev=StandardDeviation[data]; (* Step 3. Determine the level of significance: *) alpha=alphaInput; 7,5,11,9,10,7,6,8,9,10,11,6,8,9,10,11,12,8,9,10"},"Data:"}, {{alphaInput,0.05},0.01,0.99,Appearance->"Labeled",ImageSize->Small}, ControlPlacementcode generates random data from a normal distribution and calculates and visualizes confidence intervals for the means of each row in the data. The code generates a Normal distribution with mean 0 and standard deviation 1. It then generates a random sample of size 20 by 5 from this distribution. Next, it loads the HypothesisTesting package, which contains functions for hypothesis testing and confidence intervals. The code calculates confidence intervals for the means of each row in the data using the MeanCI function from the package. The confidence level is set to 0.95, and it assumes a known variance of 1. After calculating the confidence intervals, the code plots the probability density function (PDF) of the normal distribution using the PDF function. It also adds arrows to represent the confidence intervals on the plot using the Arrow function and the confIntervals data calculated earlier: *) dist=NormalDistribution[0,1]; data=RandomVariate[dist,{20,5}]; <<HypothesisTesting` (* Calculate confidence intervals: *) confIntervals=Table[MeanCI[data[[i]],ConfidenceLevel->0.95,KnownVariance->1],{i,1,20}] Plot[ PDF[dist,x], {x,-3.5,3.5}, PlotRange->{{-3.5,3.5},{-1.1,0.5}},

Example 20 . 1

 201 Sign in 𝐻 0 = = or ≥ = or ≤ Sign in 𝐻 𝑎 ≠ < > Some examples of null hypotheses 𝐻 0 and alternative hypotheses 𝐻 𝑎 in different scenarios: Research question: Is the average weight of a certain product different from a specified value of 10 kg? 𝐻 0 : The average weight of the product is equal to 10 kg. 𝐻 0 : 𝜇 = 10. 𝐻 𝑎 : The average weight of the product is not equal to 10 kg. 𝐻 𝑎 : 𝜇 ≠ 10.

𝐻 0

 0 is True 𝐻 0 is False Do not reject 𝐻 0 Correct decision Type II error Reject 𝐻 0 Type I error Correct decision Definition (Type I Error): Rejecting the null hypothesis when it is in fact true. Definition (Type II error): Not rejecting the null hypothesis when it is in fact false.

Figure 20 . 1 .

 201 Figure 20.1. Standard normal curve with the critical region (0.05) and acceptance region (0.95).

  Figure

  Figure

Example 20. 12 ((* Step 1 .

 121 * The code demonstrates the steps for conducting a hypothesis test for one population mean when the population standard deviation (σ) is unknown n<30. The code will output the sample mean, sample standard deviation, test statistic, critical value, p-value,and the conclusion based on the user-specified type of hypothesis test: *) (* Specify the type of hypothesis test, choose one of the following, "two-tailed","lefttailed", or "right-tailed": *) hypothesisType="two-tailed"; μ0=10; State the null and alternative hypotheses: *) "H0:μ==μ0"; (* Null hypothesis:Population mean is equal to μ0. *) alternativeHypothesis=Switch[ hypothesisType, "two-tailed", "H1:μ!=μ0", "left-tailed", "H1:μ<μ0", "right-tailed", "H1:μ>μ0" ]; (* Step 2. Set the significance level (α): *) α=0.05; (* Significance level of 0.05.*)

20 DECISION

 20 If the value of the test statistic falls in the rejection region do not reject 𝐻 0 , otherwise 𝑷 value approach { reject 𝐻 0 , If 𝑃 ≤ α do not reject 𝐻 0 , otherwise CHAPTER

Example 20. 13 (

 13 * The code demonstrates the steps for conducting a hypothesis test for the differences between two means. The code will output the sample means, sample standard deviations, test statistic, critical value, p-value,and the conclusion based on the user-specified type of hypothesis test: *) (* Specify the type of hypothesis test, choose one of the following, "two-tailed","lefttailed", or "right-tailed": *) hypothesisType="two-tailed"; δ0=10;(* Step 1. State the null and alternative hypotheses: *) "H0:μ1-μ2==δ0"; (* Null hypothesis:Difference between population means is equal to δ0: *)

Method

  Automatic the method to use for computing -values SignificanceLevel 0.05 cutoff for diagnostics and reporting VerifyTestAssumptions Automatic what assumptions to verify

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Examples 1.2

  

	Output	7.93
	Input	2.4/8.9^2
	Output	0.0302992
	Input	2*3*4
	Output	24
	Input	(3+4)^2-2(3+1)
	Output	41
	Input	2.3+5.63
		4

  Logical operators are used to negate or combine relational expressions. The standard logical operators are listed below. e₁&&e₂&&... is the logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True. e₁||e₂||... is the logical OR function. It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False. !expr is the logical NOT function. It gives False if expr is True, and True if it is False.

	Output	x^2==1+x
	Input	(* Returns True if elements are guaranteed unequal, and otherwise stays unevaluated:
		*)
		a!=b
	Output	a!=b
	Input	1!=2
	Output	True
	Input	1>2||Pi>3
	Output	True
	Input	2>1&&Pi>3
	Output	True
	Input	(3<5)||(4<5)
	Output	True
	Input	(3<5)&&!(4>5)
	Output	True
	lhs==rhs		returns True if lhs and rhs are identical.
	lhs!=rhs or lhs≠rhs	returns False if lhs and rhs are identical.
	Mathematica Examples 1.3
	Input	10<7
	Output	False
	Input	Pi^E<E^Pi
	Output	True
	Input	2+2==4
	Output	True
	Input	(*Represent an equation:*)
		x^2==1+x
			5

x>y yields True if x is determined to be greater than y. x>=y or x≥y yields True if x is determined to be greater than or equal to y. x<y yields True if x is determined to be less than y. x<=y or x≤y yields True if x is determined to be less than or equal to y.

Examples 1.11

  

	Input	77^2
	Output	5929
	Input	%+1
	Output	5930
	Input	3 %+%^2+%%
	Output	35188619
	Input	% 2+% 3
	Output	175943095

Examples 1.13

  The last example reveals that Mathematica goes through the expression only once and replaces the rules. If we need Mathematica to go through the expression again and replace any expression which is possible until no substitution is possible, one uses //. . In fact /. and //. are shorthand for Replace and ReplaceRepeated, respectively.

	CHAPTER 1	MATHEMATICA LAB: INTRODUCTION TO MATHEMTICA
	Input	x+y/. {x->a,y->b}
	Output	a+b
	Input	x^2+y/.x->y/.y->x
	Output	x + x^2
	Input	x+2 y/.{x->y,y->a}
	Output	2 a+y
	Mathematica Examples 1.15
	Input	{x,x^2,a,b}/. x->3
	Output	{3,9,a,b}
	Input	x+2 y//.{x->y,y->a}
	Output	3 a
	Input	x+2 y//.{x->b,y->a,b->c}
	Output	2 a+c
	Input	x+2 y/. {x->b,y->a,b->c}
	Output	2 a+b
	Input	Sin[x]/. Sin->Cos
	Output	Cos[x]
	Input	x=5
	Input	y:=x+2
	Input	y
	Output	5
	Output	7
	Input	x=10
	Output	10
	Input	y
	Output	12
	Mathematica Examples 1.14
	Input	x+y/. x->2
	Output	2+y
		13

Examples 1.19

  

	CHAPTER 1		MATHEMATICA LAB: INTRODUCTION TO MATHEMTICA
	Input	y	Input	y
	Output	7	Output	12
	Input	x=15	Input	x=15
	Output	15	Output	15
	Input	y	Input	y
	Output	7	Output	17
	Input	k=1;k++		
	Output	1		
	Input	k		
	Output	2		
	Input	k=x		
	Output	x		
	Input	k++		
	Output	x		
	Input	k		
	Output	1+x		
	Input	k=1;++k		
	Output	2		
	Input	k		
	Output	2		
	Input	k=1;k--		
	Output	1		
	Input	k		
	Output	0		
	Input	k=1;k-=5		
	Output	-4		
	Input	k		
	Output	-4		
	4-Primarily there are three equalities in Mathematica, =, :=, ==. There is a fundamental differences between =
	and := explained in the following examples:		
	Mathematica Examples 1.20		
	Input	x=5;y=x+2;	Input	x=5;y:=x+2;
	Input	y	Input	y
	Output	7	Output	7
	Input	x=10	Input	x=10
	Output	10	Output	10
				16

Examples 1.21

  

	UNIT 1.3
	Input	5==5
	Output	True
	Input	3==5
	Output	False

  Alternatively, if (as here) the list elements correspond to a rule of some kind, the command Table can be used, like this:

		3, 5, 7, 9, 11, 13, 15, 17}
	Output	{81, 3, 5, 7, 9, 11, 13, 15, 17}
	Input	oddList = Table[2 n + 1, {n, 0, 8}]
	Output	{1, 3, 5, 7, 9, 11, 13, 15, 17}

Examples 1.27

  

	Input	m={{a,b},{c,d}}
	Output	{{a,b},{c,d}}
	Input	m[[1]]
	Output	{a,b}
	Input	m[[1,2]]
	Output	b
	Input	v={x,y}
	Output	{x,y}
	Input	m.v
	Output	{a x+b y,c x+d y}
	Input	m.m
	Output	{{a^2+b c,a b+b d},{a c+c d,b c+d^2}}
	Input	s=Table[i+j,{i,3},{j,3}]
	Output	{{2,3,4},{3,4,5},{4,5,6}}
	Input	DiagonalMatrix[{a,b,c}]
	Output	{{a,0,0},{0,b,0},{0,0,c}}
	Input	Det[m]
	Output	-b c+a d
	Input	Transpose[m]

Output {{a,c},{b,d}} Input h=Table[1/(i+j-1),{i,3},{j,3}] Output {{1,1/2,1/3},{1/2,1/3,1/4},{1/3,1/4,1/5}}

CHAPTER 1 MATHEMATICA LAB: INTRODUCTION TO MATHEMTICA 22

  

	Input	Inverse[h]
	Output	{{9,-36,30},{-36,192,-180},{30,-180,180}}
	Array	
	Array[f,n]

Examples 1.29

  

	CHAPTER 1			
	Input	Grid[{{a,b,c},{x,y^2,z^3}},Frame->All]
	Output		a b	c
			x y^2 z^3
	Input	Row[{aaa,b,cccc}]
	Output	aaabcccc
	Input	Row[{aaa,b,cccc},"----"]
	Output	aaa----b----cccc
	Input	Column[{1,12,123,1234}]
	Output	1	
		12
		123
		1234
	Input	Column[{1,22,333,4444},Frame->True]
	Output		1
			22
			333
			4444
	Input	Multicolumn[Range[50],{6,Automatic}]
	Output		1 7	13 19 25 31 37 43 49
			2 8	14 20 26 32 38 44 50
			3 9	15 21 27 33 39 45
			4 10 16 22 28 34 40 46
			5 11 17 23 29 35 41 47
			6 12 18 24 30 36 42 48
	Input	MatrixForm[{{1,2},{3,4}}]
	Output	(	1 2 3 4	)
	Input	MatrixForm[Table[1/(i+j),{i,4},{j,4}]]
	Output			1/2 1/3 1/4 1/5
		(	1/3 1/4 1/5 1/6 1/4 1/5 1/6 1/7 )
				1/5 1/6 1/7 1/8
	Input	TableForm[Table[1/(i+j),{i,4},{j,4}]]
	Output		1/2 1/3 1/4 1/5
			1/3 1/4 1/5 1/6
			1/4 1/5 1/6 1/7
			1/5 1/6 1/7 1/8
	Output		a b c
			x y z

Input

Grid[{{a,b,c},{x,y,z}}]

MATHEMATICA LAB: INTRODUCTION TO MATHEMTICA 24 UNIT 1.4
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  the program to such or another block of instructions to pursue the computation. Several examples of the branching condition structures are next. lhs:=rhs/;test is a definition to be used only if test yields True. If[test,then,else] evaluate then if test is True, and else if it is False. Which[test₁,value₁,test₂,...] evaluate the test₁ in turn, giving the value associated with the first one that is True. Switch[expr,form₁,value₁,form₂,...] compare expr with each of the form i , giving the value associated with the first form it matches. Switch[expr,form₁,value₁,form₂,...,_,def] use def as a default value. represents a piecewise function with values value i in the regions defined by the conditions test i . If[condition, t, f] is left unevaluated if the condition evaluates to neither True nor False. 2-If[condition, t] gives Null if the condition evaluates to False.

	CHAPTER 1 CHAPTER 1				MATHEMATICA LAB: INTRODUCTION TO MATHEMTICA
	Output Output	] expr is 3 x^2 x < 0 ]
	Output	y { PiecewiseExpand[pw] x x > 0
	Input Input Input Output	x=2; If[ k=2; n=0; Switch[ 0 True Piecewise[ { { 1 x >= 0 2 True	({	x x <= 1
		x==0,Print["x is 0"],Print["x is different from 0"] k, {
		]	1,n=k+10, {Sin[x]/x,x<0},
	Output	x is different from 0 2,n=k^2+3, {1,x==0}
			_,n=-1 },
	Input	x=3; ]; -x^2/100+1
		y=0; ]
	Output	If[ Print[n] Sin[x]/x	x < 0
		x>1,y=Sqrt[x],y=x^2 ]; Print[y] k=5; n:=Switch[ k, 1,k+10, 1 x == 0 { 1 -x^2 100 True
	Output Output Input Output Output	m:=If[ x>5,1,0 ]; Print[m] Sqrt[3] 0 2,k^2+3, (*Remove unreachable cases:*) _,-1 Piecewise[ ]; { Print[n] {e1,d1}, 7 {e2,d2}, -1 {e3,True},
			{e4,d4},
	Input Input	a=2; (* Find the derivative of a piecewise function: *) {e5,d5}
		Which[ D[ },
		a==1,x, Piecewise[ e
		a==2,b { ]
	Output	] e1	{x^2,x<0}, d1
	Output	b { e2	{x,x>0} d2
	Piecewise[{{value1,test1 },{value1,test1 Input } e3 True ], (* Use True for an else clause that always matches: *) sign[x_]:=Which[ x Input Piecewise[ },...}] Piecewise[{{value₁,test₁},...},def] give the value corresponding to the first test₁ which yields True. x<0,-1, x>0,1, True, ] Output 2 x { x < 0 {e1,d1}, { 1 x > 0 {e2,d2}, Note that, Indeterminate Indeterminate True {e3,d2&&d3},
	] {sign[-2],sign[0],sign[3]} {-1,Indeterminate,1} (* Define a piecewise function: *) pw=Piecewise[ { {e4,d4} }, e ] 1-Mathematica Examples 1.36 Output Input Input (*If can be used as a statement:*) x=-2; If[ x<0, y=-x, y=x ]; y Output 2 Input (*If can also be used as an expression returning a value:*)x=-2; Input {Sin[x]/x,x<0}, Output e1 d1 (* Use PiecewiseExpand to convert Which to Piecewise: *) PiecewiseExpand[ Which[ c1,a1, {1,x==0} }, e2 d2 { e4 d4 -x^2/100+1 ] e True c2,a2, True,a3 ] ] Output { a1 c1 a2 ! c1&&c2 a3 True Input expr=3; (* Evaluate it at specific points: *) Input x=4; pw/. {{x->-5},{x->0},{x->5}} Output { Sin[x]/x If[ x < 0 1 x>0, x == 0 1 -y=Sqrt[x], x^2 100 y=0 True Output ] {Sin[5]/5,1,3/4} Output 2
	Output Input Input Input	y=If[ x<0,-x,x ] 2 If[ 7>8,x,y Switch[ expr, Piecewise[ { {x^2,x<0}, {x,x>0} } ] (39 36

1,Print["expr is 1"], 2,Print["expr is 2"], 3,Print["expr is 3"], _,Print["expr has some other value" ] ] * PiecewiseExpand converts nested piecewise functions into a single piecewise function: *) pw=Piecewise[ { {Piecewise[{{1,x>=0}},2],Piecewise[{{x,x<=1}},x/2]^2>=1/2} },

  Global Variables are those variables declared in Main Program and can be used by Subprograms. Local Variables are those variables declared in Subprograms. The Wolfram Language normally assumes that all your variables are global. This means that every time you use a name like x, the Wolfram Language normally assumes that you are referring to the same object. Particularly when you write subprograms, however, you may not want all your variables to be global. You may, for example, want to use the name x to refer to two quite different variables in two different subprograms. In this case, you need the x in each subprogram to be treated as a local variable. You can set up local variables in the Wolfram Language using modules. Within each module, you can give a list of variables that are to be treated as local to the module. Thus, we can create programs as a series of modules, each performing a specific task. For subtasks, we can embed modules within other modules to form a hierarchy of operations. The most common method for setting up modules is through function definitions,

	CHAPTER 1		MATHEMATICA LAB: INTRODUCTION TO MATHEMTICA
	Function[t,1/(1+t)],x,3 ] 1/(1+1/(1+1/(1+x))) t=t^2+i; Print[t] ] k UNIT 1.6 Output Input Output 25
	Input Output Input MODULES, BLOCKS, AND LOCAL VARIABLES NestList[ f,x,4 1+x^2 2+(1+x^2)^2 3+(2+(1+x^2)^2)^2 t=17 Output 17
	Input	] Module[
	Output Input	{x,f[x],f[f[x]],f[f[f[x]]],f[f[f[f[x]]]]} For[ {t},
			sum=0.0;x=1.0, t=8;Print[t]
	Input	NestList[ (1/x)>0.15, ]
	Output	8	Cos,1.0,10 x=x+1,
			] sum=sum+1/x;
	Output Input Output Output	{1.,0.540302,0.857553,0.65429,0.79348,0.701369,0.76396,0.722102,0.750418,0.731404,0 .744237} Print[sum] t ] 1. 17
	Input Output Input Input	FixedPoint[ Function[t,Print[t];Floor[t/2]],67 ] 67 33 1.5 g[u_]:=Module[ 1.83333 {t=u}, 2.08333 t+=t/(1+u) 2.28333 ] 2.45 g[a]
	Output	16 a + a/(1+a)
			8
	4 h[x_]:=Module[ 2 1 0 0 {t}, Mathematica Examples 1.39 Input Output Input t^2-1/;(t=x-4)>1 k=25 Output ] 25 Input h[10]
	Input Output Output Input Output	3 1 2 2 1 4 ] 8 ] Print[n] 8 4 2 ] {k,3} Print[k," ",2^k], n=Floor[n/2];n!=0, Do[ While[ {k}, n=17; Module[ 35
	Input Input Output	n=1; k While[ n<4,Print[n]; 25
			n=n+1
			]
	Output	1
			2
			3
	Input Mathematica Examples 1.40 Do[ Input k=25; Print[i]; integerPowers[x_Integer]:=Module[ If[i>2,Break[]], {k}, {i,10} Do[ ] Output Print[k," ",x^k], 1 {k,3} 2 ] 3 ]
	Input Input Output	Nest[ integerPowers[k] For[ 1 25 i=1;t=x, 2 625 i^2<10, i=i+1, 3 15625
			44

Nest[ f,x,3 ] Output f[f[f[x]]]

Module[{x,y,...},body] a module with local variables x, y, ....

Module[{x=x0,y=y0,…},body]

a module with initial values for local variables.

Examples 1.41

  

		var1=var1-1
		]
		];
		Return[
		var1==var2
		]
		]
	Input	GamblersRuin[a_,c_,p_]:=Module[
		{ranval,var1,var2,var3},
		var1=a;
		var2=c;
		var3=p;
		While[
		0<var1<var2,
		ranval=Random[];
		If[
		ranval<var3,
		var1=var1+1,

  table the weights of 40 male students at Alex University are recorded to the nearest pound. Construct a frequency distribution.

	138 164 150 132 144 125 149 157
	146 158 140 147 136 148 152 144
	168 126 138 176 163 119 154 165
	146 173 142 147 135 153 140 135
	161 145 135 142 150 156 145 128
	Solution

Table 2 . 2 .

 22 Frequency distribution includes class intervals, frequency, relative frequency and percentage frequency.

	Inclusive	Exclusive	Frequency (f)	Relative	Percentage
	Class Interval	Class Interval		Frequency	Frequency (rf)
	118 -122	117.5 -122.5	1	0.025	2.50
	123 -127	122.5 -127.5	2	0.050	5.00
	128 -132	127.5 -132.5	2	0.050	5.00
	133 -137	132.5 -137.5	4	0.100	10.0
	138 -142	137.5 -142.5	6	0.150	15.0
	143 -147	142.5 -147.5	8	0.200	20.0
	148 -152	147.5 -152.5	5	0.125	12.5
	153 -157	152.5 -157.5	4	0.100	10.0
	158 -162	157.5 -162.5	2	0.050	5.00
	163 -167	162.5 -167.5	3	0.075	7.50
	168 -172	167.5 -172.5	1	0.025	2.50
	173 -177	172.5 -177.5	2	0.050	5.00
	Total		40	1	100

Definitions

Raw Data: Raw data are collected data that have not been organized numerically.

The frequency or number of measurements in each category The relative frequency of measurements in each category The percentage of measurements in each category CHAPTER 2 DESCRIPTIVE STATISTICS: FREQUENCY DISTRIBUTIONS AND HISTOGRAM 56 2

  . A frequency polygon is a line graph of the class frequencies plotted against class marks. It can be obtained by connecting the midpoints of the tops of the rectangles in the histogram, see Figure2.2.

82 Mathematica code 3.9

  

		Tally
	Input	(* Obtain tallies for a list of symbols: *)
		Tally[{a,a,b,a,c,b,a}]
	Output	{{a,4},{b,2},{c,1}}
	Input	(* Results are returned in order of first occurrence in the list: *)
		Tally[{b,a,b,a,c,b,a}]
	Output	{{b,3},{a,3},{c,1}}
	Input	(* Count how many times each element appears in a list: *)
		Tally[{1,2,3,2,1}]
	Output	{{1,2},{2,2},{3,1}}
	Input	(* Count how many times each sublist appears in a list of sublists: *)
		Tally[{{1,2},{3,4},{1,2},{5,6}}]
	Output	{{{1,2},2},{{3,4},1},{{5,6},1}}
	Input	(* Count how many times each character appears in a string: *)
		Tally[
		Characters[
		"the quick brown fox jumps over the lazy dog"
		]
		]
	Output	{{t,2},{h,2},{e,3},

{ ,8}, {q,1}, {u,2}, {i,1}, {c,1}, {k,1}, {b,1}, {r,2}, {o,4}, {w,1},{n,1},{f,1},{x,1},{j,1},{m,1},{p,1},{s,1},{v,1},{l,1},{a,1},{z,1},{y,1},{d, 1},{g,1}}

Mathematica code 3.11

  table for binary data, such as the results of a coin toss or the outcomes of a binary classification problem. It can also be used to simulate random binary data and analyze its frequency distribution: *) This code is useful for generating a formatted frequency table for a small dataset, such as when manually inspecting the frequency distribution of a sample. It can also be used to quickly visualize the frequency distribution of discrete data, by displaying the frequency counts in a table format: *) first generate a list of 20 random real numbers between -10 and 10 using RandomReal. Then, we define the bin boundaries as {-10,-5,0,5,10}. We use BinCounts to count the number of values that fall within each bin, and BinLists to create a list of sublists, where each sublist contains the values that fall within a

		(* Count the number of elements in bins of a specified width: *)
		BinCounts[{1,3,2,1,4,5,6,2},3]
	Output	{{1,2,1,2},{3,4,5},{6}}
	Output	{4,3,1}
	Input	(* The length of BinLists is equivalent to the results from BinCounts: *)
		data=RandomReal[{-3,3},1000];
		listoflengths1=Map[Length,BinLists[data]]
		listoflengths2=BinCounts[data]
		Total[listoflengths1]
		Total[listoflengths2]
	Output	{181,170,175,152,155,167}
	Output	{181,170,175,152,155,167}
	Output	1000
	Output	Counts[RandomInteger[{0,1},100]] 1000
	Output	<|0->51,1->49|>
	Input Input	(* we particular bin: *) (* data={1,2,3,3,3,4,4,5,5}; data=RandomReal[{-10,10},20];
		counts=Counts[data] bins={-10,-5,0,5,10};
		TableForm[ binCounts=BinCounts[data,{bins}]
		Transpose[{Keys[counts],Values[counts]}], binLists=BinLists[data,{bins}]
	Output	TableHeadings->{None,{"Value","Frequency"}} {7,6,3,4}
	Output	] {{-7.05881,-9.47133,-5.01999,-6.65485,-5.38416,-9.14236,-6.89645},{-0.642216,-
	Output	<|1->1,2->1,3->3,4->2,5->2|> 0.034109,-1.71578,-0.3198,-0.627258,-2.56717}, {2.80949,2.99958,3.2704},
	Output	{ {5.72046,7.88653,9.00539,9.60528}}
		{Value, Frequency},
		{1, 1},
		{2, 1},
		{3, 3},
		{4, 2},
		{5, 2}
		}
		BinLists and BinCounts
	Input	(* Make lists of elements in bins of width 1 from 0 to 12: *)
		BinLists[{1,3,2,1,4,5,6,2,10,2},{0,12,1}]
		(* Count the number of elements in bins of width 1 from 0 to 12: *)
		BinCounts[{1,3,2,1,4,5,6,2,10,2},{0,12,1}]
	Output	{{},{1,1},{2,2,2},{3},{4},{5},{6},{},{},{},{10},{}}
	Output	{0,2,3,1,1,1,1,0,0,0,1,0}
	Input	(* List elements in a sequence of ranges: *)
		BinLists[{1,3,2,1,4,5,6,2,3,5,9,1},{{-Infinity,1,2,4,6,Infinity}}]
		86

(* Count the number of elements in a sequence of ranges: *) BinCounts[{1,3,2,1,4,5,6,2,3,5,9,1},{{-Infinity,1,2,4,6,Infinity}}] Output {{},{1,1,1},{3,2,2,3},{4,5,5},{6,9}} Output {0,3,4,3,2} Input (* List elements in bins of a specified width: *) BinLists[{1,3,2,1,4,5,6,2},3]

  .89215,4.78291,4.19745,4.23749,4.29946,4.81448},{5.20934,5.15297,5.2664,5.81 182,5.64929,5.37305,5.35408,5.50074,5.64166,5.333,5.58939},{6.76023,6.6007,6.224 42,6.66529,6.65225,6.01426,6.85846,6.63136,6.75016},{7.32637,7.69574,7.72214,7.7 6053,7.182,7.50633,7.4313,7.69111,7.55321,7.54387},{8.64312,8.36571,8.82821,8.38 553,8.16058,8.36009,8.42748,8.50908,8.8086,8.58884,8.73584},{9.2052,9.23458,9.82 959,9.63361,9.16219,9.30296,9.0229,9.11091,9.04083,9.30531,9.20265,9.38045,9.711

		14,9.08949}}
	Output	{8,6,11,10,10,11,9,10,11,14}
	Output	
	Output	
	Input	
		10,1];
		binnedData=BinLists[data,{bins}]
		countData=BinCounts[data,{bins}]
		ListPlot[
		binnedData,
		Joined->True,
		Mesh->All,
		ImageSize->170
		]
		ListPlot[
		countData,
		Filling->Axis,

PlotStyle->{Directive[Purple,Opacity[0.8],PointSize[Large]]}, ImageSize->170 ] Output {{0.974741,0.237327,0.281386,0.389847,0.66638,0.944951,0.942486,0.594528},{1.466 93,1.5268,1.60659,1.98598,1.05362,1.40106},{2.39582,2.1156,2.32664,2.29535,2.158 34,2.73596,2.44445,2.912,2.57553,2.95727,2.12335},{3.48122,3.53543,3.75044,3.093 48,3.16114,3.97694,3.34258,3.38654,3.7172,3.2494},{4.10362,4.05316,4.45516,4.881 87 38,4

  • The following bin specifications bpsec can be given:

	Mathematica code 3.12	HistogramList
	Input	(* Generate a list of bin delimiters and counts for a dataset: *)
		datasample=RandomVariate[NormalDistribution[],50];
		{bins,counts}=HistogramList[datasample,{1}(* width bins: *)];
		bins
		partitionbins=Partition[bins,2,1]
		counts
		TableForm[
			Table[
			{Row[partitionbins[[i]],","],counts[[i]]},
			{i,1,Length[counts]}
			],
			TableAlignments->Center,
			TableHeadings->{None,{"Bin Interval","Counts"}}
			]
	Output	{-3,-2,-1,0,1,2,3}
	Output	{{-3,-2},{-2,-1},{-1,0},{0,1},{1,2},{2,3}}
	Output	{1,4,24,14,4,3}
	Output	{	
			{Bin Interval, Counts},
			{-3,-2, 1},
			{-2,-1, 4},
			{-1,0, 24},
			{0,1, 14},
			{1,2, 4},
		}	n {2,3, 3} {w}	use n bins use bins of width w
	Input	{min,max,w} {{b1,b2,…}} (* Use different height functions: *) use bins of width w from min to max use bins [b1,b2),[b2,b3),… Automatic determine bin widths automatically sampledata=RandomVariate[NormalDistribution[],100];
		"name" {"Log",bspec} {bins1,counts1}=HistogramList[sampledata,{1},"Count"] use a named binning method apply binning bspec on log-transformed data fw {bins2,counts2}=HistogramList[sampledata,{1},"PDF"] apply fw to get an explicit bin specification {b1,b2,…} {xspec,yspec,…} give different x, y, etc. specifications {bins3,counts3}=HistogramList[sampledata,{1},"CDF"]
	• Possible named binning methods include: partitionbins=Partition[bins1,2,1]
		"Sturges"	compute the number of bins based on the length of data
		"Scott"	asymptotically minimize the mean square error
		"FreedmanDiaconis"	twice the interquartile range divided by the cube root of sample size
		"Knuth"	balance likelihood and prior probability of a piecewise uniform model
		"Wand"	one-level recursive approximate Wand binning
			"CumulativeCount"	cumulative counts
			"SurvivalCount"	survival counts
			"Probability"	fraction of values lying in each bin
			"PDF"	probability density function
			"CDF"	cumulative distribution function
			"SF"	survival function
			"HF"	hazard function
			"CHF"

• Different forms of histogram data can be obtained by giving different bin height specifications hspec in HistogramList[data,bspec,hspec]. The following forms can be used: "Count" the number of values lying in each bin cumulative hazard function fh heights obtained by applying fh to bins and counts 91

•

  Different forms of histogram can be obtained by giving different bin height specifications hspec in Histogram[data,bspec,hspec]. The following forms can be used:

		"Count"	the number of values lying in each bin
		"CumulativeCount"	cumulative counts
		"SurvivalCount"	survival counts
		"Probability"	fraction of values lying in each bin
		"Intensity"	count divided by bin width
		"PDF"	probability density function
		"CDF"	cumulative distribution function
		"SF"	survival function
		"HF"	hazard function
		"CHF"	cumulative hazard function
		{"Log",hspec}	log-transformed height specification
		fh	heights obtained by applying fh to bins and counts
	Mathematica code 3.13	Histogram
	Input	(

* This code generates histogram of 200 random samples drawn from a normal distribution with mean 0 and standard deviation 1: *)

  the weighted arithmetic mean. For instance, if a final examination in a course is weighted 3 times as much as a quiz and a student has a final examination grade of 85 and quiz grades of 70 and 90, the mean grade is 𝑣̅ =If 𝑓 1 numbers have mean 𝑚 1 , 𝑓 2 numbers have mean 𝑚 2 , . .. , 𝑓 𝐾 numbers have mean 𝑚 𝐾 , then the mean of all the numbers is

		𝑣̅ = =	𝑤 1 𝑣 1 + 𝑤 2 𝑣 2 + ⋯ + 𝑤 𝐾 𝑣 𝐾 𝑤 1 + 𝑤 2 + ⋯ + 𝑤 𝐾 ∑ 𝑤 𝑗 𝑣 𝑗 𝐾 𝑗=1 ∑ 𝑤 𝑗 𝐾 𝑗=1 ,	(4.4)
	and is called (70)(1)+(90)(1)+(85)(3) 1+1+3	= 83.		
		𝑣̅ =	𝑓 1 𝑚 1 + 𝑓 2 𝑚 2 + ⋯ + 𝑓 𝐾 𝑚 𝐾 𝑓 1 + 𝑓 2 + ⋯ + 𝑓 𝐾	,	(4.5)
	that is a weighted arithmetic mean of all the means.	

Table 4 .

 4 1. 

Table 4 . 1 .

 41 Frequency distribution.

	Class Interval	Frequency (f)
	118 -126	3
	127 -135	5
	136 -144	9
	145 -153	12
	154 -162	5
	163 -171	4
	172 -180	2
	Total	40

  2 , 𝑣 3 , . . . , 𝑣 𝑁 is the 𝑁th root of the product of the numbers: 𝐺 = √𝑣 1 𝑣 2 𝑣 3 . . . 𝑣 𝑁 The geometric mean 𝐺 of a set of 𝑁 positive numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 can also be expressed as the exponential of the arithmetic mean of logarithms

	𝑁			.	(4.12)
	For instance, the geometric mean of the numbers 3, 9, and 27 is 𝐺 = √(3)(9)(27) 3	= 9.
	Theorem 4.5: 𝐺 = 𝑒	1 𝑁	∑ ln 𝑣 𝑖 𝑁 𝑖=	.	(4.13)
	Proof:				

•

  Replace extreme values in the dataset. For example, if you are trimming 10% from each tail of the dataset, you would replace the top 10% of values with the value at the 90th percentile and replace the bottom 10% of values with the value at the 10th percentile.• Calculate the arithmetic mean of the trimmed data. This is the Winsorized Mean.

Example 4.5 Find the total 20% winsorized mean for the dataset {2, 4, 7, 8, 11, 14, 18, 23, 23, 27, 35, 40, 49, 50, 55, 60, 61, 61, 62, 75}. Solution • A total 20% winsorized mean takes the top 10% and bottom 10% and replaces them with their next closest value.

CHAPTER 4 DESCRIPTIVE STATISTICS: MEASURES OF CENTRAL TENDENCY 122 Example 4.7

  Find the first two deciles for the following dataset, {24,32, 27, 32, 23, 62, 45, 80, 59, 63, 36, 54, 57, 36, 72, 55, 51, 32, 56, 33, 42, 55, 30}. 

•

  The box plot can indicate the skewness and symmetry of the data distribution. If the median is roughly centered in the box, and the whiskers are approximately equal in length, the distribution is likely symmetrical. Skewed distributions may have unequal whisker lengths and a median closer to one quartile than the other.• The box plot enables a quick assessment of the range and variability of the data. The length of the whiskers gives an indication of the spread, while the width of the box represents IQR. • Box plots can be used to identify trends in data over time. By looking at how the median, IQR, and whiskers change over time, you can get a sense of whether the data is increasing, decreasing, or staying the same.Mathematica offers various functions to compute central tendency measures. These functions provide quick and accurate calculations for determining the typical or central value of a dataset and for visualizing location statistics.• The Mean function in Mathematica calculates the arithmetic mean of a list of numbers. It is a commonly used measure of central tendency and provides the average value of the dataset. • The Median function computes the middle value of a sorted dataset. It is useful for finding a representative value that is not influenced by extreme values or outliers. • The Commonest function determines the mode(s) of a dataset, which representsthe most frequently occurring value(s). This can be useful when dealing with categorical or discrete data. • Mathematica provides functions like Quartiles and Quantile to calculate specific quantiles of a dataset.

	Smallest data point Whisker extends to CHAPTER 5 smallest data point within 1.5 IQR from 𝑄 1 MATHEMATICA LAB: DESCRIPTIVE STATISTICS PART 2 𝑄 1 𝑄 2 Largest data point 𝑄 3 Whisker extends to largest data point within 1.5 IQR from 𝑄 3
	Outlier				Extreme outlier
	1.5 IQR	1.5 IQR	IQR	1.5 IQR	1.5 IQR
	Lower fence		Upper fence
	Location Statistics			Box Whisker Chart
	Mean	SpatialMedian		BoxWhiskerChart
	Median	HarmonicMean		
	Commonest	GeometricMean		
	TrimmedMean	RootMeanSquare		
	WinsorizedMean	Quartiles			
		Quantile			
					125

These functions allow you to find values that divide the dataset into equal proportions, such as the first quartile (25th percentile) or the median (50th percentile).

• The TrimmedMean function in Mathematica calculates the mean of a dataset after excluding a specified percentage of extreme values from both ends. It can be useful in situations where outliers may significantly affect the overall mean. • The WinsorizedMean function provides a robust measure of central tendency by reducing the impact of outliers or extreme values on the calculated mean. It achieves this by replacing extreme values with values from a specified percentile. • The SpatialMedian function calculates the spatial median, also known as the geometric median, which is a robust measure of central tendency in spatial data analysis. It provides a robust estimate of the "center" of a spatial dataset, minimizing the sum of distances to all other points. • Both the HarmonicMean and GeometricMean functions provide alternative measures of central tendency that are suitable for specific types of data. While the HarmonicMean is useful for rates and ratios, the GeometricMean is applicable for multiplicative relationships and positive values. • Mathematica offers built-in functions for visualizing location statistics. For example, you can create box plots using BoxWhiskerChart to display the median, quartiles, and potential outliers in a dataset.

Therefore, we divided this chapter into two units to cover the following topics, location statistics and visualizing location statistics.

In the following table, we list the built-in functions that are used in this chapter. Chapter 5 Outline Unit 5.1. Location Statistics Unit 5.2. Box Whisker Chart 126 UNIT 5.1

132

  Input(* The code reads in a dataset h of heights and calculates Commonest elements. It then produces two plots: a scatter plot of the dataset h, and a plot that shows both h and three horizontal lines at the commonest elements and mean. These plots are used for visualizing the distribution of the dataset and highlighting the location of the commonest elements and mean: *)

	h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122,
	135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133};
	Tally[h]
	c=N[Commonest[h]]
	m=Mean[h]
	n=Length[h];
	ListPlot[
	h,
	Filling->Axis,
	PlotStyle->Purple,
	ImageSize->170
	]

  The code analyzes a dataset of heights by calculating the mean and trimmed mean and generating two plots. The first plot displays the data set, while the second plot displays the data set along with horizontal lines for the mean and trimmed mean. This allows for a clear visual comparison of the two measures and demonstrates how the trimmed mean is less sensitive to outliers than the mean: *)

		p=0.2; (* percentage of data to trim from each ends: *)
		n=Length[data];
		numToTrim=Round[p*n];
		sorteddata=Sort[data]
		trimmedData=Take[sorteddata,{numToTrim+1,n-numToTrim}]
		trimmedMean=Mean[trimmedData]
		TrimmedMean[data,0.2]
	Output	{12,15,19,20,22,23,25,26,27,28,31,35,39,42,45,46,47,50,55,62}
	Output	{22,23,25,26,27,28,31,35,39,42,45,46}
	Output	389/12
	Output	389/12
	Input	(* In this code, the trimmedMean function takes two arguments: data, which is a list
		of numeric data, and p, which is an integer specifying the percentage of trimming to
		apply. The function first sorts the data and then takes the middle (100-p) percent
		of the sorted data to compute the mean. We generate a sample of 100 normally
		distributed random numbers and compute the trimmed mean for 10%, and 20% trimming:
		*)
		(* Define a function to compute the trimmed mean: *)
		trimmedMean[data_,p_]:=Module[
		{n=Length[data]},
		Mean[
		Take[
		Sort[data],
		{Ceiling[n*p/200]+1,Floor[n*(100-(p/2))/100]}
		]
		]
		]
		(* Generate some sample data: *)
		data=RandomVariate[NormalDistribution[0,1],100];
		(* Compute the trimmed mean for various percentages of trimming: *)
		trimmedMean[data,10] (* 10% trimming: *)
		trimmedMean[data,20] (* 20% trimming: *)
		TrimmedMean[data,0.05]
		TrimmedMean[data,0.1]
	Output	-0.0977251
	Output	-0.0902409
	Output	-0.0977251
	Output	-0.0902409
	Input	(* h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122,
		135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133,600
		};
		n=Length[h];
		m=N[Mean[h]]
		tmean=N[TrimmedMean[h,0.49]]
		ListPlot[
		h,
		Filling->Axis,
		PlotStyle->Purple,
		134

data={12,

15,19,20,22,23,25,26,27,28,31,35,39,42,45,46,47,50,55,62}; 

  problems with using the arithmetic mean in the presence of outliers, as it can be heavily influenced by extreme values and lead to inaccurate or misleading results: *)

		(* Obtain a robust estimate of the location when outliers are present: *)
		N[
		WinsorizedMean[
		{1,5,2,6,10,10^6,5,4,-2000,5},
		.1
		]
		]
		(* Extreme values have a large influence on the Mean: *)
		N[
		Mean[
		{1,5,2,6,10,10^6,5,4,-2000,5}
		]
		]
	Output	4.9
	Output	99803.8
		(* Winsorized mean after removing the smallest extreme values: *)
		WinsorizedMean[{-10,1,1,1,1,20},{0.2,0}]
		(* Winsorized mean after removing the largest smallest extreme values: *)
		WinsorizedMean[{-10,1,1,1,1,20},{0,0.2}]
	Output	1
	Output	25/6
	Output	-(5/6)
	Input	(* Winsorized mean of a matrix gives column-wise means: *)
		WinsorizedMean[
		RandomReal[1,{50,2}],
		.1
		]
	Output	{0.479019,0.474528}

Mathematica Examples 5.5 WinsorizedMean Input (* The code demonstrates three different ways to calculate the Winsorized mean by removing extreme values from either or both ends of the data set: *) (* Winsorized mean after removing extreme values: *) WinsorizedMean[{-10,1,1,1,1,20},0.2] Input (* The code demonstrates the importance of using a robust estimate of location, such as the Winsorized mean, when outliers are present in a data set. The code also 138 highlights the potential
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  In this code, the winsorizedmean function takes two arguments: data, which is a list of numeric data, and p, which is an integer specifying the percentage of trimming to apply. The function first sorts the data and then replaces the lowest and highest m values with the corresponding minimum and maximum values. Finally, it computes the mean of the modified data to get the Winsorized Mean: *)

	Output	12
	Output	12
	Input	(* winsorizedmean[data_,p_]:=Module[
		{sortedData,n,m},
		sortedData=Sort[data];
		n=Length[data];
		m=Floor[p*n];
		Mean[
		Join[
		ConstantArray[sortedData[[m+1]],m],
		Drop[Drop[sortedData,m],-m],
		ConstantArray[sortedData[[-m-1]],m]
		]
		]
		]
		(* Define the dataset: *)
		data={2,5,8,10,11,13,14,16,18,20};
		winsorizedmean[data,0.2]
		WinsorizedMean[data,0.2]
	Output	12
	Output	12
	Input Output Input Output Output	SpatialMedian[wd] {2.56322,2.7113} (* For univariate data, Median coincides with SpatialMedian: *) Median[{1,2,3,4,4,3,1,1,5,6}] SpatialMedian[{1,2,3,4,4,3,1,1,5,6}] 3 (,600 3
	Input	}; (* SpatialMedian under ManhattanDistance for multivariate data is the same as Median:
		*) n=Length[h]; data={{1.5,3.},{2.6,4.},{9.2,5.},{7.3,-5.}}; m=N[Mean[h]] SpatialMedian[data,DistanceFunction->ManhattanDistance] wmean=N[WinsorizedMean[h,0.49]] Median[data]
	Output Output	{4.95,3.5} ListPlot[ h, {4.95,3.5}
	Input	Filling->Axis, (* Obtain a robust estimate of a multivariate location when outliers are present: *) PlotStyle->Purple, data={{3.,-5.},{2.,-5.},{0.,2.},{-4.,-3.},{10^8,-1.},{8.,-20000.}}; ImageSize->170 ] SpatialMedian[data]
		(* Extreme values have a large influence on the Mean: *) ListPlot[ Mean[data]
	Output	{2.,-5.}
	Output	{1.66667*10 7 ,-3335.33}

Table and Take functions. The resulting modified dataset is stored in a variable called winsorizedData. Finally, we calculate the arithmetic mean of the modified dataset using the Mean function, and store the result in a variable called winsorizedMean: *) (* Define the dataset: *) data={2,5,8,10,11,13,14,16,18,20}; (* Define the trimming percentage: *) trim=0.2; (* Calculate the number of values to be trimmed from both ends of the distribution: *) n=Ceiling[trim*Length[data]]; (* Sort the data: *) sortedData=Sort[data] (* Replace the outliers with the next largest or smallest non-outlying value: *) winsorizedData=Join[ Table[sortedData[[n+1]],{n}], Take[sortedData,{n+1,-n-1}], Table[sortedData[[-n-1]],{n}] ] (* Calculate the Winsorized Mean: *) winsorizedMean=Mean[winsorizedData] WinsorizedMean[data,0.2] Output {2,5,8,10,11,13,14,16,18,20} Output {8,8,8,10,11,13,14,16,16,16} * The code analyzes a dataset of heights by calculating the mean and Winsorized mean and generating two plots. The first plot displays the data set, while the second plot displays the data set along with horizontal lines for the mean and Winsorized mean. This allows for a clear visual comparison of the two measures and demonstrates how the Winsorized mean is less sensitive to outliers than the mean: *) h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122, 135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133{h,{{0,wmean},{n,wmean}},{{0,m},{n,m}}}, Joined->{False,True,True}, Filling->{1->wmean,2->Axis}, PlotStyle->{Purple,Purple,Red}, ImageSize->170, PlotLegends->{"h","Winsorized Mean .49","mean"} ] Output 138.537 Output 126. 140 Output Output SpatialMedian[{x1,x2,…}] gives the spatial median of the elements xi. SpatialMedian[data] gives the spatial median for several different forms of data. Mathematica Examples 5.6 SpatialMedian Input (* Find the spatial median of a list of vectors: *) SpatialMedian[{{1.,3.,5.},{7.,1.,2.},{9.,3.,1.},{4.,5.,6.}}] Output {5.65837,2.74486,3.251} Input (* Spatial median works with WeightedData: *) wd=WeightedData[{{1.,3.},{-4.,2.},{3.,1.},{5.,6.}},{1.,3.,4.,5.}];

Examples 5.10 Quartiles

  Step 2 calculates the second quartile (Q2), i.e., the median. If the dataset has an even number of elements, Q2 is defined as the mean of the two middle values.

		(* Step 1 sorts the given data in ascending order, which is a necessary step before Filling->Axis,
		calculating the quartiles: *) PlotStyle->Purple,
		sortedData=Sort[data]; ImageSize->170
		]
		(* If ListPlot[
		the dataset has an odd number of elements, Q2 is defined as the middle value: *) s,
		n=Length[sortedData]; Filling->Axis,
		Q2=If[ Epilog-
		EvenQ[n], >{RGBColor[0.88,0.61,0.
		Mean[
		Take[sortedData,{n/2,n/2+1}]
		],
		sortedData[[Ceiling[n/2]]]
		];
		(* Step 3 calculates the first quartile (Q1). It considers the lower half of the
		sorted data and follows the same logic as in Step 2: *)
		lowerHalf=Take[sortedData,Floor[n/2]];
		Q1=If[
		EvenQ[Length[lowerHalf]],
		Mean[
		Take[lowerHalf,{Length[lowerHalf]/2,Length[lowerHalf]/2+1}]
		],
	Input	lowerHalf[[Ceiling[Length[lowerHalf]/2]]] (* Quartiles for a list of exact numbers: *) Quartiles[{1,3,4,2,5,6}] ];
	Output	{2,7/2,5} (* Step 4 calculates the third quartile (Q3). It considers the upper half of the
	Input	sorted data and follows the same logic as in Step 2: *) (* Quartiles for a matrix gives columnwise quartiles: *) upperHalf=Take[sortedData,-Ceiling[n/2]]; data={{1,6,2},{4,11,7},{5,7,8},{10,12,13},{20,21,22}}; Q3=If[
	Output Output	EvenQ[Length[upperHalf]], Quartiles[data] Mean[ Quartiles[{1,4,5,10,20}] Take[upperHalf,{Length[upperHalf]/2,Length[upperHalf]/2+1}] Quartiles[{6,11,7,12,21}] ], Quartiles[{2,7,8,13,22}] upperHalf[[Ceiling[Length[upperHalf]/2]]] {{13/4,5,25/2},{27/4,11,57/4},{23/4,8,61/4}} {13/4,5,25/2} ];
	Output Output	{27/4,11,57/4} (* Finally, the quartiles Q1, Q2, and Q3 are outputted as a list, and the Quartiles {23/4,8,61/4} function is called and returns the same output: *)
	Input Output Output	{Q1,Q2,Q3} (* Find the quartiles of WeightedData: *) Quartiles[data] data={8,3,5,4,9,0,4,2,2,3}; {5,19/2,15} w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09}; Quartiles[ {5,19/2,15}
	Output Input Output Output Input Input	WeightedData[data,w] ] {3,4,8} (* The second quartile is the Median: *) data=RandomReal[15,10]; Quartiles[data][[2]] Median[data] 12.6404 12.6404 (ListPlot[ h, (147 148

* This code is designed to calculate the quartiles of a given dataset. The code sorts the dataset, calculates the median (Q2), and then divides the dataset into the lower and upper halves to calculate the first (Q1) and third (Q3) quartiles: *) data={2,4,5,7,9,10,12,15,18,22}; * The code reads in a dataset h of heights and calculates its quartiles. It then produces three plots: a scatter plot of the dataset h, a scatter plot of the sorted dataset s, and a plot that shows both h and three horizontal lines at the quartiles. These plots are used for visualizing the distribution of the dataset and highlighting the location of the quartiles: *) h={133,

136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122, 135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139

,133}; qrs=N[Quartiles[h]] n=Length[h] s=Sort[h];

Mathematica Examples 5.11 Quantile

  

		Quantile[NormalDistribution[μ,σ],q]
	Output	μ-√2 σ InverseErfc[2 q] if 0<=q<=1
	Input	(* Find quantiles of elements in each column: *)
		Quantile[{{1,5 },{2,4},{3,3},{4,2},{5,1}},1/4]
		Quantile[{1,2,3,4,5 },1/4]
		Quantile[{5,4,3,2,1 },1/4]
	Output	{2,2}
	Output	2	
	Output	2	
	Input	(* Find quantiles for WeightedData: *)
		data={8,3,5,4,9,0,4,2,2,3};
		w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09};
		Quantile[WeightedData[data,w],0.4]
	Output	4	
	Input	(* The code reads in a dataset h of heights and calculates its quantile. It then
		produces three plots: a scatter plot of the dataset h, a scatter plot of the sorted
		dataset s, and a plot that shows both h and three horizontal lines at the values of
		the 10th, 50th (median), and 90th percentiles of the data: *)
		h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122,
		135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133};
		qs=Quantile[h,{0.1,0.5,0.9}]
		n=Length[h];	01}}}},
		ImageSize->170 s=Sort[h];
			]
	Output	{2.6746,4.35146,6.62568} ListPlot[
	Output	{0.15272,0.137036,0.0825822} h,
	Output		Filling->Axis,
			PlotStyle->Purple,
			ImageSize->170
			]
		ListPlot[
			s,
			Filling->Axis,
			Epilog-
		>{RGBColor[0.88,0.61,0.14],Line[{{4,0},{4,qs[[1]]}}],RGBColor[0.37,0.5,0.7],Line[{{
		20,0},{20,qs[[2]]}}],Darker[Red],Line[{{36,0},{36,qs[[3]]}}]},
			Ticks->{{{4,"D0.1",{0,.01}},{20,"D0.5",{0,.01}},{36,"D0.9",{0,.01}}},True},
	Input	(* Find the halfway value (median) of a list: *) PlotStyle->Purple,
		Quantile[{1,2,3,4,5,6,7,8,9},1/2] ImageSize->170
	Output	5	]
	Input	(* Find the quarter-way value (lower quartile) of a list: *) ListPlot[
		Quantile[{1,2,3,4,5,6,7,8,9},1/4] {h,{{0,qs[[1]]},{n,qs[[1]]}},{{0,qs[[2]]},{n,qs[[2]]}},{{0,qs[[3]]},{n,qs[[3]]}}},
	Output	3	Joined->{False,True,True,True},
			Filling->{1->Axis},
	Input	(* Lower and upper quartiles: *) PlotStyle->{Purple,RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Darker[Red]},
		Quantile[{1,2,3,4,5,6,7,8,9},{1/4,3/4}] PlotLegends->{"h","D0.1","D0.5","D0.9"},
	Output	{3,7} AxesLabel->Automatic,
			ImageSize->170
	Input	(* The Quantile function is used to calculate the values of the dataset that ]
	Output	correspond to the 10th, 20th, 80th, and 90th percentiles: *) {104,124,146}
		Quantile[{1,2,3,4,5,6,7,8,9,10},{0.1,0.2,0.8,0.9}]
	Output	{1,2,8,9}
	Input	(* The q^(th) quantile for a normal distribution: *)
				150
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	The Mathematica function BoxWhiskerChart is a powerful tool for visualizing and analyzing data distributions. Here
	are some features of this function:	
	• Clear representation of data: BoxWhiskerChart provides a clear and concise representation of the
	distribution of a dataset. It displays important statistical measures such as the median, quartiles, and outliers,
	making it easy to understand the central tendency and spread of the data.
	• Customizable appearance: The function offers a wide range of options to customize the appearance of the
	box-and-whisker plot. You can adjust the colors, styles, and sizes of the boxes, whiskers, outliers, and other
	elements to suit your preferences or match your presentation or publication style.
	• Comparative analysis: BoxWhiskerChart allows for easy comparison of multiple datasets. You can plot
	several box-and-whisker diagrams side by side or in a stacked manner, making it straightforward to identify
	differences or similarities in distributions.	
	• Interaction and exploration: The resulting chart is interactive, meaning you can hover over different
	elements to obtain more detailed information about specific data points or summary statistics. This
	interactivity enhances the exploratory data analysis process and allows for a deeper understanding of the
	underlying distribution.	
	BoxWhiskerChart[{x1,x2,…}]	makes a box-and-whisker chart for the values xi.
	BoxWhiskerChart[{x1,x2,…},bwspec]	makes a chart with box-and-whisker symbol specification bwspec.
	BoxWhiskerChart[{data1,data2,…},…]	

153 Mathematica Examples 5.12 BoxWhiskerChart Input

  (* The code uses the RandomVariate function to generate a data vector with 200 values. It samples from a normal distribution with a mean of 1 and a standard deviation of 2. then, the code generates a basic box-and-whisker chart using randomly generated data: *) The code generates a box-and-whisker chart for multiple datasets created using a loop. The code uses a Table construct to generate four sets of data points. For each iteration of the loop, it generates 100 data points by sampling from a normal distribution. The mean of the normal distribution varies based on the values in the list {0,2,4,6}. The standard deviation is fixed at 2. This approach allows you to create multiple datasets with different means for comparison or analysis purposes. The BoxWhiskerChart function is used to create a chart from the generated data. The data variable contains the four sets of data points generated in the loop: *)

		the medians of each dataset. The second BoxWhiskerChart call explicitly shows
		outliers, highlighting extreme or unusual data points: *)
		data=Table[
		RandomVariate[
		NormalDistribution[RandomInteger[6],1],
		200 BoxWhiskerChart[ ], RandomVariate[ {7} NormalDistribution[1,2], 200 ];
		],
		ChartStyle->Purple, BoxWhiskerChart[
		ImageSize->170 data,
		] "Notched",
	Output	ChartStyle->Purple,
		ImageSize->200
		]
		(* Show outliers: *)
		BoxWhiskerChart[
		data,
		"Outliers",
		ChartStyle->Purple,
		ImageSize->200
	Input Output Output	] (* data=Table[ RandomVariate[
		NormalDistribution[x,2],
		100
		],
		{x,{0,2,4,6}}
		];
		BoxWhiskerChart[
		data,
	Input	ChartStyle->Purple, ImageSize->170 (* The
		]
	Output	
	Input	(* The code demonstrates customization options for a box-and-whisker chart. It
		154

generates a list of seven datasets, each containing 200 data points randomly sampled from normal distributions. The mean of each dataset is randomly chosen from the integers 0 to 6, while the standard deviation is fixed at 1. The first BoxWhiskerChart call creates a notched box-and-whisker chart, displaying confidence intervals around

code utilizes named presets to create multiple box-and-whisker charts with

  different styles. Inside the Table loop, each iteration generates a chart with a specific preset style. The available preset styles used in the code include "Basic", By adjusting the width, style, shape, or removing the median marker, you can customize the appearance of the box-and-whisker chart to suit your preferences and highlight specific aspects of the data. The code generates a list of datasets using a Table construct. Each dataset contains 200 data points generated from a beta distribution. The shape parameter of the beta distribution varies from 1 to 4, resulting in multiple datasets with different shapes. The first Table loop generates box-and-whisker charts with the median marker having different widths. The second Table loop demonstrates how to style the median marker using different line styles. The third Tableloopshows how to use different shape symbols for the median marker:

			j, {colors,{Red,Green,Blue}} BoxWhiskerChart[		
			]	PlotLabel->Text[j], data,				
	Output			ChartStyle->Purple, {{"MedianMarker",shapes,Green}},		
				ImageSize->170 ChartStyle->Purple,				
				], ImageSize->170				
			{j,{"Basic","Outliers","Notched","Median","Mean","Diamond"}} ],
			] {shapes,{"•","\[CircleTimes]","*"}}		
	Output		]					
		{ (* Do not show the median marker: *) ,		,	}
		BoxWhiskerChart[				
			data,				
			{{"MedianMarker",None}},			
			ChartStyle->Purple,				
		{	ImageSize->170 ]		,		,	,
	Output		{			,		,	}
	Input	{ (* *) {		, ,	,	, ,	,	}	}
		data=Table[				
				RandomReal[				
				BetaDistribution[α,2],		
				200				
			{	], {α,1,4,6}	,		,		}
		data=Table[ ];				
	Input	RandomReal[ Table[ ParetoDistribution[2,x], BoxWhiskerChart[ 200 data, ], {{"MedianMarker",width,Green}}, {x,4,8,1} ]; ChartStyle->Purple, ImageSize->170 (* The		
		"Outliers", "Notched", "Median", "Mean", and "Diamond". These presets provide ], Table[ {width,{0.1,0.5,2}} BoxWhiskerChart[ data, ]
		different visual representations and statistical measures for the box-and-whisker charts: *) data=Table[ RandomReal[ BetaDistribution[x,2], 300 ], {x,1,5,0.7} ]; {{"Outliers",shapes}}, (* Style the median marker: *) ChartStyle->Purple, Table[ ImageSize->200 BoxWhiskerChart[ ], data, {shapes,{"•","\[Square]","\[RightTriangle]"}} {{"MedianMarker",0.8,styles}}, ] ChartStyle->Purple, (* Style the outliers: *) ImageSize->170 Table[ ], BoxWhiskerChart[ {styles,{Green,Directive[Dotted,Green],Directive[Thickness[0.02],Green]}} data, {{"Outliers","\[RightTriangle]",colors}}, ]
		Table[ BoxWhiskerChart[ data, ChartStyle->Purple, (* Use a different shape of median marker: *) ImageSize->200 ], Table[		
									155 156 157

} Input (* The code generates a list of datasets using a Table construct. Each dataset contains 200 data points generated from a Pareto distribution. The shape parameter of the Pareto distribution varies from 4 to 8 in increments of 1, resulting in multiple datasets with different shapes. The first Table loop generates box-andwhisker charts with outliers represented by different shapes. Each iteration uses a different shape symbol, including a bullet (•), a square (\[Square]), and a right triangle (\[RightTriangle]). This provides visual differentiation for the outliers in the charts. The second Table loop demonstrates how to style the outliers in the box-and-whisker charts with different colors. Each iteration assigns a different color (red, green, blue) to the outliers: *)

code generates a series of BoxWhiskerCharts to visualize the distribution of

  a dataset called 'data' using the SkewNormalDistribution. The dataset has dimensions 8 rows by 200 columns. The code uses the BoxWhiskerChart function to create a box and whisker plot for each column in the 'data' dataset. Each chart represents statistical measures such as the minimum, mean, median, and maximum values with different line styles and colors: *)

	data=RandomVariate[
	SkewNormalDistribution[0,2,4],
	{8,200}
	];
	Table[
	BoxWhiskerChart[
	data,

{ {"Whiskers",Directive[Thick,s[[2]],Opacity[0.8]]}, {"Fences",Directive[Thick,s[[2]],Opacity[0.8]]}

code generates multiple density plots using the DistributionChart function. It generates a 2D array of random data called data. It consists of 10 rows and 100 columns, where each element is sampled from a standard normal distribution. The code then uses a combination of Table and DistributionChart to generate density plots for each element in the list of chart element functions. The Joined option is set

  

		];
		Show[
		BoxWhiskerChart[
		{data1,data2,data3},
		{
		{"Whiskers",Directive[Thick,Opacity[0.8]]},
		{"Fences",Directive[Thick,Opacity[0.8]]}
		},
		ChartStyle-
		>{Directive[Blue,Opacity[0.4]],Directive[Red,Opacity[0.4]],Directive[White,EdgeForm
		[Thickness[0.001]]]},
		ImageSize->350
		],
		ListPlot[
		{
		Transpose[{ConstantArray[1,Length[data1]],data1}],
		Transpose[{ConstantArray[2,Length[data2]],data2}],
		Transpose[{ConstantArray[3,Length[data3]],data3}]
	Output	}, {data1,data2,data3}=Table[ ImageSize->350, RandomVariate[NormalDistribution[μ,1],40], PlotMarkers->{"-",PointSize[0.06]} {μ,{0,4,2}} ] ]; ] BoxWhiskerChart[ {data1,data2,data3},
		ChartStyle-
		>{Directive[Blue,Opacity[0.4]],Directive[Red,Opacity[0.4]],Directive[White,EdgeForm
		[Thickness[0.001]]]},
		ImageSize->350,
		Epilog->{
		Directive[Purple,Opacity[0.4]],
		PointSize[0.016],
		Map[
		Point,{
		Transpose[{ConstantArray[1,Length[data1]],data1}],
		Transpose[{ConstantArray[2,Length[data2]],data2}],
		Transpose[{ConstantArray[3,Length[data3]],data3}]}
		]
	Output Input	} (* The to ]
		"Mean" to connect the mean values of the distributions with a line. The
		ChartElementFunction option is used to specify different chart element functions,
		such as "PointDensity" and "LineDensity". *)
		data=RandomVariate[NormalDistribution[],{10,100}];
		Table[
		DistributionChart[
		data,
		Joined->"Mean",
		ChartElementFunction->s,
	Input	(* Similar to the previous code but, in this code, the chart's appearance, including ChartStyle->"Pastel",
		colors, opacity, and point style, is customized to enhance visual clarity: *) ImageSize->300
		],
		{s,{"PointDensity","LineDensity"}} {data1,data2,data3}=Table[ RandomVariate[NormalDistribution[μ,1],40], ]
		{μ,{0,4,2}}
		161
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  range of a set of numbers is the difference between the largest and smallest numbers in the set.

Table 6 .1. Frequency

 6 

		distribution.			
	Class Interval Frequency (𝑓) Class mark		|𝑥 -𝑥̅ |	𝑓 * |𝑥 -𝑥̅ |
	0 -4	7	2	2 -10.80 = 8.80	61.6
	4 -8	4	6	6 -10.80 = 4.80	19.2
	8 -12	19	10	10 -10.80 = 0.80	15.2
	12 -16	12	14	14 -10.80 = 3.2	38.4
	16 -20	8	18	18 -10.80 = 7.2	57.6
	Total	50				192
	Solution				
		Mean deviation (MD) =	∑ 𝑓 𝑗 |𝑣 𝑗 -𝑣̅ | 𝐾 𝑗=1 𝑁	=	192 50	= 3.84.

  If 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝐾 occur with frequencies 𝑓 1 , 𝑓 2 , 𝑓 3 , . . . , 𝑓 𝐾 , respectively, the standard deviation can be written

				.5.2)
	Thus 𝑆 is sometimes called, the root-mean-square deviation.		
	(b) 𝑆 = √	∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣̅ ) 2 𝐾 𝑗=1 𝑁 -1	,	(6.6.2)
	where ∑ 𝑓 𝑗 𝐾 𝑗=1			

Table 6 .2. Frequency

 6 

		distribution.				
	Class Interval Frequency (𝑓) Class mark	𝑥 -𝑥̅	(𝑥 -𝑥̅ ) 2 𝑓 * (𝑥 -𝑥̅ ) 2
	0 -4	7	2	2 -10.80 = -8.80	77.44	542.08
	4 -8	4	6	6 -10.80 = -4.80	23.04	92.16
	8 -12	19	10	10 -10.80 = -0.80	0.64	12.16
	12 -16	12	14	14 -10.80 = 3.2	10.24	122.88
	16 -20	8	18	18 -10.80 = 7.2	51.84	414.72
	Total	50					1184
	Solution					
		𝑆 = √	∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣̅ ) 2 𝐾 𝑗=1 𝑁 -1	
			= √	1184 49	= √24.16 = 4.92.	

Theorem 6.1: (

  a) The standard deviation of a set of 𝑁 numbers 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 is defined by Since 𝑑 𝑗 = 𝑣 𝑗 -𝐴, 𝑣 𝑗 = 𝑑 𝑗 + 𝐴, and 𝑣̅ = 𝐴 + 𝑑 ̅ , we have

	CHAPTER 6										
				=	∑ 𝑓 𝑗 𝑣 𝑗 2 𝐾 𝑗=1 𝑁	-(	∑ 𝑓 𝑗 𝑣 𝑗 𝐾 𝑗=1 𝑁	)	2	,
	where ∑ 𝑓 𝑗 𝐾 𝑗=1	= 𝑁.	𝑆 = √	∑ 𝑣 𝑗 2 𝑁 𝑗=1 𝑁	-(	∑ 𝑣 𝑗 𝑁 𝑗=1 𝑁	)	2	= √ 𝑣 2 ̅̅̅ -𝑣̅ 2 ,	(6.7)	∎
	where 𝑣 2 ̅̅̅ denotes the mean of the squares of the various values of 𝑣, while 𝑣̅ 2 denotes the square of the mean of Theorem 6.2: the various values of 𝑣. If 𝑑 𝑗 = 𝑣 𝑗 -𝐴 are the deviations of 𝑣 𝑗 from some arbitrary constant 𝐴, results (6.5) and (6.6) become, respectively, (b) If 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝐾 occur with frequencies 𝑓 1 , 𝑓 2 , 𝑓 3 , . . . , 𝑓 𝐾 , respectively, the standard deviation can be written 𝑆 = √ ∑ 𝑓 𝑗 𝑣 𝑗 2 𝐾 𝑗=1 𝑁 -( ∑ 𝑓 𝑗 𝑣 𝑗 𝐾 𝑗=1 𝑁 ) 2 = √ 𝑣 2 𝑆 = √ ∑ 𝑑 𝑗 2 𝑁 𝑗=1 𝑁 -( ∑ 𝑑 𝑗 2 𝑁 𝑗=1 ) = √ 𝑑 2 ̅̅̅ -𝑑 ̅ 2 , 𝑁 (6.9) ̅̅̅ -𝑣̅ 2 . (6.8) Proof: 𝑆 = √ ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 𝑁 -( ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 ) = √ 𝑑 2 ̅̅̅ -𝑑 ̅ 2 . 𝑁 (6.10)
	(a) By definition, 𝑆 = √ ∑ 𝑗=1 (𝑣 𝑗 -𝑣 ̅) 2 𝑁 𝑁 Proof:	. Then,						
	∑ (𝑣 𝑗 -𝑣̅ ) 2 𝑁 𝑗=1 𝑣 𝑗 -𝑣̅ = (𝑑 𝑗 + 𝐴) -(𝐴 + 𝑑 ̅ ) = 𝑑 𝑗 -𝑑 ̅ , 𝑆 2 = 𝑁 ∑ (𝑣 𝑗 2 -2𝑣 𝑗 𝑣̅ + 𝑣̅ 2 ) 𝑁 𝑗=1 = 𝑁 = ∑ 𝑣 𝑗 2 𝑁 𝑗=1 -2𝑣̅ ∑ 𝑣 𝑗 𝑁 𝑗=1 + 𝑁𝑣̅ 2 𝑁 = ∑ 𝑣 𝑗 2 𝑁 𝑗=1 𝑁 -2𝑣̅ ∑ 𝑣 𝑗 ∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣̅ ) 2 𝐾 𝑗=1 𝑆 = √ 𝑁 𝑁 𝑗=1 𝑁 + 𝑣̅ 2 = ∑ 𝑣 𝑗 2 𝑁 𝑗=1 ∑ 𝑓 𝑗 (𝑑 𝑗 -𝑑 ̅ ) 2 𝐾 𝑗=1 = √ 𝑁 -2𝑣̅ 2 + 𝑣̅ 2 𝑁 = ∑ 𝑣 𝑗 2 𝑁 𝑗=1 -𝑣̅ 2 ∑ 𝑓 𝑗 (𝑑 𝑗 2 -2𝑑 𝑗 𝑑 ̅ + 𝑑 ̅ 2 ) 𝐾 𝑗=1 = √ 𝑁 𝑁 = 𝑣 2 ̅̅̅ -𝑣̅ 2 . ∑ (𝑓 𝑗 𝑑 𝑗 2 -2𝑓 𝑗 𝑑 𝑗 𝑑 ̅ + 𝑓 𝑗 𝑑 ̅ 2 ) 𝐾 𝑗=1 = √ 𝑁 , we have ∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣̅ ) 2 𝐾 𝑗=1 ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 -2 ∑ 𝑓 𝑗 𝑑 𝑗 𝑑 ̅ 𝐾 𝑗=1 + ∑ 𝑓 𝑗 𝑑 ̅ 2 𝐾 𝑗=1 = √ 𝑁 𝑆 2 = 𝑁 = ∑ 𝑓 𝑗 (𝑣 𝑗 2 -2𝑣 𝑗 𝑣̅ + 𝑣̅ 2 ) 𝐾 𝑗=1 = √ ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 𝑁 -2𝑑 ̅ ∑ 𝑓 𝑗 𝑑 𝑗 𝐾 𝑗=1 𝑁 ∑ 𝑓 𝑗 𝐾 𝑗=1 + 𝑑 ̅ 2 𝑁 𝑁 = ∑ (𝑓 𝑗 𝑣 𝑗 2 -2𝑓 𝑗 𝑣 𝑗 𝑣̅ + 𝑓 𝑗 𝑣̅ 2 ) 𝐾 𝑗=1 𝑁 ∑ 𝑓 𝑗 𝑣 𝑗 2 𝐾 𝑗=1 -2 ∑ 𝑓 𝑗 𝑣 𝑗 𝑣̅ 𝐾 𝑗=1 + ∑ 𝑓 𝑗 𝑣̅ 2 𝐾 = √ ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 -2𝑑 ̅ 2 + 𝑑 ̅ 2 𝑁 𝑗=1 = 𝑁 = ∑ 𝑓 𝑗 𝑣 𝑗 2 𝐾 𝑗=1 -2𝑣̅ ∑ 𝑓 𝑗 𝑣 𝑗 𝐾 𝑗=1 + 𝑣̅ 2 ∑ 𝑓 𝑗 𝐾 𝑗=1 = √ ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 -𝑑 ̅ 2 𝑁 𝑁 = ∑ 𝑓 𝑗 𝑣 𝑗 2 𝐾 𝑗=1 𝑁 -2𝑣̅ ∑ 𝑓 𝑗 𝑣 𝑗 𝐾 𝑗=1 𝑁 + 𝑣̅ 2 ∑ 𝑓 𝑗 𝐾 𝑗=1 𝑁 = ∑ 𝑓 𝑗 𝑣 𝑗 2 = √ ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 𝑁 -( ∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 ) = √ 𝑑 2 ̅̅̅ -𝑑 ̅ 2 , 𝑁 𝐾 𝑗=1 𝑁 -2𝑣̅ 2 + 𝑣̅ 2 = ∑ 𝑓 𝑗 𝑣 𝑗 2 𝐾 𝑗=1 ∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣 ̅) 2 𝑁 = 𝑁, and 𝑑 ̅ = (b) Using 𝑆 = √ so that ∑ 𝐾 𝑗=1 where ∑ 𝑓 𝑗 𝐾 𝑗=1 𝑓 𝑗 𝑑 𝑗 𝐾 𝑗=1 . 𝑁 -𝑣̅ 2 𝑁	∎
												170
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  When data are grouped into a frequency distribution whose class intervals have equal size 𝑐, we have 𝑑 𝑗 = 𝑐𝑢 𝑗 or 𝑣 𝑗 = 𝐴 + 𝑐𝑢 𝑗 and result (6.10) becomes,

	𝑆 = 𝑐 √	∑ 𝑓 𝑗 𝑢 𝑗 2 𝐾 𝑗=1 𝑁	-(	∑ 𝑓 𝑗 𝑢 𝑗 𝐾 𝑗=1 𝑁	)	2	= 𝑐 √ 𝑢 2 ̅̅̅ -𝑢 ̅ 2 .	(6.11)
	Proof:							
	Since 𝑑 𝑗 = 𝑣 𝑗 -𝐴 = 𝑐𝑢 𝑗 . Thus, since 𝑐 is a constant,		
		𝑆 = √	∑ 𝑓 𝑗 𝑑 𝑗 2 𝐾 𝑗=1 𝑁	-(	∑ 𝑓 𝑗 𝑑 𝑗 𝑁 𝑗=1 𝐾	)	2
		= √	∑ 𝑓 𝑗 (𝑐𝑢 𝑗 ) 2 𝐾 𝑗=1 𝑁	-(	∑ 𝑓 𝑗 (𝑐𝑢 𝑗 ) 𝑁 𝑗=1 𝐾	)	2
		= √	𝑐 2 ∑ 𝑓 𝑗 𝑢 𝑗 2 𝐾 𝑗=1 𝑁	-(	𝑐 ∑ 𝑓 𝑗 𝑢 𝑗 𝑁 𝑗=1 𝐾	)	2
		= √ 𝑐 2	∑ 𝑓 𝑗 𝑢 𝑗 2 𝐾 𝑗=1 𝑁	-𝑐 2 (	∑ 𝑓 𝑗 𝑢 𝑗 𝑁 𝑗=1 𝐾	)	2
		= 𝑐 √	∑ 𝑓 𝑗 𝑢 𝑗 2 𝐾 𝑗=1 𝑁	-(	∑ 𝑓 𝑗 𝑢 𝑗 𝑁 𝑗=1 𝐾	)	2
		= 𝑐 √ 𝑢 2 ̅̅̅ -𝑢 ̅ 2 .		
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			2 + 5 + 8 + 11 + 14 + 2 + 8 + 14 5 + 3	= 8.
	(d) The variance of the combined sets is		
	𝑆 2 =	(2 -8) 2 + (5 -8) 2 + (8 -8) 2 + (11 -8) 2 + (14 -8) 2 + (2 -8) 2 + (8 -8) 2 + (14 -8) 2 5 + 3	= 20.25
	Another method			
		𝑆 2 =	𝑁 1 𝑠 1 2 + 𝑁 2 𝑠 2 2 𝑁 1 + 𝑁 2	=	(5)(18) + (3)(24) 5 + 3	= 20.25.
	The actual variation, or dispersion, as determined from the standard deviation or other measure of dispersion is called
	the absolute dispersion.			
	Definition (The Relative Dispersion): The relative dispersion is defined by
		Relative dispersion =	absolute dispersion average	.	(6.14)

Definition (The Coefficient of Variation): If

  the absolute dispersion is the standard deviation 𝑆 and if the average is the mean 𝑣̅ , then the relative dispersion is called the coefficient of variation; it is denoted by CV and is given by

	Coefficient of variation (CV) =	𝑆 𝑣̅	.	(6.15)

Moment Definition (The moment): If 𝑣 1 , 𝑣 2 , 𝑣 3 , . . . , 𝑣 𝑁 are the 𝑁 values assumed by the variable 𝑣, we define the quantity,

  

	𝑣 𝑟 ̅̅̅ =	𝑣 1 𝑟 + 𝑣 2 𝑟 + ⋯ + 𝑣 𝑁 𝑟 𝑁	=	∑ 𝑣 𝑗 𝑟 𝑁 𝑗=1
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  2 , 𝑣 3 , . . . , 𝑣 𝐾 occur with frequencies 𝑓 1 , 𝑓 2 , 𝑓 3 , . . . , 𝑓 𝐾 , respectively, the above moments are given by

	By definition, where ∑ 𝑓 𝑗 𝐾 𝑗=1	𝑣 𝑟 ̅̅̅ = 𝑚 𝑟 𝑓 1 𝑣 1 𝑟 + 𝑓 2 𝑣 2 𝑟 + ⋯ + 𝑓 𝐾 𝑣 𝐾 𝑟 𝑁 𝑚 𝑟 = ∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣̅ ) 𝑟 = 𝐾 𝑗=1 𝑁 , 𝑚 𝑟 = 1 𝑁 𝐾 ∑ 𝑓 𝑗 (𝑣 𝑗 -𝑣̅ ) ∑ 𝑓 𝑗 𝑣 𝑗 𝑟 𝐾 𝑗=1 𝑁 𝑟 𝑗=1 ′ = ∑ 𝑓 𝑗 (𝑣 𝑗 -𝐴) 𝑟 𝐾 𝑗=1 𝑁 = ∑ 𝑓 𝑗 𝑑 𝑗 𝑟 𝐾 𝑗=1 , = 1 𝑁 𝐾 ∑ 𝑓 𝑗 (𝑣 𝑗 -𝐴 + 𝐴 -𝑣̅ ) , 𝑟 𝑗=1 𝑁 = 𝑁 and 𝑑 𝑗 = 𝑣 𝑗 -𝐴. = 1 𝑁 𝐾 𝑗=1 ∑ 𝑓 𝑗 (𝑑 𝑗 + 𝐴 -𝑣̅ ) 𝑟 ,	(6.20.1) (6.20.2) (6.20.3)
	Example 6.5 1. Find the first four moments of the set 1, 3, 5, 6, 11, 14. where 𝑑 𝑗 = 𝑣 𝑗 -𝐴. Since,
	2. Find the first four moments about the mean for the set 1, 3, 5, 6, 11, 14. 3. Find the first four moments about the origin 6 for the set 1, 3, 5, 6, 11, 14. Solution 1. The first moment, or arithmetic mean, is 𝑣̅ = ∑ 𝑣 𝑖 𝑖 𝑁 = 1 + 3 + 5 + 6 + 11 + 14 6 = 6.66667. The second moment is 𝑣 2 ̅̅̅ = ∑ 𝑣 𝑖 2 𝑖 𝑁 = 6 = 64.6667. 1 2 + 3 2 + 5 2 + 6 2 + 11 2 + 14 2 𝑚 1 ∑ 𝑓 𝑗 (𝑣 𝑗 -𝐴) 𝐾 𝑗=1 ′ = 𝑁 ∑ (𝑓 𝑗 𝑣 𝑗 -𝑓 𝑗 𝐴) 𝐾 𝑗=1 = 𝑁 = ∑ 𝑓 𝑗 𝑣 𝑗 𝐾 𝑗=1 -∑ 𝑓 𝑗 𝐴 𝐾 𝑗=1 𝑁 = 𝑣̅ -𝐴.
	The third moment is		
			𝑣 3 ̅̅̅ =	∑ 𝑣 𝑖 3 𝑖 𝑁	=	1 3 + 3 3 + 5 3 + 6 3 + 11 3 + 14 3 6	= 740.667.
	The fourth moment is		
			𝑣 4 ̅̅̅ =	∑ 𝑣 𝑖 4 𝑖 𝑁	=	1 4 + 3 4 + 5 4 + 6 4 + 11 4 + 14 4 6	= 9176.67.
	2.				
	𝑚 2 = 𝑚 3 = 𝑚 4 =	𝑚 1 = ∑ (𝑣 𝑖 -𝑣̅ ) 2 ∑ 𝑣 𝑖 -𝑣̅ 𝑖 𝑁 𝑖 𝑁 = (1 -6.7) 2 + (3 -6.7) 2 + (5 -6.7) 2 + (6 -6.7) 2 + (11 -6.7) 2 + (14 -6.7) 2 = (1 -6.7) + (3 -6.7) + (5 -6.7) + (6 -6.7) + (11 -6.7) + (14 -6.7) = 0 6 = 20.22 6 ∑ (𝑣 𝑖 -𝑣̅ ) 3 𝑖 𝑁 = (1 -6.7) 3 + (3 -6.7) 3 + (5 -6.7) 3 + (6 -6.7) 3 + (11 -6.7) 3 + (14 -6.7) 3 = 39.92 6 ∑ (𝑣 𝑖 -𝑣̅ ) 4 𝑖 𝑁 = (1 -6.7) 4 + (3 -6.7) 4 + (5 -6.7) 4 + (6 -6.7) 4 + (11 -6.7) 4 + (14 -6.7) 4 6 = 744.1
	3.				
		𝑚 1 ′ = ′ = 𝑚 2 ∑ (𝑣 𝑖 -6) 2 ∑ 𝑣 𝑖 -6 𝑖 𝑁 𝑖 𝑁 = 𝑚 3 ′ = ∑ (𝑣 𝑖 -6) 3 𝑖 𝑁 = 𝑚 4 ′ = ∑ (𝑣 𝑖 -6) 4 𝑖 𝑁 =	= (1 -6) 2 + (3 -6) 2 + (5 -6) 2 + (6 -6) 2 + (11 -6) 2 + (14 -6) 2 (1 -6) + (3 -6) + (5 -6) + (6 -6) + (11 -6) + (14 -6) . 6 6 (1 -6) 3 + (3 -6) 3 + (5 -6) 3 + (6 -6) 3 + (11 -6) 3 + (14 -6) 3 6 (1 -6) 4 + (3 -6) 4 + (5 -6) 4 + (6 -6) 4 + (11 -6) 4 + (14 -6) 4 6	. . .
	Theorem 6.4:		
	′ : The following relations exist between moments about the mean 𝑚 𝑟 and moments about an arbitrary origin 𝑚 𝑟 𝑚 2 = 𝑚 2 ′2 , (6.21.1) ′ -𝑚 1 𝑚 3 = 𝑚 3 ′ -3𝑚 1 ′ 𝑚 2 ′3 , (6.21.2) ′ + 2𝑚 1 𝑚 4 = 𝑚 4 ′ -4𝑚 1 ′ 𝑚 3 ′ + 6𝑚 1 ′2 𝑚 2 ′ -3𝑚 1 ′4 . (6.21.3)
	Proof:				
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  Calculate the first four moments distribution about the mean.

		𝑣 𝑗 0 1 2	3	4	5	6 7 8
		𝑓 𝑗 1 8 28 56 70 56 28 8 1
	Solution						
	Table 6.3. Frequency distribution.	
	𝑣 𝑗	𝑓 𝑗	𝑢 𝑗 = 𝑣 𝑗 -4 𝑓 𝑗 𝑢 𝑗 𝑓 𝑗 𝑢 𝑗 2	𝑓 𝑗 𝑢 𝑗 3	𝑓 𝑗 𝑢 𝑗 4
	0	1	-4		-4	16	-64	256
	1	8	-3		-24 72 -216 648
	2	28	-2		-56 112 -224 448
	3	56	-1		-56 56	-56	56
	4	70	0		0	0	0	0
	5	56	1		56	56	56	56
	6	28	2		56	112	224	448
	7	8	3		24	72	216	648
	8	1	4		4	16	64	256
	Total 256	0		0	512	0	2816
	Using Table 6.3, moments about the point 𝑥 = 4 are			
			𝑚 1 ′ = 𝑚 2 ′ = 𝑚 3 ′ = 𝑚 4 ′ =	∑ 𝑓 𝑗 𝑢 𝑗 𝑗 𝑁 ∑ 𝑓 𝑗 𝑢 𝑗 2 𝑗 𝑁 ∑ 𝑓 𝑗 𝑢 𝑗 3 𝑗 𝑁 ∑ 𝑓 𝑗 𝑢 𝑗 4 𝑗 𝑁	= 0, = 512 256 = 0, = 2816 = 2, 256 = 11.

  Other measures of skewness, (Bowley's Coefficient of Skewness), defined in terms of quartiles and percentiles, are as follows:

	Quartile coefficient of skewness = S 𝐾 = 10 -90 percentile coefficient of skewness = S 𝐾 = (𝑄 3 -𝑄 2 ) -(𝑄 2 -𝑄 1 ) (𝑄 3 -𝑄 1 ) (𝑃 90 -𝑃 50 ) -(𝑃 50 -𝑃 10 ) = 𝑄 3 -2𝑄 2 + 𝑄 1 𝑄 3 -𝑄 1 (𝑃 90 -𝑃 10 ) = 𝑃 90 -2𝑃 50 + 𝑃 10 , 𝑃 90 -𝑃 10	.	(6.26)

Table 6 .4. Frequency distribution.

 6 

	Wages	Number of employees
	$250.00 -$259.99	8
	$260.00 -$269.99	10
	$270.00 -$279.99	16
	$280.00 -$289.99	14
	$290.00 -$299.99	10
	$200.00 -$209.99	5
	$210.00 -$219.99	2

Example 6.8

  Find fourth moment of kurtosis for the data set: 26, 12, 16, 56, 112, 24. 

	Solution	
	Mean = 𝑚 2 = [(26 -41) 2 + (12 -41) 2 + (16 -41) 2 + (56 -41) 2 + (112 -41) 2 + (24 -41) 2 ] 26 + 12 + 16 + 56 + 112 + 24 = 41. 6 6 𝑚 4 = [(26 -41) 4 + (12 -41) 4 + (16 -41) 4 + (56 -41) 4 + (112 -41) 4 + (24 -41) 4 ] 6 𝑎 4 = 𝑚 4 𝑚 2 2 = 4449059.667 (1207.667) 2 = 3.05.	= 1207.67. = 4449059.67.
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  When it is necessary to distinguish a sample's moments, measures of skewness, and measures of kurtosis from those corresponding to a population of which the sample is a part, it is often the custom to use Latin symbols for the former and Greek symbols for the latter. Thus, if the sample's moments are denoted by 𝑚 𝑟 and 𝑚 𝑟 ′ , the corresponding Greek symbols would be 𝜇 𝑟 and 𝜇 𝑟 ′ . Subscripts are always denoted by Latin symbols. Similarly, if the sample's measures of skewness and kurtosis are denoted by 𝑎 3 and 𝑎 4 , respectively, the population's skewness and kurtosis would be 𝛼 3 and 𝛼 4 . We already know from that the standard deviation of a sample and of a population are denoted by 𝑆 and 𝜎, respectively.
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  Mathematica offers various functions to compute dispersion and shape measures. • The InterquartileRange function calculates the range between the upper quartile and the lower quartile in a dataset. It is useful for identifying the spread or dispersion of the middle 50% of the data. • The QuartileDeviation function calculates the semi-interquartile range, which is half of the Interquartile Range. It provides a measure of dispersion around the median and is less affected by extreme values. • The MeanDeviation function computes the average absolute deviation of each data point from the mean. It gives an indication of the average distance between individual data points and the mean. MeanDeviation is less influenced by extreme values and provides a robust measure of dispersion. • The StandardDeviation function calculates the standard deviation, which is a widely used measure of dispersion. It quantifies the amount of variation or spread in a dataset by measuring the average distance between each data point and the mean. A higher standard deviation indicates greater variability. • The Variance function computes the average squared deviation of each data point from the mean. It provides a measure of the overall variability in a dataset. • The TrimmedVariance function calculates the variance after trimming a certain percentage of extreme values from both ends of the dataset. Trimming reduces the impact of outliers and extreme values on the variance calculation, providing a more robust measure of dispersion. • The WinsorizedVariance function is similar to TrimmedVariance, but instead of removing extreme values, it replaces them with values closer to the mean. • The Moment function computes the nth moment of a dataset.

	• The CentralMoment function calculates the nth central moment of a dataset. It measures the dispersion of
	data around the mean.		
	• FactorialMoment function computes the nth factorial moment of a dataset.	
	• The Skewness function measures the asymmetry of a dataset's distribution. It indicates whether the dataset is
	skewed to the left (negative skewness) or to the right (positive skewness) relative to the mean.
	• The QuartileSkewness function is a measure of skewness based on quartiles.
	• The Kurtosis function measures the peakedness or flatness of a dataset's distribution. It provides insights
	into the tail behavior and presence of outliers.		
	Therefore, we divided this chapter into two units to cover the following topics, dispersion statistics and shape statistics.
	In the following table, we list the built-in functions that are used in this chapter.	
	Dispersion Statistics	Shape Statistics
	InterquartileRange	Variance	Moment	QuartileSkewness
	QuartileDeviation	TrimmedVariance	CentralMoment	Kurtosis
	MeanDeviation	WinsorizedVariance	FactorialMoment	
	StandardDeviation		Skewness	
	Chapter 7 Outline			
	Unit 7.1. Dispersion Statistics		
	Unit 7.2. Shape Statistics			
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7.1 InterquartileRange

  BoxWhiskerChart shows the interquartile range for data. The code generates a list of 100 random numerical data points sampled from a normal distribution with mean 0 and standard deviation 1. The code creates BoxWhiskerChart and uses Show function to overlay additional graphics on the box-and-whisker plot. It adds lines representing the upper and lower bounds of the interquartile range (IQR), and a line connecting Q1 and Q3. The lines are drawn using the Line function, and different colors (blue, red, green) are assigned to differentiate them: *)

	Output	distribution is displayed as a label on the plot. The IQR indicates the spread of 21. Inset["IQR",{1.75,0}]
	Output	values within the middle 50% of the data: *) 125. }
	Output	]
		dists={ ]
	Output	NormalDistribution[0,1],
		NormalDistribution[0,2],
		NormalDistribution[0,4]
		};
		Table[
	Output	Plot[
		PDF[d,x],
		{x,-10,10},
		PlotStyle->Directive[Purple,Opacity[0.7]] ,
		Filling->Axis,
		Ticks->{Automatic,None},
		PlotRange->{Automatic,{0,0.4}},
		PlotLabel->N[InterquartileRange[d]],
		ImageSize->170
		],
	Input Output Input Output Output Input	(* This code defines a function IQR that takes a list of data as input and uses the built-in Quartiles function to calculate the first and third quartiles, which are used to calculate the interquartile range. *) data={1,2,3,4,5,6,7,8,9}; {d,dists} ] (* (* Generate random numerical data *) IQR[data_]:=Quartiles[data][[3]]-Quartiles[data][[1]] IQR[data] { , , data=RandomVariate[ } NormalDistribution[0,1], InterquartileRange[data] 9/2 9/2 {100} (* The code reads in a dataset h of heights and calculates its interquartile range, median, and length of the data. It then produces two plots, a scatter plot of data ];
	Input Output Output Output Input Output	(* InterquartileRange for a matrix gives columnwise ranges: *) h and a plot that shows both h and three horizontal lines representing the median (* Calculate the quartiles and interquartile range *) and interquartile range: *) quartiles=Quartiles[data]; InterquartileRange[{{1,5},{3,5},{1,8},{5,6},{7,8},{2,4}}] InterquartileRange[{1,3,1,5,7,2}] iqr=InterquartileRange[data]; h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122, InterquartileRange[{5,5,8,6,8,4}] 135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133}; (* Create BoxWhiskerChart *) {4,3} 4 3 boxWhisker=BoxWhiskerChart[ iqr=N[InterquartileRange[h]] data, m=N[Median[h]] "Outliers", n=Length[h]; ChartStyle->{Purple}, (* Find the interquartile range for WeightedData: *) data={8,3,5,4,9,0,4,2,2,3}; w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09}; ImageSize->250 ListPlot[ ]; h, InterquartileRange[ WeightedData[data,w] ] 5 Filling->Axis, (* Display the interquartile range as a line on the chart *) PlotStyle->Purple, boxWhiskerWithIQR=Show[ ImageSize->170 boxWhisker, ] Graphics[
	Input Output Input	(* Interquartile range of a parametric distribution: *) InterquartileRange[ NormalDistribution[μ,σ] ] 2 √2 σ InverseErfc[1/2] ImageSize->170 with varying standard deviations. The InterquartileRange (IQR) value for each AxesLabel->Automatic, (* The code generates three plots, each representing a different normal distribution { ListPlot[ Thick, {h,{{0,m},{n,m}},{{0,m-iqr},{n,m-iqr}},{{0,m+iqr},{n,m+iqr}}}, Blue, Joined->{False,True,True,True}, Line[{{1.25,quartiles[[3]]},{1.25,quartiles[[3]]+1.5*iqr}}], Filling->{1->m,3->{4}}, Inset["Q3+1.5*IQR",{1.75,2}], PlotStyle->{Purple,Automatic,Automatic,Automatic}, PlotLegends->{"h","Median","l_Interquartile Range","u_Interquartile Range"}, Red,
		]
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Line[{{1.25,quartiles[[1]]},{1.25,quartiles[[1]]-1.5*iqr}}], Inset["Q1-1.5*IQR",{1.75,-2}], Green, Line[{{1.25,quartiles[[1]]},{1.25,quartiles[[3]]}}],

Mathematica Examples 7.2 QuartileDeviation

  

		Filling->Axis,
		PlotStyle->Purple,
		ImageSize->170
		]
		(*Plot the quartile deviation respective of the median: *)
		ListPlot[
		{h,{{0,m},{n,m}},{{0,m-qd},{n,m-qd}},{{0,m+qd},{n,m+qd}}},
		Joined->{False,True,True,True},
		Filling->{1->m,3->{4}},
		PlotStyle->{Purple,Automatic,Automatic,Automatic},
		PlotLegends->{"h","median","l_quartile deviation band","u_quartile deviation
		band"},
		AxesLabel->Automatic,
		ImageSize->170
		]
	Output	10.5
	Output	125.
	Output	
	Input	(* QuartileDeviation is half the difference between the first and third quartiles:
		*)
		data=RandomReal[10,20];
		qd=(Quartiles[data][[3]]-Quartiles[data][[1]])/2
		QuartileDeviation[data]
	Output Output Output	1.84785 1.84785
	Input	(* Find the quartile deviation for WeightedData: *)
		data={8,3,5,4,9,0,4,2,2,3};
		w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09};
		QuartileDeviation[
		WeightedData[data,w]
		]
	Output	5/2
	MeanDeviation[list]
	Input	(* Obtain a robust estimate of dispersion when extreme values are present: *)
		N[QuartileDeviation[{5,3,10^5,20,15,6}]]
		(* Measures based on the Mean are heavily influenced by extreme values: *)
		N[StandardDeviation[{5,3,10^5,20,15,6}]]
		N[MeanDeviation[{5,3,10^5,20,15,6}]]
	Output	7.5
	Output	40820.8
	Output	27775.1
	Input	(* The code begins by calculating the quartile deviation, and mean of the dataset h.
		It then proceeds to create two plots: The first plot is a line plot of the dataset
		h with filled areas below the points. The second plot displays a dataset and lines.
		It includes the line plot of h, horizontal lines representing the mean, and upper
		and lower quartile deviation bands around the mean: *)
		h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122,
		135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133};
		qd=N[QuartileDeviation[h]]
		m=N[Median[h]]
		n=Length[h];
		ListPlot[
		h,
		186
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		Simplify[
		MeanDeviation[
		WeightedData[{1,2,3},{0.6,0.2,0.2}]
		]
		]
	Output	0.72
	Input	(* MeanDeviation is the Mean of absolute deviations from the Mean: *)
		data=RandomReal[10,5];
		mean=Mean[data];
		meanDeviation=Mean[Abs[data-mean]]
		MeanDeviation[data]
	Output	1.1376
	Output	1.1376
	Input	(* MeanDeviation is equivalent to the 1-norm of the deviations divided by the Length.
		Mean deviation measures the average absolute deviation of data points from the mean,
		while the 1-norm of the deviations represents the sum of the absolute values of the
		differences. By dividing the 1-norm of the deviations by the length of the dataset,
		we obtain the mean deviation. This relationship highlights the connection between
		the statistical concept of mean deviation and the mathematical concept of the 1-
		norm, providing a concise and computationally efficient way to calculate the mean
		deviation: *)
		data=RandomReal[10,5];
		mean=Mean[data];
		meanDeviation=Norm[data-mean,1]/Length[data]
		MeanDeviation[data]
	Output	3.09703
	Output	3.09703
	Input	(* MeanDeviation as a scaled ManhattanDistance from the Mean. Mean deviation
		represents the average absolute deviation of data points from the mean, while
		Manhattan distance measures the total absolute difference between corresponding
		elements of two vectors. By scaling the Manhattan distance with a factor of 1 divided
		by the length of the dataset, we obtain the mean deviation. This relationship
		highlights the connection between the statistical concept of mean deviation and the
		geometric concept of Manhattan distance: *)
		data={1,2,3,4,5};
		mean=Mean[data];
		meanDeviation=(1/Length[data])*ManhattanDistance[data,Table[mean,Length[data]]]
		MeanDeviation[data]
	Output	6/5
	Input Output	(* MeanDeviation of a list: *) 6/5
		Simplify[
		MeanDeviation[
		{a,b,c,d}
		]
		]
	Output	1/16 (Abs[a+b+c-3 d]+Abs[3 a-b-c-d]+Abs[a+b-3 c+d]+Abs[a-3 b+c+d])
	Input	(* MeanDeviation of columns of a matrix: *)
		MeanDeviation[{{2,1},{1,2},{4,8},{5,3},{2,15}}]
		MeanDeviation[{2,1,4,5,2}]
		MeanDeviation[{1,2,8,3,15}]
	Output	{34/25,114/25}
	Output	34/25
	Output	114/25
	Input	(* Find the mean deviation of WeightedData: *)
		187
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	Input	(* The code generates a list of 1000 random numbers from a standard normal
	Input	ListPlot[ (* Find the standard deviation of WeightedData: *) distribution. It then calculates the standard deviation of the data and creates a
		h, data={8,3,5,4,9,0,4,2,2,3}; histogram plot with the probability density function (PDF). The plot includes red
		Filling->Axis, w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09}; points representing the mean and ± standard deviation of the data: *)
		PlotStyle->Purple, StandardDeviation[
		ImageSize->170 WeightedData[data,w] data=RandomVariate[
		] ]	NormalDistribution[0,1],
	Output	2.69554 1000
	Input	]; ListPlot[ (* The code implements a function standardDeviation that calculates the sample {h,{{0,m},{n,m}},{{0,m-md},{n,m-md}},{{0,m+md},{n,m+md}}}, Joined->{False,True,True,True}, standard deviation of a given dataset. It utilizes a Module to encapsulate local StandardDeviation[data] variables and avoids unintended side effects. The code calculates the mean of the Filling->{1->m,3->{4}}, PlotStyle->{Purple,Automatic,Automatic,Automatic}, PlotLegends->{"h","mean","l_mean deviation band","u_mean deviation band"}, AxesLabel->Automatic, ImageSize->170 ] dataset and determines the deviations of each data point from the mean. It squares Histogram[ the deviations, sums them up, and divides by (n-1) to obtain the sample variance. data, Finally, the square root of the sample variance is taken to compute the standard Automatic, deviation. The code also includes a test case using a specific dataset and compares "PDF", the result with the built-in StandardDeviation function: *) Epilog->{
	Output Output Output	12. 127. Red, standardDeviation[data_]:=Module[ PointSize[0.03], {n,mean,deviations}, Point[{{StandardDeviation[data],0},{Mean[data],0},{-n=Length[data]; StandardDeviation[data],0}}] mean=Total[data]/n; }, deviations=data-mean; ColorFunction->Function[{height},Opacity[height]], Sqrt[Total[deviations^2]/(n-1)] ChartStyle->Purple, ] ImageSize->200
		]
	Output	data={1,2,3,4,5}; 0.96111
	Output	result=standardDeviation[data]
		StandardDeviation[data]
	Output	√5/2
	Output	√5/2
	Input	(* The code explores multiple approaches to calculate the standard deviation of a
		given dataset. The code covers definitions based on norms, means, root mean square,
		and Euclidean distance. Each approach is mathematically valid and provides a way to
	Input Input	(* To calculate the standard deviation of a list of numbers: *) compute the standard deviation. The code then creates a list containing the results of each definition, allowing for a comparison between them: *) (* The
	Output	list={1,2,3,4,5}; data=RandomReal[10,20]; StandardDeviation[list] √5/2 StandardDeviation[data]
		(* StandardDeviation is a scaled Norm of deviations from the Mean: *)
	Input	(* The square of StandardDeviation is Variance: *) def1=Norm[data-Mean[data]]/Sqrt[Length[data]-1];
		Variance[{1,2,3,4,5,6}]
		StandardDeviation[{1,2,3,4,5,6}] (* StandardDeviation is the square root of a scaled Mean of squared deviations: *)
	Output	7/2 def2=Sqrt[Mean[(data-Mean[data])^2] Length[data]/(Length[data]-1)];
	Output	√7/2 (* StandardDeviation is a scaled RootMeanSquare of the deviations: *)
	Input	(* To calculate the standard deviation of a matrix: *) def3=RootMeanSquare[data-Mean[data]] Sqrt[Length[data]/(Length[data]-1)];
	Output Output Output Output Output Output	h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122, 135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133}; md=N[MeanDeviation[h]] n=Length[h]; 3 m=N[Mean[h]] matrix={{1,2,3},{4,5,6},{7,8,9}}; (* StandardDeviation as a scaled EuclideanDistance from the Mean: *) StandardDeviation[matrix] mean=Mean[data]; StandardDeviation[{1,4,7}] len=Length[data]; StandardDeviation[{2,5,8}] def4=EuclideanDistance[data,Table[mean,{len}]]/Sqrt[(len-1)]; StandardDeviation[{3,6,9}] {def1,def2,def3,def4} {3,3,3} 2.62297 3 3 {2.62297,2.62297,2.62297,2.62297}
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code begins by calculating the standard deviation, and mean of the dataset h. It then proceeds to create two plots: The first plot is a line plot of the dataset h with filled areas below the points, visualizing the distribution of the data. The second plot displays a dataset and lines. It includes the line plot of h, horizontal lines representing the mean, and upper and lower standard deviation bands around the

  This code generates a random sample of 1000 points from a standard normal distribution, computes various statistical measures such as the quartile deviation, standard deviation, mean deviation and mean of the sample, and plots a histogram of the sample with lines representing these statistical measures: *)

		Joined->{False,True,True,True}, },
		Filling->{1->m,3->{4}}, ChartStyle->Directive[Purple,Opacity[0.5]],
		PlotStyle->{Purple,Automatic,Automatic,Automatic}, ImageSize->220
		PlotLegends->{"h","mean","l_standard deviation band","u_standard deviation band"}, ]
		AxesLabel->Automatic,
		ImageSize->170
	Output	] Mean= -0.0471451 , QuartileDeviation= 0.664779 , MeanDeviation= 0.792928 ,
	Output	13.9468 StandardDeviation= 1.00631 .
	Output Output Output	127.
	Output	
	Input	(* This code generates a 2D dataset from a standard normal distribution and calculates
		various statistical measures such as quartile deviation, standard deviation, and mean
		for each component of the dataset. It then displays the results and creates a scatter
		plot with highlighted points representing the statistical measures: *)
		data=RandomVariate[
			NormalDistribution[0,1],
			{2000,2}
	Input	]; qdx=QuartileDeviation[data[[All,1]]]; qdy=QuartileDeviation[data[[All,2]]]; sdx=StandardDeviation[data[[All,1]]]; (* data=RandomVariate[ sdy=StandardDeviation[data[[All,2]]];
			NormalDistribution[0,1],
		1000 mx=Mean[data[[All,1]]]; ]; my=Mean[data[[All,2]]];
		Print[
		Quartiles[data]; "Mean= {" ,mx,",",my,"}, ",
		InterquartileRange[data]; "QuartileDeviation= {",qdx,",",qdy,"}, ",
		qd=QuartileDeviation[data]; "StandardDeviation= {", sdx,",",sdy,"} "
		sd=N[StandardDeviation[data]];
		md=N[MeanDeviation[data]]; ] m=N[Mean[data]]; ListPlot[ mean: *) data,
		Print[ Epilog->{
		h={133,136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122, "Mean= " ,m ", ", Red, PointSize[0.02],Point[{qdx,qdy}],
		135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133}; "QuartileDeviation= ",qd,", ", Blue, PointSize[0.02],Point[{sdx,sdy}],
		"MeanDeviation= " ,md,", ", Green, PointSize[0.02],Point[{mx,my}]
		sd=N[StandardDeviation[h]] "StandardDeviation= ", sd,", " },
		m=N[Mean[h]] ] ImageSize->220
		n=Length[h]; ]
	Output	Histogram[ Mean= { -0.0169259 , -0.00549935 }, QuartileDeviation= { 0.676502 , 0.655909 },
		ListPlot[ data, StandardDeviation= { 0.998782 , 1.0005 }
		h, Automatic,
		Filling->Axis, "PDF",
		PlotStyle->Purple, Epilog->{
		ImageSize->170 Directive[Thickness[0.008],Dashed],
		]	Red,Line[{{qd,0},{qd,0.5}}],
			Blue, Line[{{sd,0},{sd,0.5}}],
		ListPlot[ Green,Line[{{md,0},{md,0.5}}],
		{h,{{0,m},{n,m}},{{0,m-sd},{n,m-sd}},{{0,m+sd},{n,m+sd}}}, Black,Line[{{m,0},{m,0.5}}]
			191 192
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		the mean from the data. The variance is then calculated using, the sum of squared
		deviations divided by n-1: *)
		variance[data_]:=Module[
		{mean,deviations},
		mean=Mean[data];
		deviations=data-mean;
		(1/(Length[data]-1)) Total[deviations^2]
		]
		data={1,2,3,4,5};
		variance[data]
	Output	5/2
	Input Input	(* Variance of a list of numbers: *) Variance[{3.2,1.21,3.4,2,4.66,1.5,5.61,7.22}] (* Variance is a scaled squared Norm of deviations from the Mean: *)
	Output	4.45003 data={1,2,3,4,5}; (* example list of data *)
	Input Output Output Output Output	mean=Mean[data]; (* calculate the mean *) (* Variance of elements in each column: *) deviations=data-mean; (* calculate the deviations from the mean *) Variance[{{4,1},{5.2,7},{5.3,8},{5.4,9}}] variance=Variance[data]; (* calculate the variance *) Variance[{4,5.2,5.3,5.4}] scaledNorm=(1/(Length[data]-1)) Norm[deviations]^2; (* calculate the scaled Variance[{1,7,8,9}] squared norm *) {0.429167,155/12} variance==scaledNorm (* compare the variance to the scaled squared norm *) 0.429167 155/12 True
	Input Input	(* Find the variance of WeightedData: *) (* The square root of Variance is a scaled RootMeanSquare of the deviations: *)
	Output	data={8,3,5,4,9,0,4,2,2,3}; data={1,2,3,4,5}; (* example list of data *) w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09}; mean=Mean[data]; (* calculate the mean *) Variance[WeightedData[data,w]] deviations=data-mean; (* calculate the deviations from the mean *) 7.26594 variance=Variance[data]; (* calculate the variance *)
	Input Output	scaledRMS=Sqrt[ (Length[data]/(Length[data]-1))Mean[deviations^2]]; (* calculate (* The code explores multiple approaches to calculate the variance of a given dataset. the scaled root mean square *) To calculate the variance of a set of numbers, you can follow these steps. step 1 Sqrt[variance]==scaledRMS (* compare the square root of variance to the scaled root Find the mean of the set of numbers by adding all the numbers and dividing the sum mean square *) by the total number of values. step 2 For each number in the set, subtract the mean and then square the result. step 3 Add up all the squared differences from step 2. True
	Input	step 4 Divide the sum from step 3 by the total number of values in the set minus one. (* Variance is a scaled SquaredEuclideanDistance from the Mean: *) This is the variance: *) data=RandomReal[10,5];
		mean=Mean[data] data={1,2,3,4,5}; (* Example list of data *) len=Length[data] n=Length[data];(* Length of data *) mean=Mean[data]; (* Step 1: calculate the mean *) SquaredEuclideanDistance[data,Table[mean,{len}]]/(len-1)
	Output Output	differences=(#-mean)^2&/@data; (* Step 2: subtract the mean and square *) Variance[data] sum=Total[differences]; (* Step 3: add up the squared differences *) 3.75454 variance1=sum/(Length[data]-1) (* Step 4: divide by n-1 to get the variance *); 5
	Output Output	10.5972 (*or *) variance2=Total[(data-Mean[data])^2]/(n-1); 10.5972
		(*or *)
		variance3=Mean[(data-Mean[data])^2](n/(n-1));
		(*or *)
		Variance[data]
		{variance1,variance2,variance3}
	Output	5/2
	Output	{5/2,5/2,5/2}
	Input	(194

* This code defines a function called variance that takes a list of data as its input. Inside the Module function, the mean of the data is calculated using the built-in Mean function, and the deviations from the mean are calculated by subtracting

  This code creates a Manipulate function with slider and a dropdown menu. The n slider allows the user to adjust the sample size, while the dist dropdown menu allows the user to choose the distribution that the sample is drawn from. The code then uses RandomVariate to generate a sample of size n from the selected distribution, calculates the variance using Variance, and displays both a ListPlot and a Histogram of the sample data along with the calculated variance. *)

		PDF[d,x],		
		{x,-4,4},		
		PlotRange->{0,0.4},		
		Filling->Axis,		
		PlotStyle->Purple,		
		Ticks->{Automatic,None},	
		PlotLabel->Row[{"\!\(\*SuperscriptBox[\(σ\), \(2\)]\) = ",σ^2}],
		ImageSize->170		
		],		
		{σ,{1,1.5,2}}		
		]		
	Output	σ^2		
	Output			
		{	,	,	}
	Input	(* Manipulate[		
		Module[		
		{data,var},		
		data=RandomVariate[dist,n];	
		var=Variance[data];		
		Grid[		
		{		
		{		
		ListPlot[		
		data,		
		PlotRange->All,		
		ImageSize->250,		
		Filling->Axis,		
		PlotStyle->Purple	
		],		
		Histogram[		
		data,		
		"FreedmanDiaconis",	
		"PDF",		
		Frame->True,		
		FrameLabel->{"Data","PDF"},	
		ImageSize->250,		
		ColorFunction->Function[Opacity[0.7]],	
		ChartStyle->Purple	
		]		
		},		
		{Null,Text["Variance: "<>ToString[var]]}	
		}		
		]		
		Table[ ],		
		Plot[		
					195
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  This code first generates a sample distribution of variance for 1000 samples of size 5, using a Table function and the built-in Variance function. It then plots a histogram of the variances using Histogram. Finally, it plots a list of the variances using ListPlot, with the sample number on the x-axis and the variance on the y-axis and labeled axes. *) The code begins by calculating the variance, Winsorized variance, trimmed variance, mean, Winsorized mean, trimmed mean, Sqrt of variance, Sqrt of Winsorized variance, Sqrt of trimmed variance, and length of the dataset h. It then proceeds to create two plots: The first plot is a line plot of the dataset h with filled areas below the points, visualizing the distribution of the data. The second plot displays a dataset and lines. It includes the line plot of h, a horizontal line representing the Winsorized mean, and upper and lower bands around the Winsorized mean, which represent square-root-winsorized-variance above and below the Winsorized mean: *)

		FrameLabel->{"Sample","Variance"}, Standard Deviation: 4.91561 m=Floor[n*p]; v=N[Variance[h]];
		ImageSize->250 Variance: 24.1633 sortedData=Sort[data]; wv=N[WinsorizedVariance[h]];
		] tv=N[TrimmedVariance[h]]; trimLength=n-2*m;	1,1}]}},
		Alignment->Center If[ m=N[Mean[h]];
	] TrimmedVariance[list,f] Output Output trimLength<=0, wm=N[WinsorizedMean[h]]; Message[TrimmedVariance::trimtoolarge,p]; gives the variance of the elements in list after dropping a fraction f of the smallest and largest elements. tm=N[TrimmedMean[h]];
	TrimmedVariance[list,{f1,f2}] Return[$Failed] sv=N[Sqrt[v]];	gives the variance when a fraction f1 of the smallest elements and a fraction f2
		]; swv=N[Sqrt[wv]];	of the largest elements are removed.
	TrimmedVariance[list] newsorteddata=Take[sortedData,{m+1,-m-1}]; gives the 5% trimmed variance TrimmedVariance[list,0.05]. stv=N[Sqrt[tv]];
	TrimmedVariance[dist,…] Variance[newsorteddata] gives the trimmed variance of a univariate distribution dist.
		] n=Length[h];
	WinsorizedVariance[list,f]	gives the variance of the elements in list after replacing the fraction f of the
		smallest and largest elements by the remaining extreme values. data={1,2,3,4,5,6,7,8,9,10}; {v,wv,tv}
	WinsorizedVariance[list,{f1,f2}] gives the variance when the fraction f1 of the smallest elements and the fraction trimPercentage=0.2; (*20%*) {m,wm,tm}
	WinsorizedVariance[list] TrimmedVariance[data,trimPercentage] gives the 5% winsorized variance WinsorizedVariance[list,0.05]. Output f2 of the largest elements are replaced by the remaining extreme values. trimmedvariance[data,trimPercentage] {sv,swv,stv}
	WinsorizedVariance[dist,…] Output 7/2 Output ListPlot[ 7/2 h,	gives the winsorized variance of a univariate distribution dist.
		Filling->Axis,
	Mathematica Examples 7.6 TrimmedVariance PlotStyle->Purple,
	Input Mathematica Examples 7.7 WinsorizedVariance (* Trimmed variance after removing extreme values: *) ImageSize->170
	Input	TrimmedVariance[{-10,1,1,1,1,20},0.2] (* Winsorized variance after removing extreme values: *) ]
	Output	0 WinsorizedVariance[{-100,1,1,1,1,200},0.2]
	Output	0 ListPlot[
	Input Input Input Input Output Input Output Output Input Input Output Output Output Input Input Output Input Output Output Output Input Output Output Output Output Output	(* Trimmed variance after removing the smallest extreme values: *) { (* Calculate the mean, mean deviation, standard deviation, and variance for grouped TrimmedVariance[{-10,1,1,1,1,20},{0.2,0}] (* Winsorized variance after removing the smallest extreme values: *) h, data: *) (* Define the grouped data *) data={ {0,4,8,12,16,20}(* Class boundaries *), {7,4,19,12,8} (* Frequencies *) }; 361/5 (* Trimmed variance of a symbolic distribution: *) TrimmedVariance[ExponentialDistribution[λ]] (324-19 Log[19] 2 )/(324 λ^2) WinsorizedVariance[{-100,1,1,1,1,200},{0.2,0}] 39601/6 (* Obtain a robust estimate of location when outliers are present: *) N[ WinsorizedVariance[{1,5,2,6,10,10^6,5,4,-2000,5},.1] {{0,wm},{n,wm}}, {{0,wm-swv},{n,wm-swv}}, {{0,wm+swv},{n,wm+swv}} }, Joined->{False,True,True,True}, Filling->{1->wm,3->{4}}, (* (*Generate a sample distribution of variance for 1000 samples of size 5*) variances=Table[ (* Obtain a robust estimate of dispersion when outliers are present: *) ] PlotStyle->{Purple,Automatic,Automatic,Automatic}, (* Calculate the class marks *) N[ PlotLegends->{"h","winsorized mean","l_square-root-winsorized-variance","u_square-classMarks=Mean/@Partition[data[[1]],2,1]; TrimmedVariance[{1,5,2,6,10,10^6,5,4,-2000,5},.1] (* Extreme values have a large influence on the variance: *) root-winsorized-variance"}, Variance[ RandomReal[10,5] ], {i,1,500} ]; (*Plot a histogram of the variances*) Histogram[ variances, "FreedmanDiaconis", Frame->True, ColorFunction->Function[Opacity[0.7]], ChartStyle->Purple, FrameLabel->{"Variance","PDF"}, ImageSize->250 ] (*Plot a list of the variances*) ListPlot[ variances, ColorFunction->Function[Opacity[0.7]], Filling->Axis, PlotStyle->Purple, PlotRange->All, Frame->True, Sqrt[Total[((classMarks-mean)^2)*data[[2]]]/(Total[data[[2]]]-1)] ]; (* Calculate the variance *) variance=N[standardDeviation^2]; (* Print the results *) Print["Mean:",mean]; Print["Mean Deviation:",meanDeviation]; Print["Standard Deviation:",standardDeviation]; Mean Deviation: 3.84 n=Length[data]; Mean: 10.8 {n,m,sortedData,trimLength}, }; Print["Variance:",variance]; 55/6 55/6 (* The code is calculating the trimmed variance of a data set using two different methods. The first method defines a function called trimmedvariance that calculates the trimmed variance of a dataset. The trimmed variance is obtained by excluding a certain percentage of extreme values from the dataset and then calculating the variance of the remaining values while the second method uses the built-in "TrimmedVariance" function: *) trimmedvariance[data_,p_]:=Module[ (* ,500 standardDeviation=N[ Variance[Range[10]] (* Calculate the standard deviation *) TrimmedVariance[Range[10],0] 55/6 "PDF", ] N[ AxesLabel->Automatic, (* Calculate the mean *) mean=N[ Total[classMarks*data[[2]]]/Total[data[[2]]] ]; (* A 0% TrimmedVariance is equivalent to Variance: *) 55/6 ]; Variance[Range[10]] Total[Abs[classMarks-mean]*data[[2]]]/Total[data[[2]]] 1.00036*10 9 WinsorizedVariance[Range[10],0] meanDeviation=N[ 7.35714 (* A 0% WinsorizedVariance is equivalent to Variance: *) (* Calculate the mean deviation *) (* Extreme values have a large influence on the Variance: *) N[ Variance[{1,5,2,6,10,10^5,5,4,-200,5}] ] ImageSize->250 Variance[{1,5,2,6,10,10^6,5,4,-2000,5}] ] ] {3583.04,195.394,160.703} 10.3222 {136.098,127.61,127.73} 1.00044*10 11 {59.8585,
			197 198 199 200

h={133,

136,149,133,123,121,140,139,117,117,136,108,126,104,116,147,140,148,150,122, 135,146,133,144,117,124,135,117,120,121,110,124,103,137,101,119,104,113,139,133

Examples 7.8 Moment

  

	CHAPTER 7	
	Input	(* First Moment: The first moment of a set of data is the mean: *)
		list={1,2,3,4,5};
		moment1=Mean[list]
		Moment[list,1]
	Output	3
	Output	3
	Input	(* Use symbolic data: *)
		Moment[{x,y,z},2]
	Output	1/3 (x 2 +y 2 +z 2 )
	Input	(* Find moments of WeightedData: *)
		data={8,3,5,4,9,0,4,2,2,3};
		w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09};
		Moment[
		WeightedData[data,w],
		2
		]
	Output	31.8163
	Input	(* Find the moments for univariate distributions: *)
		Moment[
		BinomialDistribution[n,p],
		1
		]
	Output	n p
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	Input	(* Moment of order one is the Mean for univariate distributions: *)
		Moment[NormalDistribution[μ,σ],1]==Mean[NormalDistribution[μ,σ]]
		Moment[{x,y,z,t,v},1]==Mean[{x,y,z,t,v}]
	Output	True
	Output	True
	Input	(* The code provides two alternative functions for calculating moments of a dataset.
		The first function (moment1) computes the moment by taking the mean of the data
		raised to the specified power, while the second function (moment2) calculates it by
		averaging the data points raised to the power of k: *)
		moment1[data_,k_]:=Mean[data^k]
		(* or *)
		moment2[data,k_]:=Total[data^k]/Length[data]
		data={1,2,3,4,5};
		moment1[data,3]
		moment2[data,3]
		Moment[data,3]
	Output	45
	Output	45
	Output	45
	Input	(* The code creates an interactive interface using the Manipulate function. The
		Manipulate function allows the user to select different distributions from a dropdown
		menu and adjust the maximum order of moments to display using sliders. The code
		calculates the moments based on the selected distribution and maximum order, and
		displays the PDF plot and moments table within the Manipulate output: *)
		Manipulate[
		moments=Table[
		Moment[distribution,k],
		{k,0,maxOrder}
		];
		Grid[
		{
		{
		Plot[
		PDF[distribution,x],
		{x,-3,3},
		PlotRange->All,
		PlotLabel->"Probability Density Function (PDF)",
		AxesLabel->{"x","PDF"}]
		},
		{
		TableForm[
		Transpose[{Range[0,maxOrder],moments}],
		TableHeadings->{None,{"Order","Moment"}}
		]
		}
		}
		],
		{{distribution,NormalDistribution[0,1]},{NormalDistribution[0,1]-
		>"Normal",GammaDistribution[2,1]->"Gamma",UniformDistribution[{-1,1}]->"Uniform"}},
		{{maxOrder,4},0,10,1}
		]

203 Output Mathematica Examples 7.9 CentralMoment

  

	Input	(* Use symbolic data: *)
		CentralMoment[{x,y,z},2]
	Output	1/3 ((x+1/3 (-x-y-z))^2+(y+1/3 (-x-y-z))^2+(1/3 (-x-y-z)+z)^2)
	Input	(* Exact input yields exact output: *)
		CentralMoment[{1,2,3,4,5,6},4]
	Output	707/48
	Input	(* Find central moments of WeightedData: *)
		CentralMoment[
		WeightedData[{1,2,3},{x,y,z}],
		2
		]
	Output	(x y+4 x z+y z)/(x+y+z)^2
	Input	(* The second central moment is a scaled Variance: *)
		data=RandomReal[10,20];
		Variance[data] (Length[data]-1)/Length[data]
		CentralMoment[data,2]
	Output	8.03318
	Output	8.03318
	Input	(*RootMeanSquare of deviations is the square root of a CentralMoment:*)
		data=RandomReal[10,10];
		Sqrt[
		CentralMoment[data,2]
		]
		RootMeanSquare[data-Mean[data]]
	Output	2.25406
	Output	2.25406
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		]
		],	(-a-b-c)+c)^n)
		(*Manipulate parameters*)
	Input	(* StandardDeviation is the square root of a scaled CentralMoment: *) {{Distribution,NormalDistribution[0,1],"Distribution:"},{NormalDistribution[0,1]-
		data=RandomReal[10,5]; >"Normal",GammaDistribution[2,1]->"Gamma",UniformDistribution[{-1,1}]-
		StandardDeviation[data] >"Uniform"}},{{sampleSize,1000,"Sample Size:"},{100,500,1000,5000}},
		Sqrt[CentralMoment[data,2] Length[data]/(Length[data]-1)] {{n,2,"Order of Central Moment:"},{1,2,3,4}}
	Output	2.41201 ]
	Output Output	2.41201
	Input	(* The code defines a function called computeCentralMoment using the Module function.
		This function takes two parameters: data_, representing the dataset, and n_,
		representing the order of the central moment. The code uses a summation formula to
		calculate the central moment manually. It iterates over each element of the dataset,
		subtracts the mean from the element, raises the result to the 4th power, and
		accumulates the values in the centralMoment variable. Finally, it divides the sum by
		the length of the dataset to obtain the average. Also it provides an example usage
		by assigning a dataset (data) and an order of the central moment (n). Additionally,
		it calculates the central moment using the built-in CentralMoment function: *)
		computeCentralMoment[data_,n_]:=Module[
		{mean,centralMoment,length},
		mean=Mean[data];
		length=Length[data];
		centralMoment=Sum[(data[[i]]-mean)^n,{i,length}]/length;
		centralMoment
		]
		data={1,2,3,4,5,6,7,8};
		n=4;
		centralMoment=computeCentralMoment[data,n]
		CentralMoment[data,n]
	Output	777/16
	Output	777/16
	Input	(* In this code, the Manipulate function creates an interactive interface that allows
		you to explore the effects of changing the distributions and the order of the central
		moment. The code includes a histogram plot of the sample data using the Histogram
		function. The plot is displayed as a probability density function, and the calculated
		central moment is shown as a text label. The Manipulate parameters include the choice
		of distribution, sample size, and order of the central moment. The user can select
		different distributions, adjust the sample size using a slider, and modify the order
		of the central moment: *)
		Manipulate[
		Module[
		{data,mean,centralMoment},
		(*Generate sample data from a distribution*)
		data=RandomVariate[Distribution,sampleSize];
		(*Calculate central moment*)
		centralMoment=CentralMoment[data,n];
		(*Plotting the histogram*)
		Histogram[
		data,
		Automatic,
		"PDF",
		PlotRange->All,
		PlotLabel->{Text["Central Moment ("<>ToString[n]<>"):
		"<>ToString[centralMoment]]},
		ImageSize->300,
		ColorFunction->Function[Opacity[0.5]],
		ChartStyle->Purple

Mathematica Examples 7.10 FactorialMoment

  

	Input	(* Use symbolic data: *)
		FactorialMoment[{x,y,z},3]
	Output	1/3 ((-2+x) (-1+x) x+(-2+y) (-1+y) y+(-2+z) (-1+z) z)
	Input	(* Exact input yields exact output: *)
		FactorialMoment[{1,2,3,4,5},1]
	Output	3
	Input	(* Find factorial moments of WeightedData: *)
		FactorialMoment[
		WeightedData[{1,2,3},{x,y,z}],
		1
		]
	Output	(x+2 y+3 z)/(x+y+z)
	Input	(* First factorial moment is equivalent to Mean: *)
		FactorialMoment[{x,y,z,u,v},1]
		Mean[{x,y,z,u,v}]
	Output	1/5 (u+v+x+y+z)
	Output	1/5 (u+v+x+y+z)
	Skewness[list]
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		data={1,2,3,4,5};
		result=skewness[data];
		Print["Skewness: ",result]
		Print["Skewness: ",Skewness[data]]
	Output	Skewness: 0
	Output	Skewness: 0
	Input	(* The code creates three skew normal distributions with different shape parameter α * Skewness for a matrix gives column-wise skewness: *) and visualizes their probability density functions (PDFs) on a plot. It computes the Skewness[N[{{1,3,4},{4,6,1},{12,1,6}}]] skewness values for each distribution and displays them in the plot legend. The code Skewness[N[{1,4,12}]] Skewness[N[{3,6,1}]] demonstrates how the shape parameter α affects the shape of the distributions: *)
	Output Output Output	Skewness[N[{4,1,6}]] dist1=SkewNormalDistribution[0,1,-3]; (* α=-3*) {0.492208,0.239063,-0.239063} dist2=SkewNormalDistribution[0,1,0]; (* α=0*) 0.492208 0.239063 dist3=SkewNormalDistribution[0,1,3]; (* α=3*)
	Output	-0.239063
		skewness1=N[Skewness[dist1]];
	Input	(* Find the skewness of WeightedData: *) skewness2=N[Skewness[dist2]];
		data={8,3,5,4,9,0,4,2,2,3}; skewness3=N[Skewness[dist3]];
		w={0.15,0.09,0.12,0.10,0.16,0.,0.11,0.08,0.08,0.09};
		Skewness[
		WeightedData[data,w]
		]
	Output	0.475178
	Input	(* Skewness is a ratio of powers of third and second central moments: *)
		data=RandomReal[15,5];
		Skewness[data]
		CentralMoment[data,3]/(CentralMoment[data,2]^(3/2))
	Output	0.158081
	Output	0.158081
	Input	(* Computing the skewness using the formula: *)
		data={1,2,3,4,5};
		n=Length[data];
		mean=Mean[data];
		sd=StandardDeviation[data];
		skewness=(1/sd^3)*Sum[
		(1/n)(data[[i]]-mean)^3,
		{i,1,n}
		]
		Skewness[data]
	Output	0
	Output	0
	Input	(* In this code, we define a function called skewness that takes a list of data
		points as an argument. Within the Module, we create local variables n, mean, stdDev,
		and skew to store intermediate results. Next, we calculate the skewness using the
		formula:(1/n) Sum[((data[[i]]-mean)/stdDev)^3,{i,1,n}]. This formula calculates the
		third standardized moment, which represents the skewness of the data: *)
		skewness[data_]:=Module[
		{n,mean,stdDev,skew},
		n=Length[data];
		mean=Mean[data];
		stdDev=StandardDeviation[data];

skew=(1/n) Sum[((data[[i]]-mean)/stdDev)^3,{i,1,n}]; skew ]

  Tuples[list,n]generates a list of all possible n-tuples of elements from list. Tuples[{list1,list2,…}] generates a list of all possible tuples whose i^(th) element is from listi. The elements of list are treated as distinct, so that Tuples[list,n] for a list of length k gives output of length k^n: *)

	Mathematica Examples 9.1 Tuples		
	Input	(*			
			Union	IntersectingQ	ContainsNone	Factorial (!)
	Subsets		Intersection	DisjointQ	ContainsAny	Binomial
	Subsequences	Complement	SubsetQ	ContainsOnly	Multinomial
	Permutations		ContainsAll	ContainsExactly

Chapter 9 Outline Unit 9.1. Operations on Sets Unit 9.2. Combinatorial Functions Unit 9.3. Different Counting Scenarios and Probability UNIT 9.1 OPERATIONS ON SETS In the Wolfram Language, sets are represented by sorted lists. (* Generate all possible 2-tuples (pairs) from a list of elements: *) elements={x,y,z}; pairs=Tuples[elements,2] Length[pairs] Output {{x,x},{x,y},{x,z},{y,x},{y,y},{y,z},{z,x},{z,y},{z,z}} Output 9 Input (* Generate all possible 3-tuples (triplets) from a range of numbers: *) triplets=Tuples

Examples 9.2 Subsets

  

	Output	{{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}
		,{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{1
		,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}}
	Output	{{},{1},{2},{3},{4},{5},{1,2},{2,3},{3,4},{4,5},{1,2,3},{2,3,4},{3,4,5},{1,2,3,4},{
		2,3,4,5},{1,2,3,4,5}}
	Input	(* All possible subsequences containing up to 2 elements: *)
		Subsequences[{x,y,z,w},2]
	Output	{{},{x},{y},{z},{w},{x,y},{y,z},{z,w}}
	Input	(* Subsequences containing exactly 2 elements: *)
		Subsequences[{x,y,z,w},{2}]
	Output	{{x,y},{y,z},{z,w}}
	Input	(* The first 2 subsequences containing 3 elements: *)
		Subsequences[{x,y,z,w,u,v},{3},2]
	Output	{{x,y,z},{y,z,w}}
	Input	(

Input

(* Generate all subsets of a list: *) Subsets[{x,y,z}] Output {{},{x},{y},{z},{x,y},{x,z},{y,z},{x,y,z}} Input (* All possible subsets containing up to 2 elements: *) Subsets[{x,y,z,u,v},2] Output {{},{x},{y},{z},{u},{v},{x,y},{x,z},{x,u},{x,v},{y,z},{y,u},{y,v},{z,u},{z,v},{u,v} } Input (* Generate subsets of a certain length: *) Subsets[{x,y,z,u,v},{2}] Output {{x,y},{x,z},{x,u},{x,v},{y,z},{y,u},{y,v},{z,u},{z,v},{u,v}} Input (* The first 5 subsets containing 3 elements: *) Subsets[{x,y,z,u,v},{3},5] Output {{x,y,z},{x,y,u},{x,y,v},{x,z,u},{x,z,v}} Input (* Find all ways to pick 3 elements from 4: *) Subsets[{1,2,3,4},{3}] Binomial[4,3] Output {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} 233 * All subsequences with even length: *) Subsequences[{x,y,z,w,u},{0,5,2}] Output {{},{x,y},{y,z},{z,w},{w,u},{x,y,z,w},{y,z,w,u}} Input (* Find all subsequences that sum of the elements in the subset equal to a specific value: *) list={1,2,3,4,5}; targetSum=7; subsequences=Subsequences[list] desiredSubsequences=Select[subsequences,Total[#]==targetSum&] Output {{},{1},{2},{3},{4},{5},{1,2},{2,3},{3,4},{4,5},{1,2,3},{2,3,4},{3,4,5},{1,2,3,4},{ 2,3,4,5},{1,2,3,4,5}} Output {{3,4}} Permutations[list]

Examples 9.5 Union

  During each iteration, the result variable is multiplied by the current value of i. Finally, the calculated factorial value is stored in the variable result. In the code, n is assigned a value of 5, and the factorial function is called with this value. The resulting factorial value is then stored in the variable result: *)

	Output Output Input Output Output Output Input Output Mathematica Examples 9.6 Intersection {{3,4,5},{6,7,8},{1,2,3,3}} {1,2,3,{3,4,5},{6,7,8}} (* Union of two strings: *) string1="Hello"; string2="World"; Characters[string1] Characters[string2] unionString=Union[Characters[string1],Characters[string2]] {H,e,l,l,o} {W,o,r,l,d} {d,e,H,l,o,r,W} expr1={x^2+y^2}; expr2={x^2-y^2}; unionExpr=Union[expr1,expr2] {x^2-y^2,x^2+y^2} Input (* Finding the common elements between two lists: *) list1={1,2,3,4,5}; list2={4,5,6,7,8}; commonElements=Intersection[list1,list2] Output {4,5} Input (* Finding the common elements among multiple lists: *) list1={1,2,3,4,5}; list2={4,5,6,7,8}; list3={3,4,5,9,10}; commonElements=Intersection[list1,list2,list3] Output {4,5} Input (* Finding the common elements between two arrays: *) array1={{1,2,3},{4,5,6},{7,8,9}}; array2={{4,5,6},{7,8,9},{10,11,12}}; commonElements=Intersection[array1,array2] Output {{4,5,6},{7,8,9}} Input (* Finding common elements between two strings: *) string1="Hello"; string2="World"; Characters[string1] Characters[string2] commonCharacters=Intersection[Characters[string1],Characters[string2]] Output {H,e,l,l,o} Output {W,o,r,l,d} Output {l,o} Input (* Finding the elements unique to both lists: *) list1={1,2,3,4,5}; list2={3,4,5,6,7}; Union[Complement[list1,list2] , Complement[list2,list1]] Output {1,2,6,7} IntersectingQ[list1,list2] yields True if list1 and list2 have at least one element in common, and False otherwise. DisjointQ[list1,list2] yields True if list1 and list2 do not share any common elements, and False otherwise. SubsetQ[list1,list2] yields True if list2 is a subset of list1, and False otherwise. ContainsAll[e1,e2] yields True if e1 contains all of the elements of e2. ContainsNone[e1,e2] yields True if e1 contains none of the elements in e2. ContainsAny[e1,e2] yields True if e1 contains any of the elements of e2. ContainsOnly[e1,e2] yields True if e1 contains only elements that appear in e2. ContainsExactly[e1,e2] yields True if e1 contains exactly the same elements as e2. Mathematica Examples 9.8 IntersectingQ, …, and ContainsExactly Input (* Check if two lists have any common elements: *) list1={1,2,3,4}; list2={3,4,5,6}; list3={7,8,9,10}; result1=IntersectingQ[list1,list2] result2=IntersectingQ[list1,list3] Output True Output False Input (9}}; subList2={1,2}; subList3={{1,2}}; IntersectingQ[listOfLists,subList2] IntersectingQ[listOfLists,subList3] Output False Output True Input (* Checking if two sets of integers are disjoint: *) set1={1,2,3}; set2={4,5,6}; set3={1,8,9}; DisjointQ[set1,set2] DisjointQ[set1,set3] Output True Output False Input (* Checking if two lists of expressions are disjoint: *) list3={x^2,x^3,x^4}; list4={Sin[x],Cos[x],Exp[x]}; DisjointQ[list3,list4] Output True Input (* Test if a set is a subset of another set: *) SubsetQ[{1,2,3},{3,1}] Output True Input (* Check if a list is a subset of another list: *) list1={1,2,3,4}; list2={2,4}; SubsetQ[list2,list1] SubsetQ[list1,list2] Output False Output True Input (* Check if a set of lists is a subset of another set of lists: *) set1={{1,2},{3,4},{5,6}}; set2={{1,2},{3,4}}; SubsetQ[set2,set1] SubsetQ[set1,set2] Output False Output True Input (Output True Output False Input (* Check if a list contains all the elements of multiple other lists: *) list4={1,2,3,4,5}; list5={2,4}; list6={1,3}; ContainsAll[list4,{list5,list6}] list7={1,2,3,4,5}; list8={2,4}; list9={1,3}; ContainsAll[list7,Flatten[{list8,list9}]] Output True Output False Input (* The first list contains only elements in the second list: *) ContainsOnly[{2,1,1},{1,2,3}] (* The first list contains elements not present in the second list: *) ContainsOnly[{2,1,3},{1,2,4}] Output True Output False Input (* Both lists contain exactly the same elements: *) list1={1,2,3,4}; list2={2,1,4,3}; list3={3,2,4,1}; list4={1,2,2,3,4}; (* The lists contain different elements: *) list5={3,2}; list6={1,2,3,4,5}; ContainsExactly[list1,list2] ContainsExactly[list1,list3] ContainsExactly[list1,list4] ContainsExactly[list1,list5] ContainsExactly[list1,list6] Output True Output True Output True Output False Output False UNIT 9.2 COMBINATORIAL FUNCTIONS Mathematica provides a wide range of built-in functions for working with combinatorial objects. n! gives the factorial of n. Binomial[n,m] gives the binomial coefficient ( 𝑛 𝑚 ). Multinomial[n1,n2,…] gives the multinomial coefficient (n1+n2+…)!/(n1!n2!...). Mathematica Examples 9.9 n! Input (* Evaluate numerically: *) 4! (* Values at zero: *) 0! Output 24 Output 1 Input (* Factorial threads elementwise over lists: *) {2,3,5,7,11}! Output {2,6,120,5040,39916800} Input (* Use FullSimplify to simplify expressions involving Factorial: *) FullSimplify[(n+3)!/n!] Output (1+n) (2+n) (3+n) Input (* Calculate the factorial of a matrix element-wise:*) matrix={{1,3},{4,5}}; factorials=Factorial[matrix] Output {{1,6},{24,120}} factorial[n_]:=Module[ {result=1}, For[ i=2, i<=n, i++, result=result*i; ]; result] n=5; result=factorial[n] Output 120 Input (factorial[n_]:=Module[ {result=1}, Do[ (Input Output False result=result*i,
	Output	True {i,2,n}
	]; Mathematica Examples 9.7 Complement Input {1,2} ContainsNone[{c,d,c},{a,b}] (Output Input (* The first list contains none of the elements of the second list: *) result]
		235 239

Input (* Give a sorted list of distinct elements: *) Union[{1,2,1,3,6,2,2}] Output {1,2,3,6} Input (* Give a sorted list of distinct elements from all the lists: *) Union[{a,b,a,c},{d,a,e,b},{c,a}] Output {a,b,c,d,e} Input (* Union of multiple lists: *) list1={1,2,3}; list2={3,4,5}; list3={5,6,7}; unionList=Union[list1,list2,list3] Output {1,2,3,4,5,6,7} Input (* Union of a list and an array: *) list1={{1,2,3,3}}; list2={1,2,3,3}; array={{3,4,5},{6,7,8}}; unionList1=Union[list1,array] unionList2=Union[list2,array] * Find which elements in the first list are not in any of the subsequent lists: *) Complement[{a,b,c,d,e},{a,c},{d}] Output {b,e} Input (* Finding the elements unique to the first list: *) list1={1,2,3,4,5}; list2={3,4,5,6,7}; complementList=Complement[list1,list2] * Checking if a list intersects with any sublist in a list of lists: *) listOfLists={{1,2},{3,4,5},{6,7},{8,* Checking if two lists of strings are disjoint: *) list1={"apple","banana","orange"}; list2={"car","bus","train"}; DisjointQ[list1,list2] Output True Input (* Checking if two sets of real numbers are disjoint: *) set3={1.5,2.7,3.1}; set4={2.6,5.8,3.1}; DisjointQ[set3,set4] Output False 237 * The first list contains all elements of the second list: *) ContainsAll[{b,a,b,c},{a,b}] (* The first list does not contain all elements of the second list: *) ContainsAll[{b,a,b,c},{a,b,d}] (* The first list contains elements of the second list: *) ContainsNone[{c,d,c,a},{a,b}] Output True Output False Input (* The first list contains some of the elements of the second list: *) ContainsAny[{b,a,b},{a,b,c}] 238 (* The first list does not contain any of the elements of the second list: *) ContainsAny[{d,f,e},{a,b,c}] Input (* Plot the factorial function for a range of numbers: *) DiscretePlot[ Factorial[n], {n,0,5}, PlotRange->All, PlotMarkers->Automatic, PlotStyle->Purple, ImageSize->200 ] Output Input (* The code calculates the factorial of a given number n using a For loop. The factorial function is defined with a single parameter n. Inside the function, a local variable result is initialized to 1. The For loop is used to iterate over the values from 2 to n, incrementing i by 1 in each iteration. * The code calculates the factorial of a given number n using a recursive method. The factorial function is defined with a single parameter n. Inside the function, an If statement is used to check if n is equal to 0. If it is, the function returns 1, indicating the base case of the factorial. Otherwise, the function recursively calls itself with the argument n-1 and multiplies it by n, effectively calculating the factorial by multiplying n with the factorial of n-1. In the code, n is assigned a value of 5, and the factorial function is called with this value. The resulting factorial value is then stored in the variable result: *) factorial[n_]:=If[n==0,1,n*factorial[n-1]] n=5; result=factorial[n] Output 120

Input (* The code calculates the factorial of a given number n using an iterative method. The factorial function is defined with a single parameter n. Inside the function, a local variable result is initialized to 1. The Do loop is used to iterate over the values from 2 to n. In each iteration, the result variable is multiplied by the current value of i, updating the factorial value. Finally, the calculated factorial value is stored in the variable result. In the code, n is assigned a value of 5, and the factorial function is called with this value. The resulting factorial value is then stored in the variable result: *)

  The selected elements are in ascending order. In this code, the OrderedQ function is used to check if each combination is in ascending order. Only those combinations that satisfy this condition are selected and stored in the variable event: *)

	pairs=Tuples[values,k] sumofeachpairs=Total/@pairs event=Select[sumofeachpairs,#>10&] Tally[event] {{1,1},{1,2},{1,3},{1,4},{1,5},{1,6},{2,1},{2,2},{2,3},{2,4},{2,5},{2,6},{3,1},{3,2 },{3,3},{3,4},{3,5},{3,6},{4,1},{4,2},{4,3},{4,4},{4,5},{4,6},{5,1},{5,2},{5,3},{5, 4},{5,5},{5,6},{6,1},{6,2},{6,3},{6,4},{6,5},{6,6}} {2,3,4,5,6,7,3,4,5,6,7,8,4,5,6,7,8,9,5,6,7,8,9,10,6,7,8,9,10,11,7,8,9,10,11,12} {11,11,12} {{11,2},{12,1}} MATHEMATICA LAB: PRINCIPLES OF PROBABILITY {{2,1,1},{2,1,2},{2,1,3},{2,1,4},{2,1,5},{2,1,6},{2,2,1},{2,2,2},{2,2,3},{2,2,4},{2 ,2,5},{2,2,6},{2,3,1},{2,3,2},{2,3,3},{2,3,4},{2,3,5},{2,3,6},{2,4,1},{2,4,2},{2,4, 3},{2,4,4},{2,4,5},{2,4,6},{2,5,1},{2,5,2},{2,5,3},{2,5,4},{2,5,5},{2,5,6},{2,6,1}, {2,6,2},{2,6,3},{2,6,4},{2,6,5},{2,6,6},{4,1,1},{4,1,2},{4,1,3},{4,1,4},{4,1,5},{4, 1,6},{4,2,1},{4,2,2},{4,2,3},{4,2,4},{4,2,5},{4,2,6},{4,3,1},{4,3,2},{4,3,3},{4,3,4 },{4,3,5},{4,3,6},{4,4,1},{4,4,2},{4,4,3},{4,4,4},{4,4,5},{4,4,6},{4,5,1},{4,5,2},{ 4,5,3},{4,5,4},{4,5,5},{4,5,6},{4,6,1},{4,6,2},{4,6,3},{4,6,4},{4,6,5},{4,6,6},{6,1 ,1},{6,1,2},{6,1,3},{6,1,4},{6,1,5},{6,1,6},{6,2,1},{6,2,2},{6,2,3},{6,2,4},{6,2,5} ,{6,2,6},{6,3,1},{6,3,2},{6,3,3},{6,3,4},{6,3,5},{6,3,6},{6,4,1},{6,4,2},{6,4,3},{6 ,4,4},{6,4,5},{6,4,6},{6,5,1},{6,5,2},{6,5,3},{6,5,4},{6,5,5},{6,5,6},{6,6,1},{6,6, 2},{6,6,3},{6,6,4},{6,6,5},{6,6,6}} (* Event 3: 4}, {3,6,5},{3,6,6},{4,1,6},{4,2,6},{4,3,6},{4,4,6},{4,5,6},{4,6,1},{4,6,2},{4,6,3},{4, 6,4},{4,6,5},{4,6,6},{5,1,6},{5,2,6},{5,3,6},{5,4,6},{5,5,6},{5,6,1},{5,6,2},{5,6,3 },{5,6,4},{5,6,5},{5,6,6},{6,1,1},{6,1,2},{6,1,3},{6,1,4},{6,1,5},{6,1,6},{6,2,1},{ 6,2,2},{6,2,3},{6,2,4},{6,2,5},{6,2,6},{6,3,1},{6,3,2},{6,3,3},{6,3,4},{6,3,5},{6,3 ,6},{6,4,1},{6,4,2},{6,4,3},{6,4,4},{6,4,5},{6,4,6},{6,5,1},{6,5,2},{6,5,3},{6,5,4} (CHAPTER 9 Output Output Output Output Input Output Input ,{6,5,5},{6,5,6},{6,6,1},{6,6,2},{6,6,3},{6,6,4},{6,6,5},{6,6,6}}
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* Event 2: The first selected element is even. This code generates all possible combinations and selects only those where the first element is even, using the EvenQ function. The result is stored in the variable event: *) n=6; (* Number of elements in the set. *) k=3; (* Number of elements to be selected. *) values={1,2,3,4,5,6}; (* Values of each element. *) event=Select[Tuples[values,k],EvenQ[First[#]]&] n=6; (* Number of elements in the set. *) k=3; (* Number of elements to be selected. *) values={1,2,3,4,5,6}; (* Values of each element. *) event=Select[Tuples[values,k],OrderedQ[#]&] Output {{1,1,1}

,{1,1,2},{1,1,3},{1,1,4},{1,1,5},{1,1,6},{1,2,2},{1,2,3},{1,2,4},{1,2,5},{1 ,2,6},{1,3,3},{1,3,4},{1,3,5},{1,3,6},{1,4,4},{1,4,5},{1,4,6},{1,5,5},{1,5,6},{1,6, 6},{2,2,2},{2,2,3},{2,2,4},{2,2,5},{2,2,6},{2,3,3},{2,3,4},{2,3,5},{2,3,6},{2,4,4}, {2,4,5},{2,4,6},{2,5,5},{2,5,6},{2,6,6},{3,3,3},{3,3,4},{3,3,5},{3,3,6},{3,4,4},{3, 4,5},{3,4,6},{3,5,5},{3,5,6},{3,6,6},{4,4,4},{4,4,5},{4,4,6},{4,5,5},{4,5,6},{4,6,6 },{5,5,5},{5,5,6},{5,6,6},{6,6,6}} Input (* Event 4: The maximum selected element is equal to 6. In this code, the Select function is used to filter the combinations and select only those where the maximum element is equal to 6. The result is stored in the variable event: *) n=6; (* Number of elements in the set. *) k=3; (* Number of elements to be selected. *) values={1,2,3,4,5,6}; (* Values of each element. *) event=Select[Tuples[values,k],Max[#]==6&] Output {{1,1,6},{1,2,6},{1,3,6},{1,4,6},{1,5,6},{1,6,1},{1,6,2},{1,6,3},{1,6,4},{1,6,5},{1 ,6,6},{2,1,6},{2,2,6},{2,3,6},{2,4,6},{2,5,6},{2,6,1},{2,6,2},{2,6,3},{2,6,4},{2,6, 5},{2,6,6},{3,1,6},{3,2,6},{3,3,6},{3,4,6},{3,5,6},{3,6,1},{3,6,2},{3,6,3},{3,6,
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  Output {{1,1,1},{1,2,1},{1,3,1},{1,4,1},{1,5,1},{1,6,1},{2,1,2},{2,2,2},{2,3,2},{2,4,2},{2 ,5,2},{2,6,2},{3,1,3},{3,2,3},{3,3,3},{3,4,3},{3,5,3},{3,6,3},{4,1,4},{4,2,4},{4,3, 4},{4,4,4},{4,5,4},{4,6,4},{5,1,5},{5,2,5},{5,3,5},{5,4,5},{5,5,5},{5,6,5},{6,1,6}, {6,2,6},{6,3,6},{6,4,6},{6,5,6},{6,6,6}} Input (* Event 6: The selected elements contain duplicates. In this code, the Union function is used to remove duplicates from each combination. The Length function is then used to check if the resulting set has fewer elements than k, indicating the presence of duplicates. Only those combinations that satisfy this condition are selected and stored in the variable event: *)

	Output	{{1,1,4},{1,2,4},{1,3,4},{1,4,1},{1,4,2},{1,4,3},{1,4,4},{1,4,5},{1,4,6},{1,5,4},{1 n=6; (* Number of elements in the set. *) ,6,4},{2,1,4},{2,2,4},{2,3,4},{2,4,1},{2,4,2},{2,4,3},{2,4,4},{2,4,5},{2,4,6},{2,5, k=3; (* Number of elements to be selected. *) 4},{2,6,4},{3,1,4},{3,2,4},{3,3,4},{3,4,1},{3,4,2},{3,4,3},{3,4,4},{3,4,5},{3,4,6}, values={1,2,3,4,5,6}; (* Values of each element. *) {3,5,4},{3,6,4},{4,1,1},{4,1,2},{4,1,3},{4,1,4},{4,1,5},{4,1,6},{4,2,1},{4,2,2},{4,
		2,3},{4,2,4},{4,2,5},{4,2,6},{4,3,1},{4,3,2},{4,3,3},{4,3,4},{4,3,5},{4,3,6},{4,4,1
		event=Select[Tuples[values,k],Length[Union[#]]<k&] },{4,4,2},{4,4,3},{4,4,4},{4,4,5},{4,4,6},{4,5,1},{4,5,2},{4,5,3},{4,5,4},{4,5,5},{
		4,5,6},{4,6,1},{4,6,2},{4,6,3},{4,6,4},{4,6,5},{4,6,6},{5,1,4},{5,2,4},{5,3,4},{5,4
	Output	{{1,1,1},{1,1,2},{1,1,3},{1,1,4},{1,1,5},{1,1,6},{1,2,1},{1,2,2},{1,3,1},{1,3,3},{1 ,1},{5,4,2},{5,4,3},{5,4,4},{5,4,5},{5,4,6},{5,5,4},{5,6,4},{6,1,4},{6,2,4},{6,3,4}
		,{6,4,1},{6,4,2},{6,4,3},{6,4,4},{6,4,5},{6,4,6},{6,5,4},{6,6,4}}
	Input (Output {{1,2},{1,3},{1,4},{1,5},{2,1},{2,3},{2,4},{2,5},{3,1},{3,2},{3,4},{3,5},{4,1},
		{4,2},{4,3},{4,5},{5,1},{5,2},{5,3},{5,4}}
	Output	20

,4,1},{1,4,4},{1,5,1},{1,5,5},{1,6,1},{1,6,6},{2,1,1},{2,1,2},{2,2,1},{2,2,2},{2,2, 3},{2,2,4},{2,2,5},{2,2,6},{2,3,2},{2,3,3},{2,4,2},{2,4,4},{2,5,2},{2,5,5},{2,6,2}, {2,6,6},{3,1,1},{3,1,3},{3,2,2},{3,2,3},{3,3,1},{3,3,2},{3,3,3},{3,3,4},{3,3,5},{3, 3,6},{3,4,3},{3,4,4},{3,5,3},{3,5,5},{3,6,3},{3,6,6},{4,1,1},{4,1,4},{4,2,2},{4,2,4 },{4,3,3},{4,3,4},{4,4,1},{4,4,2},{4,4,3},{4,4,4},{4,4,5},{4,4,6},{4,5,4},{4,5,5},{ 4,6,4},{4,6,6},{5,1,1},{5,1,5},{5,2,2},{5,2,5},{5,3,3},{5,3,5},{5,4,4},{5,4,5},{5,5 ,1},{5,5,2},{5,5,3},{5,5,4},{5,5,5},{5,5,6},{5,6,5},{5,6,6},{6,1,1},{6,1,6},{6,2,2} ,{6,2,6},{6,3,3},{6,3,6},{6,4,4},{6,4,6},{6,5,5},{6,5,6},{6,6,1},{6,6,2},{6,6,3},{6 ,6,4},{6,6,5},{6,6,6}} Input (* Event 7: The selected elements are all odd. In this code, the AllTrue function is used to check if all elements in each combination are odd using the OddQ function. Only those combinations that satisfy this condition are selected and stored in the variable event: *) n=6; (* Number of elements in the set. *) k=3; (* Number of elements to be selected. *) values={1,2,3,4,5,6}; (* Values of each element. *) event=Select[Tuples[values,k],AllTrue[#,OddQ]&] Output {{1,1,1},{1,1,3},{1,1,5},{1,3,1},{1,3,3},{1,3,5},{1,5,1},{1,5,3},{1,5,5},{3,1,1},{3 ,1,3},{3,1,5},{3,3,1},{3,3,3},{3,3,5},{3,5,1},{3,5,3},{3,5,5},{5,1,1},{5,1,3},{5,1, 5},{5,3,1},{5,3,3},{5,3,5},{5,5,1},{5,5,3},{5,5,5}} Input (* Event 8: The sum of the selected elements is divisible by 3. This code calculates the sums of all possible combinations and selects only those sums that are divisible by 3 using the Divisible function: *) n=6; (* Number of elements in the set. *) k=3; (* Number of elements to be selected. *) values={1,2,3,4,5,6}; (* Values of each element. *) event=Select[Total/@Tuples[values,k],Divisible[#,3]&] Output {3,6,6,9,6,9,6,9,9,12,9,12,6,9,6,9,6,9,9,12,9,12,9,12,6,9,6,9,9,12,9,12,9,12,12,15, 6,9,9,12,9,12,9,12,12,15,12,15,9,12,9,12,9,12,12,15,12,15,12,15,9,12,9,12,12,15,12, 15,12,15,15,18} Input (* Event 9: The selected elements contain a specific element. In this code, the MemberQ function is used to check if the specific element is present in each 254 combination. Only those combinations that contain the specific element are selected and stored in the variable event: *) n=6; (* Number of elements in the set. *) k=3; (* Number of elements to be selected. *) values={1,2,3,4,5,6}; (* Values of each element. *) specificElement=4; (* Specific element to check for. *) event=Select[Tuples[values,k],MemberQ[#,specificElement]&] * This code generates a specified number of random samples of combinations when sampling with replacement and ordered objects. The RandomChoice function is used to randomly select k elements from the range Range[n], and the function is called numSamples times. The result is stored in the variable samples: *) n=5; (* Number of elements in the set. *) k=3; (* Number of elements to be selected. *) numSamples=5; (* Number of random samples to generate. *) samples=RandomChoice[Range[n],{numSamples,k}] Output {{1,3,1},{1,4,3},{1,4,5},{5,2,4},{4,5,2}} Mathematica Examples 9.13 Sample Without Replacement and the objects being ordered Input (* Sampling without replacement and ordered: *) (* Define the values: *) values=Range[5]; (* Define the sample size: *) sampleSize=2; (* Perform sampling without replacement and ordered: *) samples=Permutations[values,{sampleSize}] Length[samples]

  This function takes two arguments: n represents the total number of objects, and k represents the number of objects being sampled. It returns a list with two elements. The first element is the number of elements in the sample space, and the second element is a list of all the elements in the sample space: *)

		sample=Take[permutations,4]
	Output	{2,4,5,1,3}
	Output	{{1,2,3,4,5},{1,2,3,5,4},{1,2,4,3,5},{1,2,4,5,3}}
	Input	(* sampleSpaceOrderNoReplacement[n_,k_]:=Module[
		{sampleSpace,numElements},
		sampleSpace=Permutations[Range[n],{k}];
		numElements=Length[sampleSpace];
		{numElements,sampleSpace}
		]
		(* Selecting 2 marbles from a bag containing 5 red marbles and 3 blue marbles without
		replacement and with ordering: *)
		sampleSpaceOrderNoReplacement[8,2]
	Output	{56,{{1,2},{1,3},{1,4},{1,5},{1,6},{1,7},{1,8},{2,1},{2,3},{2,4},{2,5},{2,6},{2,7},
		{2,8},{3,1},{3,2},{3,4},{3,5},{3,6},{3,7},{3,8},{4,1},{4,2},{4,3},{4,5},{4,6},{4,7}
		,{4,8},{5,1},{5,2},{5,3},{5,4},{5,6},{5,7},{5,8},{6,1},{6,2},{6,3},{6,4},{6,5},{6,7
		},{6,8},{7,1},{7,2},{7,3},{7,4},{7,5},{7,6},{7,8},{8,1},{8,2},{8,3},{8,4},{8,5},{8,
		6},{8,7}}}

  ,c},{a,b,d},{a,b,e},{a,c,d},{a,c,e},{a,d,e},{b,c,d},{b,c,e},{b,d,e},{c,d,e}} In this code, the sampleSpaceSize function remains the same as before, which calculates the number of elements in the sample space using the Binomial function. The generateSampleSpace function also remains the same as before, which generates the sample space using the Subsets function. The probability function takes two arguments: event and sampleSpace. It calculates the probability of an event by dividing the length of the event by the length of the sample space. The event variable represents the event of interest The event uses Select to filter the sample space The code focused on sampling without replacement and unordered objects. The code includes functions to calculate the size of the sample space, generate the sample space itself, and compute the probability of events. Additionally, the code demonstrates visualizations using a histogram and a list plot. The sampleSpaceSize function uses the Binomial function to calculate the number of elements in the sample space based on the total number of objects and the desired number of objects to be selected. The generateSampleSpace function utilizes the Subsets function to generate all possible combinations of objects from the given sample space. To demonstrate the sampling process, we randomly generate a specified number of samples from the sample space using the RandomChoice function. The frequencies of the samples are then calculated using the Tally function, and two visualizations are created. The histogram represents the frequency distribution of the samples, while the list plot displays the frequencies in a point-based representation: *)

	objects={a,a,b,c}; (* Generate all permutations of the objects: *) permutations=Permutations[objects];(* In Permutations function: Repeated elements are treated as identical. *) (* Display the elements of the sample space: *) TableForm[permutations,TableHeadings->{None,objects}] { {a, a, b, c}, {a, a, b, c}, {a, a, c, b}, {a, b, a, c}, {a, b, c, a}, {a, c, a, b}, {a, c, b, a}, {b, a, a, c}, {b, a, c, a}, {b, c, a, a}, {c, a, a, b}, {c, a, b, a}, {c, b, a, a} } Mathematica Examples 9.14 Sampling without Replacement and the Objects Are Not Ordered Output Input (* Sampling without Replacement and the Objects Are Not Ordered: *) (* In this code, the sampleSpaceSize function calculates the number of elements in the sample space using the binomial coefficient Binomial[n,k]. The generateSampleSpace function generates all possible subsets of length k from the given list of elements using the Subsets function: *) sampleSpaceSize[n_,k_]:=Binomial[n,k] generateSampleSpace[n_,k_,elements_]:=Subsets[elements,{k}] (* Example usage: *) n=5; (* Total number of objects. *) k=3; (* Number of objects to sample. *) elements={a,b,c,d,e}; (*List of objects. *) (* Calculate the size of the sample space. *) size=sampleSpaceSize[n,k] (* Generate the sample space: *) sampleSpace=generateSampleSpace[n,k,elements] Output 10 Output (* Generate the sample space: *) sampleSpace=generateSampleSpace[n,k,elements] Output 10 Output {{a,bInput (* More Examples: *) (* In this code, the sampleSpace function takes two arguments n and r, which represent the total number of objects and the number of objects to be selected, respectively. It generates all possible combinations of size r from the list of objects and returns the sample space: *) (* Module function to generate sample space: *) sampleSpace[n_,r_]:=Module[ {objects,combinations}, objects=Range[n]; (* Create a list of objects. *) combinations=Subsets[objects,{r}]; (* Generate all combinations of size r. *) combinations ] not matter: *) Output Sample Space: {{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6 },{5,6}} Output Number of Elements: 15 Input (* based on a condition: *) (* Function to calculate the number of elements in sample space: *) sampleSpaceSize[n_,k_]:=Binomial[n,k] (* Function to generate sample space: *) generateSampleSpace[n_,k_]:=Module[ {objects,combinations}, objects=Range[n]; combinations=Subsets[objects,{k}]; combinations] Input (* (* Function to calculate the number of elements in sample space: *) sampleSpaceSize[n_,k_]:=Binomial[n,k] (* Function to generate sample space: *) generateSampleSpace[n_,k_]:=Module[ {objects,combinations}, objects=Range[n]; combinations=Subsets[objects,{k}]; combinations] *) numSamples=1000; (* Number of samples to generate. *) samples=RandomChoice[sampleSpace,numSamples]; (* Calculate the frequencies of the samples: *) frequencies=Tally[samples]; (* Create a histogram of the frequencies:*) Histogram[ frequencies[[All,2]], Automatic, {{a,size=sampleSpaceSize[n,k] "Probability", n=6; (* Total number of marbles in the bag. *) Frame->True, r=2; (* Number of marbles to be selected. *) FrameLabel->{"Frequency","Probability"},
	Output	elements=sampleSpace[n,r]; numberOfElements=Binomial[n,r]; PlotLabel->"Sample -Probability", ImageSize->250, event=Select[sampleSpace,Total[#]>10&] ColorFunction->Function[Opacity[0.7]], prob=probability[event,sampleSpace] (* Calculate the probability of the event. *) : *) ChartStyle->Purple Print["Sample Space: ",elements]; Print["Number of Elements: ",numberOfElements]; Number of Elements: 10 ]
	Output	Sample Space:
	Output	Sample Space: {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5}}
		{{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,7},{1,3,4},{1,3,5},{1,3,6},{1,3,7},{1,4,5},{1 {{1,2,3},{1,2,5},{1,3,4},{1,4,5},{2,3,5},{3,4,5}}
	Output	3/5
	Output	{{2,3,4},{2,3,5},{2,4,5}}
	Output	3/10
	Output	{{2,4,5},{3,4,5}}
	Output	1/5
		259

b,c},{a,b,d},{a,b,e},{a,c,d},{a,c,e},{a,d,e},{b,c,d},{b,c,e},{b,d,e},{c,d,e}} Input sampleSpaceSize[n_,k_]:=Binomial[n,k] generateSampleSpace[n_,k_,elements_]:=Module[ {sampleSpace}, sampleSpace=Subsets[elements,{k}]; sampleSpace ] (* Example usage: *) n=5; (* Total number of objects. *) k=3; (* Number of objects to sample. *) elements={a,b,c,d,e}; (* List of objects. *) (* Calculate the size of the sample space: *) (* Example 1: Selecting Students for a Project. Suppose you have a group of 7 students,and you need to select a team of 4 students for a project. You want to select the team members without replacement, and the order of their selection does not matter: *) n=7; (* Total number of students. *) r=3; (* Number of students to be selected. *) elements=sampleSpace[n,r]; numberOfElements=Binomial[n,r]; Print["Sample Space: ",elements]; Print["Number of Elements: ",numberOfElements]; (* Example 2: Picking Marbles from a Bag. Suppose you have a bag containing 6 marbles of different colors (red, blue, green, yellow, and orange). You want to select 3 marbles from the bag without replacement, and the order of the marbles does ,4,6},{1,4,7},{1,5,6},{1,5,7},{1,6,7},{2,3,4},{2,3,5},{2,3,6},{2,3,7},{2,4,5},{2,4, 6},{2,4,7},{2,5,6},{2,5,7},{2,6,7},{3,4,5},{3,4,6},{3,4,7},{3,5,6},{3,5,7},{3,6,7}, {4,5,6},{4,5,7},{4,6,7},{5,6,7}} Output Number of Elements: 35 261 (* Function to calculate the probability of an event: *) probability[event_,sampleSpace_]:=Length[event]/Length[sampleSpace] (* Example usage: *) n=5; (* Total number of objects. *) k=3; (* Number of objects to be selected. *) size=sampleSpaceSize[n,k]; (* Calculate the number of elements in sample space. *) sampleSpace=generateSampleSpace[n,k]; (* Generate the sample space. *) Print["Number of Elements: ",size]; (* Output the number of elements in the sample space. *) Print["Sample Space: ",sampleSpace ]; (* Output the generated sample space. *) (* Example event 1: Sum of selected objects is even: *) event=Select[sampleSpace,EvenQ[Total[#]]&] prob=probability[event,sampleSpace] (* Calculate the probability of the event. *) (* Example event: The first selected object is even: *) event=Select[sampleSpace,EvenQ[First[#]]&] prob=probability[event,sampleSpace] (* Calculate the probability of the event. *) (* Example event: The sum of the selected objects is greater than 10(* Example usage. *) n=10; (* Total number of objects. *) k=4; (* Number of objects to be selected. *) size=sampleSpaceSize[n,k]; (* Calculate the number of elements in sample space. *) sampleSpace=generateSampleSpace[n,k]; (* Generate the sample space. *) (* Generate random samples from the sample space:

  The code calculates the number of elements in the sample space and generates a random sample using the "Sampling with replacement and the objects are not ordered" approach. It then calculates the frequency distribution of the random sample using Tally and visualizes the distribution using a histogram and ListPlot. The sampleSpaceSize function calculates the number of elements in the sample space using the binomial coefficient formula (n+k\[Minus]1 choose k). The generateSampleSpace function generates the sample space by using Tuples to create all possible combinations of elements with repetition. Duplicate and equivalent combinations are removed using DeleteDuplicates and sorting. The values of n and k represent the number of distinct objects and the number of selections, respectively. A random sample is generated from the sample space using RandomChoice. The frequency of each element in the random sample is calculated using Tally. The frequency distribution is visualized using a histogram, where the x-axis represents the elements and the yaxis represents the frequency. The frequency distribution is also visualized using a ListPlot,where the x-axis represents the elements and the y-axis represents the

		Print["Number of elements in the sample space: ",size]; Event 2 is : {{1,1},{2,2},{3,3}}
		Print["Sample space: ",sampleSpace]; Probability OF event 2: 1/2
	Output	Number of elements in the sample space: 6 Event 3 is : {{3,3}}
	Output	Sample space: {{1,1},{1,2},{1,3},{2,2},{2,3},{3,3}} Probability OF event 2: 1/6
	Input Input	(* In this code, the sampleSpaceSize function calculates the number of elements in (*
		the sample space using the binomial coefficient formula (n+k\[Minus]1 choose k). The
		generateSampleSpace function generates the sample space by using the Tuples function
		to generate all possible combinations of elements with repetition, and then removes
		duplicate and equivalent combinations using DeleteDuplicates and sorting. The
		calculateProbability function calculates the probability of an event by dividing the
		count of distinct elements in the event by the total number of elements in the sample
		space: *)
		sampleSpaceSize[n_,k_]:=Binomial[n+k-1,k]
		generateSampleSpace[n_,k_]:=Module[{elements,combinations},elements=Range[n];
		combinations=Tuples[elements,k];
		DeleteDuplicates[Sort/@combinations]]
		than
		the second element. *)
		event1=Select[sampleSpace,condition1];
		probability1=calculateProbability[event1,sampleSpace];
		Print["Event 1 is : ",event1];
		Print["Probability of event 1: ",probability1];
		condition2=#[[1]]==#[[2]]&; (* Example condition 2: The first element is equal to
		the second element. *)
		event2=Select[sampleSpace,condition2];
		probability2=calculateProbability[event2,sampleSpace];
		Print["Event 2 is : ",event2];
		Print["Probability OF event 2: ",probability2];
		266

calculateProbability[event_,sampleSpace_]:=Length[event]/Length[sampleSpace] n=3; (* Number of distinct objects. *) k=2; (* Number of selections. *) size=sampleSpaceSize[n,k]; sampleSpace=generateSampleSpace[n,k]; Print["Number of elements in the sample space: ",size]; Print["Sample space: ",sampleSpace]; condition1=#[[1]]<#[[2]]&; (* Example condition 1: The first element is less condition3=#[[1]]+#[[2]]==6&; (* Example condition 3: The sum of the first two elements is equal to 6. *) event3=Select[sampleSpace,condition3]; (* Example conditional event. *) probability3=calculateProbability[event3,sampleSpace]; Print["Event 3 is : ",event3]; Print["Probability OF event 2: ",probability3]; Output Number of elements in the sample space: 6 Sample space: {{1,1},{1,2},{1,3},{2,2},{2,3},{3,3}} Event 1 is : {{1,2},{1,3},{2,3}} Probability of event 1: 1/2

267 frequency: *) sampleSpaceSize[n_,k_]:=Binomial[n+k-1,k] generateSampleSpace[n_,k_]:=Module[ {elements,combinations},elements=Range[n]; combinations=Tuples[elements,k]; DeleteDuplicates[Sort/@combinations] ] n=10; (* Number of distinct objects. *) k=3; (* Number of selections. *) size=sampleSpaceSize[n,k]; sampleSpace=generateSampleSpace[n,k]; Print["Number of elements in the sample space: ",size]; (* Random sampling from the sample space: *) randomSample=RandomChoice[sampleSpace,1000]; (* Calculate frequency using Tally:*) frequency=Tally[randomSample];

  In this updated code, the sample space is defined as all possible outcomes of rolling two fair six-sided dice using the Tuples function. The conditions for event A and event B are also updated. In this example, event A is defined as the sum of the dice being equal to 7 (Total[#]==7&),and event B is defined as at least one of the dice shows a 3 (MemberQ[#,3]). By calling the conditionalProbability function with the updated sample space and conditions, the code will simulate rolling two dice, calculate the probabilities, and print the results including the conditional At least one coin shows heads. This is represented by MemberQ[#,1]&,which checks if the value 1 (heads) is present in the outcome. By calling the conditionalProbability function with the updated sample space and conditions, the code will simulate flipping three coins, calculate the probabilities, and print the results including the conditional probability based on the new conditions for event A and event B: *)

	Output	(*Define the sample space and events: *) {{1,1},{1,2},{1,3},{1,4},{1,5},{1,6},{2,1},{2,2},{2,3},{2,4},{2,5},{2,6},{3,1},
		sampleSpace={1,2,3,4,5,6}; (* Sample space for a fair six-sided die. *) {3,2},{3,3},{3,4},{3,5},{3,6},{4,1},{4,2},{4,3},{4,4},{4,5},{4,6},{5,1},{5,2},
		eventA={2,4,6}; {5,3},{5,4},{5,5},{5,6},{6,1},{6,2},{6,3},{6,4},{6,5},{6,6}}
	Output	eventB={3,4,5}; The probability of event A is 0.166667
		The probability of event B is 0.305556
		(* Call the conditionalProbability function: *) The conditional probability P(A|B) is 0.181818
	Input Output Input	conditionalProbability[sampleSpace,eventA,eventB]; *Define the sample space and events: *) (* In this updated code, the sample space is defined as all possible outcomes of sampleSpace={1,2,3,4,5,6}; (* Sample space for a fair six-sided die. *) eventA={2,4,6}; eventB={3,4,5}; flipping three coins using the Tuples function with the elements {0,1} representing The probability of event A is 0.5 tails and heads, respectively. The conditions for event A and event B are defined as The probability of event B is 0.5 follows: Event A: All three coins show heads. This is represented by The conditional probability P(A|B) is 0.333333 Count[#,1]==3&,which checks if the number of heads (1s) in a given outcome is equal (* Calculate the probability of event A: *) probA=Length[eventA]/Length[sampleSpace]; (* Calculate the probability of event B: *) probB=Length[eventB]/Length[sampleSpace]; (* Calculate the intersection of events A and B: *) intersectionAB=Intersection[eventA,eventB]; conditionalProbability[sampleSpace_,eventA_,eventB_]:=Module[ {probA,probB,intersectionAB,conditionalProb}, (* Calculate the probability of event A: *) probA=Length[eventA]/Length[sampleSpace]; (* Calculate the probability of event B: *) probB=Length[eventB]/Length[sampleSpace]; (* Calculate the intersection of events A and B: *) intersectionAB=Intersection[eventA,eventB]; 271 to 3. (* 272 Event B:

(* Calculate the conditional probability P(A|B): *) conditionalProb=Length[intersectionAB]/Length[eventB]; (* Output the results: *) Print["The probability of event A is ",N[probA]] Print["The probability of event B is ",N[probB]] Print["The conditional probability P(A|B) is ",N[conditionalProb]] Output The probability of event A is 0.5 The probability of event B is 0.5 The conditional probability P(A|B) is 0.333333 Input (* In this code, we defined a new function called conditionalProbability that encapsulates the calculations for conditional probability within a Module block. The function takes three arguments: sampleSpace, eventA, and eventB. Inside the Module block, the probabilities of events A and B, the intersection of events A and B, and the conditional probability are computed, just as in the previous code. Finally, outside the Module block, we call the conditionalProbability function with the appropriate arguments: *) (* Calculate the conditional probability P(A|B): *) conditionalProb=Length[intersectionAB]/Length[eventB]; (* Output the results*) Print["The probability of event A is ",N[probA]]; Print["The probability of event B is ",N[probB]]; Print["The conditional probability P(A|B) is ",N[conditionalProb]];] probability: *) conditionalProbability[sampleSpace_,conditionA_,conditionB_]:=Module[ {probA,probB,intersectionAB,conditionalProb,eventA,eventB}, (* Define event A based on the condition: *) eventA=Select[sampleSpace,conditionA]; (* Define event B based on the condition: *) eventB=Select[sampleSpace,conditionB]; (* Calculate the probability of event A: *) probA=Length[eventA]/Length[sampleSpace]; (* Calculate the probability of event B: *) probB=Length[eventB]/Length[sampleSpace]; (* Calculate the intersection of events A and B: *) intersectionAB=Intersection[eventA,eventB]; (* Calculate the conditional probability P(A|B): *) conditionalProb=Length[intersectionAB]/Length[eventB]; (* Output the results*) Print["The probability of event A is ",N[probA]]; Print["The probability of event B is ",N[probB]]; Print["The conditional probability P(A|B) is ",N[conditionalProb]]; ] (* Define the sample space: *) sampleSpace=Tuples[Range[6],2] (* Sample space for rolling two dice. *) (* Define the conditions for event A and event B:*) conditionA=Total[#]==7& ;(* Event A:The sum of the dice is 7. *) conditionB=MemberQ[#,3]&; (* Event B:At least one of the dice shows a 3. *) (* Call the conditionalProbability function: *) conditionalProbability[sampleSpace,conditionA,conditionB]; conditionalProbability[sampleSpace_,conditionA_,conditionB_]:=Module[ {probA,probB,intersectionAB,conditionalProb,eventA,eventB}, (* Define event A based on the condition: *) eventA=Select[sampleSpace,conditionA]; (* Define event B based on the condition: *) eventB=Select[sampleSpace,conditionB]; (* Calculate the probability of event A: *) probA=Length[eventA]/Length[sampleSpace]; (* Calculate the probability of event B: *) probB=Length[eventB]/Length[sampleSpace]; (* Calculate the intersection of events A and B: *) intersectionAB=Intersection[eventA,eventB]; (* Calculate the conditional probability P(A|B): *) conditionalProb=Length[intersectionAB]/Length[eventB]; (* Output the results*) Print["The probability of event A is ",N[probA]]; Print["The probability of event B is ",N[probB]]; Print["The conditional probability P(A|B) is ",N[conditionalProb]]; ]

AND DISTRIBUTIONS 278 Example 10.3

  Another RV of possible interest in the dice-rolling experiment is the value of the first die. Letting 𝑌 denote this RV, then 𝑌 is equally likely to take on any of the values 1 through 6. That is, 𝑃(𝑌 = 𝑦) = 1/6, 𝑦 = 1,2,3,4,5,6. Suppose that an individual purchases two electronic components, each of which may be either defective or acceptable. In addition, suppose that the four possible results -(𝑑, 𝑑), (𝑑, 𝑎), (𝑎, 𝑑), (𝑎, 𝑎)have respective probabilities 0.09, 0.21, 0.21, 0.49 [where (𝑑, 𝑑) means that both components are defective, (𝑑, 𝑎) that the first component is defective and the second acceptable, and so on]. If we let 𝑋 denote the number of acceptable components obtained in the purchase, then 𝑋 is a RV taking on one of the values 0, 1, 2 with respective

	CHAPTER 10 DISCRETE RANDOM VARIABLES Example 10.4
	probabilities,	
		𝑃(𝑋 = 0) = 0.09,
		𝑃(𝑋 = 1) = 0.42,
		𝑃(𝑋 = 2) = 0.49.
	2 𝑥=0	= 1.

Table 10

 10 .1. a. Use random-variable notation to represent the event that exactly two heads are tossed. b. Determine 𝑃(𝑋 = 2). c. Find the probability distribution of 𝑋. d. Use random-variable notation to represent the event that at most two heads are tossed. e. Find 𝑃(𝑋 ≤ 2). The event that exactly two heads are tossed can be represented as (𝑋 = 2). b. There are three ways to get exactly two heads and that there are eight possible (equally likely) outcomes altogether. So, 𝑃(𝑋 = 2) = 3/8 = 0.375. c. The remaining probabilities for 𝑋 are computed as in part (b) and are shown in Table10.1.

	Solution				
	Possible outcomes				
	HHH, HTH, THH, TTH, HHT, HTT, THT, TTT.
	a. Table 10.1			
	𝑋	0	1	2	3
	𝑃(𝑋) 0.125 0.375 0.375 0.125
	d.				

Table 10 .2.

 10 

	𝑋	1	2	3	4	5	6
	𝑃(𝑋) 1/6 1/6 1/6 1/6 1/6 1/6
	𝐹(𝑥) 1/6 2/6 3/6 4/6 5/6 6/6

Table 10 .3.

 10 𝑥) 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 36/36

	𝑋	2	3	4	5	6	7	8	9	10	11	12
	𝑃(𝑋) 1/36 2/36 3/36 4/36	5/36	6/36	5/36	4/36	3/36	2/36 1/36
	𝐹(											

  .22) Evaluating this derivative at 𝑡 = 0, all terms except 𝐸[𝑋] become zero. We have

	𝑀 𝑋 ′ (0) = 𝐸[𝑋].	(10.23)
	Or,		
	𝑀 𝑋 ′ (𝑡) = = 𝐸 [ 𝑑 𝐸[𝑒 𝑡𝑋 ] 𝑑𝑡 𝑑 𝑒 𝑡𝑋 ] 𝑑𝑡 = 𝐸[𝑋𝑒 𝑡𝑋 ].	(10.24)
	Hence, 𝑀 𝑋		
	𝑀 𝑋 ′′ (0) = 𝐸[𝑋 2 ],	(10.25)
	where,		
	𝑀 𝑋 ′′ (𝑡) = = = 𝐸 [ 𝑑 𝑀 𝑋 ′ (𝑡) 𝑑𝑡 𝑑 𝐸[𝑋𝑒 𝑡𝑋 ] 𝑑𝑡 𝑑 (𝑋𝑒 𝑡𝑋 )] 𝑑𝑡 = 𝐸[𝑋 2 𝑒 𝑡𝑋 ],	(10.26)
	and so 𝑀 𝑋 ′′ (0) = 𝐸[𝑋 2 ]. Continuing in this manner, from the 𝑛th derivative 𝑀 𝑋 (𝑛) (𝑡) with respect to 𝑡, we obtain all
	the moments to be		
	𝑀 𝑋 (𝑛) (0) = 𝐸[𝑋 𝑛 ],	𝑛 = 1,2,3, … .	(10.27)
	We summarize these calculations in the following theorem.	

′ (0) = 𝐸[𝑋]. Similarly, taking the second derivative of 𝑀 𝑋 (𝑡), we obtain

10.8 (Third and Fourth Raw Moment):

  

	𝑛𝑝(1 -𝑝)	
	= 𝑛𝑞𝑝.	
		(10.34)
	𝜇 4 = 3𝑛 2 𝑝 2 𝑞 2 + 𝑛𝑝𝑞(1 -6𝑝𝑞).	(10.35)
	Proof:	

∎

Theorem If 𝑋 is a binomial RV with parameters 𝑝 and 𝑛, 𝜇 3 = 𝑛𝑝𝑞(𝑞 -𝑝),

  ). If 𝑋 is a binomial RV with parameters 𝑝 and 𝑛,

	𝛾 1 =	𝑞 -𝑝 √𝑛𝑝𝑞	.	(10.36)
	Proof:			

∎

Theorem 10.9 (Skewness):

  𝛽 2 > 3; i.e., 𝛾 2 > 0; i.e., 𝑝𝑞 < 1/6.

	2. Mesokurtic if 𝛽 2 = 3; i.e., 𝛾 2 = 0; i.e., 𝑝𝑞 = 1/6.	
	3. Platykurtic if 𝛽 2 < 3; i.e., 𝛾 2 < 0; i.e., 𝑝𝑞 > 1/6.	
		∎
	Theorem 10.11: If 𝑋 is a binomial RV with parameters 𝑝 and 𝑛,	
	𝑀 𝑋 (𝑡) = (𝑞 + 𝑝𝑒 𝑡 ) 𝑛 .	(10.38)
	Proof:	

299 Example 10.17

  In the World Cup, an average of 2.5 goals are scored each game. Modeling this situation with a Poisson distribution, what is the probability that 𝑘 goals are scored in a game? Solution In this instance, 𝜆 = 2.5. The formula (10.42) applies directly:

Table 10 .4.

 10 

	Experimental Outcome Value of the RV, 𝑋 = 𝑥 Probability
	𝑆	𝑥 = 0	𝑝
	𝐹𝑆	𝑥 = 1	𝑞. 𝑝
	𝐹𝐹𝑆	𝑥 = 2	𝑞 2 . 𝑝
	𝐹𝐹𝐹𝑆	𝑥 = 3	𝑞 3 . 𝑝
	𝐹𝐹𝐹𝐹𝑆	𝑥 = 4	𝑞 4 . 𝑝
	…	…	…

  Suppose that 𝑋 is a discrete uniform RV on the consecutive integers {1,2, . . . , 𝑛} i.e., in this case 𝑎 = 1 and 𝑏 = 𝑛.

	The mean of 𝑋 is				
	The variance of 𝑋 is	𝐸[𝑋] =	𝑛 + 1 2	.	(10.66)
		Var(𝑋) =		𝑛 2 -1 12	.	(10.67)
	The MGF is				
		𝑀 𝑋 (𝑡) =	𝑒 𝑡 𝑛	𝑒 𝑛𝑡 -1 𝑒 𝑡 -1	.	(10.68)
	Proof:				

  In this code, we start by defining the probability mass function (PMF) as a list of probabilities for each outcome of the random variable X. Then, we define the random variable X as a list of corresponding values. Next, we compute the expected value by summing the product of each outcome with its corresponding probability. The variance is computed similarly, but with the squared difference between each outcome and the mean. The cumulative distribution function (CDF) is obtained by accumulating the probabilities of the pmf. Finally, we define a function pXleqk[k] to calculate the probability that X is less than or equal to a given value k. We demonstrate this by calculating P(X<=3) and display the results using the Print function: *)Input(* In this code, we define a discrete random variable x with a sample space of {1,2,3,4,5} and the corresponding PMF p with values {0.1,0.2,0.3,0.2,0.2}. We then calculate the mean and variance of the random variable using the formulas mean=Sum[x[[i]]*p[[i]],{i,Length[x]}] and variance = Sum[(x[[i]] -mean)^2 *p[[i]] ,{i,Length[x]}]. Next, we calculate the CDF using cdf=Accumulate[p], which gives the cumulative probabilities. Finally, we plot the PMF and the CDF using ListPlot. The Transpose[{x,p}] command combines the x and p lists into a single list for plotting:

	UNIT 11.1	
	DISCRETE RANDOM VARIABLES	
	*)	
	(* Define a discrete random variable: *) Mathematica Examples 11.1 Discrete Random Variable (Manual study`) Input x={1,2,3,4,5}; (* Sample space. *) p={0.1,0.2,0.3,0.2,0.2}; (* PMF values. *) (* Calculate the mean: *) mean=Sum[ x[[i]]*p[[i]], {i,Length[x]} ] (* Calculate the variance: *) variance=Sum[ (* (* Define the PMF: *) (x[[i]]-mean)^2*p[[i]], pmf={1/6,1/6,1/6,1/6,1/6,1/6}; {i,Length[x]}]
	(* Define the random variable: *) (* Calculate the CDF: *) X={1,2,3,4,5,6}; cdf=Accumulate[p]	
	(* Compute the expected value: *)	
	mean=Sum[	
	pmf[[i]]*X[[i]],	
	{i,Length[X]}	
	];	
	(* Compute the variance: *)	
	variance=Sum[	
	pmf[[i]]*(X[[i]]-mean)^2,	
	{i,Length[X]}	
	];	
	(* Compute the CDF: *)	
	cdf=Accumulate[pmf];	
	Expectation	BinomialDistribution
	Conditioned (* Compute the probability of X<=k: *) NExpectation	PoissonDistribution
	Probability pXleqk[k_]:=cdf[[k]]; MomentGeneratingFunction	NegativeBinomialDistribution
	NProbability CentralMomentGeneratingFunction GeometricDistribution
	PDF CDF (* Display results: *) EstimatedDistribution Print["Probability Mass Function (PMF): ",pmf]; HypergeometricDistribution DiscreteUniformDistribution
	Print["Random Variable (X): ",X];	
	Print["Expected Value: ",mean];	
	Print["Variance: ",variance]; Chapter 11 Outline Print["Cumulative Distribution Function (CDF): ",cdf]; Unit 11.1. Discrete Random Variables Unit 11.2. Binomial Distribution Print["P(X <= k): ",pXleqk[3]];
	Unit 11.3. Poisson Distribution Output Probability Mass Function (PMF): {1/6,1/6,1/6,1/6,1/6,1/6} Unit 11.4. Negative Binomial Distribution Output Random Variable (X): {1,2,3,4,5,6} Unit 11.5. Geometric Distribution Output Expected Value: 7/2 Unit 11.6. Hypergeometric Distribution Unit 11.7. Discrete Uniform Distribution Output Variance: 35/12

Output Cumulative Distribution Function (CDF): {1/6,1/3,1/2,2/3,5/6,1} Output P(X <= k): 1/2

  Examples 11.2 Distributed, Conditioned, Probability and NProbability

	Input	(* For a distribution specified by a list, Probability computes relative frequencies:
		*)
		data={1,2,3,4,5,6,7,8,9,10,11};
		Probability[3<=x<=7,x\[Distributed]data]
		Length[Table[data[[i]],{i,3,7}]]/Length[data]
	Output	5/11
	Output	5/11
	Input	dist={1,2,3,4,5,6};
		(* Probability of x is less than 6 and greater than 1: *)
		p1=Probability[x<6&&x>1,x\[Distributed]dist];
		(* Probability of x is less than 5 and greater than 1: *)
		p2=Probability[x<5&&x>1,x\[Distributed]dist];
		(* Probability of x is less than 5 or x is less than 3: *)
		p3=Probability[x<5||x<3,x\[Distributed]dist];
		(* Probability of x is less than 4 or x is less than 3: *)
		p4=Probability[x<4||x<3,x\[Distributed]dist];
		(* Probability of (x is less than 4 or x is less than 3) and x is greater than 1:
		*)
		p5=Probability[(x<4||x<3)&&x>1,x\[Distributed]dist];
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  MomentGeneratingFunction[dist,t]gives the moment-generating function for the distribution dist as a function of the variable t.MomentGeneratingFunction[dist,{t1,t2,…}]gives the moment-generating function for the multivariate distribution dist as a function of the variables t1, t2, … . In this code, we define the mgf function which takes two arguments: t and dist. The t represents the value at which we want to evaluate the MGF, and dist represents the probability distribution of the random variable. The MGF is calculated using the Expectation function in Mathematica. We use the Exp[t*x] term as the function inside the Expectation, which represents the exponential function raised to the power of t*x. This is the characteristic function of the random variable: *) In this code, we first define the probability distribution of interest. In the example, we used a Poisson distribution. Next, we define the mgf function, which computes the Moment Generating Function using the MomentGeneratingFunction function in Mathematica. To find the first three moments,we differentiate the MGF with respect to t and then evaluate the result at t=0. The first derivative gives the first moment (mean),the second derivative gives the second moment (variance), and the third derivative gives the third moment: *)

	Output	μ	
	Output	μ (1+μ)	
	Output	μ^2+μ (1+μ)^2	
	Input	(* The central moment-generating function ((cmgf) for a univariate discrete
		distribution:*)	
	CentralMomentGeneratingFunction[dist,t] CentralMomentGeneratingFunction[PoissonDistribution[μ],t] gives the central moment-generating function for the
	Output	e (-1+e 𝑡 )𝜇-𝑡𝜇	distribution dist as a function of the variable t.
	CentralMomentGeneratingFunction[dist,{t1,t2,…}] Input (*The cmgf is the moment-generating function times exp(-t μ):*) gives the central moment-generating function for the multivariate distribution dist as a function of the variables d=PoissonDistribution[μ]; t1, t2, …. CentralMomentGeneratingFunction[d,t]
		MomentGeneratingFunction[d,t] Exp[-t Mean[d]]
	Mathematica Examples 11.6 MomentGeneratingFunction and CentralMomentGeneratingFunction Output e (-1+e 𝑡 )𝜇-𝑡𝜇
	Input Output	(* The mgf for a univariate discrete distribution: *) e (-1+e 𝑡 )𝜇-𝑡𝜇
		MomentGeneratingFunction[PoissonDistribution[μ],t]
	Output Input	e (-1+e 𝑡 )𝜇 (*Generating functions including MomentGeneratingFunction are defined by an
		expectation:*)	
	Input	dist=PoissonDistribution[3]; Simplify[ { MomentGeneratingFunction[dist,t], Expectation[E^(t x),x\[Distributed]dist] } ] Simplify[ { CentralMomentGeneratingFunction[dist,t], (* *) Expectation[E^(t (x-Mean
		MomentGeneratingFunction[dist,t]	
	Output	PoissonDistribution[μ]	
	Output	e (-1+e 𝑡 )𝜇	
	Output	e (-1+e 𝑡 )𝜇	
	Input	(* (* Define the probability distribution: *)
		dist=PoissonDistribution[μ] ;(* Poisson distribution with μ.*)
		(*Define the Moment Generating Function*)
		mgf[t_,dist_]:=MomentGeneratingFunction[dist,t]
		moment1	
		moment2	
		moment3	
			340

(* Define the Moment Generating Function: *) mgf[t_,dist_]:=Expectation[Exp[t*x],x\[Distributed]dist] (* Example usage: *) dist=PoissonDistribution[μ] (* Poisson distribution with μ. *) mgf[t,dist] (* Calculate the MGF at a given value of t. (*Find the first three moments*) moment1=D[mgf[t,dist],{t,1}]/. t->0 (* First moment (mean). *); moment2=D[mgf[t,dist],{t,2}]/. t->0 (* Second moment (variance). *); moment3=D[mgf[t,dist],{t,3}]/. t->0 (* Third moment. *); (* Display the results: *)

346 Mathematica Examples 11.14

  

	Input	(* The code calculates and displays some descriptive statistics (mean, variance,
		standard deviation, kurtosis, and skewness) for a binomial distribution with
		parameters n and p: *)
		Grid[	
		Table[	
		{	
		statistics,	
		FullSimplify[statistics[BinomialDistribution[n,p]]]
		},	
		{statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}}
		],	
		ItemStyle->12,	
		Alignment->{{Right,Left}},
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	Mean	n p
		Variance	-n (-1+p) p
		StandardDeviation Sqrt[-n (-1 + p) p]
		Kurtosis	3-6/n+1/(n p-n p^2)
		Skewness	(1 -2 p)/Sqrt[-n (-1 + p) p]
	Mathematica Examples 11.15	
	Input	(* The code calculates and displays some additional descriptive statistics (moments,
		central moments, and factorial moments) for a binomial distribution with parameters
		n and p: *)	
		Grid[	
		Table[	
		{	
		statistics,	
		FullSimplify[statistics[BinomialDistribution[n,p],1]],
		FullSimplify[statistics[BinomialDistribution[n,p],2]]
		},	
		{statistics,{Moment,CentralMoment,FactorialMoment}}
		],	
		ItemStyle->12,	
		Alignment->{{Right,Left}},
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	Moment	n p n p (1+(-1+n) p)
		CentralMoment	0	-n (-1+p) p
		FactorialMoment n p (-1+n) n p^2
	Mathematica Examples 11.16	

Table [ {

 [ This code generates two sets of random data from Poisson distributions with different means (λ1=3 and λ2=6) and creates a histogram to compare the distributions:

	Output	Alignment->{{Right,Left}},		
		Frame->All,			
		Spacings->{Automatic,0.8}		
		]			
	Output	Mean	λ	λ	λ
		Variance	λ	λ	λ
		StandardDeviation Sqrt[λ]	Sqrt[λ]	Sqrt[λ]
		Kurtosis	3+1/λ	3+1/λ	3+1/λ
		Skewness	1/Sqrt[λ] 1/Sqrt[λ] 1/Sqrt[λ]
	Mathematica Examples 11.32			
	Input	(* The code calculates and displays some additional descriptive statistics (moments,
	central moments, and factorial moments) for a Poisson distribution with parameter λ: Mathematica Examples 11.35 *) Grid[ Table[ Input (* *)
		{ lambda1=3; statistics, lambda2=6; FullSimplify[statistics[PoissonDistribution[λ],1]], n=1000; FullSimplify[statistics[PoissonDistribution[λ],2]], data1=RandomVariate[ FullSimplify[statistics[PoissonDistribution[λ],3]] PoissonDistribution[lambda1], }, n {statistics,{Moment,CentralMoment,FactorialMoment}} ], ];
		ItemStyle->12, data2=RandomVariate[ Alignment->{{Right,Left}}, PoissonDistribution[lambda2], Frame->All, n Spacings->{Automatic,0.8} ] ];	
	Output	Moment	λ λ (1+λ) λ (1+λ (3+λ))
		CentralMoment	0 λ	λ	
		FactorialMoment λ λ^2	λ^3	
	Mathematica Examples 11.33			
	Input	(* The code generates a sample of 10000 values from a discrete Poisson distribution
		and estimates the distribution parameters (μ) from the sample using the
		EstimatedDistribution function. It then compares the density histogram of the sample
		with the PDF of the estimated distribution: *)
		sampledata=RandomVariate[		
		PoissonDistribution[4],		
		10^4			
		];			
		(* Estimate the distribution parameters from sample data: *)
		ed=EstimatedDistribution[		
		sampledata,			
		PoissonDistribution[μ]		
		]			
		(* Compare the density histogram of the sample with the PDF of the estimated
		distribution: *)			
		Show[			
		Histogram[			
		], sampledata,			
		ItemStyle->12, {1},			
					358 360

statistics, FullSimplify[statistics[PoissonDistribution[λ]]], FullSimplify[statistics[PoissonDistribution[λ]]], FullSimplify[statistics[PoissonDistribution[λ]]] }, {statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}}

  . Given that X1 and X2 are independent of each other, what is the probability the total number of calls received between 10 A.M. and 12 noon is more than 5?: *) (* We use the Poisson distribution with parameter 2+6=8 to model the total number of calls in 2 hours, and use the Probability function to find the probability that the total number of calls is less than or equal to 5. Then, we subtract this probability from 1 to get the probability that the total number of calls is more than 5: *)

	UNIT 11.4
	NEGATIVE BINOMIAL DISTRIBUTION
		dist=PoissonDistribution[2+6];
	(* The probability that the total number of calls is less than 5 using Poisson Mathematica Examples 11.48 distribution: *) Input (* The code generates a discrete plot of the probability mass function (PMF) for a N[ negative binomial distribution with parameters r=2 and three different values of p Probability[ (0.1, 0.2, and 0.3). The plot shows the values of the PMF for all possible values of X1+X2<=5, X1+X2\[Distributed]dist k between 0 and 25: *)
		] DiscretePlot[ ] Evaluate[
		Table[ (* The probability that the total number of calls is greater than 5 using Poisson PDF[ distribution: *) NegativeBinomialDistribution[2,p], P=N[ k 1-Probability[X1+X2<=5,X1+X2\[Distributed]dist] ], ] (* or *) {p,{0.1,0.
		P=N[
		Probability[(X1+X2)>5,(X1+X2)\[Distributed]dist]
		]
	Output	0.191236
	Output	0.808764
	Output	0.808764
		371

Mathematica Examples 11.94 Input

  The code is generating a plot that shows the probability density function (PDF) of a discrete uniform distribution with a range of 20 to 40, superimposed on a histogram of a dataset 'data'. The histogram is generated with a bin size of 1 and the 'PDF' option, which normalizes the bin heights to represent a probability density function. The plot also includes a discrete plot of the PDF of the discrete uniform

	Mathematica Examples 11.93 ItemStyle->12,
	Input Output	Alignment->{{Right,Left}}, Frame->All, Spacings->{Automatic,0.8} ] (* distribution for values of 'k' between 20 and 40: *) Mean (a + b)/2
		Variance	1/12 (-1+(1-a + b)^2)
		data=RandomVariate[ StandardDeviation Sqrt[-1 + (1 -a + b)^2]/(2 Sqrt[3])
		DiscreteUniformDistribution[{20,40}], Kurtosis 3/5 (3-4/(-1 + (1 -a + b)^2))
		10^4 Skewness	0
		];
	Show[ Mathematica Examples 11.95 Histogram[ Input (* The code calculates and displays some additional descriptive statistics (moments, data, central moments, and factorial moments) for a discrete uniform distribution with {1}, "PDF", parameters a and b: *)
		ColorFunction->Function[{height},Opacity[height]], Grid[ ChartStyle->Purple, Table[ ImageSize->320, { AxesLabel->{None,"PDF"} statistics, ], FullSimplify[statistics[DiscreteUniformDistribution[{a,b}],1]],
	Output Output	Table[ FullSimplify[statistics[DiscreteUniformDistribution[{a,b}],2]] DiscretePlot[ }, PDF[ {statistics,{Moment,CentralMoment,FactorialMoment}} DiscreteUniformDistribution[{20,40}], ], k ItemStyle->12, ], Alignment->{{Right,Left}}, {k,20,40}, Frame->All, PlotStyle->PointSize[Medium], Spacings->{Automatic,0.8} ColorFunction->"Rainbow" ] ] CDF[ DiscreteUniformDistribution[{1,b}], ] Moment (a+b)/2 1/6 (a (-1+2 a)+b+2 a b+2 b^2) k ], {b,{8,12,16}} CentralMoment 0 1/12 (-a+b) (2-a+b) FactorialMoment
		]
		],
		{k,0,26},
		ExtentSize->Right,
		PlotRange->All,
		PlotMarkers->Automatic,
		PlotLegends->Placed[{"a=1,b=8","a=1,b=12","a=1,b=16"},{0.8,0.75}],
		PlotStyle->{RGBColor[0.88,0.61,0.14],RGBColor[0.37,0.5,0.7],Purple},
		ImageSize->250,
		AxesLabel->{None,"CDF"}
		]
	Output	
		Grid[
		Table[
		{
		statistics,
		FullSimplify[statistics[DiscreteUniformDistribution[{a,b}]]]
		},
		{statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}}
		],

(* The code calculates and displays some descriptive statistics (mean, variance, standard deviation, kurtosis, and skewness) for a discrete uniform distribution with parameters a and b: *)

Output Mathematica Examples 11.103 Input

  ,13,19,24,30,36,38,42,45,50,55,59,64,67,73,74,76,82,88,92,97,101,105,109,114,11 5,120,122,125,130,134,139,142,143,147,151,152,154,160,166,169,170,176,179,180,183,1 88,191,194,199,202,204,205,211,213,219,225,231,237,240,244,246,252,256,262,264,266, 269,273,279,280,281,282,286,287,288,294,297,303,308,310,316,319,325,331,333,338,344 ,347,350,353,359,363,368,369,371,377,381,384} Output

	CHAPTER 11	MATHEMATICA LAB: DISCRETE RANDOM VARIABLES
		]
		Accumulate[data]
		ListPlot[
		dist=DiscreteUniformDistribution[{1,6}]; Accumulate[data],
		n=1000; Filling->Axis,
		Frame->True,
		FrameLabel->{"Trial","Cumulative Total"}, data=Table[ LabelStyle->Directive[Bold,Medium], RandomVariate[dist], PlotStyle->Purple, {n} ImageSize->320 ]; ]
	Output Output	{4,3,6,6,5,6,6,2,4,3,5,5,4,5,3,6,1,2,6,6,4,5,4,4,4,5,1,5,2,3,5,4,5,3,1,4,4,1,2,6,6, empiricalprobs=N[ 3,1,6,3,1,3,5,3,3,5,3,2,1,6,2,6,6,6,6,3,4,2,6,4,6,2,2,3,4,6,1,1,1,4,1,1,6,3,6,5,2,6 Table[ ,3,6,6,2,5,6,3,3,3,6,4,5,1,2,6,4,3} Count[data,i]/n, {i,6} {4,7
		]
		]
		exactprobs=N[
		Table[
		PDF[dist,i],
		{i,6}
		]
		]
		ListPlot[
		{empiricalprobs,exactprobs},
			)
		dist=DiscreteUniformDistribution[{1,6}];
		n=100;
		data=Table[
		RandomVariate[dist],
		{n}
			410

PlotMarkers->{"◆","•"}, PlotLegends->{"Empirical","Exact"}, Frame->True, FrameLabel->{"Outcome","Probability"}, LabelStyle->Directive[Bold,Medium], PlotStyle->{Purple,Blue}, ImageSize->320 ] Output {0.184,0.163,0.154,0.162,0.182,0.155} Output {0.166667,0.166667,0.166667,0.166667,0.166667,0.166667} (* The code defines a discrete uniform distribution on the integers 1 through 6 and generates a random sample of size 100 from the distribution. It then plots the cumulative sum of the sample as a function of the trial number: *

Mathematica Examples 11.104 Input

  

	Count[ RandomVariate[dice,{10^5,4}],_?(Total[#]<=7&) CHAPTER 12
		]
		]/10^5
		(* Verifies the result using an explicit enumeration of all possible dice outcomes:
		*)
		g=Select[
		Tuples[
		Range[6],
		4
		],
		Total[#]<=7&
		]
		N[Length[g]]/6^4
	Output	{6,4,2,2,6,1,2,5,2,2,2,2,3,1,1}
	Output	0.0270062
	Output	0.02703
	Output	{{1,1,1,1},{1,1,1,2},{1,1,1,3},{1,1,1,4},{1,1,2,1},{1,1,2,2},{1,1,2,3},{1,1,3,1},{1
		,1,3,2},{1,1,4,1},{1,2,1,1},{1,2,1,2},{1,2,1,3},{1,2,2,1},{1,2,2,2},{1,2,3,1},{1,3,
		1,1},{1,3,1,2},{1,3,2,1},{1,4,1,1},{2,1,1,1},{2,1,1,2},{2,1,1,3},{2,1,2,1},{2,1,2,2
		},{2,1,3,1},{2,2,1,1},{2,2,1,2},{2,2,2,1},{2,3,1,1},{3,1,1,1},{3,1,1,2},{3,1,2,1},{
		3,2,1,1},{4,1,1,1}}
	Output	0.0270062
		*)
		dice=DiscreteUniformDistribution[{1,6}];
		(* Generates 15 throws of the die using the RandomVariate function: *)
		RandomVariate[dice,15]
		(* Calculates the probability that the sum of four dice values is less than seven:
		*)
		N[
		Probability[
		x1+x2+x3+x4<=7,
		{x1\[Distributed]dice,x2\[Distributed]dice,x3\[Distributed]dice,x4\[Distributed]dic
		e}
		]
		]
		*)
		N[
		411 413

(* This code models a fair six-sided die using a discrete uniform distribution and then performs a few calculations to find the probability that the sum of four dice values is less than seven. It uses the Tuples function to generate all possible outcomes of four dice throws and selects only those outcomes where the sum of the four dice values is less than or equal to seven. The length of this list is divided by 6^4 to obtain the theoretical probability: *) (* Defines the distribution and assigns it to the variable "dice": (* Verify by generating random dice throws, in this case 10^5 times four dice throws:

  .6) 

	Example 12.2		
	Let 𝑋 be a RV with PDF 𝑓(𝑥) =	1 √2𝜋	𝑒 -𝑥 2 2 , -∞ < 𝑥 < ∞. (We call such RV a standard normal RV.) Find the MGF
	of 𝑋.		
	Solution		
	By the definition of MGF, we have	
			𝑀 𝑋

  But if we focus on a time interval during which the rate is roughly constant, such as from 2 to 4 p.m. during workdays, the exponential distribution can be used as a good approximate model for the time until the next phone call arrives. Similar caveats apply to the following examples which yield approximately exponentially distributed variables: o The time until a radioactive particle decays, or the time between clicks of a Geiger counter o The time it takes before your next telephone call o The time until default (on payment to company debt holders) in reduced-form credit risk modeling • Reliability engineering: The exponential distribution is commonly used to model the time to failure of components or systems in reliability engineering. It helps in estimating the reliability and mean time between failures of devices. • Queueing theory: In queueing theory, exponential distribution is used to model the interarrival times of customers or entities in a queuing system. It helps analyze waiting times and queue lengths in various scenarios, such as telecommunications networks or service centers. • Radioactive decay:

  Since the smallest value of a set of numbers is greater than 𝑥 if and only if all values are greater than 𝑥, we have

Theorem 12.3: If 𝑋 1 , 𝑋 2 , . .., 𝑋 𝑛 are independent exponential RVs having respective parameters 𝜆 1 , 𝜆 1 , 𝜆 2 . .., 𝜆 𝑛 , then min(𝑋 1 , 𝑋 2 , . . . , 𝑋 𝑛 ) is exponential with parameter ∑ 𝜆 𝑖 𝑛 𝑖=1 . Proof:

  𝛽𝑒 -𝛽𝑥 , respectively. Comparing this with the PDF of the exponential distribution 𝑓 𝑋 (𝑥) = 𝜆𝑒 -𝜆𝑥 , you can see that they are equivalent.

	Theorem 12.5: If 𝑋~Gamma(𝑘, 𝜃), then, 𝑀 𝑋 (𝑡) = (1 -𝜃𝑡) -𝑘 = (1 -𝐸[𝑋] = 𝑘𝜃 = 𝑡 𝛽 𝑉(𝑋) = 𝑘𝜃 2 =	) 𝛼 -𝛼 𝛽 , 𝛼 𝛽 2 .	for 𝑡 < 𝛽 =	1 𝜃	,	(12.21) (12.22) (12.23)
	Proof:					
	MGF,					

-𝑥 𝜃 /𝜃 or 𝑓 𝑋 (𝑥) = 432

  If 𝑋 𝑖 has a Gamma(𝑘 𝑖 , 𝜃) distribution for 𝑖 = 1, 2, . . . , 𝑛 (i.e., all distributions have the same scale parameter 𝜃), then

	𝑉(𝑋) = 𝐸[𝑋 2 ] -(𝐸[𝑋]) 2 = (𝑘 + 1)𝑘𝜃 2 -(𝑘𝜃) 2 = 𝑘𝜃 2 .
	𝑛	𝑛		
	∑ 𝑋 𝑖	~Gamma (∑ 𝑘 𝑖	, 𝜃),
	𝑖=1	𝑖=1		(12.24)
	provided all 𝑋 𝑖 are independent.			
	Theorem 12.7: If 𝑋~Gamma(𝑘, 𝜃), then, for any 𝑐 > 0,		
	𝑐𝑋~Gamma(𝑘, 𝑐𝜃),	(12.25)
	by MGFs, or equivalently, if 𝑋~Gamma(𝛼, 𝛽) (shape-rate parameterization)
	𝑐𝑋~Gamma (𝛼,	𝛽 𝑐	).	(12.26)
	Therefore,			
					433

∎ Theorem 12.6: Example 12.8 Suppose that telephone calls arriving at a particular switchboard follow a Poisson process with an average of 5 calls coming per minute. What is the probability that up to a minute will elapse by the time 2 calls have come in to the switchboard? Solution The Poisson process applies, with time until 2 Poisson events following a gamma distribution with 𝜃 = 1/5 and 𝑘 = 2. Denote by 𝑋 the time in minutes that transpires before 2 calls come. The required probability is given by NProbability[0<=x<=1,x \[Distributed]GammaDistribution[2,1/5]] 0.959572

  If 𝑋 𝑖 , 𝑖 = 1,2, . . . , 𝑛 are 𝑛 independent normal variates with mean 𝜇 𝑖 and variance 𝜎 𝑖 2 respectively, then their linear combination, 𝑌 = ∑ 𝑎 𝑖 𝑋 𝑖 If 𝑋 is normal RV with mean 𝜇 and variance 𝜎2 

			= 𝑒 ∑ 𝜇 𝑖 𝑡 𝑛 𝑖=1	+ 𝑡 2 2	∑ 𝑛 𝑖=1	𝜎 𝑖 2	,
	which is the MGF of normal variate with mean ∑ 𝜇 𝑖 𝑛 𝑖=1	and variance ∑ 𝜎 𝑖 2 𝑛 𝑖=1	.
						∎
	Theorem 12.16: 𝑛 𝑖=1	, is normally distributed with mean ∑ 𝑎 𝑖 𝜇 𝑖 𝑛 𝑖=1	and variance ∑ 𝑎 𝑖 2 𝜎 𝑖 2 𝑛 𝑖=1
	where 𝑎 𝑖 's are constants.				
	Proof:				
	Given 𝑋 𝑖 ∼ 𝑁(𝜇 𝑖 , 𝜎 𝑖 2 ), implies 𝑀 𝑋 𝑖 (𝑡) = 𝑒 𝜇 𝑖 𝑡+ 1 2	𝑡 2 𝜎 𝑖 2	. Now
	𝑀 𝑌 (𝑡) = 𝑀 ∑ 𝑎 𝑖 𝑋 𝑖 𝑛 𝑖=1 𝑛	(𝑡)
				= ∏ 𝑀 𝑎 𝑖 𝑋 𝑖 (𝑡)
				𝑖=1 𝑛
				= ∏ 𝑀 𝑋 𝑖 (𝑎 𝑖 𝑡)
				𝑖=1 = ∏ 𝑒 𝜇 𝑖 𝑎 𝑖 𝑡+ 1 2 𝑛	𝑡 2 𝑎 𝑖 2 𝜎 𝑖 2
				𝑖=1 = 𝑒 ∑ 𝜇 𝑖 𝑎 𝑖 𝑡+ 1 2 𝑛 𝑖=1	𝑡 2 ∑ 𝑛 𝑖=1	𝑎 𝑖 2 𝜎 𝑖 2	,
	which is the MGF of normal variate with mean ∑ 𝑎 𝑖 𝜇 𝑖 𝑛 𝑖=1	and variance ∑ 𝑎 𝑖 2 𝜎 𝑖 2 𝑛 𝑖=1	.
						∎
	Theorem 12.17:				
	2 , 𝜎 1 2 + 𝜎 2 2 ).				
	variance 𝜎 𝑖 2 respectively, then 𝑌 = ∑ 𝑋 𝑖 𝑛 𝑖=1 𝑛	is normally distributed with mean ∑ 𝜇 𝑖 𝑛 𝑖=1 𝑛 𝑛	and variance ∑ 𝜎 𝑖 2 𝑛 𝑖=1	.	𝑖 and
	𝑌 = ∑ 𝑋 𝑖	∼ 𝑁 (∑ 𝜇 𝑖	, ∑ 𝜎 𝑖 2	).
	𝑖=1			𝑖=1	𝑖=1	(12.38)
	Proof:				
	Given 𝑋 𝑖 ∼ 𝑁(𝜇 𝑖 , 𝜎 𝑖 2 ), implies 𝑀 𝑋 𝑖 (𝑡) = 𝑒 𝜇 𝑖 𝑡+ 1 2	𝑡 2 𝜎 𝑖 2	. Now
			𝑀 𝑌 (𝑡) = 𝑀 ∑ 𝑋 𝑖 𝑛 𝑖=1 𝑛	(𝑡)
				= ∏ 𝑀 𝑋 𝑖 (𝑡)
			𝑖=1 = ∏ 𝑒 𝜇 𝑖 𝑡+ 1 2 𝑛	𝑡 2 𝜎 𝑖 2
				𝑖=1
						440

∎ Theorem 12.15 (Additive Property): If 𝑋 𝑖 , 𝑖 = 1,2, . . . , 𝑛 are 𝑛 independent normal variates with mean 𝜇

  The curve extends from -∞ to +∞. 4. Mean = Median = Mode =0. 5. In a standard normal distribution 68.27% of the items lies between -1 and +1, 95.45% of observations are lying between -2 and +2. and 99.73% of observations lies between -3 and +3.Suppose 𝑋 ∼ 𝑁(𝜇, 𝜎 2 ) and we are interested in finding the probability of the variate 𝑋 lying between two values, say, 𝑎 and 𝑏. To determine this, we first make the transformation 𝑍 =

	3. 𝑋-𝜇 𝜎	.
	Definition (Standardizing to Calculate a Probability): Suppose that 𝑋 is a normal RV with mean 𝜇 and variance
	𝜎 2 . Then,								
	𝑃(𝑋 ≤ 𝑥) = 𝑃 ( 𝑋 -𝜇 𝜎 where 𝑍 is a standard normal RV, and 𝑧 = 𝑥-𝜇 𝜎 is the 𝑧-value obtained by standardizing 𝑋. ≤ 𝑥 -𝜇 𝜎 ) = 𝑃(𝑍 ≤ 𝑧),	(12.46)
	Hence,								
	where 𝑧 1 =	𝑎-𝜇 𝜎	𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃 ( 𝑎 -𝜇 𝜎 𝑏-𝜇 and 𝑧 2 = 𝜎	<	𝑋 -𝜇 𝜎	<	𝑏 -𝜇 𝜎	) = 𝑃(𝑧 1 < 𝑍 < 𝑧 2 ),	(12.47)
									1 √2𝜋	.
										442

465 Mathematica Examples 13.24

  

	Input	(* The code calculates and displays some descriptive statistics (mean, variance,
		standard deviation, kurtosis and skewness) for Uniform distribution with parameters
		a and b: *)	
		Grid[	
		Table[	
		{	
		statistics,	
		FullSimplify[statistics[UniformDistribution[{a,b}]]]
		},	
		{statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}}
		],	
		ItemStyle->12,	
		Alignment->{{Right,Left}},
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	Mean	(a+b)/2
		Variance	1/12 (a-b)^2
		StandardDeviation (-a + b)/(2 Sqrt[3])
		Kurtosis	9/5
		Skewness	0
	Mathematica Examples 13.25	
	Input	(* The code calculates and displays some additional descriptive statistics (moments,
		central moments, and factorial moments) for Uniform distribution with parameters a
		and b: *)	
		Grid[	
		Table[	
		{	
		statistics,	
		FullSimplify[statistics[UniformDistribution[{a,b}],1]],
		FullSimplify[statistics[UniformDistribution[{a,b}],2]]
		},	
		{statistics,{Moment,CentralMoment,FactorialMoment}}
		],	
		ItemStyle->12,	
		Alignment->{{Right,Left}},
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	Moment	(a+b)/2 1/3 (a^2+a b+b^2)
		CentralMoment	

  The code generates a dataset of 1000 observations from a Gamma distribution with parameters α=1.7 and β=2. Then, it computes the sample mean and quartiles of the data, and plots a histogram of the data and plot of the PDF. Additionally, the code adds vertical lines to the plot corresponding to the sample mean and quartiles: *)

		],		
		ItemStyle->12,		
		Alignment->{{Right,Left}},
		Frame->All,		
		Spacings->{Automatic,0.8}
		]		
	Output	Moment	α β	α (1+α) β^2
		CentralMoment	0	α β^2
		FactorialMoment α β	α β (-1+β+α β)
	Mathematica Examples 13.63		
	Input	(* data=RandomVariate[	
		GammaDistribution[1.7,2],
		10000		
		];		
		mean=Mean[data];		
		quartiles=Quantile[	
		data,		
		{0.25,0.5,0.75}	
		Table[ ];		
		{ Show[ statistics, Histogram[ FullSimplify[statistics[GammaDistribution[α,β]]] data, }, Automatic, {statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}} "PDF", ], Epilog->{ ItemStyle->12, Directive[Red,Thickness[0.006]], Alignment->{{Right,Left}}, Frame->All, Line
		Spacings->{Automatic,0.8}
		]		
	Output	Mean	α β	
		Variance	α β^2
		StandardDeviation Sqrt[α] β
		Kurtosis	3+6/α
		Skewness	2/Sqrt[α]
	Mathematica Examples 13.62		
	Input	(* The code calculates and displays some additional descriptive statistics (moments,
		central moments, and factorial moments) for a Gamma distribution with parameters α
		and β: *)		
		Grid[		
		Table[		
		{		
		statistics,		
				499

FullSimplify[statistics[GammaDistribution[α,β],1]], FullSimplify[statistics[GammaDistribution[α,β],2]] }, {statistics,{Moment,CentralMoment,FactorialMoment}}

Examples 13.70

  

	ed=EstimatedDistribution[
	sampledata,
	GammaDistribution[α,β]
	],
	{i,1,20}
	]
	pdf0ed=Table[
	PDF[estim0distributions[[i]],x],
	{i,1,20}
	];
	(* Visualizes the resulting estimated distributions *)
	Plot[
	pdf0ed,
	{x,0,15},
	PlotRange->Full,
	ImageSize->400,
	PlotStyle->Directive[Purple,Opacity[0.3],Thickness[0.002]]
	]
	(* Visualizes 100 random points generated from two random samples *)
	table=Table[
	dist=GammaDistribution[1.7,2];
	sampledata=RandomVariate[
	dist,
	100],
	{i,1,2}
	];
	ListPlot[
	table,
	ImageSize->320,
	Filling->Axis,
	PlotStyle->Directive[Opacity[0.5],Thickness[0.003]]
	]
	Histogram[
	table,
	Automatic,
	LabelingFunction->Above,
	ChartLegends->{"Sample 1","Sample 2"},
	ChartStyle->{Directive[Opacity[0.2],Red],Directive[Opacity[0.2],Purple]},
	ImageSize->320
	]
	estim0distributions=Table[
	dist=GammaDistribution[1.7,2];
	sampledata=RandomVariate[
	dist,
	100
	];
	505

Output {GammaDistribution[1.82845,1.90159],GammaDistribution[2.02431,1.66529],GammaDistrib ution[1.69342,2.08188],GammaDistribution[1.77679,1.9663],GammaDistribution[1.56903, 2.1404],GammaDistribution[1.85814,1.89476],GammaDistribution[1.56202,1.98928],Gamma Distribution[1.65214,2.14826],GammaDistribution[2.18432,1.41547],GammaDistribution[ 1.65386,2.05039],GammaDistribution[1.7418,2.13234],GammaDistribution[1.62585,1.8542 6],GammaDistribution[1.77923,1.79503],GammaDistribution[1.52099,2.25253],GammaDistr ibution[1.81334,1.79421],GammaDistribution[1.5542,2.13024],GammaDistribution[1.5141 9,2.23658],GammaDistribution[2.22074,1.43941],GammaDistribution[2.41646,1.39435],Ga mmaDistribution[1.80294,1.80006]} 506 Output Output Output Mathematica

509 Output Mathematica Examples 13.72 Input

  

	Output	Manipulate[ Module[ { 2 -n e -x/2 x -1+n Gamma[n] {dist1,dist2,data1,data2}, x > 0 SeedRandom[seed]; 0 True
	Output	{	dist1=GammaDistribution[α1,β1]; dist2=GammaDistribution[α2,β2]; 2 -n e -x/2 x -1+n x > 0 Gamma[n] data1=RandomVariate[dist1,n]; data2=RandomVariate[dist2,n]; 0 True
	Column[ { Mathematica Examples 13.73
	Input	Show[ (* ChiDistribution is a special case of GammaDistribution: *)
			ListPlot[
			data1,
			ImageSize->320,
			PlotStyle->Blue
			],
			ListPlot[
			data2,
			ImageSize->320,
			PlotStyle->Red
			]
			],
			Show[
			Plot[
			{PDF[dist1,x],PDF[dist2,x]},
			{x,Min[{data1,data2}],Max[{data1,data2}]},
			PlotLegends->{"Distribution 1","Distribution 2"},
			PlotRange->All,
			PlotStyle->{Blue,Red},
			ImageSize->320
			],
			Histogram[
			{data1,data2},
			Automatic,
			"PDF",
			ChartLegends->{"sample data1","sample data2"},
			ChartStyle->{Directive[Opacity[0.2],Red],Directive[Opacity[0.2],Purple]},
			ImageSize->320
			]
			]
			}
			]
			],
			{{α1,6},0.1,10,0.1},
			{{β1,2},0.1,10,0.1},
			{{α2,6},0.1,10,0.1},
			{{β2,2},0.1,10,0.1},
			{{n,500},{100,500,1000,2000}},
			{{seed,1234},ControlType->None}
			]
		PDF[
			ChiSquareDistribution[2 n],
			x
			]
		PDF[
			GammaDistribution[n,2],
			x
			]
			508 510

(* ChiSquareDistribution is a special case of gamma distribution: *)

  The code generates a dataset of 1000 observations from a normal distribution with parameters μ=1 and σ=3. Then, it computes the sample mean and quartiles of the data, and plots a histogram of the data and plot of the PDF. Additionally, the code adds vertical lines to the plot corresponding to the sample mean and quartiles: *)

	CHAPTER 13	MATHEMATICA LAB: CONTINUOUS RANDOM VARIABLES
		{	
		statistics,	
		FullSimplify[statistics[NormalDistribution[μ,σ],1]],
		FullSimplify[statistics[NormalDistribution[μ,σ],2]]
		},	
		{statistics,{Moment,CentralMoment,FactorialMoment}}
		],	
		ItemStyle->12,	
		Alignment->{{Right,Left}},
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	Moment	μ μ^2+σ^2
		CentralMoment	0 σ^2
		FactorialMoment μ (-1+μ) μ+σ^2
	Mathematica Examples 13.85	
	Input	(* data=RandomVariate[
		NormalDistribution[1,3],
		1000	
		];	
		mean=Mean[data];	
		quartiles=Quantile[
		data,	
		{0.25,0.5,0.75}
		];	
		Table[	
		{ Show[	
		statistics, Histogram[	
		FullSimplify[statistics[NormalDistribution[μ,σ]]] data,
		}, Automatic,	
		{statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}} "PDF",
		], Epilog->{	
		ItemStyle->12, Directive[Red,Thickness[0.006]],
		Alignment->{{Right,Left}}, Line
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	Mean	μ
		Variance	σ^2
		StandardDeviation σ
		Kurtosis	3
		Skewness	0
	Mathematica Examples 13.84	
	Input	(Grid[	
		Table[	
			518

* The code calculates and displays some additional descriptive statistics (moments, central moments, and factorial moments) for a Normal Distribution with parameters μ and σ: *)

  PMF): Given discrete RVs 𝑋 and 𝑌 with joint PMF 𝑓 𝑋𝑌 (𝑥, 𝑦), the conditional PMF of 𝑌 given 𝑋 = 𝑥 𝑖 is Notice that if 𝑋 and 𝑌 are independent, then 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) = 𝑓 𝑌 (𝑦 𝑗 ), 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 ) = 𝑓 𝑋 (𝑥 𝑖 ).

			𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) =	𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ) 𝑓 𝑋 (𝑥 𝑖 )	, 𝑓 𝑋 (𝑥 𝑖 ) > 0.	(14.42)
	Properties of 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ):			
			0 ≤ 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) ≤ 1,	(14.43.1)
			∑ 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 )	= 1.
			𝑦 𝑗			(14.43.2)
			𝜇 𝑌|𝑥 𝑖 = 𝐸(𝑌|𝑥 𝑖 ) = ∑ 𝑦 𝑗	𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ).
				𝑦 𝑗		(14.45)
	The conditional variance of 𝑌, given that 𝑋 = 𝑥 𝑖 , is defined by
	𝜎 𝑌|𝑥 𝑖 2	= Var(𝑌|𝑥 𝑖 ) = 𝐸 ((𝑌 -𝜇 𝑌|𝑥 𝑖 ) 2 |𝑥 𝑖 ) = ∑(𝑦 𝑗 -𝜇 𝑌|𝑥 𝑖 )	2	𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) = 𝐸(𝑌 2 |𝑥 𝑖 ) -[𝐸(𝑌|𝑥 𝑖 )] 2
				𝑦 𝑗		(14.46)
	Properties of 𝑓 𝑌|𝑋 (𝑦|𝑥):	𝑓 𝑌|𝑋 (𝑦|𝑥) =	𝑓 𝑋𝑌 (𝑥, 𝑦) 𝑓 𝑋 (𝑥)	, 𝑓 𝑋 (𝑥) > 0.	(14.47)
			𝑓 𝑌|𝑋 (𝑦|𝑥) ≥ 0,	(14.48.1)

(14.44) 

Definition (Conditional Mean and Variance): If (𝑋, 𝑌) is a discrete bivariate RV with joint PMF 𝑓 𝑋𝑌 (𝑥 𝑖 , 𝑦 𝑗 ), then the conditional mean (or conditional expectation) of 𝑌, given that 𝑋 = 𝑥 𝑖 , is defined by Definition (Conditional PDF): If (𝑋, 𝑌) is a continuous bivariate RV with joint PDF 𝑓 𝑋𝑌 (𝑥, 𝑦), then the conditional PDF of 𝑌, given that 𝑋 = 𝑥, 𝑓 𝑌|𝑥 (𝑦|𝑥), is defined by

  Consider the bivariate RV (𝑋, 𝑌) Example 14.4, find the conditional PMFs 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) and 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 ).

							6		1/4			
	𝑋 = 5			1/3		1/5		1/5		1/3		
	𝑋 = 6		1/2		1/4		1/6		1/4		1/2	
	𝑋 = 7	1		1/3		1/5		1/5		1/3		1
	𝑋 = 8		1/2		1/4		1/6		1/4		1/2	
	𝑋 = 9			1/3		1/5		1/5		1/3		
	𝑋 = 10				1/4		1/6		1/4			
	𝑋 = 11					1/5		1/5				
	𝑋 = 12						1/6					
	.∑ 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 ) 𝑥 𝑖	1	1	1	1	1	1	1	1	1	1	1
	Example 14.12											

CHAPTER 14 BIVARIATE RANDOM VARIABLES AND DISTRIBUTIONS 591 Theorem 14.7:

  If 𝑋 1 , 𝑋 2 , … , 𝑋 𝑘 have a multinomial distribution, the marginal probability distribution of 𝑋 𝑖 is binomial with 𝐸[𝑋 𝑖 ] = 𝑛𝑝 𝑖 and 𝑉(𝑋 𝑖 ) = 𝑛𝑝 𝑖 (1 -𝑝 𝑖 ).

	(14.57)
	Proof:

) 7 = 35 6 5 ≈ 0.0045.

  If 𝑋 1 , 𝑋 2 , … , 𝑋 𝑘 have a multinomial distribution, we have Cov(𝑋 𝑖 , 𝑋 𝑗 ) = -𝑛𝑝 𝑖 𝑝 𝑗 ,

			𝑘,	
	𝐸[𝑋 𝑖 ] = 𝑛𝑝 𝑖 ,		
	𝑉(𝑋 𝑖 ) = 𝑛𝑝 𝑖 (1 -𝑝 𝑖 ).		
				(14.58)
	𝜌(𝑋 𝑖 , 𝑋 𝑗 ) = -√	𝑝 𝑖 𝑝 𝑗 (1 -𝑝 𝑖 )(1 -𝑝 𝑗 )	.	(14.59)
	Proof:			

∎

Theorem 14.8:

Examples 15.8

  

	Mathematica Examples 15.10
	Input	(* Covariance and Correlation Work with a discrete multivariate distribution: *)
		MatrixForm[	
		Covariance[	
			MultivariatePoissonDistribution[μ,{2,4,5}]
			]		
		]		
		MatrixForm[	
		Correlation[
			MultivariatePoissonDistribution[μ,{2,4}]
			]		
		]		
	Output	2 + μ	μ	μ
		(	μ	4 + μ	μ	)
			μ	μ	5 + μ
	Output			1	μ √2 + μ√4 + μ
		(	μ √2 + μ√4 + μ		1	)
	Mathematica Examples 15.11
	Input	(* Covariance and Correlation Work with a derived distributions: *)
		MatrixForm[	
		Covariance[	
			ProductDistribution[
			ExponentialDistribution[1/2],
			NormalDistribution[2,5]]
			]		
	Input	(* Covariance and Correlation Work with a large arrays: *) ]
		array1=RandomVariate[ExponentialDistribution[1/2],10^3]; MatrixForm[ array2=RandomVariate[NormalDistribution[2,5],10^3]; Correlation[ Covariance[array1,array2] ProductDistribution[ Correlation[RandomReal[1,10^7],RandomReal[1,10^7]] ExponentialDistribution[1/2],
	Output Output	NormalDistribution[2,5]] -0.0500528 ] -0.000519733 ]
	Mathematica Examples 15.9 Input Output ({ (* Covariance and Correlation Work with a continuous multivariate distribution: *) {4, 0}, dist=BinormalDistribution[ρ]; {0, 25} MatrixForm[ Covariance[dist] })
	Output	] ({ MatrixForm[ {1, 0}, Correlation[dist] {0, 1} ] })
	Output Mathematica Examples 15.12 ({ {1, ρ}, Input (* The diagonal elements of a correlation matrix are equal to 1:*) {ρ, 1} Diagonal[ }) Output Correlation[ ({ RandomReal[20,{50,4}] {1, ρ}, ] {ρ, 1} ] }) Output {1.
						601

,1.,1.,1.}

602 Mathematica Examples 15.13

  Input(* In this code, data1 and data2 represent the two sets of data for which you want to calculate the covariance. The Mean function is used to compute the mean of each dataset. Then, the covariance is calculated by subtracting the mean of each dataset from their respective data points, multiplying the differences together, taking the average of these products and scale the average by (length/(length-1) for the covariance of sample data: *)

	(*Define the function*)
	covariance[data1_,data2_]:=Module[
	{mean1,mean2,covariance},
	mean1=Mean[data1];
	mean2=Mean[data2];
	length=Length[data1];
	covariance=Mean[(data1-mean1) (data2-mean2)]*(length/(length-1));
	covariance]
	(*Test the function*)
	data1=RandomReal[1,10^7];
	data2=RandomReal[1,10^7];
	covariance[data1,data2]
	Covariance[data1,data2]

Output CHAPTER 15 MATHEMATICA LAB: BIVARIATE RANDOM VARIABLES 607 Mathematica Examples 15.21

  

	Input UNIT 15.2 (* Covariance and Correlation are the same for standardized vectors: *)
		sample=RandomVariate[DiscreteUniformDistribution[{{2,3},{4,5}}],200];
	Covariance[sample]===Correlation[sample] Covariance[Standardize[sample]]===Correlation[sample] BINORMAL DISTRIBUTION
	Output	False
	Output	True
	Mathematica Examples 15.22 Input BinormalDistribution[{μ1,μ2 (*The diagonal of a covariance matrix is the variance:*) data=RandomReal[5,{20,5}]; }, {σ1,σ2},ρ]
		Diagonal[Covariance[data]]
		Variance[data]
	Output	{2.11181,2.41371,2.21731,2.19794,2.85778}
	Output	{2.11181,2.41371,2.21731,2.19794,2.85778}
		608

9,Appearance->"Labeled"} ]

609 Output Mathematica Examples 15.25

  bivariate normal distribution defined over pairs of real numbers with the property that each of the first and second marginal distributions is normal distribution, i.e. the variables x

				PlotRange->{{-6,6},{-6,6},All},
				ImageSize->250,
				PlotLabel->"BinormalDistribution[{0,0},{2,2},0.7]"
				],
			Plot3D[
				PDF[
				d,
				{x,y}
				],
				{x,-6,6},
				{y,-6,6},
				ColorFunction->"Rainbow",
				PlotPoints->35,
	Input	(* The code generates a series of 3D plots, each representing the CDF of a binormal PlotRange->All,
		distribution with {μ1,μ2}={0,0}, {σ1,σ2}={2,2}, and ImageSize->250,	different correlation
		coefficients (ρ values): *) PlotLabel->"BinormalDistribution[{0,0},{2,2},0.7]"
				]
		ParallelTable[
	Output		Plot3D[ CDF[
				BinormalDistribution[{0,0},{2,2},ρ],
				{x,y}
				],
				{x,-7,7},
				{y,-7,7},
				PlotPoints->25,
				ColorFunction->"Rainbow",
		and ImageSize->200 y ], y\[Distributed]NormalDistribution[μ2,σ2], respectively: *) satisfy x\[Distributed]NormalDistribution[μ1,σ1] {ρ,{-0.7,0,0.7}}	and
		PDF[ ]
	Output		BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ], {x,y}
			]	
	Output	𝑒	-(𝑥-𝜇1) 2 𝜎1 2 -	(𝑦-𝜇2) 2 𝜎2 2 + 2(1-𝜌 2 ) 2(𝑥-𝜇1)(𝑦-𝜇2)𝜌 𝜎1 𝜎2
				2 𝜋 √1 -𝜌 2 𝜎1 𝜎2
	Mathematica Examples 15.24
	Input	(* The code generates a series of 3D plots, each representing the PDF of a binormal
		distribution with {μ1,μ2}={0,0}, {σ1,σ2}={2,2}, and	different correlation
		coefficients (ρ values): *)
	Table[ Mathematica Examples 15.26
	Input	Plot3D[ (* The code generates a 3D-histogram and a 3D-plot of the PDF for a binormal
		PDF[ distribution with parameters {μ1,μ2}={0,0}, {σ1,σ2}={2,2}, ρ=0.7 and sample size
		BinormalDistribution[{0,0},{2,2},ρ], 10000: *)
				{x,y}
		], sample=RandomVariate[
				{x,-7,7}, d=BinormalDistribution[{0,0},{2,2},0.7],
				{y,-7,7}, 10^4
				PlotPoints->25, ];
		{		PlotRange->All,
			ColorFunction->"Rainbow", Histogram3D[
				ImageSize->200 sample,
				], 30,
			{ρ,{-0.7,0,0.7}} "PDF",
			]	ColorFunction->"Rainbow",
					610

Mathematica Examples 15.27

  

	Mathematica Examples 15.28 data=RandomVariate[
	Input	(* The code calculates and displays some additional descriptive statistics (moments, BinormalDistribution[{1,1},{2,2},0.6],
		central moments, and factorial moments) for a binormal distribution with 1000
		parameters{μ1,μ2}, {σ1,σ2}, and ρ: *) ];
		Grid[ sampleMean=Mean[data]
		Table[ quartiles=Quartiles[data]
		{	
		statistics, histogram=Histogram3D[
			FullSimplify[statistics[BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ],{1,1}]], data,
			FullSimplify[statistics[BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ],{1,2}]] ColorFunction->"Rainbow",
			}, PlotRange->All,
		{statistics,{Moment,CentralMoment,FactorialMoment}} ImageSize->400,
		], PlotLabel->"3D Histogram of Data"
		ItemStyle->12, ];
		Alignment->{{Right,Left}},
		Frame->All, meanLine=Graphics3D[
		Spacings->{Automatic,0.8} {
		]	Red,
			Thickness[0.005],
	Output	Moment Line[{{sampleMean[[1]],-10,0},{sampleMean[[1]],10,0}}], μ1 μ2+ρ σ1 σ2 2 μ2 ρ σ1 σ2+μ1 (μ2^2+σ2^2) CentralMoment ρ σ1 σ2 Line[{{-10,sampleMean[[2]],0},{10,sampleMean[[2]],0}}] 0 } FactorialMoment μ1 μ2+ρ σ1 σ2 (-1+2 μ2) ρ σ1 σ2+μ1 ((-1+μ2) μ2+σ2^2) ];
	Mathematica Examples 15.29
	Input	(* Covariance matrix of a binormal distribution: *)
		MatrixForm[
		Covariance[BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ]]
		]	
	Output	σ1^2	ρ σ1 σ2
		ρ σ1 σ2	σ2^2
	Mathematica Examples 15.30
	Input	(* Correlation of a standard binormal distribution: *)
		MatrixForm[
		Correlation[
	Input	BinormalDistribution[ρ] (* The code calculates and displays some descriptive statistics (mean, variance, ] standard deviation, kurtosis and skewness) for a binormal distribution with parameters {μ1,μ2}, {σ1,σ2}, ρ: *) ]
		Grid[
	Output	Table[ 1 ρ
		{ ρ 1
			statistics,
	FullSimplify[statistics[BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ]]] Mathematica Examples 15.31 }, Input (* Marginal distributions of binormal distribution are normal: *) {statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}} dist=BinormalDistribution[{μ1,μ2},{σ1,σ2},ρ]; ], MarginalDistribution[dist,1] ItemStyle->12, Alignment->{{Right,Left}}, MarginalDistribution[dist,2]
	Output Output	Frame->All, NormalDistribution[μ1,σ1] Spacings->{Automatic,0.8} ] NormalDistribution[μ2,σ2]
	Output	Mean	{μ1,μ2}
		Variance	{σ1^2,σ2^2}
		StandardDeviation {σ1,σ2}
		Kurtosis	{3,3}
		Skewness	{0,0}
				611 612

Mathematica Examples 15.32

Input

(* The code generates a dataset of 1000 observations from a binormal distribution with parameters {μ1,μ2}={1,1}, {σ1,σ2}={2,2}, ρ=0.6. Then, it computes the sample mean and quartiles of the data and plots a histogram of the data. The code adds vertical lines to the plot corresponding to the sample mean and quartiles: *)

Mathematica Examples 15.41 Input

  

	Mathematica Examples 15.42 UNIT 15.3					
	Input	(* Continuous multivariate distribution:*)	
	Probability[(x<1)&&(y<1),{x,y}\[Distributed]BinormalDistribution[{1,1},{2,2},0.5]] Probability[x+y<1,{x,y}\[Distributed]BinormalDistribution[{1,1},{2,2},0.5]] Probability[0<x+y,{x,y}\[Distributed]BinormalDistribution[{1,1},{2,2},0.5]] MULTINOMIAL DISTRIBUTION
		Probability[x+y<7/10\[Conditioned]y>1/3,{x,y}\[Distributed]BinormalDistribution[{1,
		1},{2,2},0.5]]						
	Output Output Output {p1,p2,…,pm}] 0.333333 0.718149 0.386415 MultinomialDistribution[n,	represents a multinomial distribution with n trials and probabilities pi.
	Output	0.111865						
	Mathematica Examples 15.43					
	Input	(* MultinomialDistribution[n,{p1,p2,…,pm}] represents a discrete multivariate
		statistical	distribution	each	of	the	variables	x1,x2,...xm	satisfies
		xj\[Distributed]BinomialDistribution[n,pj] for j=1,2,...,m: *)
		PDF[						
		MultinomialDistribution[n,{p1,p2,p3}],		
		{x1,x2,x3}						
		]						
	Output	{ p1 x1 p2 x2 p3 x3 Binomial[n, x3]Binomial[x1 + x2, x2]	x1 + x2 + x3 == n &&x1 >= 0&&x2 >= 0&&x3 >= 0
				0				True
	Mathematica Examples 15.44 Input (* The code generates a series of Discrete 3D plots, each representing the PMF of a ,100} ] multinomial distribution with {p1,p2}={0.7,0.3}, and different values of n= (4, 5, Output 10): *)
		Table[						
		DiscretePlot3D[					
		PDF[						
		MultinomialDistribution[n,{0.			
									624

(* The code generates a Manipulate interface that allows interactive exploration of a bivariate normal distribution. The interface consists of two plots displayed side by side. The left plot is a 3D plot, and the right plot is a 2D density plot. The 623
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	1	
	Sample Observations in Sample
	1	𝑥 1 𝑥 2
	2	𝑥 1 𝑥 3
	3	𝑥 1 𝑥 4
	4	𝑥 2 𝑥 3
	5	𝑥 2 𝑥 4
	6	𝑥 3 𝑥 4

Table 16 .2

 16 Using the values in Table16.2, we can find the sampling distribution of 𝑋 ̅ and 𝑚, shown in Table16.3 and graphed in Figure16.1. The sampling distribution of 𝑋 ̅ and 𝑚.

				Sample Sample elements 𝑋 ̅ 𝑚		
				1		3,6,9	6	6		
				2		3,6,12	7	6		
				3		3,6,15	8	6		
				4		3,9,12	8	9		
				5		3,9,15	9	9		
				6		3,12,15	10 12		
				7		6,9,12	9	9		
				8		6,9,15	10 9		
				9		6,12,15	11 12		
				10		9,12,15	12 12		
	Table 16.3								
	𝑋 ̅	6	7	8	9	10 11 12		𝑚	6	9	12
	𝑝(𝑋 ̅ ) 0.1 0.1 0.2 0.2 0.2 0.1 0.1		𝑝(𝑚) 0.3 0.4 0.3

16.2 Sampling Distribution of Means Theorem 16.1 (The Sampling Distribution of the Sample Mean,

  𝑿 ̅ ): If a random sample of 𝑛 measurements is selected from a population with mean 𝜇 and standard deviation 𝜎, the sampling distribution of the sample mean 𝑋 ̅ As a result, we can conclude that 𝑋 ̅ is also centered on the population mean 𝜇, but its spread becomes more and more reduced as the sample size increases.Let 𝑋 1 , 𝑋 2 ,..., 𝑋 𝑛 be a sample of values from the population. The sample mean is defined by Since the value of the sample mean 𝑋 ̅ is determined by the values of the RVs in the sample, it follows that 𝑋 ̅ is also a RV. Its expected value and variance are obtained as follows:

	will have		
	𝜇 𝑋 ̅ = 𝜇, 𝜎 𝑋 ̅ = 𝜎 √𝑛	.	(16.2.1) (16.2.2)
	Proof:		
	𝑋 ̅ =	𝑋 1 + 𝑋 2 +. . . + 𝑋 𝑛 𝑛	.
	𝜇 𝑋 ̅ = 𝐸[𝑋 ̅ ] = 𝐸 ( 𝑋 1 + 𝑋 2 + ⋯ + 𝑋 𝑛 𝑛 = 𝐸 ( 𝑋 1 𝑛 ) + 𝐸 ( 𝑋 2 𝑛 ) + ⋯ + 𝐸 ( ) 𝑋 𝑛 𝑛 = 1 𝑛 [𝐸(𝑋 1 ) + 𝐸(𝑋 2 ) + ⋯ + 𝐸(𝑋 𝑛 )] )

  𝑀 𝑋 1 (𝑎 1 𝑡) ⋅ 𝑀 𝑋 2 (𝑎 2 𝑡) … 𝑀 𝑋 𝑛 (𝑎 𝑛 𝑡) Let 𝑋 1 , 𝑋 2 ,..., 𝑋 𝑛 be a random sample of size 𝑛 from 𝑁(𝜇, 𝜎 2 ). The sampling distribution of 𝑋 ̅ =

	𝑛
	= ∏ 𝑀 𝑋 𝑖 (𝑎 𝑖 𝑡) .
	𝑖=1
	∎
	Theorem 16.3: 1 𝑛 ∑ 𝑋 𝑖 𝑛 𝑖=1

  𝑋 1 , 𝑋 2 ,..., 𝑋 𝑛 is a random sample of size 𝑛 from 𝑁(𝜇, 𝜎 2 ), we can consider them as IID RVs having the same distribution 𝑁(𝜇, 𝜎 2 ). Therefore, If 𝑋 1 , 𝑋 2 ,..., 𝑋 𝑛 is a random sample of size 𝑛 taken from a population (either finite or infinite) with mean 𝜇 and finite variance 𝜎 2 and if 𝑋 ̅ is the sample mean, the limiting form of the distribution of

	CHAPTER 16							SAMPLING THEORY
			𝑓 𝑋 ̅ (𝑥) =	√𝑛 𝜎√2𝜋	𝑒	𝑛(𝑥-𝜇) 2 -2𝜎 2	; -∞ < 𝑥 < ∞.
								∎
	Theorem 16.4 (CLT): 𝑍 =	𝑋 ̅ -𝜇 𝜎	,
	as 𝑛 → ∞, is the standard normal distribution.		√𝑛	(16.5)
			𝑀 𝑋 𝑖 (𝑡) = 𝑒 𝜇𝑡+ 1 2	𝑡 2 𝜎 2 ; 𝑖 = 1,2, … , 𝑛,
	and						
			𝑀 𝑋 ̅ (𝑡) = 𝑀1 𝑛 = 𝑀 ∑ 𝑋 𝑖 ∑ 𝑋 𝑖 𝑛 𝑖=1 𝑛 𝑖=1 ( (𝑡) 𝑡 ) 𝑛 = ∏ 𝑀 𝑋 𝑖 ( 𝑛 𝑡 ) 𝑛 𝑖=1 = ∏ 𝑒 𝜇 𝑡 𝑛 + 1 2 ( 𝑡 𝑛 ) 𝑛	2	𝜎 2
					𝑖=1 = (𝑒 𝜇 𝑡 𝑛	+ 1 2	( 𝑛 𝑡	)	2	𝜎 2 )	𝑛
					= 𝑒 𝜇𝑡+ 1 2	𝜎 2 𝑛	𝑡 2 ,
	which is the MGF of 𝑁(𝜇,	𝜎 2 𝑛	). Therefore,				
				𝑋 ̅ ~𝑁 (𝜇,	𝜎 2 𝑛	),
	and its PDF is given by						
								641

  3/2 and its higher powers.

	CHAPTER 16																				SAMPLING THEORY
	ln 𝑀 𝑍 (𝑡) = ln (𝑒	-√𝑛𝜇𝑡 𝜎	[1 + 𝜇 1	𝑡 𝜎√𝑛		+	𝜇 2 2!	( 𝜎√𝑛 𝑡	) 2	+ 𝑂 ( 𝑛 3/2 )] 1	𝑛	)
	= ln 𝑒	-√𝑛𝜇𝑡 𝜎	+ ln [1 + 𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	( 𝜎√𝑛 𝑡	) 2	+ 𝑂 ( 𝑛 3/2 )] 1	𝑛
	=	-√𝑛𝜇𝑡 𝜎	+ 𝑛 ln [1 + 𝜇 1		𝑡 𝜎√𝑛	+	𝜇 2 2!	( 𝜎√𝑛 𝑡	) 2	+ 𝑂 ( 𝑛 3/2 )] 1
	=	-√𝑛𝜇𝑡 𝜎	+ 𝑛 ln [1 + {𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	(	𝑡 𝜎√𝑛	) 2	+ 𝑂 (	1 𝑛 3/2 )}]
	=	-√𝑛𝜇𝑡 𝜎	+ 𝑛 [{𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	( 𝜎√𝑛 𝑡	) 2	+ 𝑂 ( 𝑛 3/2 )} -1	1 2	{𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	(	𝑡 𝜎√𝑛	) 2	+ 𝑂 ( 𝑛 3/2 )} 1	2	+ ⋯ ]
	=	-√𝑛𝜇𝑡 𝜎	+ [𝑛 {𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	( 𝜎√𝑛 𝑡	) 2	+ 𝑂 ( 𝑛 3/2 )} -1	𝑛 2	{𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	(	𝑡 𝜎√𝑛	) 2	+ 𝑂 (	2 𝑛 3/2 )} 1	+ ⋯ ]
	=	-√𝑛𝜇𝑡 𝜎	+ [ √𝑛𝜇 1 𝑡 𝜎	+	1 2		𝜇 2 𝑡 2 𝜎 2 + 𝑂 (	1 𝑛 1/2 ) -	𝑛 2	{𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	(	𝑡 𝜎√𝑛	) 2	+ 𝑂 (	2 𝑛 3/2 )} 1	+ ⋯ ]
	=	-√𝑛𝜇𝑡 𝜎	+	√𝑛𝜇 1 𝑡 𝜎	+	1 2	𝜇 2 𝑡 2 𝜎 2 + 𝑂 ( 𝑛 1/2 ) + [-1	𝑛 2	{𝜇 1	𝑡 𝜎√𝑛	+	𝜇 2 2!	( 𝜎√𝑛 𝑡	) 2	+ 𝑂 ( 𝑛 3/2 )} 2 1	+ ⋯ ]
	= =	-√𝑛𝜇𝑡 𝜎 𝑡 2 2 + 𝑂 ( + 𝑛 1/2 ), √𝑛𝜇 1 𝑡 𝜎 1	+	1 2	𝑡 2 𝜎 2 (𝜇 2 -𝜇 1 2 ) + 𝑂 ( 𝑛 1/2 ) 1
	where ln(1 + 𝑥) = 𝑥 -	𝑥 2 2	+	𝑥 3 3	-	𝑥 4 4		+ . .., 𝜇 1 = 𝜇 and 𝜇 2 -𝜇 1 2 = 𝜎 2 . Now, we have lim 𝑛→∞
																					642

  , 𝑋 2 , . .. , 𝑋 𝑛 be a random sample of size 𝑛 from 𝑁(𝜇, 𝜎 2 ). Then,

						2 ) variate with 1
	degree of freedom. Thus, if 𝑋 ∼ 𝑁(𝜇, 𝜎 2 ), then		
		𝑍 =	𝑋 -𝜇 𝜎	∼ 𝑁(0,1),	(16.10)
	and				
	Let 𝑋 1	𝑍 2 = ( 𝑋 -𝜇 𝜎	2 )	∼ 𝜒 2 (1).	(16.11)

  1) Let 𝑋 1 , 𝑋 2 , . .. , 𝑋 𝑛 be a random sample of size 𝑛 from 𝑁(𝜇, 𝜎 2 ). Then, If 𝑋 ∼ 𝜒 2 (𝑛), then 𝐸[𝑋] = 𝑛 and 𝑉(𝑋) = 2𝑛 (a mean equal to its degrees of freedom and a variance equal to twice its degrees of freedom.)

	𝑋 ̅ ∼ 𝑁 (𝜇,	𝜎 2 𝑛	) ⇒	𝑋 ̅ -𝜇 𝜎 √𝑛	∼ 𝑁(0,1),	(16.20)
	and					
	(	𝑋 ̅ -𝜇 𝜎/√𝑛	)	2	∼ 𝜒 2 (1).	(16.21)
	(2) Theorem 16.10: If 𝑋 ∼ 𝜒 2 (𝑛), then as 𝑛 → ∞, we have
	𝑋 -𝑛 √2𝑛	→ 𝑁(0,1).	(16.22)
	Proof:					

  Let 𝑋 1 , 𝑋 2 , . .. , 𝑋 𝑛 be IID 𝑁(𝜇, 𝜎 2 ) RVs. Then 𝑋 ̅ and 𝑆 2 are independent. If 𝑆 2 is the variance of a random sample of size 𝑛 taken from a normal population having the variance 𝜎 2 , then the statistic -squared distribution with 𝑛 -1 degrees of freedom. i.e.,

	= ∏ 𝐸 [exp {𝑋 𝑖 ( 𝑛 𝑖=1 = ∏ exp {𝜇 ( 𝑛𝑡 𝑖 -𝑛𝑡 ̅ + 𝑡 𝑛𝑡 𝑖 -𝑛𝑡 ̅ + 𝑡 𝑛 𝑛 ) + ( )}] 𝑛𝑡 𝑖 -𝑛𝑡 ̅ + 𝑡 𝑛 𝑛 𝑖=1 = ∏ exp { 𝜇 𝑛 (𝑛(𝑡 𝑖 -𝑡 ̅ ) + 𝑡) + 𝑛 (𝑛 -1)𝑆 2 ~𝜒2 (𝑛 -1). 𝜎 2 is given by 𝑓 (𝑛-1)𝑆 2 (𝑛-1)𝑆 2 𝜎 2 𝜎 2 (𝑥) = 𝑛-1 (1/2) 2 Γ((𝑛 -1)/2) 𝑒 -𝑥 2 𝑥 ( 𝑛-1 2 -1) ; 0 < 𝑥 < ∞. ) 2 𝜎 2 2 𝜎 2 2𝑛 2 (𝑛(𝑡 𝑖 -𝑡 ̅ ) + 𝑡) 2 } } 𝑖=1 = exp { 𝜇 𝑛 (𝑛 ∑(𝑡 𝑖 -𝑡 ̅ ) 𝑛 𝑖=1 + 𝑛𝑡) + 𝑛 We have, 𝑋 𝑖 ~𝑁(𝜇, 𝜎 2 ), 𝑖 = 1,2, … , 𝑛. Then Hence, the PDF of Proof: 𝜎 2 2𝑛 2 ∑(𝑛(𝑡 𝑖 -𝑡 ̅ ) + 𝑡) 2 𝑖=1 = exp { 𝜇 𝑛 (𝑛 ∑ 𝑡 𝑖 𝑛 𝑖=1 -𝑛 2 𝑡 ̅ + 𝑛𝑡) + 𝜎 2 𝑛 ∑ ( 2 𝑛 𝑋 𝑖 -𝜇 ) ~𝜒2 (𝑛). 𝜎 𝑖=1 2𝑛 2 ∑(𝑛(𝑡 𝑖 -𝑡 ̅ ) + 𝑡) 2 } } 𝑖=1 = exp { 𝜇 𝑛 (𝑛 2 𝑡 ̅ -𝑛 2 𝑡 ̅ + 𝑛𝑡) + = exp {𝜇𝑡 + 𝑖=1 2𝑛 2 ∑{𝑡 2 + 2𝑛𝑡(𝑡 𝑖 -𝑡 ̅ ) + 𝑛 2 (𝑡 𝑖 -𝑡 ̅ ) 2 } } 𝜎 2 𝑛 𝑖=1 2𝑛 2 ∑(𝑛(𝑡 𝑖 -𝑡 ̅ ) + 𝑡) 2 } 𝜎 2 𝑛 Also, as 𝑋 ̅ ~𝑁(𝜇,	(16.25) (16.26)
	= exp {𝜇𝑡 +	𝑛 𝑖=1 2𝑛 2 {∑ 𝑡 2 𝜎 2	𝑛 𝑖=1 + ∑ 2𝑛𝑡(𝑡 𝑖 -𝑡 ̅ )	𝑛 𝑖=1 + ∑ 𝑛 2 (𝑡 𝑖 -𝑡 ̅ ) 2	}}
	= exp {𝜇𝑡 +	𝑛 𝑖=1 2𝑛 2 {𝑛𝑡 2 + 2𝑛𝑡 ∑(𝑡 𝑖 -𝑡 ̅ ) 𝜎 2	𝑛 𝑖=1 + 𝑛 2 ∑(𝑡 𝑖 -𝑡 ̅ ) 2	}}
	= exp {𝜇𝑡 +	𝑛 𝑖=1 2𝑛 2 {𝑛𝑡 2 + 2𝑛𝑡 (∑ 𝑡 𝑖 𝜎 2	𝑛 𝑖=1 -∑ 𝑡 ̅ ) + 𝑛 2 ∑(𝑡 𝑖 -𝑡 ̅ ) 2 𝑛 𝑖=1	}}
	= exp {𝜇𝑡 +	𝑛 𝑖=1 2𝑛 2 {𝑛𝑡 2 + 2𝑛𝑡(𝑛𝑡 ̅ -𝑛𝑡 ̅ ) + 𝑛 2 ∑(𝑡 𝑖 -𝑡 ̅ ) 2 𝜎 2	}}
	= exp 𝜇𝑡 exp [ 2𝑛 2 {𝑛𝑡 2 + 𝑛 2 ∑(𝑡 𝑖 -𝑡 ̅ ) 2 𝑛 𝜎 2 𝑖=1 = exp (𝜇𝑡 + 𝑡 2 𝜎 2 2𝑛 ) exp [ 𝑛 𝜎 2 𝑖=1 2 ∑(𝑡 𝑖 -𝑡 ̅ ) 2 ]	}]
	= 𝑀 𝑋 ̅ (𝑡)𝑀 (𝑋 1 -𝑋 ̅) ,(𝑋 2 -𝑋 ̅) ,… (𝑋 𝑛 -𝑋 ̅) (𝑡 1 , 𝑡 2 , … , 𝑡 𝑛 )
	= 𝑀(𝑡, 0,0, … ,0)𝑀(0, 𝑡 1 , 𝑡 2 , … , 𝑡 𝑛 ).	
	Therefore, 𝑋 ̅ , (𝑋 1 -𝑋 ̅ ), (𝑋 2 -𝑋 ̅ ),… (𝑋 𝑛 -𝑋 ̅ ) are independent.	
						∎
	Theorem 16.12: Theorem 16.13: (𝑛 -1)𝑆 2 𝜎 2	( = ∑ 𝑛𝑡 𝑖 -𝑛𝑡 ̅ + 𝑡 𝑛 𝑛 (𝑋 𝑖 -𝑋 ̅ ) 2 )}] , 𝜎 2 𝑖=1		(16.24)
	653 has a chi654

  is a value from a chi-squared distribution with 6 degrees of freedom. The desired values can be found by setting the upper tail area and lower tail area each equal to 0.025. Since 95% of the 𝜒 2 values with 6 degrees of freedom fall between 1.2374 -14.4494, the computed value with 𝜎 2 = 1 is reasonable, and therefore the manufacturer has no reason to suspect that the standard deviation is other than 1 year. , 𝑋 2 , ., 𝑋 13 be a random sample from a normal distribution with 𝜎 2 = 0.7. Find two positive numbers 𝑎 and 𝑏 such that the sample variance 𝑆 2 satisfies 𝑃(𝑎 ≤ 𝑆 2 ≤ 𝑏) = 0.90.

	9 -3) 2 + (2.4 -3) 2 + (3. -3) 2 + (3.5 -3) 2 + (4.2 -3) 2 + (4 -3) 2 + (2 -3) 2 6	= 0.877.
	Then				
		𝜒 2 =	(𝑛 -1)𝑆 2 𝜎 2	=	(6)(0.877) 1	= 5.26,
	αleft={0.025,0.05,0.10,0.5,0.90,0.95,0.975}		
	αright=1-αleft				
	ν=6;				
	N[Quantile[ChiSquareDistribution[ν],αleft]]		
	InverseCDF[ChiSquareDistribution[ν],αleft]		
	{0.025,0.05,0.1,0.5,0.9,0.95,0.975}		
	{0.975,0.95,0.9,0.5,0.1,0.05,0.025}		
	{1.23734,1.63538,2.20413,5.34812,10.6446,12.5916,14.4494}
	{1.23734,1.63538,2.20413,5.34812,10.6446,12.5916,14.4494}
	Example 16.10				
	Let 𝑋 1 Solution				
	1. We know that	(𝑛-1)𝑆 2 𝜎 2			

  According to CLT, if a simple random sample of size 𝑛 is taken from a population whose mean and variance are 𝜇 and 𝜎 2 respectively, then the sample mean 𝑋 ̅ will be distributed normally with mean 𝜇 and variance

	8. Hence, we have:			
	(𝑛 -1)𝑏 𝜎 2	=	12𝑏 0.7	= InverseCDF[ChiSquareDistribution[ν],0.95] = 21.0261,
	which implies 𝑏 = 1.22652. Similarly,
	(𝑛 -1)𝑎 𝜎 2	=	12𝑎 0.7	= InverseCDF[ChiSquareDistribution[ν],0.05] = 5.22603,
	So, we have 𝑎 = 0.304852. Hence,
					𝑃(0.305 ≤ 𝑆 2 ≤ 1.227) = 0.90.
	It is important to note that this is not the only interval that would satisfy: 𝑃(𝑎 ≤ 𝑆 2 ≤ 𝑏) = 0.90. but it is
	a convenient one.			
	αleft={0.025,0.05,0.10,0.5,0.90,0.95,0.975}
	αright=1-αleft			
	ν=12;			
	N[Quantile[ChiSquareDistribution[ν],αleft]]
	InverseCDF[ChiSquareDistribution[ν],αleft]
	{0.025,0.05,0.1,0.5,0.9,0.95,0.975}
	{0.975,0.95,0.9,0.5,0.1,0.05,0.025}
	{4.40379,5.22603,6.3038,11.3403,18.5493,21.0261,23.3367}
	{4.40379,5.22603,6.3038,11.3403,18.5493,21.0261,23.3367}
	16.5 Student 𝒕-Distribution			
					𝜎 2 𝑛	, for large 𝑛. In
	other words, for a population which is not normal
			𝑋 ̅ -𝜇 𝜎/√𝑛	→ 𝑁(0,1) as 𝑛 → ∞.

  Theorem 16.16: If 𝑋 is a RV having a student 𝑡-distribution with 𝑛 degrees of freedom, then

	𝐸[𝑋] = 0; 𝑛 > 1, Var(𝑋) = 𝑛 𝑛 -2 ; 𝑛 > 2.	(16.34.1) (16.34.2)
	Proof:	

•

  The 𝑡-distribution is used extensively in problems that deal with inference about the population mean or in problems that involve comparative samples (i.e., in cases where one is trying to determine if means from two samples are significantly different). Let 𝑋 1 , 𝑋 2 , . .. , 𝑋 𝑚 be a random sample of size 𝑚 from 𝑁(𝜇 1 , 𝜎 2 ), and 𝑌 1 , 𝑌 2 , . .. , 𝑌 𝑛 be a random sample of size 𝑛 from 𝑁(𝜇 2 , 𝜎 2 ) where 𝜎 2 is unknown. Then,

	Theorem 16.18: 𝑇 =	(𝑋 ̅ -𝑌 ̅ ) -(𝜇 1 -𝜇 2 ) √ (𝑚 -1)𝑆 1 2 + (𝑛 -1)𝑆 2 2 𝑚 + 𝑛 -2 ( 1 𝑚	+	1 𝑛	)	~𝑡(𝑚 + 𝑛 -2).	(16.39)
	If 𝜇 1 = 𝜇 2 , then		𝑇 =	(𝑋 ̅ -𝑌 ̅ ) 2 + (𝑛 -1)𝑆 2 √ (𝑚 -1)𝑆 1 2 𝑚 + 𝑛 -2	(	1 𝑚	+	1 𝑛	)	~𝑡(𝑚 + 𝑛 -2).	(16.40)
	Proof:									
	Here, 𝑋 ̅ ~𝑁(𝜇 1 ,	𝜎 2 𝑚	) and 𝑌 ̅ ~𝑁(𝜇 2 ,	𝜎 2 𝑛	). Therefore,
				(𝑋 ̅ -𝑌 ̅ )~𝑁 (𝜇 1 -𝜇 2 ,	𝜎 2 𝑚	+	𝜎 2 𝑛	)	⇒	(𝑋 ̅ -𝑌 ̅ ) -(𝜇 1 -𝜇 2 ) √ 𝜎 2 𝑚 𝑛 + 𝜎 2	~𝑁(0,1),
	(𝑚 -1)𝑆 1 2 𝜎 2	~𝜒2 (𝑚 -1) and	(𝑛 -1)𝑆 2 2 𝜎 2	~𝜒2 (𝑛 -1)	⇒	(𝑚 -1)𝑆 1 2 𝜎 2	+	2 (𝑛 -1)𝑆 2 𝜎 2	~𝜒2 (𝑚 + 𝑛 -2).
	Hence, by the definition of 𝑇-statistic		
							𝑇 =	(𝑋 ̅ -𝑌 ̅ ) -(𝜇 1 -𝜇 2 ) √ 𝜎 2 𝑚 + 𝜎 2 𝑛	√	1 (𝑚 -1)𝑆 1 2 𝜎 2 + 𝑚 + 𝑛 -2 (𝑛 -1)𝑆 2 2 𝜎 2
								= =	(𝑋 ̅ -𝑌 ̅ ) -(𝜇 1 -𝜇 2 ) 𝜎 √ 1 𝑚 + 1 𝑛 (𝑋 ̅ -𝑌 ̅ ) -(𝜇 1 -𝜇 2 ) 1 𝜎 √ (𝑚 -1)𝑆 1 1 2 + (𝑛 -1)𝑆 2 2 𝑚 + 𝑛 -2 √ (𝑚 -1)𝑆 1 2 + (𝑛 -1)𝑆 2 2 𝑚 + 𝑛 -2 ( 1 𝑚 + 𝑛 ) 1 ~𝑡(𝑚 + 𝑛 -2).
	If 𝜇 1 = 𝜇 2 , then								
					𝑇 =	(𝑋 ̅ -𝑌 ̅ ) 2 + (𝑛 -1)𝑆 2 √ (𝑚 -1)𝑆 1 2 𝑚 + 𝑛 -2	(	1 𝑚	+	𝑛 1	)	~𝑡(𝑚 + 𝑛 -2).
											664

Theorem 16.19:

  If 𝑋 is an 𝐹-distributed RV with 𝑚 and 𝑛 degrees of freedom, then At first it might be surprising that the mean depends only on the degrees of freedom of the denominator. Write 𝑋 as

	𝐸[𝑋] =	𝑛 𝑛 -2	; for 𝑛 > 2,	(16.43)
	and			
	Var(𝑋) =	2𝑛 2 (𝑚 + 𝑛 -2) 𝑚(𝑛 -2) 2 (𝑛 -4)	; for 𝑛 > 4.	(16.44)
	Proof:			
			𝑋 = ( 𝑚 𝑈	) / ( 𝑉 𝑛	),
	then			
			𝐸[𝑋] = 𝐸 [( 𝑚 𝑈 = 𝑛 𝑚 𝐸[𝑈]𝐸[ ) / ( 𝑉 𝑛 1 𝑉	)] ].

  𝑛, 𝑚) i.e., the reciprocal of an 𝑋 variable also has an 𝐹 distribution, but with the degrees of freedom reversed.• From the definition 𝑇 = 𝑍/√𝑌/𝑛 of a 𝑡 RV, it follows that, It is important in some applications to know the sampling distribution of the difference in means 𝑋 ̅ 1 -𝑋 ̅ 2 of two samples. Similarly, we may need the sampling distribution of the difference in variances 𝑆 1 2 -𝑆 2 2 . It turns out, however, that this distribution is rather complicated. Because of this, we consider instead the statistic 𝑆 1 2 /𝑆 2 2 , since a large or small ratio would indicate a large difference, while a ratio nearly equal to 1 would indicate a small difference. The sampling distribution in such a case can be found by using the 𝐹 distribution. Suppose there are two normal populations, say, population-I and population-II under study, the population-I has variance 𝜎 1 2 and population-II has variance 𝜎 2 2 . For describing the sampling distribution for ratio of population variances, we consider all possible samples of same size 𝑛 1 from population-I and for each sample we calculate sample variance 𝑆 1 2 . Similarly, calculate sample variance 𝑆 2 2 from each sample of same size 𝑛 2 drawn from population-II. Then we consider all possible values of the ratio of the variances 𝑆 1 2 and 𝑆 2 2

	1 𝑋	∼ 𝐹(𝑛, 𝑚). If 𝑋 = ∼ 𝐹(𝑇 2 = 𝑈 𝑚 / 𝑉 𝑛 ∼ 𝐹(𝑚, 𝑛) then 1 𝑋 = 𝑉 𝑛 / 𝑈 𝑚 𝜒 2 (1) 𝑍 2 𝑌 ∼ 1 [𝜒 2 (𝑛)] = 𝐹(1, 𝑛).
		𝑛	𝑛	(16.45)
	Sampling Distribution of Ratio of Sample Variance

  1. 

	Solution
	Input
	N[
	Quantile[
	FRatioDistribution[5,15],
	{0.05,0.95,0.025,0.975,0.05,0.95,0.01,0.9}
	]
	]
	InverseCDF[
	FRatioDistribution[5,15],
	{0.05,0.95,0.025,0.975,0.05,0.95,0.01,0.9}
	]
	Output
	{0.216508,2.90129,0.155576,3.57642,0.216508,2.90129,0.102857,2.27302}
	{0.216508,2.90129,0.155576,3.57642,0.216508,2.90129,0.102857,2.27302}

Table 16 . 4 .

 164 Information on the Five Employees.

	Sample	Knows Math
	Ahmed	Yes
	Mohamed No
	Eman	No
	Ali	Yes
	Ayman	Yes

  675is approximately standard normal. Hence, if sample size is sufficiently large, such that 𝑛𝑝 > 5 and 𝑛𝑞 > 5 then by CLT, the sampling distribution of sample proportion 𝑝̂ is approximately normally distributed with mean 𝑝 and variance 𝑝𝑞/𝑛 where, 𝑞 = 1-𝑝, i.e., 𝑁 is the population size and the factor (𝑁 -𝑛)/(𝑁 -1) is called finite population correction.

	𝑍 =	𝑋 -𝑛𝑝 √𝑛𝑝(1 -𝑝)	=	𝑛 ( √𝑛𝑝(1 -𝑝) 𝑋 𝑛 -𝑝)	=	𝑋 𝑛 √ 𝑝(1 -𝑝) -𝑝 𝑛	=	𝑝̂-𝑝 𝑝𝑞 √ 𝑛	.	(16.57)
	is approximately standard normal.								
	Remark:									
	• Note that the population is binomially distributed.				
	• If the sampling is done without replacement from a finite population then the mean and variance of sample
	proportion is given by								
				𝐸[𝑝] = 𝑝,						(16.58)
	and variance									
			Var(𝑝) =	𝑁 -𝑛 𝑁 -1	𝑝𝑞 𝑛	,		(16.59)
	where,									

  .60) As we have seen in case of single proportion, if sample size is sufficiently large, such that 𝑛𝑝 > 5 and 𝑛𝑞 > 5 then by CLT, the sampling distribution of sample proportion 𝑝̂ is approximately normally distributed with mean 𝑝 and variance 𝑝𝑞/𝑛 where, 𝑞 = 1-𝑝. Therefore, if 𝑛 1 and 𝑛 2 are sufficiently large, such that 𝑛 1 𝑝 1 > 5, 𝑛 1 𝑞 1 > 5, 𝑛 2 𝑝 2 > 5 and 𝑛 2 𝑞 2 > 5, then 𝑞 1 = 1-𝑝 1 and 𝑞 2 = 1-𝑝 2 . Hence, we have

	𝑝̂1 ∼ 𝑁 (𝑝 1 ,	𝑝 1 𝑞 1 𝑛 1	) and 𝑝̂2 ∼ 𝑁 (𝑝 2 ,	𝑝 2 𝑞 2 𝑛 2	),	(16.61)
	where, 𝑝̂1 -𝑝̂2 ∼ 𝑁 (𝑝 1 -𝑝 2 ,	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	).	(16.62)

  The plot demonstrates how the variance of the sample distribution decreases as the sample size increases, where we can see that the PDFs become more concentrated around the mean as n increases, indicating a decrease in variance which is a fundamental principle of statistical inference: *)

	UNIT 17.1
	SAMPLING DISTRIBUTIONS OF MEANS FOR LARGE
	SAMPLE WITH NORMAL DISTRIBUTION
	Mathematica Examples 17.1
	Input	(* The code generates a plot of the theoretical sample distributions with different
		sample sizes n (1, 5, 10, 20 and 30) from a normal population with mean (μ=0 and
		σ=2), using the probability density function (PDF) of a normal distribution with mean
		0 and variance 2/sqrt(n). Plot[
		Evaluate[
		Table[
		PDF[
		NormalDistribution[0,2/Sqrt[n]],
		[0.783<=z,z\[Distributed]NormalDistribution[0,1]]
	0.216814
		679

691 Output Mathematica Examples 17.12 Input

  690sampling distribution of the mean converges to a normal distribution as the sample size increases. The sampleMeans function generates 1000 random samples of size n from the population, calculates the mean of each sample, and then plots the histogram of the means using Histogram function. The Manipulate function shows both the histogram of the population distribution and the histogram of the sampling distribution of the mean for each sample size. The green dashed line represents the population mean, and its position is fixed across all sample sizes. The code demonstrates the CLT, as the sample size increases, the sampling distribution becomes more symmetric and less skewed, and its peak becomes more concentrated around the population mean: *) Note that the sampling is still random even when using the Accumulate[observations] and Range[n] method to calculate the sample means. The RandomVariate function is used to generate the initial observations from the given probability distribution, and this function generates random samples based on the specified distribution. After generating the observations, the Accumulate[observations] and Range[n] method is used to calculate the sample means. This method does not change the random nature of the original observations. Instead, it simply performs a mathematical operation on the observed data to calculate the sample means: *)

	(* Define a non-normal population distribution: *)
	population=RandomVariate[
	ExponentialDistribution[1/5],
	10000
	];
	populationMean=Mean[population];
	(* Define a function to generate and plot sample means: *)
	sampleMeans[n_]:=Module[
	{samples,means},
	samples=Table[
	RandomChoice[population,n],
	{i,1,1000}
	];
	means=Map[Mean,samples];
	Histogram[
	means,
	{0.08},
	"PDF",
	PlotRange->All,
	AxesLabel->{"Sample Mean","Probability Density"},
	ColorFunction->Function[Opacity[0.8]],
	ChartStyle->Purple,
	PlotLabel->Row[{"n = ",n}]
	]
	]
	(* Use Manipulate to explore the CLT: *)
	Manipulate[
	Show[
	Histogram[
	RandomVariate[
	ExponentialDistribution[1/5],
	10000
	],
	{0.08},
	"PDF",
	PlotRange->{0,0.8}, comparedata[distribution_,n_]:=Module[
	ColorFunction->Function[Opacity[0.3]], {title=distribution,observations,sampleMeans,μ},
	ChartStyle->Blue,
	Epilog->{ observations=RandomVariate[ Directive[Green,Dashed,Thickness[0.006]], distribution, Line[{{populationMean,0},{populationMean,0.8}}] n } ], ];
	sampleMeans[n]
	],
	{n,5,100,5}
	]

(* The code generates sample data from four different probability distributions (Normal, Beta, Gamma, and Exponential) and creating a graph that compares the actual observations with the sample mean and true mean of the distributions. The graph includes the following features: a horizontal line indicating the true mean of the distribution; the area between the observations and the true mean line is filled with a purple color, while the sample means line is blue. Accumulate is a built-in function in Mathematica that generates a list of the cumulative sums of a list of numbers. In this case, Accumulate[observations] generates a list of cumulative sums of the observations list. Range[n] generates a list of integers from 1 to n, which represents the sample sizes. Dividing the cumulative sums of the observations by the sample sizes (which is represented by Range[n]) gives the sample means for each corresponding sample size. sampleMeans=Accumulate[observations]/Range[n]; μ=Mean[distribution];

693 Mathematica Examples 17.13

  Input(* This code is a demonstration of the CLT in 2D, which states that as the sample size increases, the distribution of sample means approaches a normal distribution with mean equal to the population mean and standard deviation equal to the population standard deviation divided by the square root of the sample size. In this case, the population distribution is uniform, which is not a normal distribution, but the CLT still applies. As the sample size increases, the 3D histograms become more bellshaped and symmetric, indicating that the sample means are approaching a normal distribution. Additionally, the 3D histograms become narrower,indicating that the standard deviation of the sample means is decreasing as the sample size increases. The code generates 3D histograms of sample means drawn from a uniform distribution on the interval [0,6]. The sample sizes n range from 1 to 10. The 3D histograms display the PDF of the sample means. The plot labels indicate the sample size for each 3D histogram: *)

	CHAPTER 17
	Table[
	Histogram3D[
	Table[
	Mean[
	RandomVariate[
	UniformDistribution[{0,6}],
	{n,2}
	]
	],
	100000
	],
	Automatic,
	"PDF",
	ColorFunction->"Rainbow",
	ImageSize->220,
	PlotLabel->{{"sample size n=",n}},
	AxesLabel->{"SM","PDF"}(* Sample Mean=SM. *)
	],
	{n,{1,2,3,10}}
	]
	Output
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  Input(* This code defines a 2D non-normal population and then generates and plots the sampling distribution of the mean for different sample sizes using the Manipulate function. The population distribution is defined as 2D uniform distribution on the interval [0,6]. The sampleMeans3d function generates 10,000 random samples of size n from this population, calculates the mean of each sample, and then plots the 3D histogram of the means using Histogram3D function. The Manipulate function allows the user to vary the sample size from 1 to 50 in increments of 1 and observe how the sampling distribution of the mean changes as the sample size increases. In our case, since the population distribution is non-normal, the sampling distribution of the mean is also non-normal for small sample size. However, as the sample size increases, the sampling distribution becomes more symmetric, and its peak becomes more concentrated around the population mean: *)

	population3d=RandomVariate[
	UniformDistribution[{0,6}],
	{10000,2}
	];
	(* Define a function to generate and plot sample means: *)
	sampleMeans3d[n_]:=Module[
	{samples,means},
	samples3d=Table[
	RandomChoice[
	population3d,n
	],
	{i,1,10000}
	];
	means3d=Map[Mean,samples3d];
	Row[
	Histogram3D[
	means3d,
	Automatic,
	"PDF",
	PlotRange->All,
	ImageSize->320
	],
	SmoothDensityHistogram[
	means3d,
	Automatic,
	"PDF",
	ColorFunction->"Rainbow",
	ImageSize->200,
	PlotLabel->{{"sample size n=",n}}
	]
	]
	]
	(* Use Manipulate to explore the sampling distributions of the mean: *)
	Manipulate[
	sampleMeans3d[n],
	{n,5,50,1}
	]

AxesLabel->{"Sample Mean","Probability Density"}, ColorFunction->"Rainbow", PlotLabel->Row[{"n = ",n}],

Mathematica Examples 17.27

  Input(* The code generates a dataset of 10000 observations from a chi square distribution with parameter ν=3. Then, it computes the sample mean and quartiles of the data, and plots a histogram of the data and plot of the PDF. Additionally, the code adds vertical lines to the plot corresponding to the sample mean and quartiles: *)

	CHAPTER 17	MATHEMATICA LAB: SAMPLING THEORY
		statistics, Histogram[	
		FullSimplify[statistics[ChiSquareDistribution[ν]]] data,
		}, Automatic,	
		{statistics,{Mean,Variance,StandardDeviation,Kurtosis,Skewness}} "PDF",
		], Epilog->{	
		ItemStyle->12, Directive[Red,Thickness[0.006]],
		Alignment->{{Right,Left}}, Line
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	Mean	ν
		Variance	2 ν
		StandardDeviation Sqrt[2] Sqrt[ν]
		Kurtosis	(3 (4+ν))/ν
		Skewness	2 Sqrt[2] Sqrt[1/ ν]
	Mathematica Examples 17.26	
	Input	(* The code calculates and displays some additional descriptive statistics (moments,
		central moments, and factorial moments) for a chi square distribution with parameter
		ν: *)	
		Grid[	
		Table[	
		{	
		statistics,	
		FullSimplify[statistics[ChiSquareDistribution[ν],1]],
		FullSimplify[statistics[ChiSquareDistribution[ν],2]]
		},	
		{statistics,{Moment,CentralMoment,FactorialMoment}}
		],	
		ItemStyle->12,	
		Alignment->{{Right,Left}},
		Frame->All,	
		Spacings->{Automatic,0.8}
		]	
	Output	], Moment	ν ν (2+ν)
		{{ν,1},1,6,0.1} CentralMoment	0 2 ν
		] FactorialMoment ν ν (1+ν)
	Output		
		data=RandomVariate[
		ChiSquareDistribution[3],
		10000	
		];	
		mean=Mean[data];	
		quartiles=Quantile[
		data,	
		{0.25,0.5,0.75}
		];	
		Show[	
			707

726 Output Mathematica Examples 17.47

  

	μ=5;
	σ=3;
	n=5;
	nSamples=10000;
	chiSquaredSamples=Table[
	normalsample=RandomVariate[NormalDistribution[μ,σ],n];(* Normal sample of size
	n. *)
	samplemeans=Mean[normalsample];(* Mean of normal sample. *)
	snm=(samplemeans-μ)/(σ/Sqrt[n]);(* Using central limit theory (CLT),
	standardizing normal sample means. *)
	squaredVars=snm^2,(* Square of the standard normal sample means. (chi-squared
	distribution with 1 degrees of freedom).*)
	{i,nSamples}
	];
	(* Plot the resulting chi-squared distribution: *)
	Show[
	Histogram[
	chiSquaredSamples,
	Automatic,
	"PDF",
	ColorFunction->Function[Opacity[0.6]],
	ChartStyle->Purple,
	ImageSize->300
	],
	Plot[
	PDF[
	ChiSquareDistribution[1],
	x
	],
	{x,0,5},
	PlotRange->{{0,5},{0,2}},
	PlotStyle->Darker[Red]
	]
	]
	Output

  𝑓(𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝜇, 𝜎 2 ) = ∏ 𝑓(𝑥 𝑖 ; 𝜇, 𝜎 2 )

	𝑛 𝑖=1	= ( 2𝜋𝜎 2 ) 1 𝑛/2	𝑒	-	∑ (𝑥 𝑖 -𝜇) 2 𝑛 𝑖=1 2𝜎 2
	Manipulate[				
	Module[				
	{n1,n2,σ1,σ2,sampleRatios},				
	n1=sampleSize1;				
	n2=sampleSize2;				
	σ1=stdDev1;				
	σ2=stdDev2;				
	(* Generate a large number of sample ratios: *)			
	sampleRatios=Table[				
	Module[				
	{sample1,sample2,var1,var2},				
	sample1=RandomVariate[NormalDistribution[0,σ1],n1];
	sample2=RandomVariate[NormalDistribution[0,σ2],n2];
	var1=Variance[sample1];				
	var2=Variance[sample2];				
	(var1/σ1^2)/(var2/σ2^2)				
	],				
	10000				
	];				
	(* Plot the sampling distribution: *)				
	Show[				
	Histogram[				
	sampleRatios,				
	Automatic,				

"PDF", PlotRange->All, ColorFunction->Function[{height},Opacity[height]], AxesLabel->{"Ratio of Sample Variances","Probability density"}, 788

  Those equations are then solved for the parameters of interest. The solutions are estimates of those parameters. Let 𝜇 𝑘 ′ = 𝐸[𝑋 𝑘 ] be the 𝑘th moment about the origin of a Let 𝑋 1 , . . . , 𝑋 𝑛 be a random sample from a gamma probability distribution with parameters 𝛼 and 𝛽. Find moment estimators for the unknown parameters 𝛼 and 𝛽. Solution For the gamma distribution, 𝐸[𝑋] = 𝛼𝛽, and 𝐸[𝑋 2 ] = 𝛼𝛽 2 + 𝛼 2 𝛽 2 . Because there are two parameters, we need to find the first two moment estimators. Equating sample moments to distribution (theoretical) moments, we have:

	RV 𝑋, whenever it exists. Let 𝑚 𝑘 ′ = by the MOMs is 𝑚 𝑘 ′ .	1 𝑛	∑ 𝑋 𝑖 𝑘 𝑛 𝑖=1	′ be the corresponding 𝑘th sample moment. Then, the estimator of 𝜇 𝑘
	Example 18.6						
					1 𝑛	𝑛 𝑖=1 ∑ 𝑥 𝑖	= 𝑥̅ = 𝛼𝛽,
	and			1 𝑛	𝑛 ∑ 𝑥 𝑖 2 𝑖=1	= 𝛼𝛽 2 + 𝛼 2 𝛽 2 . 1 𝑛	∑ 𝑥 𝑖 2 𝑛 𝑖=1	-𝑥̅ 2 ) /𝑥̅ .
	Therefore, the MOMs estimators for 𝛼 and 𝛽 are:	
		𝛼 ̂= 𝑋 ̅ 𝛽	,	and		𝛽 ̂= 1 𝑛	∑ 𝑋 𝑖 2 𝑛 𝑖=1 𝑋 ̅	-𝑋 ̅ 2	.
	Procedure 18.2.						

Solving for 𝛼 and 𝛽, we obtain the estimates as 𝛼 = 𝑥̅ /𝛽 and 𝛽 = (

Table 18 .1.

 18 How often will this interval work properly and enclose the parameter of interest? Refer to Figure18.4.

	confidence level 99.73% 99% 98% 96% 95.45% 95% 90%	80% 68.27% 50%
	𝑧 𝑐	3.00	2.58 2.33 2.05 2.00	1.96 1.645 1.28 1.00	0.6745

  is the 𝑧-value corresponding to an area 𝛼/2 in the upper tail of a standard normal 𝑧 distribution, 𝑛 is sample size, and 𝜎 is standard deviation of the population.If 𝝈 is unknownIt can be approximated by the sample standard deviation 𝑠 when the sample size is large (𝑛 ≥ 30) and the approximate CI is To find the large-sample CI for a population mean 𝜇, we begin with the statistic

	Theorem 18.1: A (𝟏 -𝜶) 𝟏𝟎𝟎% Large-sample CI for a Population Mean 𝝁
	If 𝝈 is known where 𝑧 𝛼/2 𝑥̅ ± 𝑧 𝛼/2 𝑥̅ ± 𝑧 𝛼/2	𝜎 √𝑛 𝑠 √𝑛	, .	(18.5) (18.6)
	Proof:			
				𝑍 =	𝑋 ̅ -𝜇 𝜎/√𝑛	,
	which has a standard normal distribution. If you write 𝑧 𝛼/2 as the value of 𝑧 with area 𝛼/2 to its right, then you can
	write			
	𝑃 (-𝑧 𝛼/2 <	𝑋 ̅ -𝜇 𝜎/√𝑛	< 𝑧 𝛼/2 ) = 1 -𝛼.
	You can rewrite this inequality as			
	𝑃 (-𝑧𝛼 2	𝜎 √𝑛	< 𝑋 ̅ -𝜇 < 𝑧𝛼

Sided Confidence Bounds on

  5. Multiply the critical value by the SE to obtain the ME, where the SE is given by Add the ME to the sample mean to calculate the upper bound of the CI. Upper bound = 𝑥̅ + ME. Random sample from normal population with variance known produced the following data: {9.8325,13.0659,9.18854,7.92993,9.26685,11.8435,11.7678,10.8883,10.808,8.27212,9.07788,11.9172,10.7207,8 .8947,13.734,11.6947,10.0054,10.9551,11.28,7.99447,8.26085,12.5101,10.9733,9.1944,6.4452,10.8001,10.4735, 8.49494,9.44695,9.66986}. 𝝁, 𝝈 𝟐 Unknown As long as the distribution is approximately bell shaped, CIs can be computed when 𝜎 2 is unknown by using the 𝑡distribution and we may expect very good results. Computed one-sided confidence bounds for 𝜇 with 𝜎 unknown are

	(* Compute the sample mean: *)				
	xbar=Mean[sample]				
	(* Determine confidence level: *)				
	confidenceLevel=0.95 ;				
	alpha=1-confidenceLevel;				
	(* Find critical value using standard normal distribution: *)
	criticalValue=Quantile[NormalDistribution[0,1],1-alpha];
	(* Calculate standard error: *)				
	s=StandardDeviation[sample]				
	n=Length[sample];				
	SE=s/Sqrt[n];				
	(* Calculate margin of error and upper bound: *)		
	ME=criticalValue*SE				
	(* Display the upper confidence bound: *)				
	upperBound=xbar+ME				
	{9.8325,13.0659,9.18854,7.92993,9.26685,11.8435,11.7678,10.8883,10.808,8.27212,9.07788,11.91
	72,10.7207,8.8947,13.734,11.6947,10.0054,10.9551,11.28,7.99447,8.26085,12.5101,10.9733,9.194
	4,6.4452,10.8001,10.4735,8.49494,9.44695,9.66986}		
	10.1802				
	1.67788				
	0.50388				
	10.6841				
	One-𝑥̅ + 𝑡 𝛼 𝑥̅ -𝑡 𝛼	𝑠 √𝑛 𝑠 √𝑛	, .			(18.9.1)
		ME = 𝑧 𝛼 ×	𝜎 √𝑛	.	𝜎 √𝑛	.
	6. Example 18.14				
						804

Obtain a 95% one-sided CI for 𝜇. Solution SeedRandom[2123]; (* Sample data: *) sample=RandomVariate[NormalDistribution[10,2],30]

  𝝈 𝟏 𝟐 and 𝝈 𝟐 𝟐 Known If 𝑥̅ 1 and 𝑥̅ 2 are the means of independent random samples of sizes 𝑛 1 and 𝑛 2 from populations with known is the 𝑧-value leaving an area of 𝛼/2 to the right.According to (16.9), we can expect the sampling distribution of 𝑋 ̅ 1 -𝑋 ̅ 2 to be approximately normally distributed with mean 𝜇 𝑋 ̅ 1 -𝑋 ̅ 2 = 𝜇 1 -𝜇 2 and standard deviation 𝜎 𝑋 ̅ 1 -𝑋 ̅ 2 = √𝜎 1

							𝑃	-𝑧𝛼 2		
							(					
	variances 𝜎 1 2 and 𝜎 2 2 , respectively, a 100(1 -𝛼)% CI for 𝜇 1 -𝜇 2 is given by
	(𝑥̅ 1 -𝑥̅ 2 ) -𝑧𝛼 2	√	𝜎 1 2 𝑛 1	+	𝜎 2 2 𝑛 2	< 𝜇 1 -𝜇 2 < (𝑥̅ 1 -𝑥̅ 2 ) + 𝑧𝛼 2	√	𝜎 1 2 𝑛 1	+	2 𝜎 2 𝑛 2	,	(18.13)
	where 𝑧 𝛼/2 Proof:											
											2 /𝑛 1 + 𝜎 2 2 /𝑛 2 . Therefore, we can assert with a
	probability of 1 -𝛼 that the standard normal variable					
					𝑍 =	(𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 )	
							√	𝜎 1 2 𝑛 1	+	2 𝜎 2 𝑛 2	
													807

.12) Theorem 18.4: Large-sample CI for 𝝁 𝟏 -𝝁 𝟐 , , will fall between -𝑧 𝛼/2 and 𝑧 𝛼/2 . Hence, we have 𝑃 (-𝑧 𝛼/2 < 𝑍 < 𝑧 𝛼/2 ) = 1 -𝛼.

Substituting for 𝑍, we state equivalently that

  [START_REF] Weiss | Introductory Statistics[END_REF]. Multiply the SE by the critical value 𝑧𝛼 Subtract the ME from the sample mean difference (𝑥̅ 1 -𝑥̅ 2 ) to calculate the lower bound of the CI. Similarly, add the ME to the sample mean difference to obtain the upper bound: If 𝑥̅ 1 and 𝑥̅ 2 are the means of independent random samples of sizes 𝑛 1 and 𝑛 2 , respectively, from approximately normal populations with unknown but equal variances, a 100(1 -𝛼)% CI for 𝜇 1 -𝜇 2 is given by is the 𝑡-value with 𝜈 = 𝑛 1 + 𝑛 2 -2 degrees of freedom, leaving an area of 𝛼/2 to the right.

	8.71357											
	7.04962											
	24.4768											
	{7.04962,24.4768}											
	Variances Unknown but Equal										
	Theorem 18.5: CI for 𝝁 𝟏 -𝝁 𝟐 , 𝝈 𝟏 𝟐 = 𝝈 𝟐 𝟐 but Both Unknown	
	(𝑥̅ 1 -𝑥̅ 2 ) -𝑡𝛼 2	𝑠 𝑝 √	1 𝑛 1	+	1 𝑛 2	< 𝜇 1 -𝜇 2 < (𝑥̅ 1 -𝑥̅ 2 ) + 𝑡𝛼 2	𝑠 𝑝 √	1 𝑛 1	+	1 𝑛 2	,	(18.14.1)
	where 𝑠 𝑝 is the pooled estimate of the population standard deviation,
			𝑠 𝑝 2 =	(𝑛 1 -1)𝑠 1 2 + (𝑛 2 -1)𝑠 2 2 (𝑛 1 + 𝑛 2 -2)	,	(18.14.2)
	and 𝑡 𝛼/2 Proof:											
	If 𝜎 1 2 = 𝜎 2 2 = 𝜎 2 , we obtain a standard normal variable of the form	
					𝑍 =	(𝑋 ̅ 1 -𝑋 ̅ 2 ) -(𝜇 1 -𝜇 2 ) √𝜎 2 ( 1 𝑛 1 + 𝑛 2 ) 1	.
	According to Theorem 16.3, the two RVs								
					(𝑛 1 -1)𝑆 1 2 𝜎 2	and	2 (𝑛 2 -1)𝑆 2 𝜎 2	,
	have chi-squared distributions with 𝑛 1 -1 and 𝑛 2 -1 degrees of freedom, respectively. Furthermore, they are
	independent chi-squared variables, since the random samples were selected independently. According to Theorem
	16.9,											
	𝑉 =	(𝑛 1 -1)𝑆 1 2 𝜎 2	+	(𝑛 2 -1)𝑆 2 2 𝜎 2	=	(𝑛 1 -1)𝑆 1 2 + (𝑛 2 -1)𝑆 2 2 𝜎 2	,
								to obtain the ME:	
								2				
										ME = 𝑧𝛼 2	× SE.
	7. Lower bound = (𝑥̅ 1 -𝑥̅ 2 ) -ME,
						Upper bound = (𝑥̅ 1 -𝑥̅ 2 ) + ME.
													809

Example 18.16 Independent random samples from two normal populations with equal variances but unknown produced the following data: Sample 1: {119.977,81.7225,72.2266,101.779,80.7805,82.0576,79.3684,70.6839,85.0673,59.4836,58.0297,57.1463,57.981 5,82.0756,81.3336,80.1593,84.2602,63.0735,131.321,74.0186,80.4339,58.8487,102.679,86.4697,86.468,87.6855 ,115.773,110.453,88.8101,56.0426}.

has a chi-squared distribution with 𝜈 = 𝑛 1 + 𝑛 2 -2 degrees of freedom. Since the preceding expressions for 𝑍 and 𝑉 can be shown to be independent, it follows from (16.31) that the statistic 𝑇

  Subtract the ME from the sample mean difference (𝑥̅ 1 -𝑥̅ 2 ) to calculate the lower bound of the CI. Similarly, add the ME to the sample mean difference to obtain the upper bound: Lower bound = (𝑥̅ 1 -𝑥̅ 2 ) -ME, Upper bound = (𝑥̅ 1 -𝑥̅ 2 ) + ME. 𝑥̅ 2 , and 𝑠 2 2 are the means and variances of independent random samples of sizes 𝑛 1 and 𝑛 2 , respectively, for normal populations with unknown and unequal variances, an approximate 100(1 -𝛼)% CI for 𝜇 1 -𝜇 2 is given by

	(*Step 8:Compute lower and upper bounds*)			
	lowerBound=(xbar1-xbar2)-ME					
	upperBound=(xbar1-xbar2)+ME					
	(*Display the confidence interval*)					
	{lowerBound,upperBound}					
	{4.19081, 2.94181, 3.63375, 4.21619, 3.05675, 1.70492, 4.87008, 4.60378, 1.9967, 2.32584}
	{2.49942, 1.31607, 3.30208, 1.75315, 0.833795, 2.42829, 2.41348}
	1.0134					
	8. Multiply the SE by the critical value 𝑡𝛼 2 0.49941 15 1.75305 0.875491 0.400532 2.15151 {0.400532,2.15151} 9. Example 18.17 Unknown and Unequal Variances	to obtain the ME: ME = 𝑡𝛼 × SE. 2
	Independent random samples from two normal populations with equal variances but unknown produced the following data: Sample 1: {4.19081, 2.94181, 3.63375, 4.21619, 3.05675, 1.70492, 4.87008, 4.60378, 1.9967, 2.32584}. Sample 2: {2.49942, 1.31607, 3.30208, 1.75315, 0.833795, 2.42829, 2.41348}. (a) Calculate the pooled estimate 𝑆 𝑝 2 . Theorem 18.6: CI for 𝝁 𝟏 -𝝁 𝟐 , 𝝈 𝟏 𝟐 and Both Unknown 𝟐 ≠ 𝝈 𝟐 If 𝑥̅ 1 , 𝑠 1 2 , (𝑥̅ 1 -𝑥̅ 2 ) -𝑡𝛼 2 √ 𝑠 1 2 𝑛 1 + 𝑠 2 2 𝑛 2 < 𝜇 1 -𝜇 2 < (𝑥̅ 1 -𝑥̅ 2 ) + 𝑡𝛼 2 √ 𝑠 1 2 𝑛 1 + 2 𝑠 2 , 𝑛 2 (18.15.1)
	(b) Obtain a 90% CI for 𝜇 1 -𝜇 2 . where 𝑡 𝛼/2 is the 𝑡-value with					
	Solution SeedRandom[123456]; (* Data of two samples: *) 𝜈 =	( 𝑛 1 𝑠 1 2	+	2 𝑠 2 𝑛 2	2 )	,
	sample1=RandomVariate[NormalDistribution[3,1],10] sample2=RandomVariate[NormalDistribution[2,1],7] √ 1 (𝑛 1 -1) ( 𝑠 1 2 𝑛 1 ) 2 + 1 (𝑛 2 -1)	(	2 𝑠 2 𝑛 2	2 )	(18.15.2)
	(* Compute sample means and sample standard deviations*) degrees of freedom, leaving an area of 𝛼/2 to the right.
	n1=Length[sample1];					
	n2=Length[sample2];					
	xbar1=Mean[sample1];					
	xbar2=Mean[sample2];					
	s1=StandardDeviation[sample1];					
	s2=StandardDeviation[sample2];					
	(*Compute pooled standard deviation*)					
	sPooled=Sqrt[((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2)]
	(* Calculate standard error*)					
	SE=sPooled*Sqrt[1/n1+1/n2]					
	(* Determine confidence level*)					
	confidenceLevel=0.90 ;					
	alpha=1-confidenceLevel;					
	(*Step 6:Find critical value using t-distribution*)
	df=n1+n2-2					
	ME=criticalValue*SE					

criticalValue=Quantile[StudentTDistribution[df],1-alpha/2] (*Step 7:Calculate margin of error*)

Single Sample: CIs for Standard Deviations Theorem 18.7: CI for 𝝈

  Subtract the ME from the sample mean difference (𝑥̅ 1 -𝑥̅ 2 ) to calculate the lower bound of the CI. Similarly, add the ME to the sample mean difference to obtain the upper bound: Lower bound = (𝑥̅ 1 -𝑥̅ 2 ) -ME, Upper bound = (𝑥̅ 1 -𝑥̅ 2 ) + ME.

	7. Multiply the SE by the critical value 𝑡𝛼 2 Sample 2: {4.09719,2.49517,2.57922,2.90767,2.55753,2.30692,2.20041,2.90017}. to obtain the ME: ME = 𝑡𝛼 2 × SE. Obtain a 95% CI for 𝜇 1 -𝜇 2 . Solution SeedRandom[1234567]; (* Data of two samples: *) sample1=RandomVariate[NormalDistribution[5,1.5],11] sample2=RandomVariate[NormalDistribution[3,0.5],8] (* Compute sample means and sample standard deviations: *) n1=Length[sample1]; n2=Length[sample2]; xbar1=Mean[sample1]; xbar2=Mean[sample2]; s1=StandardDeviation[sample1]; s2=StandardDeviation[sample2]; (* Compute standard error: *) SE=Sqrt[(s1^2/n1)+(s2^2/n2)] (* Determine confidence level: *) confidenceLevel=0.95 ; alpha=1-confidenceLevel; (* Find critical value using t-distribution: *) df=Floor[(s1^2/n1+s2^2/n2)^2/((s1^2/n1)^2/(n1-1)+(s2^2/n2)^2/(n2-1))] criticalValue=Quantile[StudentTDistribution[df],1-alpha/2] (* Calculate margin of error: *) ME=criticalValue*SE (* Compute lower and upper bounds: *) lowerBound=(xbar1-xbar2)-ME upperBound=(xbar1-xbar2)+ME (* Display the confidence interval: *) {lowerBound,upperBound} {3.38546,5.68173,4.73423,5.35505,5.68232,2.59485,4.8497,5.69644,6.47435,2.90192,6.00894} ESTIMATION THEORY {4.09719,2.49517,2.57922,2.90767,2.55753,2.30692,2.20041,2.90017} 0.449959 14 2.14479 0.965066 1.13076 3.06089 {1.13076,3.06089} 8. CHAPTER 18 18.5
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Example 18.18 Independent random samples from two normal populations with unknown and unequal variances produced the following data: Sample 1: {3.38546,5.68173,4.73423,5.35505,5.68232,2.59485,4.8497,5.69644,6.47435,2.90192,6.00894} 𝟐 If 𝑠 2 is the variance of a random sample of size 𝑛 from a normal population, a 100(1 -𝛼)% CI for 𝜎 2 is (𝑛 -1)𝑠 2

Two Samples: CIs for Standard Deviations Theorem 18.8: CI for 𝝈

  𝐹 𝛼/2 (𝜈 1 , 𝜈 2 ) is an 𝐹-value with 𝜈 1 = 𝑛 1 -1 and 𝜈 2 = 𝑛 2 -1 degrees of freedom, leaving an area of 𝛼/2 to the right, and 𝐹 𝛼/2 (𝜈 2 , 𝜈 1 ) is a similar 𝐹-value with 𝜈 2 = 𝑛 2 -1 and 𝜈 1 = 𝑛 1 -1 degrees of freedom.

	2	
	2 𝜒 1-𝛼 2	.
	Example 18.19	
	Random sample from normal population with standard deviation of 8 produced the following data:
	{10.5779, 14.6391, 26.6495, 17.4986, 11.3655, 35.9454, 19.8406, 26.2044, 9.25341, 16.2295, 17.7125, 18.8675,
	40.7876, 31.9293, 17.9794}.	
	Determine a 95% CI for 𝑆 2 .	
	Solution	
	SeedRandom[51234];	
	(* Sample data: *)	
	sample=RandomVariate[NormalDistribution[20,8],15]	
	(* Compute the sample standard deviation: *)	
	s=StandardDeviation[sample]	
	(* Determine confidence level: *)	
	confidenceLevel=0.95 ;	
	(* Find critical values: *)	
	n=Length[sample];	
	df=n-1;	
	alpha=1-confidenceLevel;	
	chi2upper=Quantile[ChiSquareDistribution[df],1-alpha/2](* Subsuperscript[χ, α/2, 2] *)
	chi2lower=Quantile[ChiSquareDistribution[df],alpha/2](* Subsuperscript[χ, 1-α/2, 2] *)
	(* Calculate lower and upper bounds*)	
	lowerBound=Sqrt[(n-1)*s^2/chi2upper]	
	upperBound=Sqrt[(n-1)*s^2/chi2lower]	
	(* Display the confidence interval for the standard deviation: *)
	{lowerBound,upperBound}	
	{lowerBound,upperBound}^2	
	{10.5779,14.6391,26.6495,17.4986,11.3655,35.9454,19.8406,26.2044,9.25341,16.2295,17.7125,18.
	8675,40.7876,31.9293,17.9794}	
	9.38875	
	26.1189	
	5.62873	
	6.87375	
	14.807	
	{6.87375,14.807}	
	{47.2485,219.247}	
	18.6 𝟏 𝟐 /𝝈 𝟐 𝟐 If 𝑠 1 2 and 𝑠 2 2 are the variances of independent samples of sizes 𝑛 1 and 𝑛 2 , respectively, from normal populations, then a 100(1 -𝛼)% CI for 𝜎 1 2 is 2 /𝜎 2 𝑠 1 2 𝑠 2 2 1 𝐹 𝛼/2 (𝜈 1 , 𝜈 2 ) < 𝜎 1 2 𝜎 2 2 𝑠 1 2 < 𝑠 2

2 𝐹 𝛼/2 (𝜈 2 , 𝜈 1 ),

(18.17) 

where

Proof: Figure 18.10.

  𝑃(𝐹 1-𝛼/2 (𝜈 1 , 𝜈 2 ) < 𝐹 < 𝐹 𝛼/2 (𝜈 1 , 𝜈 2 )) = 1 -𝛼.According to 16.47, the RV 𝐹 has an 𝐹-distribution with 𝜈 1 = 𝑛 1 -1 and 𝜈 2 = 𝑛 2 -1 degrees of freedom, see Figure18.10. Therefore, we may write𝑃(𝐹 1-𝛼/2 (𝜈 1 , 𝜈 2 ) < 𝐹 < 𝐹 𝛼/2 (𝜈 1 , 𝜈 2 )) = 1 -𝛼,where 𝐹 1-𝛼/2 (𝜈 1 , 𝜈 2 ) and 𝐹 𝛼/2 (𝜈 1 , 𝜈 2 ) are the values of the 𝐹-distribution with 𝜈 1 and 𝜈 2 degrees of freedom, leaving areas of 1 -𝛼/2 and 𝛼/2, respectively, to the right. Substituting for 𝐹, we write {19.3166,11.9135,12.8707,16.7202,21.5351,17.6614,14.0704,16.3901,14.6752,15.5305,18.8852,19. 3216,13.5793,19.2083,14.7849,14.7475,16.0208,17.3395,15.458,19.7956} point estimator of the proportion 𝑝 in a binomial experiment is given by the 𝑃 ̂= 𝑋/𝑛, where 𝑋 represents the number of successes in 𝑛 trials. Therefore, the sample proportion 𝑝̂= 𝑥/𝑛 will be used as the point estimate of the parameter 𝑝.

	28.7889									
	6.70976									
	2.45232									
	0.426411									
	1.74961									
	10.0621									
	{1.74961,10.0621}								
	18.7 Single Sample: CIs for Proportions
	If 𝜎 1 2 and 𝜎 2 2 are the variances of normal populations, we can establish an interval estimate of 𝜎 1 2 /𝜎 2 2 by using the
	statistic Theorem 18.									
											𝐹 =	𝜎 2 2 𝑆 1 2 𝜎 1 2 𝑆 2 2 .
					𝑃 (𝐹 1-𝛼 2	(𝜈 1 , 𝜈 2 ) <	𝜎 2 2 𝑆 1 2 𝜎 1 2 𝑆 2 2 < 𝐹𝛼 2	(𝜈 1 , 𝜈 2 )) = 1 -𝛼,
			𝑃 (	𝑆 2 2 𝑆 1 2 𝐹 1-𝛼 2	(𝜈 1 , 𝜈 2 ) <	𝜎 2 2 𝜎 1 2 <	2 𝑆 2 𝑆 1 2 𝐹𝛼 2	(𝜈 1 , 𝜈 2 )) = 1 -𝛼,
			𝑃 (	𝑆 1 2 𝑆 2 2	𝐹𝛼 2	1 (𝜈 1 , 𝜈 2 )	<	𝜎 1 2 𝜎 2 2 <	𝑆 1 2 𝑆 2 2	𝐹 1-𝛼 2	1 (𝜈 1 , 𝜈 2 )	) = 1 -𝛼,
			𝑃 (	𝑆 1 2 𝑆 2 2	1 𝐹 𝛼/2 (𝜈 1 , 𝜈 2 )	<	𝜎 1 2 𝜎 2 2 <	2 𝑆 1 𝑆 2 2 𝐹 𝛼/2 (𝜈 2 , 𝜈 1 )) = 1 -𝛼,
	where, we used 𝐹 1-𝛼 2	(𝜈 1 , 𝜈 2 ) =	1 𝐹 𝛼/2 (𝜈 2 ,𝜈 1 ) . Finally,
						√	𝑆 1 2 𝑆 2 2	1 𝐹 𝛼/2 (𝜈 1 , 𝜈 2 )	<	𝜎 1 𝜎 2	< √	2 𝑆 1 𝑆 2 2 𝐹 𝛼/2 (𝜈 2 , 𝜈 1 ).
											𝜎 1 2
											𝜎 2

∎

Procedure 18.12.

To construct a CI for the ratio of two population variances 2 , follow the following steps:
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A

9: Large-Sample CIs for

  𝒑If 𝑝̂ is the proportion of successes in a random sample of size 𝑛 and 𝑞 ̂= 1 -𝑝, an approximate 100(1 -𝛼)% CI, for the binomial parameter 𝑝 is given by is without replacement from a population of finite size 𝑁, where 𝑧 𝛼/2 is the 𝑧-value leaving an area of 𝛼/2 to the right.

	𝑝̂-𝑧𝛼 2	√	𝑝q n < 𝑝 < 𝑝̂+ 𝑧𝛼 2	√	𝑝q n ,	(18.18.1)
	if the sampling is either from an infinite population or with replacement from a finite population and are given by
	𝑝̂± 𝑧𝛼 2	√	𝑝𝑞 𝑛	√	𝑁 -𝑛 𝑁 -1	,	(18.18.2)
	if the sampling						

  𝑧 𝛼/2 is the 𝑧-value leaving an area of 𝛼/2 to the right.

	2	√	𝑝̂1𝑞 ̂1 𝑛 1	+	𝑝̂2𝑞 ̂2 𝑛 2	< 𝑝 1 -𝑝 2 < (𝑝̂1 -𝑝̂2) + 𝑧𝛼 2	√	𝑝̂1𝑞 ̂1 𝑛 1	+	𝑝̂2𝑞 ̂2 𝑛 2	,	(18.19)
	where											

  2 ,Therefore, we can assert that 𝑃(-𝑧 𝛼/2 < 𝑍 < 𝑧 𝛼/2 ) = 1 -𝛼, and 𝑧 𝛼/2 is the value above which we find an area of 𝛼/2 under the standard normal curve. Substituting for 𝑍, we write Now, we replace 𝑝 1 , 𝑝 2 , 𝑞 1 , and 𝑞 2 under the radical sign by their estimates 𝑝̂1 = 𝑥 1 /𝑛 1 , 𝑝̂2 = 𝑥 2 /𝑛 2 , 𝑞 ̂1 = 1 -𝑝̂1, and 𝑞 ̂2 = 1 -𝑝̂2, provided that 𝑛 1 𝑝̂1, 𝑛 1 𝑞 ̂1, 𝑛 2 𝑝̂2, and 𝑛 2 𝑞 ̂2 are all greater than or equal to 5, and the following approximate 100(1 -𝛼)% CI for 𝑝 1 -𝑝 2 is obtained.

												𝑍 =	(𝑃 ̂1 -𝑃 ̂2) -(𝑝 1 -𝑝 2 ) √ 𝑝 1 𝑞 1 𝑛 1 + 𝑛 2 𝑝 2 𝑞 2	,
												𝑃	(	-𝑧𝛼 2	<	(𝑃 ̂1 -𝑃 ̂2) -(𝑝 1 -𝑝 2 ) √ 𝑝 1 𝑞 1 𝑛 1 + 𝑛 2 𝑝 2 𝑞 2	< 𝑧𝛼 2	)	= 1 -𝛼,
	𝑃 (-𝑧𝛼 2	√	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	< (𝑃 ̂1 -𝑃 ̂2) -(𝑝 1 -𝑝 2 ) < 𝑧𝛼 2	√	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	) = 1 -𝛼,
	𝑃 (-(𝑃 ̂1 -𝑃 ̂2) -𝑧𝛼 2	√	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	< -(𝑝 1 -𝑝 2 ) < -(𝑃 ̂1 -𝑃 ̂2) + 𝑧𝛼 2	√	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	) = 1 -𝛼,
	𝑃 (-[(𝑃 ̂1 -𝑃 ̂2) + 𝑧𝛼 2	√	𝑝 1 𝑞 1 𝑛 1		+	𝑝 2 𝑞 2 𝑛 2	] < -(𝑝 1 -𝑝 2 ) < -[(𝑃 ̂1 -𝑃 ̂2) -𝑧𝛼 2	√	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	]) = 1 -𝛼,
	𝑃 ((𝑃 ̂1 -𝑃 ̂2) -𝑧 𝛼/2 √	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	< 𝑝 1 -𝑝 2 < (𝑃 ̂1 -𝑃 ̂2) + 𝑧𝛼 2	√	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	) = 1 -𝛼.
	(𝑝̂1 -𝑝̂2) -𝑧𝛼 2	√	𝑝̂1𝑞 ̂1 𝑛 1	+	𝑝̂2𝑞 ̂2 𝑛 2	< 𝑝 1 -𝑝 2 < (𝑝̂1 -𝑝̂2) + 𝑧𝛼 2	√	𝑝̂1𝑞 ̂1 𝑛 1	+	𝑝̂2𝑞 ̂2 𝑛 2	.
	and variance										
												𝜎 𝑃 ̂1-𝑃 ̂2 2	=	𝑝 1 𝑞 1 𝑛 1	+	𝑝 2 𝑞 2 𝑛 2	.
	where										
												822

  Therefore, we divided this chapter into three units to cover the above topics. Unit 19.1. Point Estimate Unit 19.2. Interval Estimate Unit 19.3. Interval Estimate Simulation LogLikelihood[dist,{x1,x2,…}] gives the log-likelihood function for observations x1, x2, … from the distribution dist. Input (* The code calculates the likelihood for a given dataset using a normal distribution. It defines the dataset, creates a normal distribution object with unknown parameters, and defines a likelihood function that computes the product of the PDF values for each data point. The code then calculates the likelihood using the defined function and compares it with the built-in Likelihood function: *)

	UNIT 19.1	
	POINT ESTIMATE	
	Likelihood[dist,{x1,x2,…}]	gives the likelihood function for observations x1, x2, … from the distribution
			dist.
	Mathematica Examples 19.1	
		(* Calculate the likelihood for the given data: *)
		likelihoodValue=Simplify[likelihood[data,μ,σ]]
		(* Using built-in function Likelihood: *)
		Likelihood[dist,data]	
		(* Compute a likelihood for numeric data: *)
		μ=1;σ=1;	
		likelihoodValue=Simplify[likelihood[data,μ,σ]]
		Likelihood[dist,data]	
	Output	E^(-(2.5 (2.99 -3.4 μ+μ^2))/σ^2 )/(4 √2 π^(5⁄2) σ^5 )
	Output	E^(-(2.5 (2.99 -3.4 μ+μ^2))/σ^2 )/(4 √2 π^(5⁄2) σ^5 )
	Likelihood Output 0.00231188 ogLikelihood Output 0.00231188	MeanCI MeanDifferenceCI	NormalCI StudentTCI
	EstimatedDistribution FindDistributionParameters Mathematica Examples 19.2	VarianceCI VarianceRatioCI	ChiSquareCI FRatioCI
	FindDistribution	
	Chapter 19 Outline	
				826

(* Likelihood is a product of PDF values for the data: *) data={1.2,1.5,1.8,2.1,1.9}; dist=NormalDistribution[μ,σ]; (* Define the likelihood function: *) likelihood[data_,μ_,σ_]:=Apply[Times,PDF[dist,data]];

  * Step 9. Draw a conclusion based on the results: *) Print["Sample Mean: ",xbar]; Print["Test Statistic: ",testStatistic]; Print["Critical Value: ",criticalValue]; Print["p-value: ",pValue]; Print["Conclusion using critical value approach: ",criticalvalueapproach]; Print["Conclusion using P value approach: ",pvalueapproach]; {16.2077,9.12947,11.6617,9.59791,2.43496,11.6059,1.1145,17.7699,11.1671,3.60819,1.48501,1.12 807,16.7492,14.2961,11.9865,11.6247,17.0985,6.01639,17.6307,15.5132,4.95817,13.5086,9.5237,1 1.102,8.58062,20.082,7.63687,5.58636,1.59344,10.4334} Sample Mean: 10.0277 Test Statistic: 0.0272512 Critical Value: 1.95996 p-value: 0.978259 Conclusion using critical value approach:Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 Conclusion using P value approach: Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 Collect a random sample from the population and calculate the sample mean (𝑥̅ ) and the sample standard deviation (𝑠). 4. Determine the critical value(s) for the test statistic.

	3.		
	(* Built-in function in Mathematica: *)
	LocationTest[		
	sample,		
	10,		
	{"TestDataTable",All},	
	Switch[		
	hypothesisType,	
	"two-tailed",	
	AlternativeHypothesis->"Unequal",
	"left-tailed",	
	AlternativeHypothesis->"Less",
	"right-tailed",	
	AlternativeHypothesis->"Greater"
	]		
	]		
		Statistic P-Value
	Paired T	0.0272512 0.978446
	Paired Z	0.0272512 0.978259
	Sign	16	0.855536
	Signed-Rank 238.	0.918089
	T	0.0272512 0.978446
	Z	0.0272512 0.978259
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  𝜇 1 -𝜇 2 ≠ 𝛿 ₀ 𝐻 𝑎 : 𝜇 1 -𝜇 2 < 𝛿 ₀ 𝐻 𝑎 : 𝜇 1 -𝜇 2 > 𝛿 ₀

		Statistic P-Value
	Paired T	1.24299	0.228994
	Paired Z	1.24299	0.213873
	Sign	12	0.503445
	Signed-Rank 132.	0.322509
	T	1.24299	0.228994
	Z	1.24299	0.213873
	20.4 Large-Sample Hypothesis Tests for Differences between Two Means, 𝝈 𝟏 𝟐 and 𝝈 𝟐 𝟐 Known
	(Unknown)		
	Assumptions	1. The samples are independent
		2. Simple random samples
		3. Normal population or large sample
		4. 𝜎 known (unknown)
	Null hypothesis	𝐻 0 : 𝜇 1 -𝜇 2 = 𝛿 ₀
		Two-tailed	Left tailed	Right tailed
	Alternative hypothesis 𝐻 𝑎 : Significance level 𝛼	
				886

  [START_REF] Tukey | Exploratory Data Analysis[END_REF]. Calculate the test statistic using the formula: For a 𝑧-test:

	𝑧 =	(𝑥̅ 1 -𝑥̅ 2 ) -𝛿 ₀	, (𝜎 1 2 and 𝜎 2 2 known) ,	𝑧 =	(𝑥̅ 1 -𝑥̅ 2 ) -𝛿 ₀	, (𝜎 1 2 and 𝜎 2 2 unknown)
		√	𝜎 1 2 𝑛 1	+	𝜎 2 2 𝑛 2			√	𝑠 1 2 𝑛 1	+	2 𝑠 2 𝑛 2

Hypothesis Tests for the Means of Two Populations with Equal Standard Deviations

  Sample 1 Mean: 83.9816 Sample 2 Mean: 65.6331 Sample 1 Standard Deviation: 17.1998 Sample 2 Standard Deviation: 11.1927 Test Statistic: 2.45419 Critical Value: 1.95996 p-value: 0.01412 Conclusion using critical value approach: Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of 0.05 Conclusion using P value approach: Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of 0.05 𝜇 1 ≠ 𝜇 2 𝐻 𝑎 : 𝜇 1 < 𝜇 2 𝐻 𝑎 : 𝜇 1 > 𝜇 2

		Statistic P-Value
	Mann-Whitney 778.	0.0351577
	T	2.45419	0.0167323
	Z	2.45419	0.01412
	Statistic P-Value Mann-Whitney 750. 0.00300367 T 2.99568 0.0044301 20.5 Assumptions 1. Simple random samples Z 2.99568 0.00273833
			2. Independent samples
			3. Normal populations
			4. Equal population standard deviations
	Null hypothesis		𝐻 0 : 𝜇 1 = 𝜇 2
			Two-tailed	Left tailed	Right tailed
	Alternative hypothesis 𝐻 𝑎 : Significance level 𝛼	
	Test statistic: For details see Chapter 18.	𝑡 0 =	𝑥̅ 1 -𝑥̅ 2 𝑠 𝑝 √ 1 𝑛 1 𝑛 2 + 1	,
			𝑠 𝑝 = √	(𝑛 1 -1)𝑠 1 2 + (𝑛 2 -1)𝑠 2
	Critical value approach	±𝑡 𝛼/2	-𝑡 𝛼	𝑡 𝛼

2

(𝑛 1 + 𝑛 2 -2)

20.7 Hypothesis Tests for a Population Standard Deviation

  𝜎 ≠ 𝜎 0 𝐻 𝑎 : 𝜎 < 𝜎 0 𝐻 𝑎 : 𝜎 > 𝜎 0 Conclusion using critical value approach: Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 Conclusion using P value approach: Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 Collect independent random samples from both populations and calculate the sample standard deviations (𝑠 1 and 𝑠 2 ), and the sample sizes (𝑛 1 and 𝑛 2 ). 4. Determine the degrees of freedom (𝑑𝑓 1 and 𝑑𝑓 2 ) for the test statistic. For sample sizes 𝑛 1 and 𝑛 2 , 𝑑𝑓 1 = 𝑛 1 -1 and 𝑑𝑓 2 = 𝑛 2 -1. 5. Calculate the test statistic using the formula:For an F-test: Determine the critical value(s) for the test statistic.

	3. 𝐹 =	2 𝑠 1 𝑠 2 2 .
	6.		
	Sample Standard Deviation: 21.9906
	Degrees of Freedom: 29	
	Test Statistic: 35.0599	
	Critical Value: 45.7223	
	p-value: 0.405161		
	Assumptions	1. Simple random sample
		2. Normal populations
	Null hypothesis	𝐻 0 : 𝜎 = 𝜎 0
	Two-tailed Statistic P-Value	Left tailed	Right tailed
	Alternative hypothesis Brown-Forsythe 35.0599 Fisher Ratio 35.0599 𝐻 Significance level 𝛼 Levene 35.0599	0.405161 0.405161 0.405161
	Test statistic: For details see Chapter 18. 𝜒 0 2 = (𝑛 -1)	𝑠 2 𝜎 0 2 .
		𝑑𝑓 = 𝑛 -1.
				905

𝑎 :

Hypothesis Tests for One Population Proportion

  * Step 1. State the null and alternative hypotheses: *) (* Null hypothesis:Population standard deviations are equal: *) Conclusion using critical value approach: Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of 0.05 Conclusion using P value approach: Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of 0.05 tests whether the mean or median of the data is zero.LocationTest[{data1,data2}]tests whether the means or medians of data1 and data2 are equal.LocationTest[dspec,μ0]tests a location measure against μ0. LocationTest[dspec,μ0,"property"] returns the value of "property".

	UNIT 21.1			
	LOCATION TESTS	
	Sample 1 Standard Deviation: 15.3471
	Sample 2 Standard Deviation: 10.4128
	Degrees of Freedom 1: 29
	Degrees of Freedom 2: 39
	Test Statistic: 2.17229	
	Critical Value: 1.96187	
	p-value: 0.0242904			Location Test
					Location
					Equivalence
					Test
		Statistic P-Value
	Brown-Forsythe 3.24052	0.0762731
	Conover Fisher Ratio Levene Siegel-Tukey	1.8013 2.17229 3.3399 1.05624	0.0716555 0.0242904 0.0720063 0.290861 Location Tests	Mann Whitney Test
	20.9 Assumptions		1. Simple random samples	Paired T Test
			2. both 𝑛𝑝 0 and 𝑛(1 -𝑝 0 ) are 5 or greater
	Null hypothesis		𝐻 0 : 𝑝 = 𝑝 0
			Two-tailed	Left tailed	Right tailed
	Alternative hypothesis	𝐻 𝑎 : 𝑝 ≠ 𝑝 0	𝐻 𝑎 : 𝑝 < 𝑝 0	𝐻 𝑎 : 𝑝 > 𝑝 0
	Significance level LocationTest		𝛼	
	"H0:σ1==σ2"; Test statistic: For details see Chapter 18. 𝑧 0 = LocationTest[data]	√𝑝 0 (1 -𝑝 0 )/𝑛 𝑝̂-𝑝 0	,
	Critical value approach ±𝑧 𝛼/2 (* Alternative hypothesis: *) The following tests can be used: alternativeHypothesis=Switch[ "PairedT" hypothesisType, "PairedZ" "two-tailed", "H1:σ1!=σ2", "Sign"	-𝑧 𝛼 normality paired sample test with unknown variance 𝑧 𝛼 Normality paired sample test with known variance Robust median test for one sample or matched pairs
	"left-tailed", "SignedRank"		Symmetry median test for one sample or matched pairs
	"H1:σ1<σ2", "T"			Normality mean test for one or two samples
	"right-tailed", "MannWhitney" "H1:σ1>σ2" ]; "Z"	Symmetry median test for two independent samples normality mean test with known variance
					922

Paired Z Test Sign Test Signed Rank Test T Test Z Test CHAPTER 21 MATHEMATICA LAB: HYPOTHESIS TESTING 923 LocationEquivalenceTest LocationEquivalenceTest

  [{data1,data2,…}] tests whether the means or medians of the datai are equal. LocationEquivalenceTest[{data1,…},"property"] returns the value of "property".

	The following tests can be used:		
	"CompleteBlockF" normality, blocked mean test for complete block design
	"FriedmanRank"	blocked	median test for complete block design
	"KruskalWallis"	symmetry	median test for two or more samples
	"KSampleT"	normality	mean test for two or more samples
	Reporting of test results		
	Properties related to the reporting of test results include:
	"AllTests"		list of all applicable tests
	"AutomaticTest"		test chosen if Automatic is used
	"DegreesOfFreedom"	the degrees of freedom used in a test
	"PValue"		list of -values
	"PValueTable"		formatted table of -values
	"ShortTestConclusion"	a short description of the conclusion of a test
	"TestConclusion"	a description of the conclusion of a test
	"TestData"		list of pairs of test statistics and -values
	"TestDataTable"		formatted table of -values and test statistics
	"TestStatistic"		list of test statistics
	"TestStatisticTable"	formatted table of test statistics

  Input(* The P-value for -3 in a t distribution with 6 degrees of freedom: *)926Output Test Conclusion: The null hypothesis that the mean of the population is equal to 0 is not rejected at the 5 percent level based on the T test.Input (* The code generates a sample dataset from a normal distribution, calculates its mean, and performs a one-sample test to compare the mean with a hypothesized value of 1. The code then presents the test statistic, p-value, test conclusion and a test data table for further analysis. Note that, the P-values are typically small when the mean is far from 1: *) The null hypothesis that the mean of the population is equal to 1 is rejected at the 5 percent level based on the T test.} The null hypothesis that the mean of the population is equal to 1 is rejected at the 5 percent level based on the T test. The code performs a one-sample location test for the dataset data and then interprets the results based on the obtained p-values. The code iterates through a range of values from 1 to 3 with an increment of 0.25, representing potential locations to test. The function LocationTest is used to perform the test for each location, and it returns the test statistic and the p-value for each test. The results are stored in the testResult list. If the p-value is less than 0.05, it suggests rejecting the null hypothesis, indicating that there is a significant difference between the data and the tested location. Otherwise, it suggests failing to reject the null hypothesis, meaning there is not enough evidence to suggest a significant difference between the data and the tested location at the 0.05 significance level: *) (* Step 1, define your data: *) data={2.3,1.8,2.6,2.2,1.9,2.4,2.1,2.7,2.5,2.0}; {2.61116,0.0282168}, {0.,1.}, {-2.61116,0.0282168}, {-5.22233,0.000547495}, {-7.83349,0.0000261747}} Output {13.0558,10.4447,7.83349,5.22233,2.61116,0.,-2.61116,-5.22233,-7.83349} Output {3.74269*10^-7, 2.4883*10^-6, 0.0000261747, 0.000547495, 0.0282168, 1., 0.0282168, 0.000547495, 0.0000261747} 933 standard deviation, sample size, and significance level parameters and observe the corresponding test results: *)

	LocationTest[data,0]	
	LocationTest[data,Automatic]
	21.1 (* The P-value for -1.96 in a normal distribution: *) Needs["HypothesisTesting`"] NormalPValue[-1.96] NormalPValue[-1.96,TwoSided->True] OneSidedPValue->0.0249979 Sign 16 2.60594*10^-12 TwoSidedPValue->0.0499958 Statistic P-Value Paired T -0.277438 0.782022 Paired Z -0.277438 0.781444 Sign 51 0.920411 Signed-Rank 2502. 0.938335 T -0.277438 0.782022 Z -0.277438 0.781444 Mathematica Examples 21.8 Input Output Output Output (* Generate a sample data set: *) data=RandomVariate[ NormalDistribution[0,1], 100 ]; (* Generate the mean of the data set: *) Mean[data] (* Perform one-sample test: *) result=LocationTest[ data, 1, {"TestStatistic","PValue","TestConclusion"} ] (* Print the test statistic, p-value and test conclusion: *) Print["Test Statistic: ",result[[1]]]; Print["P-value: ",result[[2]]]; Print["Test Conclusion: ",result[[3]]]; (* Test data table: *) LocationTest[ data, 1, {"TestDataTable",All} ] Output 0.135152 Output {-8.79096,4.71549*10^-14,Output Test Statistic: -8.79096 Output P-value: 4.71549*10^-14 Output Test Conclusion: Output Statistic P-Value Paired T -8.79096 4.71549*10^-14 Paired Z -8.79096 1.48293*10^-18 Output 0.740653 Output 0.740653 Mathematica Examples 21.11 Input (* Mean[data] (* Step 2, perform the one-sample location test: *) testResult=Table [ LocationTest[ data, i, {"TestStatistic","PValue"} ], {i,1,3,0.25} ] (* Step 3, interpret the results: *) testStatistic=Table[ testResult[[i]][[1]], {i,1,9} ] pValue=Table[ testResult[[i]][[2]], {i,1,9} ] Table[ If[ pValue[[i]]<0.05, Print["Reject the null hypothesis."], Print["Fail to reject the null hypothesis."] ], {i,1,9} ] Output 2.25 Output {{13.0558,3.74269*10^-7}, {10.4447,2.4883*10^-6}, {7.83349,0.0000261747}, Module[ {data,pValue}, (* Generate sample data from a normal distribution: *) data=RandomVariate[ NormalDistribution[mean,stdDev], sampleSize ]; (* Perform a one-sample test against the null hypothesis mean=0: *) pValue=LocationTest[ data, 0, {"PValue"}, SignificanceLevel->significanceLevel ]; (* Display the histogram of the data along with the test p-value: *) Histogram[ data, Automatic, {5.22233,0.000547495}, Manipulate[ "Probability",
	Signed-Rank 552. Mathematica Examples 21.2 T -8.79096	1.18445*10^-11 4.71549*10^-14
	Z	-8.79096	1.48293*10^-18
			928

PlotLabel->Row[{"p-value: ",NumberForm[pValue,{4,3}]}], ColorFunction->Function[{height},Opacity[height]],

Mathematica Examples 21.35 Input

  The code performs a hypothesis test to compare the means of two populations represented by datasets data1 and data2. The code also calculates the mean difference between data1 and data2, plots the two populations' histograms, and then plots the histograms after adding a constant value of 2 to data2. The mean difference between data1 and data2 is calculated to be 2.5. The LocationTest result suggests that at the 0.05 significance level, the mean difference between data1 and data2 is significantly different from 2. The two sets of histograms are plotted to visually compare the distributions of data1 and data2. The second set of histograms, where 2 is added to data2, shows a shift to the right, indicating the effect of the constant difference of 2: *) (* Test whether the means of two populations differ by 2: *) data1=RandomVariate[ The code demonstrates an interactive Manipulate that allows users to explore the comparison of means between two populations. Users can modify parameters such as the means, standard deviations, and sample sizes of the two datasets. The code generates random data based on the specified parameters, performs a hypothesis test for mean difference, and visualizes the datasets and test results using histograms. This interactive visualization provides an insightful way for users to understand how changes in the parameters affect the distributions of the two populations and how the mean difference test outcome varies accordingly: *) The code demonstrates the use of the VarianceTest function to compare the variance of a dataset (data) with a specified value of 4. The code includes three examples, all of which use the default test selection(Automatic) for comparing variances. The dataset contains 500 random samples from a normal distribution with a mean of 0 and a variance of 4. The VarianceTest function calculates a p-value indicating the probability of obtaining the observed variance (or more extreme) assuming a population variance of 4. Using Automatic or AutomaticTest as options allows the function to automatically select the most suitable and powerful test for the comparison, enhancing flexibility and ease of use: *) The code performs three different variance tests on a sample dataset data, which is generated from a standard normal distribution. Each test compares the sample variance to a specific value or range of values, evaluating whether there is enough evidence to support the alternative hypothesis over the null hypothesis: *) Sided Test (H0:σ^2=1 versus Ha:σ^2!=1):This test checks if the population variance is significantly different from 1. It aims to detect any departure from the null hypothesis and determine whether the variance is either larger or smaller than 1: *) VarianceTest[data,Automatic,AlternativeHypothesis->"Unequal"] VarianceTest[data,Automatic,AlternativeHypothesis->Automatic] (* One-Sided Test for Smaller Variance (H0: σ^2>=1 versus Ha:σ^2<1): *) VarianceTest[data,Automatic,AlternativeHypothesis->"Less"] (* One-Sided Test for Larger Variance (H0: σ^2<=1 versus Ha:σ^2>1): *) VarianceTest[data,Automatic,AlternativeHypothesis->"Greater"] The code performs a variance test to compare the variances of three populations generated from normal distributions. The populations are represented by data1, data2, and data3. The code does the following: Generates three datasets (data1, data2, and data3) with 200 random samples each from normal distributions with specific mean and standard deviation values. Creates a BoxWhiskerChart to visualize the distributions of the three datasets, with notches around the medians for better comparison. Uses the VarianceTest function to compare the variances between the populations. It tests The code performs a variance test to compare the ratio of variances between two populations (data1 and data2) against a specified value (σ0). The two datasets are generated with different standard deviations: data1 with a standard deviation of 2, and data2 with a standard deviation of 1. The variance test is performed using the VarianceTest function with two equivalent forms: VarianceTest[{data2, data1},1/σ0]: Tests whether the ratio of the variance of data2 to the variance of data1 is equal to 1/σ0, i.e.,1/4 or 0.25. VarianceTest[{data1, data2},σ0]: Tests whether the ratio of the variance of data1 to the variance of data2 is equal to σ0,i.e.,4. The output of both tests is a p-value, representing the probability of obtaining the observed The code performs a variance test to compare the variances of two populations represented by the data matrix. Each row of the matrix contains data points from a separate population, and the test is done to check if the variances of these populations are equal. The code first generates two datasets, each with 100 data points, sampled from a standard normal distribution (mean=0, standard deviation=1). These datasets are stored in a 2x100 matrix called data. Next, the variance test is conducted using the VarianceTest function on the data matrix. By default, the function tests the null hypothesis that the variances of the two populations are equal: *) HypothesisTestData object h is created to store detailed information about the variance test. The TestDataTable property of the HypothesisTestData object h is then extracted, which contains valuable information about the test, including the test statistic, p-value, and the method used: *) The code generates a sample data set from a standard normal distribution, calculates the variance of the data set, performs a one-sample variance test against the expected variance of 1, and then prints the test statistic, p-value, and test conclusion. Additionally, it generates a test data table for the variance test: *) The null hypothesis that the variance of the population is equal to 1 is not rejected at the 5 percent level based on the Fisher Ratio test.} The null hypothesis that the variance of the population is equal to 1 is not rejected at the 5 percent level based on the Fisher Ratio test. The code generates a sample data set from a normal distribution, calculates its variance, performs a one-sample variance test, and then prints the test statistic, p-value, and test conclusion. Finally, it displays the test data table: *) The null hypothesis that the variance of the population is equal to 1 is rejected at the 5 percent level based on the Fisher Ratio test.} Output Test Statistic: 403.243 Output P-value: 4.88289*10^-38 Output Test Conclusion: The null hypothesis that the variance of the population is equal to 1 is rejected at the 5 percent level based on the Fisher Ratio test. (* The code performs a one-sample variance test on a dataset using different null hypotheses. The data consists of a list of numerical values. The code calculates the variance test results for various null hypotheses with values ranging from 0.1 to 1 in increments of 0.1. The test results include test statistics and p-values, which are stored in separate lists. The code then iterates through the p-values and interprets the results by comparing them to a significance level of 0.05. If the pvalue is less than 0.05, it concludes that there is strong evidence against the null hypothesis and prints "Reject the null hypothesis." Otherwise, it prints "Fail to reject the null hypothesis.": *)

	01,Appearance-(* The third population differs in location from the first: *) >"Labeled"} ] ]; data2=RandomVariate[ NormalDistribution[1,1], 200 ]; data3=RandomVariate[ NormalDistribution[4,1], 200 ]; BoxWhiskerChart[ {data1,data2,data3}, "Notched", ChartStyle->"SolarColors", ImageSize->250 ] (* The first two populations have similar locations: *) LocationTest[ {data1,data2}, Automatic ] LocationTest[ {data1,data3}, Automatic ] 0.277583 8.77911*10^-100 Mathematica Examples 21.20 Output Output Output Output Input (* 939 936 947 948 949 950 954 Output -1.89616 Output 0.658189 Output Output Mathematica Examples 21.22 Input (* Manipulate[ (* Generate data for two populations based on specified parameters: *) data1=RandomVariate[ NormalDistribution[mean1,stdDev1], sampleSize1 ]; data2=RandomVariate[ NormalDistribution[mean2,stdDev2], sampleSize2 ]; (* Perform the test of mean difference: *) testResult=LocationTest[{data1,data2},-2]; (* Plot the two populations and the test results: *) Show[ Histogram[ data1, Automatic, "PDF", ImageSize->300, Input (* data=RandomVariate[ NormalDistribution[0,2], 500 ]; VarianceTest[data,4] VarianceTest[data,4,Automatic] VarianceTest[data,4,"AutomaticTest"] Output 0.561231 Output 0.561231 Output FisherRatio Mathematica Examples 21.29 Input (* data=RandomVariate[ NormalDistribution[0,1], 100]; (* Two-Output 0.0437699 Output 0.0437699 Output 0.978115 Output 0.0218849 Mathematica Examples 21.30 Input (* CHAPTER 21 MATHEMATICA LAB: HYPOTHESIS TESTING whether the variances of data1 and data2 are equivalent and whether the variance of data1 is different from that of data3: *) data1=RandomVariate[ NormalDistribution[0,1], 200 ]; data2=RandomVariate[ NormalDistribution[0,1], 200 ]; data3=RandomVariate[ NormalDistribution[0,3], 200 ]; BoxWhiskerChart[ {data1,data2,data3}, "Notched", ChartStyle->"SolarColors", ImageSize->250 ] (* The first two populations have similar variances: *) VarianceTest[ {data1,data2}, Automatic ] (* The third population differs in variance from the first: *) VarianceTest[ {data1,data3}, Automatic ] Output Output 0.423764 Output 3.04957*10^-58 Mathematica Examples 21.31 Input MATHEMATICA LAB: HYPOTHESIS TESTING results (or more extreme results) under the assumption that the null hypothesis is true: *) SeedRandom[1]; data1=RandomVariate[ NormalDistribution[0,2], 500 ]; data2=RandomVariate[ NormalDistribution[0,1], 500 ]; σ0=4; (* The following forms are equivalent: *) VarianceTest[{data2,data1},1/σ0] VarianceTest[{data1,data2},σ0] data=RandomVariate[ NormalDistribution[], {2,100} ]; VarianceTest[data] (* A h=VarianceTest[ data, Automatic, "HypothesisTestData" ]; h["TestDataTable",All] Output 0.236337 Output Brown-Forsythe 0.386022 Conover Fisher Ratio 0.787481 ]; ] 0.236337 100 {i,0.1,1,0.1} -0.272482 0.785251 NormalDistribution[0,2], ], 0.535112 data=RandomVariate[ {"TestStatistic","PValue"} Statistic P-Value CHAPTER 21 MATHEMATICA LAB: HYPOTHESIS TESTING Levene 0.382049 0.537219 Siegel-Tukey -0.207688 0.835473 Mathematica Examples 21.33 Input (* (* Generate a sample data set: *) data=RandomVariate[ NormalDistribution[0,1], 500 ]; (* Generate the variance of the data set: *) Variance[data] Output 0.944181 Output {471.146, 0.380243, Output Test Statistic: 471.146 Output P-value: 0.380243 Output Test Conclusion: Output Statistic P-Value Brown-Forsythe 471.146 0.380243 Fisher Ratio 471.146 0.380243 Levene 471.146 0.380243 Mathematica Examples 21.34 Input testResult=Table [ VarianceTest[ data, i^2, (* (* Generate a sample data set: *) CHAPTER 21 MATHEMATICA LAB: HYPOTHESIS TESTING (* Generate the variance of the data set: *) Variance[data] (* Perform one-sample test: *) result=VarianceTest[ data, 1, {"TestStatistic","PValue","TestConclusion"} ] (* Print the test statistic and p-value: *) Print["Test Statistic: ",result[[1]]]; Print["P-value: ",result[[2]]]; Print["Test Conclusion: ",result[[3]]]; (* Test data table: *) VarianceTest[ (* Step 1, define your data: *) data={2.3,1.8,2.6,2.2,1.9,2.4,2.1,2.7,2.5,2.0}; Variance[data] (* Step 2, perform the one-sample variance test: *) Manipulate[ Module[ {data,pValue}, (* Generate sample data from a normal distribution: *) data=RandomVariate[ NormalDistribution[mean,stdDev], sampleSize ]; (* Perform a one-sample test against the null hypothesis: *) pValue=VarianceTest[ data, 1, {"PValue"}, SignificanceLevel->significanceLevel ]; (* CHAPTER 21 (* The order of the datasets should be considered when determining σ0: *) VarianceTest[{data2,data1},σ0] Output 0.703526 Output 0.703526 Output 9.69572*10^-169 Mathematica Examples 21.32 Input VarianceTest[ data, 1, {"TestDataTable",All} ] Statistic P-Value Brown-Forsythe 403.243 4.88289*10^-38 Fisher Ratio 403.243 4.88289*10^-38 Levene 403.243 4.88289*10^-38 (* (* Test variances from two populations for equality: *) data, (* Display the histogram of the data along with the test p-value: *) (* Perform one-sample test: *) 1, Histogram[ result=VarianceTest[ {"TestDataTable",All} data, data, ] Automatic, 1, "Probability", {"TestStatistic","PValue","TestConclusion"} ] (* Test data table: *) Output PlotLabel->Row[{"p-value: ",NumberForm[pValue,{4,3}]}], 4.07316 Output {403.243, 4.88289*10^-38, Output ColorFunction->Function[{height},Opacity[height]],

(* Print the test statistic and p-value: *) Print["Test Statistic: ",result[[1]]]; Print["P-value: ",result[[2]]]; Print["Test Conclusion: ",result[[3]]];
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  Plot the marginal PDFs of the test distribution against the data to confirm the test results: *) ,mu2},{{sigma1,rho},{rho,sigma2}}] is not rejected at the 5 percent level based on the Mardia Combined test.Input(* A random dataset of 1000 data points is generated following a standard normal distribution. The DistributionFitTest function is then used to perform a goodnessof-fit test on the data. By default, when the third argument of DistributionFitTest is left blank, it is set to "Automatic," which allows Mathematica to apply a generally powerful and appropriate test automatically based on the characteristics of the data: Two random datasets, data1 and data2, each containing 1000 data points, are generated following a standard normal distribution. The DistributionFitTest function is then used to compare the distributions of the two datasets. If the p-value of the test is low (typically below 0.05), it suggests that the distributions of data1 and data2 are significantly different. On the other hand, a higher p-value indicates that 970 there is not enough evidence to reject the null hypothesis, meaning the distributions are similar enough: *) Two random datasets, data1 and data2, each containing 1000 data points, are generated following different normal distributions. The DistributionFitTest function is then used to compare the distributions of the two datasets. The code prints the test conclusion, and the p-value. If the p-value of the test is low (typically below 0.05), it suggests that the distributions of data1 and data2 are significantly different. On the other hand, a higher p-value indicates that there is not enough evidence to reject the null hypothesis, meaning the distributions are similar enough:

	CHAPTER 21		
	ClippingStyle->Automatic, ColorFunction->"BlueGreenYellow", PlotLegends->Automatic, UNIT 21.4
	01,Appearance-distributed according MultinormalDistribution[{-1.01349,0.981946}, {{1.02115,0.497712}, >"Labeled"} ] ImageSize->250 ] (* Table[ Show[ SmoothHistogram[ data[[All,i]], PlotStyle->{Orange,Dashed,Thick}, PlotRange->{0,.4}, ImageSize->220 ], Plot[ PDF[MarginalDistribution[fDist,i], x ], {x,-5,5}, ImageSize->220, PlotStyle->Directive[Thick,Purple] ] ], {i,2} ] The null hypothesis that the data is MultinormalDistribution[{mu1Output Output Output p-value: 0.366222 Output {0.497712,2.02919}}] Output Statistic P-Value Anderson-Darling 1.78502 0.976892 Baringhaus-Henze 0.533692 0.889212 Cramér-von Mises 1.79174 0.978314 Jarque-Bera ALM 0.523148 0.136842 Kolmogorov-Smirnov 1.86149 0.990408 Kuiper 1.67349 0.946696 Mardia Combined 5.42516 0.366222 Mardia Kurtosis 1.37424 0.142919 Mardia Skewness 3.51901 0.936024 Pearson χ 2 1.36847 0.800587 Shapiro-Wilk 0.998461 0.529355 Watson U 2 1.59739 0.918954 Output *) data=RandomVariate[ NormalDistribution[0,1], 1000 ]; DistributionFitTest[data] (* The property "AutomaticTest" can be used to determine which test was chosen: *) to the DistributionFitTest[ data, Automatic, "AutomaticTest" ] Output 0.74719 Output CramerVonMises Mathematica Examples 21.51 Input data1=RandomVariate[ NormalDistribution[], 10^3 ]; data2=RandomVariate[ NormalDistribution[], 10^3 ]; DistributionFitTest[data1,data2] Output 0.846622 Mathematica Examples 21.52 Input (* *) (* Generate some example data from two different distributions: *) data1=RandomVariate[ NormalDistribution[0,1], 100 ]; data2=RandomVariate[ NormalDistribution[1,1], 100 ]; (* Perform the distribution fit test: *) result=DistributionFitTest[data1,data2,"HypothesisTestData"]; (* Print the test result and p-value: *) Print[result["TestConclusion"]] Print["p-value: ",result["PValue"]] (* The full test table: *) result["TestDataTable",All] the 5 percent level based on the Watson U 2 test. Output p-value: 3.50148*10^-6 Output Statistic P-Value Anderson-Darling 20.0213 0. Cramér-von Mises 3.8878 8.35102*10^-10 DEPENDENCY TESTS IndependenceTest IndependenceTest[v1,v2] tests whether the vectors v1 and v2 are independent. (* (* Compare the distributions of two datasets: *) Output The null hypothesis that the datasets have the same distribution is rejected at IndependenceTest[m1,m2]
	Kolmogorov-Smirnov 0.41	6.61736*10^-8
	Kuiper	0.41	1.77777*10^-6
	Pearson χ 2	48.7336	2.32834*10^-6
	Watson U 2	0.656918	3.50148*10^-6
			968 975
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			Correlation
			Test
			Pearson
	Wilks W Test		Correlation
			Test
	Blomqvist		Spearman
	BetaTest		Rank Test
	Goodman Kruskal Gamma Test	Hoeffding D	Kendall Tau Test
		Test	
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		{vector1,vector2}=Transpose[
		RandomVariate[
		BinormalDistribution[0],
		100
		]
		];
		{vector3,vector4}=Transpose[
		RandomVariate[
		BinormalDistribution[0.6],
		100
		]
		];
		(* The P-values are typically large when the vectors are independent: *)
		IndependenceTest[vector1,vector2]
		(* The P-values are typically small when there are dependencies: *)
		IndependenceTest[vector3,vector4]
	Output	0.316656
	Output	5.56862*10^-13

  The code tests for independence between two matrices, datamatrix1 and datamatrix2, which are generated using RandomVariate and BinormalDistribution with a correlation coefficient of 0.7. The "IndependenceTest" function is then used to test the independence between datamatrix1 and datamatrix2. The test is performed at the 0.05 significance level, which means that if the p-value from the test is less than 0.05, there is evidence to reject the null hypothesis of independence. However, the code comment states that at this significance level, there is insufficient evidence to reject the null hypothesis of independence, implying that the two matrices are not significantly correlated: *) The code aims to test whether the population correlation coefficient between two variables is zero or not, using the BinormalDistribution to generate two sets of data (data1 and data2) with different correlation coefficients. In the first part, data1 is generated with 500 samples from the standard bivariate normal distribution, BinormalDistribution[0],where the correlation coefficient is 0. This ensures that the two variables in data1 are independent, and the true correlation between them is zero. Next, the code calculates the true population correlation coefficient for BinormalDistribution[0] using the Correlation function. It then performs a correlation test (CorrelationTest) on data1 to statistically test whether the sample correlation coefficient is significantly different from zero. The p-value obtained from the test will generally be large because the true correlation is indeed close to zero. In the second part, data2 is generated with 200 samples from the bivariate normal distribution, BinormalDistribution[0.6],where the correlation coefficient is 0.6. This ensures that the two variables in data2 are correlated, and the true correlation between them is not zero. The code calculates the true population correlation coefficient for BinormalDistribution[0.6] using the Correlation function. It then performs a correlation test (CorrelationTest) on data2 to statistically test whether the sample correlation coefficient is significantly different from zero. The p-value obtained from the test will generally be small because the true correlation is not zero,indicating a rejection of the null hypothesis that the correlation is zero: *) BinormalDistribution[0.4], which has a correlation coefficient of 0.4. This ensures that the variables in data1 are correlated. data2 is generated with 150 samples from the same BinormalDistribution[0.4]. It also has a correlation coefficient of 0.4,similar to data1. data3 is generated with 250 samples from the standard bivariate normal distribution, BinormalDistribution[0],where the correlation coefficient is 0. This ensures that the variables in data3 are independent and uncorrelated. The code then performs correlation tests (CorrelationTest) between

	data2=RandomReal[{1,5},100]; ] data1=RandomReal[{1,5},100]; {"TestDataTable",All} (* Generate two datasets: *) h=IndependenceTest[ vector1, vector2, {"TestDataTable",All} ] Statistic Blomqvist β 0.04 Goodman-Kruskal γ -0.000529058 Hoeffding -0.000849554 Kendall τ -0.000529058 Pearson Correlation 0.00287311 Pillai Trace 8.25475*10^-6 0.948775 P-Value 0.325183 0.986105 0.903562 0.985892 0.948903 Spearman Rank 0.000491522 0.991253 Wilks 8.25475*10^-6 0.948775 Mathematica Examples 21.61 Output Output Input (* datamatrix1=RandomVariate[ BinormalDistribution[.7], 100]; datamatrix2=RandomVariate[ BinormalDistribution[.7], 100 ]; (* At the 0.05 level, there is insufficient evidence to reject independence: *) IndependenceTest[ datamatrix1, datamatrix2, Pillai Trace 0.0145802 0.834051 Spearman Rank 0.832729 0.934007 Wilks 0.0145608 0.832509 Mathematica Examples 21.62 Input (* data1=RandomVariate[ BinormalDistribution[0], 500 ]; data2=RandomVariate[ BinormalDistribution[0.6], 200 ]; Correlation[BinormalDistribution[0]][[1,2]] CorrelationTest[data1] Correlation[BinormalDistribution[0.6]][[1,2]] CorrelationTest[data2] Output 0 Output 0.378423 Output 0.7 Output 3.39471*10^-179 Mathematica Examples 21.63 Input (* The code compares the correlation coefficients from two samples (data1 and data2) and (data1 and data3) generated using the BinormalDistribution. The goal is to assess whether the correlations in these samples are similar or dissimilar. data1 is generated with 500 samples from the bivariate normal MATHEMATICA LAB: HYPOTHESIS TESTING data1 and data2, and between data1 and data3, to compare their correlation coefficients: *) data1=RandomVariate[ BinormalDistribution[0.4], 500 ]; data2=RandomVariate[ BinormalDistribution[0.4], 150 ]; data3=RandomVariate[ BinormalDistribution[0], 250 ]; (* The p-values are typically large when the correlations are similar: *) CorrelationTest[data1,data2] (* The p-values are typically small when the correlations are dissimilar: *) CorrelationTest[data1,data3] Output 0.875714 distribution,CHAPTER 21 Output 1.19095*10^-9
	Output	Statistic P-Value (* Perform the independence test: *) Blomqvist β 0.60454 0.962558 pValue=IndependenceTest[data1,data2]; Kendall τ 0.813984 0.936564
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gives the list of all possible subsequences of list. Subsequences [list,n] gives all subsequences containing at most n elements. Subsequences [list,{n}] gives all subsequences containing exactly n elements. 

Mathematica Examples 9.3 Subsequences

MATHEMATICA LAB: CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In this chapter, we explore the world of continuous random variables, which are essential for modeling phenomena with uncountable outcomes. We study the continuous probability distributions, exploring their PDFs, CDFs, and MGFs. We will demonstrate how to define, manipulate, and analyze continuous random variables and probability distributions using Mathematica's syntax and functionality. By engaging in hands-on exercises and experimenting with different scenarios, readers will enhance their understanding of the concepts and develop proficiency in utilizing Mathematica for probability analysis.

• In Mathematica, the functions Probability, NProbability, PDF, CDF, Expectation, MomentGeneratingFunction, and CentralMomentGeneratingFunction are versatile tools that can be used with both discrete and continuous random variables. Users gain the advantage of a unified framework for analyzing probability distributions and can apply these functions to estimate probabilities, calculate expected values, and other characteristics of both discrete and continuous random variables. • Additionally, Mathematica provides a comprehensive set of built-in functions to effortlessly handle various common continuous probability distributions. In this chapter, we study four fundamental probability distributions: Normal distribution, exponential distribution, uniform distribution, and gamma distribution. These distributions find applications in various fields, such as physics, finance, and engineering, and Mathematica equips users with the necessary tools to analyze, visualize, and extract meaningful information from them. • Derived distributions in mathematics are modifications or transformations of existing distributions, achieved through functions of random variables or weighted mixtures. In this chapter, we also study in detail two important built-in Mathematica functions TransformedDistribution and MixtureDistribution.

In the following table, we list the built-in functions that are used in this chapter. Therefore, we divided this chapter into seven units to cover the above topics. (* Define the parameters and their ranges: *) {{w1,0.5,"Weight 1"},0,1,0.1}, {{w2,0.5,"Weight 2"},0,1,0.1}, {{a1,2,"Shape parameter 1"},0.1,10,0.1}, {{b1,1,"Scale parameter 1"},0.1,10,0.1}, {{λ2,1,"Rate parameter 2"},0.1,10,0.1}, {{n,100,"Number of data points"},10,1000,10} ] 564

Distributed

Bivariate RV

The bivariate RV represents the outcomes of two random phenomena simultaneously. Let 𝑋 and 𝑌 be two RVs defined on the same probability space. A bivariate RV (𝑋, 𝑌) represents a pair of outcomes (𝑥, 𝑦), where 𝑥 is a possible outcome of 𝑋 and 𝑦 is a possible outcome of 𝑌. They are particularly useful when analyzing data sets with two variables that may be related or dependent on each other. The behavior of a bivariate RV is typically described by its joint probability distribution, which provides information about the probability of observing specific values or ranges of values for both 𝑋 and 𝑌 simultaneously. 

Example 14.2

When rolling a pair of fair six-sided dice, we can define a bivariate RV that represents the outcomes of the two dice. Let us denote the RV for the first die as 𝑋 and for the second die as 𝑌. Each die can take on values from 1 to 6.

Solution

The sample space 𝑆 of the experiment can be written as the following. [START_REF] Tukey | Exploratory Data Analysis[END_REF]1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) 𝑋 = 6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) [START_REF] Weiss | Introductory Statistics[END_REF][START_REF] Weiss | Introductory Statistics[END_REF] The probabilities associated with each pair of outcomes (𝑋, 𝑌) can be written as the following. Each cell in the table represents a specific outcome (combination) of 𝑋 and 𝑌, and the corresponding probability is listed in that cell. For example, 𝑃(𝑋 = 1, 𝑌 = 1) represents the probability of getting a 1 on the first die and a 1 on the second die. Since we assume that the dice are fair, we have equal probabilities for all possible outcomes.

Example 14.3

Let us consider an example involving a bivariate RV related to rolling a pair of fair six-sided dice. We will define two RVs: 𝑋, representing the sum of the two dice, and 𝑌, representing the difference between the numbers on the first and second dice.

Solution

The possible values for 𝑋 range from 2 (when both dice show a 1) to 12 (when both dice show a 6). The probability distribution of 𝑋 is determined by calculating the probabilities of all possible sums.
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𝑃(𝑋 = 2) = 𝑃 {(1, 1)} = 1/36 𝑃(𝑋 = 3) = 𝑃{(1, 2), (2, 1) } = 2/36 𝑃(𝑋 = 4) = 𝑃{(1, 3), (2, 2), (3, 1) } = 3/36 𝑃(𝑋 = 5) = 𝑃{ (1,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], (2,3), (3,2), (4, 1) } = 4/36 𝑃(𝑋 = 6) = 𝑃{ (1,[START_REF] Tukey | Exploratory Data Analysis[END_REF], (2,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], (3,3), (4, 2), (5, 1)} = 5/36 𝑃(𝑋 = 7) = 𝑃{ (1,[START_REF] Weiss | Introductory Statistics[END_REF], (2,[START_REF] Tukey | Exploratory Data Analysis[END_REF], (3,[START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], [START_REF] Chambers | Graphical Methods for Data Analysis[END_REF]3), [START_REF] Tukey | Exploratory Data Analysis[END_REF]2), (6, 1)} = 6/36 𝑃(𝑋 = 8) = 𝑃{ (2,[START_REF] Weiss | Introductory Statistics[END_REF], (3,[START_REF] Tukey | Exploratory Data Analysis[END_REF], [START_REF] Chambers | Graphical Methods for Data Analysis[END_REF][START_REF] Chambers | Graphical Methods for Data Analysis[END_REF], [START_REF] Tukey | Exploratory Data Analysis[END_REF]3), (6, 2)} = 5/36 𝑃(𝑋 = 9) = 𝑃{ (3,[START_REF] Weiss | Introductory Statistics[END_REF], [START_REF] Chambers | Graphical Methods for Data Analysis[END_REF][START_REF] Tukey | Exploratory Data Analysis[END_REF], [START_REF] Tukey | Exploratory Data Analysis[END_REF][START_REF] Chambers | Graphical Methods for Data Analysis[END_REF] The sample space 𝑆 of the experiment can be written as the following. The probabilities associated with each pair of outcomes (𝑋, 𝑌) can be written as the following. In Example 14.3, let 𝑌 be the absolute value of the difference between the numbers on the two dice. In this case, the possible values for 𝑋 range from 2 to 12. However, the possible values for 𝑌 range from 0 to 5.

Solution

The sample space 𝑆 of the experiment can be written as the following. The probabilities associated with each pair of outcomes (𝑋, 𝑌) can be written as the following. 

Example 14.5

Consider an experiment of drawing randomly three balls from an urn containing two red, three white, and five blue balls. Let (𝑋,𝑌) be a bivariate where 𝑋 and 𝑌 denote, respectively, the number of red and white balls chosen. Solution Since, we draw randomly three balls, the possible values for the RV 𝑋 is {0,1,2}. However, the possible values for 𝑌 is {0,1,2,3}. Hence, the range of (𝑋, 𝑌) is {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (2,0), (2,1)}.

Let us start by listing all possible outcomes of choosing three balls from the urn. Since the total number of balls is 2 red + 3 white + 5 blue = 10 balls, there are a total of 𝐶(10,3) = 120 possible outcomes. We have

,

where 𝑥 represents the number of red balls chosen (0, 1, or 2) and 𝑦 represents the number of white balls chosen (0, 1, 2, or 3).

= 3 120 .

The following table represents the joint and marginal PMF of (𝑋, 𝑌). Note that in this case, since the dice are fair and independent, the 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ) is the same as the marginal PMF 𝑓 𝑌 (𝑦 𝑗 ). This means that the conditional PMF does not depend on the value of 𝑋, and each outcome of 𝑌 has an equal probability of 1/6 regardless of the value of 𝑋. Similarly, the conditional PMF of 𝑋 given 𝑌 = 𝑦 𝑗 , 𝑓 𝑋|𝑌 (𝑥 𝑖 |𝑦 𝑗 ), can be written as the following. 

Solution

The conditional PMF of 𝑌 given 𝑋 = 𝑥 𝑖 , 𝑓 𝑌|𝑋 (𝑦 𝑗 |𝑥 𝑖 ), can be written as the following. FrameLabel->{x,y}, ImageSize->{275,275} ] } ], {{μ1, 0, "μx"}, -2,2, Appearance->"Labeled"}, {{μ2, 0, "μy"}, -2,2, Appearance->"Labeled"}, {{σ1, 1, "σx"}, .5,2, Appearance->"Labeled"}, {{σ2, 1, "σy"}, .5,2, Appearance->"Labeled"}, {{ρ, 0, "ρ"}, -0.9,0. 

Therefore,

The MGF of the RV 𝑋 having a chi-squared distribution with 𝑛 degrees of freedom is

The MGF is 
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we calculate sample variance 𝑆 2 . The values of 𝑆 2 may vary from sample to sample so we construct the probability distribution of sample variances. The probability distribution thus obtained is known as sampling distribution of the sample variance.

Definition (Sampling Distribution of Sample Variance):

The probability distribution of all values of the sample variance would be obtained by drawing all possible sample of same size from the parent population is called the sampling distribution of the sample variance.

We can summarize this section as the following, let 𝑋 1 , 𝑋 2 , . . . , 𝑋 𝑛 be a random sample of size 𝑛 taken from normal population with mean 𝜇 and variance 𝜎 2 . The distribution of sample variance can not be obtained directly therefore in this case, some transformation is made by multiplying 𝑆 2 by (𝑛 -1) and then dividing the product by 𝜎 2 . The obtained new variable follows the chi-square distribution with (𝑛 -1) degrees of freedom, {0.025,0.05,0.1,0.5,0.9,0.95,0.975} {0.975,0.95,0.9,0.5,0. 

Fisher 𝑭-Distribution

The 𝐹-distribution was developed by Fisher to study the behavior of two variances from random samples taken from two independent normal populations. In applied problems we may be interested in knowing whether the population variances are equal, based on the response of the random samples. Knowing the answer to such a question is also important in selecting the appropriate statistical methods to study their true means. 𝐹-distribution is the ratio of two independent 𝜒 2 RVs divided by their respective degrees of freedom.

Definition (𝑭-Distribution) :

Let 𝑈 and 𝑉 be independent 𝜒 

{i,1,7} ] }, PlotRange->{0,0.9},(*Set the y-axis plot range*)
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If we define the population proportion, 𝑝, as the proportion of employees who know math, then 𝑝 = 3 5 ⁄ = 0.60. Note that this population proportion, 𝑝 = 0.60, is a constant. Let's now assume that we randomly select three employees for each of the possible samples, and then we compute the proportion of employees in each sample that are mathematicians. From the population of five employees, a maximum of 10 samples of size three can be obtained. Table 16.5 displays these 10 possible samples along with the proportion of workers that are mathematicians for each sample. Using Table 16.5, we prepare the frequency distribution of 𝑝̂ as recorded in Table 16.6, along with the relative frequencies of classes, which are obtained by dividing the frequencies of classes by the total number of possible samples. 

(16.51) Because the term 𝑋 𝑖 contributes 1 to the sum if the ith member of the sample has the characteristic and 0 otherwise, it follows that 𝑋 is equal to the number of members of the sample that possess the characteristic. In addition, the sample mean

.52) is equal to the proportion, 𝑝, of the members of the sample that possess the characteristic 𝑋 ̅ = 𝑝. Recall that a binomial variable 𝑋 is the number of successes in a binomial experiment consisting of 𝑛 independent success/failure trials with 𝑝 = P(success) for any particular trial. In other words, designating a failure in each binomial trial by the value 0 and a 678 CHAPTER 17

MATHEMATICA LAB: SAMPLING THEORY

This chapter explores the Mathematica functions related to several important probability distributions, namely the chisquare distribution, student t distribution, F ratio distribution, and the sampling distributions of mean and variance. Understanding these distributions and their corresponding functions is essential for performing statistical analyses and drawing meaningful conclusions from data.

• Sampling distributions of the mean and variance are essential concepts in inferential statistics. These distributions describe the behavior of sample means and variances when repeatedly drawn from a population. Mathematica provides functions to explore the properties of these sampling distributions, such as calculating probabilities, quantiles, and moments. By utilizing Mathematica built-in functions, we can generate random samples and analyze the behavior of these sampling distributions. Throughout the chapter, we provide an indepth explanation of the key functions, such as RandomVariate, PDF, CDF, Quantile, Histogram, ChiSquareDistribution, StudentTDistribution and FRatioDistribution and demonstrate their usage in computing and visualizing sampling distributions of mean and variance. • The Chi-square distribution plays a fundamental role in statistical inference, particularly in hypothesis testing and constructing confidence intervals for the population variance. The Student t distribution is widely used when the sample size is small, and the population standard deviation is unknown. It plays a central role in hypothesis testing and constructing confidence intervals for the population mean. The F ratio distribution is employed in statistical tests that involve comparing variances or testing the overall significance of a linear regression model. We will discuss the visualization capabilities of Mathematica and how they can enhance our understanding of these distributions. Mathematica offers various plotting functions that enable us to create histograms, probability density plots, and cumulative distribution plots, providing valuable insights into the distribution behavior and shape. • Throughout this chapter, we will provide clear explanations of the concepts, practical examples, and demonstrate how to utilize Mathematica functions effectively. By mastering these functions, you will enhance your ability to analyze data, and draw valid statistical conclusions.

In the following table, we list the built-in functions that are used in this chapter.

ChiSquareDistribution StudentTDistribution FRatioDistribution

Therefore, we divided this chapter into seven units to cover the above topics. ], {x,0,20}, PlotRange->{0,0.3}, Filling->Axis, PlotLegends->Placed[{"ν=1","ν=3","ν=5", "ν=10"},{0. 

]}, {0.5}, "PDF", PlotLabel->"Chi-squared distributions with different degrees of freedom", ChartLegends->{"v = 1","v = 2","v = 5","v = 10","v = 20","v = 50","v = 100"}, AxesLabel->{"x","PDF"}, PlotRange->{{0,150},{0,0 

Mathematica Examples 17.46

Input (* The code explains the relation between the distribution of the sample variance, denoted as S^2, and the transformed variable ((n-1)/σ^2)S^2. In other words, the code demonstrate how the sampling distribution of the sample variance follows the chisquared distribution and how the gamma distribution can also be used to model it. The use of both distributions provides a visual comparison of how well each distribution fits the sampling distribution of the sample variance. The code first generates 1000 random samples from the normal distribution and then calculates the sample variance for each sample. In the code, the variable df is calculated as n-1, which represents the degrees of freedom of the chi-squared distribution used to model ((n-1)/σ^2)S^2. The transformed variable ((n-1)/σ^2)S^2 is calculated as (df/popvar)*samplevars in the code. The code then plots a histogram of the transformed variable ((n-1)/σ^2)S^2 and overlays the corresponding chi-squared distribution with df degrees of freedom. The comparison of the two plots illustrates how the chisquared distribution provides a good fit for the transformed variable ((n-1)/σ^2)S^2. 

{x,-6,6}, PlotRange->Automatic, Filling->Axis, PlotLegends->Placed[{"ν=1","ν=2","ν=3","ν=10"},{0. 

√2𝜋 Mathematica Examples 17.72

Mathematica Examples 17.73

Input (* Student distribution can be obtained from normal distribution and chi square distribution: *) 

Mathematica

Indeterminate

True FactorialMoment 
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CHAPTER 18

ESTIMATION THEORY

Estimation theory is a branch of statistics that deals with the problem of estimating unknown parameters from observed data. It provides a framework for making informed decisions based on limited information and quantifying the uncertainty associated with those decisions.

Estimation theory plays a crucial role in various fields, including engineering, economics, physics, and social sciences, where accurate parameter estimation is essential for understanding and predicting phenomena. Throughout this chapter, we will explore the theoretical foundations and practical applications of estimation theory, enabling us to make reliable inferences about unknown population parameters based on sample data.

At its core, estimation theory addresses the following fundamental questions: How can we use the available data to estimate unknown parameters? How confident can we be in the accuracy of our estimates? What are the best methods for estimation given certain assumptions and constraints?

• The process of estimation involves formulating mathematical models that describe the relationship between the observed data and the unknown parameters of interest. It involves two main methods: point estimation and confidence intervals (CIs). • A point estimator is a statistic that provides an estimate or guess for an unknown population parameter based on sample data. It summarizes the information from the sample and provides a single value as the estimate for the parameter of interest. This chapter explores various point estimation techniques, including the method of moments (MOM), and maximum likelihood estimation (MLE), along with their properties and applications. • However, a point estimator alone does not convey any information about the accuracy of the estimate. To address the uncertainty associated with point estimators, CIs are used. A CI is an interval estimate that provides a range of plausible values for the unknown population parameter, along with a corresponding level of confidence. It quantifies the uncertainty in the estimation process and provides a measure of the precision of the estimate. These intervals incorporate both the point estimate and the variability associated with it, offering a more comprehensive understanding of the true value of the parameter. Throughout this chapter, we delve into the construction, interpretation, and calculation of CIs, exploring different approaches such as the t-distribution, F-ratio distribution, and z-distribution. • In addition, we will explore various methods and techniques for constructing CIs in the following cases:

▪ Large-sample CI for mean and 𝜎 known. ▪ Large-sample CI for mean and 𝜎 unknown.

▪ CI for mean in the case of the normal population and 𝜎 unknown.

▪ CI for 𝜇 1 -𝜇 Definition (Interval Estimate): An estimate of a population parameter given by two numbers between which the parameter may be considered to lie is called an interval estimate of the parameter.

In a practical situation, there may be several statistics that could be used as point estimators for a population parameter. To decide which of several choices is best, you need to know how the estimator behaves in repeated sampling, described by its sampling distribution.

Sampling distributions provide information that can be used to select the best estimator. What characteristics would be valuable? First, the sampling distribution of the point estimator should be centered over the true value of the parameter to be estimated. That is, the estimator should not constantly underestimate or overestimate the parameter of interest. Such an estimator is said to be unbiased.

Definition (Unbiased and Biased Estimator):

If the mean of the sampling distribution of a statistic equals the corresponding population parameter, the statistic is called an unbiased estimator of the parameter; otherwise, it is called a biased estimator. The corresponding values of such statistics are called unbiased or biased estimates, respectively.

The sampling distributions for an unbiased estimator and a biased estimator are shown in Figure 18.1. The sampling distribution for the biased estimator is shifted to the right of the true value of the parameter. 

Example 18.1

The mean of the sampling distribution of means 𝜇 𝑋 ̅ is 𝜇, the population mean. Hence the sample mean 𝑋 ̅ is an unbiased estimate of the population mean 𝜇.

Example 18.2

The mean of the sampling distribution of variances is

where 𝜎 2 is the population variance and 𝑛 is the sample size. Thus, the sample variance 𝑆 2 is a biased estimate of the population variance 𝜎 2 . By using the modified variance

we find 𝜇 𝑆 ̂2 = 𝜎 2 , so that 𝑆 ̂2 is an unbiased estimate of 𝜎 2 . However, 𝑆 ̂ is a biased estimate of 𝜎.

In the language of expectation, we could say that a statistic is unbiased if its expectation equals the corresponding population parameter. Thus 𝑋 ̅ and 𝑆 ̂2 are unbiased since 𝐸[𝑋 ̅ ] = 𝜇 and 𝐸[𝑆 ̂2] = 𝜎 2 .

A second important characteristic is that the spread (as measured by the variance) of the estimator sampling distribution should be as small as possible. This ensures that, with a high probability, an individual estimate will fall close to the true value of the parameter. The sampling distributions for two unbiased estimators, one with a small variance and the other with a larger variance, are shown in Figure 18.2. Naturally, you would prefer the estimator with the smaller variance because the estimates tend to lie closer to the true value of the parameter than in the distribution with the larger variance. 

Definition (Most Efficient, or Best, Estimator):

If we consider all possible statistics whose sampling distributions have the same mean, the one with the smallest variance is sometimes called the most efficient, or best, estimator of this mean.

Definition (Error of Estimation):

The distance between an estimate and the true value of the parameter is called the error of estimation.

Example 18.3

The sampling distributions of the mean and median both have the same mean, namely, the population mean. However, the variance of the sampling distribution of means is smaller than the variance of the sampling distribution of medians. Hence the sample mean gives an efficient estimate of the population mean, while the sample median gives an inefficient estimate of it. Of all statistics estimating the population mean, the sample mean provides the best (or most efficient) estimate.

There are many methods available for estimating the true value(s) of the parameter(s) of interest, for example, method of MLE, MOM, method of least square, minimum-variance mean-unbiased estimator, median unbiased estimator, and best linear unbiased estimator. In this chapter, two of the more popular methods for obtaining point estimators will be considered, namely, the MLE and MOM.

MLEs

Any statistic used to estimate the value of an unknown parameter 𝜃 is called an estimator of 𝜃. The observed value of the estimator is called the estimate. For instance, as we shall see, the usual estimator of the mean of a normal MLE is a method of estimating the parameters of an assumed probability distribution, given some observed data. The MLE method is based on the principle that the values of the parameters should be chosen to make the observed data most probable. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

Let us suppose we have a statistical model with a set of parameters 𝛉 (𝛉 is a vector of parameters) and a sample of observed data 𝑋 = {𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 }. Let 𝑓(𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝛉) denote the joint PMF of the RVs 𝑋 1 , . .., 𝑋 𝑛 when they are discrete, and let it be their joint PDF when they are jointly continuous RVs. Because 𝛉 is assumed unknown, we also write 𝑓 as a function of 𝛉. The likelihood function, denoted by ℒ(𝑋|𝛉), is a measure of how likely the observed data is under the given parameter values. Now since ℒ(𝑋|𝛉) = 𝑓(𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝛉) represents the likelihood that the values 𝑥 1 , . .., 𝑥 𝑛 will be observed when 𝛉 is the true value of the parameter, it would seem that a reasonable estimate of 𝛉 would be that value yielding the largest likelihood of the observed values. The goal of MLE is to find the values of 𝛉 that maximize the likelihood function. The likelihood function is typically defined as: ℒ(𝑋|𝛉) = 𝑓(𝑥 1 ; 𝛉)𝑓(𝑥 2 ; 𝛉) . . . 𝑓(𝑥 𝑛 ; 𝛉), (18.1.1) where 𝑓(𝑥 𝑖 ; 𝛉) is the PDF or PMF of the model. To find the MLEs, we seek the value of 𝛉 that maximize the likelihood function. In determining the value of 𝛉, it is often useful to use the fact that 𝑓(𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝛉) and log[𝑓(𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝛉)] have their maximum at the same value of 𝛉. The log-likelihood function, denoted by ℓ(𝑋|𝛉), is:

(18.1.2) Once we have the log-likelihood function, we differentiate it with respect to 𝛉, set the derivative to zero, and solve for 𝛉.

A few more important aspects and properties of MLEs are:

• Consistency:

Under certain regularity conditions, MLEs are consistent, meaning that as the sample size increases, the estimated parameter values converge to the true values. This property ensures that the estimates become more accurate with larger amounts of data.

• Efficiency:

MLEs are often asymptotically efficient, which means that they achieve the smallest possible asymptotic variance among all consistent estimators. In simpler terms, MLEs tend to have smaller SEs compared to other estimators, making them more precise. • Computational methods:

In some cases, finding the MLE analytically may be challenging or impossible. In such situations, numerical optimization algorithms, such as the Newton-Raphson method or the expectation-maximization algorithm, are commonly used to find the MLEs.

• Applications:

MLE is a versatile method used in various fields, including statistics, econometrics, machine learning, and many other areas of research. It is employed to estimate parameters in a wide range of models, including linear regression, logistic regression, survival analysis, mixed-effects models, and more. Steps to apply MLE: 1. Define the probability distribution: Start by defining the probability distribution that you believe represents the data you are working with. This distribution could be Gaussian (normal), binomial, Poisson, etc., depending on the nature of your data.

Set up the likelihood function:

The likelihood function represents the probability of observing your data given a set of parameters. It is derived from the probability distribution you defined in step 1. The likelihood function is typically denoted as ℒ(𝑋|𝛉) = 𝑓(𝑥 1 ; 𝛉)𝑓(𝑥 2 ; 𝛉) . . . 𝑓(𝑥 𝑛 ; 𝛉), where 𝑓(𝑥 𝑖 ; 𝛉) is the PDF or PMF of the model and 𝛉 represents the parameters of the distribution.

Take the natural logarithm:

To simplify the calculations, it is common to take the natural logarithm of the likelihood function. This step does not change the location of the maximum, as the logarithm is a monotonic function. 4. Differentiate the log-likelihood function:

Differentiate the logarithm of the likelihood function with respect to the parameters 𝛉. This step helps find the maximum point in the parameter space. 5. Set the derivative to zero:

Set the derivative obtained in step 4 to zero and solve for the parameters. This identifies the values of 𝛉 that maximize the likelihood function. 6. Check the second derivative and positive definiteness:

Calculate the second derivative of the log-likelihood function with respect to the parameters. This is known as the Hessian matrix. Evaluate the second derivative at the values of 𝛉 obtained in step 5. Verify that the Hessian matrix is negative definite or negative semi-definite. This condition ensures that the maximum point found in step 5 is indeed a maximum and not a minimum or saddle point. You can use also Mathematica FindMaximum function to find values of 𝛉 that maximize the likelihood function.

Solve for MLEs:

Solve the equations obtained from step 5 to obtain the MLEs for the parameters of the distribution. The steps for calculating the 100(1 -𝛼)% CI for population mean, 𝑛 ≥ 30:

1-Collect a random sample of data from the population of interest. Let the sample size be denoted by 𝑛.

2-Calculate the sample mean, denoted by 𝑥̅ , using the following formula:

where 𝑥 𝑖 represents the ith observation in the sample. 3-Determine the level of significance 𝛼. 4-Use a normal distribution Mathematica function to find the critical value, 𝑧 𝛼/2 , for the given level of significance. 5-If σ is known, calculate the CI for the population mean using the following formula:

where 𝜎 is the known population standard deviation, and √𝑛 is the square root of the sample size. 

Example 18.11

On a highway with a posted speed limit of 90 mph, fifteen random cars were measured for their speeds (in mph), and it was discovered that their average speed was 92. 

One-Sided Confidence Bounds

In the case of one-sided confidence bounds, the focus is only on one side of the parameter value, either the lower bound or the upper bound. This is typically done when researchers are interested in determining the minimum or maximum value that a parameter can take, rather than estimating the full range. One-sided confidence bounds are useful in situations where researchers have specific hypotheses or expectations about the direction of the effect.

To understand one-sided confidence bounds, let us consider an example. Suppose we want to estimate the average height of a certain population of adults. We collect a sample of heights and calculate the sample mean. Using this sample mean, we can construct a one-sided confidence bound to estimate the true population mean height either from above or below. For instance, if we are interested in estimating the population mean height from above, we can construct an upper one-sided confidence bound. This interval will provide an upper limit within which the true population mean height is likely to lie with a certain level of confidence. Similarly, if we are interested in estimating the population mean height from below, we can construct a lower one-sided confidence bound, which provides a lower limit for the parameter. The following notations represent the parameters for two populations and their corresponding samples statistics.
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Substituting 𝑆 𝑝 2 in the 𝑇 statistic, we obtain

.

Using the 𝑇 statistic, we have

where 𝑡 𝛼/2 is the 𝑡-value with 𝑛 1 + 𝑛 2 -2 degrees of freedom, above which we find an area of 𝛼/2. Substituting for 𝑇 in the inequality, we write

∎

The procedure for constructing CIs for 𝜇 1 -𝜇 2 with 𝜎 1 = 𝜎 2 = 𝜎 2 unknown requires the assumption that the populations are normal. Slight departures from either the equal variance or the normality assumption do not seriously alter the degree of confidence for our interval. If the population variances are considerably different, we still obtain reasonable results when the populations are normal, provided that 𝑛 1 = 𝑛 2 . Therefore, in planning an experiment, one should make every effort to equalize the size of the samples.

Procedure 18.9.

To calculate the CI for the difference between two means, 𝜇 1 and 𝜇 2 , when the variances, 𝜎 1 2 and 𝜎 2 2 , are unknown but assumed to be equal, you can use the following steps:

1. Obtain two independent samples from the populations of interest. Let us call them Sample 1 and Sample 2, with sizes 𝑛 1 and 𝑛 2 , respectively. 2. Calculate the sample mean for Sample 1, denoted as 𝑥̅ 1 , and the sample mean for Sample 2, denoted as 𝑥̅ 2 . Also, calculate the sample standard deviation for Sample 1, denoted as 𝑠 1 , and the sample standard deviation for Sample 2, denoted as 𝑠 2 . 3. Since the variances are assumed to be equal, you can pool the sample variances to estimate the common variance. The pooled standard deviation, 𝑠 𝑝 , is calculated using the formula:

4. The SE of the difference between means is given by: 815 An interval estimate of 𝜎 2 can be established by using the statistic

According to Theorem 16.13, the statistic 𝑋 2 has a chi-squared distribution with 𝑛 -1 degrees of freedom when samples are chosen from a normal population, see Figure 18.9. We may write

where 𝜒 1-𝛼/2 2 and 𝜒 𝛼/2 2 are values of the chi-squared distribution with 𝑛 -1 degrees of freedom, leaving areas of 1 -𝛼/2 and 𝛼/2, respectively, to the right. Substituting for 𝑋 2 , we write

Finally,

∎ Procedure 18.11.

To construct a CI for the standard deviation, follow the following steps: 

6. The ME is the product of the SE and the critical value (𝑧𝛼 

) 

{eμ,eσ}, Joined->True, PlotRange->All, PlotLegends->Placed[{"eμ","eσ"},{0.8,0.15}], ImageSize->300 ], {{mu,1.5,"mu"},1,3,0.1}, {{segma,0.7,"segma"},0.5,1,0.1}, {{n,100,"Sample Size"},10,1000,10} Input (* In this example, we generate a sample dataset with 100 data points from a standard normal distribution. We then specify a confidence level of 0.99 (corresponding to a 99% confidence interval). The VarianceCI function computes the confidence interval for the variance of the dataset, and the result is stored in the variable ci: *) Input (* The code will compute the 90% confidence interval for the ratio of two population variances using the VarianceRatioCI function in Mathematica's HypothesisTesting` package. The code begins by loading the HypothesisTesting package using the Needs function. Then, two sample datasets, data1 and data2, are generated. The VarianceRatioCI function is used to compute the confidence interval for the ratio of variances, with a specified confidence level of 90% (ConfidenceLevel->0.90). Next, the lower and upper bounds of the confidence interval are extracted from the result, stored in ci. Finally, the Print statement displays the confidence interval to the user, showing both the lower and upper bounds: *) 

DECISION THEORY AND HYPOTHESIS TESTING

In statistics and data analysis, the process of drawing conclusions and making inferences about a population based on a sample is of utmost importance. Hypothesis testing is a widely used technique that allows researchers, scientists, and data analysts to make well-founded decisions and validate their assumptions using empirical evidence.

• The fundamental idea behind hypothesis testing is to evaluate the plausibility of a claim or statement about a population parameter, such as the mean, variance, proportion, or correlation. These claims, known as hypotheses, are formulated based on prior knowledge, observations, or theories. The hypothesis testing process enables us to determine if the evidence from the sample data supports or contradicts these hypotheses. • The two primary types of hypotheses involved in hypothesis testing are the null hypothesis (𝐻 0 ) and the alternative hypothesis (𝐻 𝑎 ≡ 𝐻 1 ). The null hypothesis typically represents a default assumption. On the other hand, the alternative hypothesis proposes a specific change or effect that the researcher is interested in detecting. • Hypothesis testing involves collecting sample data and using statistical methods to assess the probability of obtaining such data if the null hypothesis were true. The process aims to determine whether the observed data provide enough evidence to reject the null hypothesis in favor of the alternative hypothesis.

Throughout this chapter, we will explore the key concepts and steps involved in conducting hypothesis tests. Some of the main topics covered will include:

• Formulating hypotheses: Understanding the significance of null and alternative hypotheses, and how to properly structure them for various scenarios. • Test statistics: Introducing different test statistics, such as t-tests, z-tests, chi-square tests, and others, which serve as the basis for hypothesis testing.

• 𝑃-values: Explaining the concept of 𝑃-values and their role in hypothesis testing. 𝑃-values provide a measure of the strength of evidence against the null hypothesis. • Type I and Type II errors: Understanding the risks associated with hypothesis testing, including the possibility of making incorrect decisions. • We will discuss various types of hypothesis tests (one-sample, and two-sample), including tests for means, proportions, and variances. We will consider the following cases: ▪ Large-sample hypothesis testing for mean and 𝜎 known. ▪ Large-sample hypothesis testing for mean and 𝜎 unknown. ▪ Hypothesis testing for mean in the case of the normal population and 𝜎 unknown. ▪ Hypothesis testing for 𝜇 1 -𝜇 2 , 𝜎 1 2 and 𝜎 2 2 known. ▪ Hypothesis testing for 𝜇 1 -𝜇 2 , 𝜎 1 2 = 𝜎 2 2 but both are unknown. ▪ Hypothesis testing for 𝜇 1 -𝜇 2 , 𝜎 1 2 ≠ 𝜎 2 2 and both unknown. ▪ Hypothesis testing for 𝜎 2 . ▪ Hypothesis testing for 𝜎 1 2 /𝜎 2 2 . ▪ Large-sample hypothesis testing for a population proportion 𝑝. ▪ Large-sample hypothesis testing for 𝑝 1 -𝑝 2 . ▪ Goodness-of-Fit Test
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Research question: Is there a significant difference in the exam scores of two study groups (group A and group B)? 𝐻 0 : There is no significant difference in the exam scores of the two groups. 𝐻 0 : 𝜇 𝐴 = 𝜇 𝐵 . 𝐻 𝑎 : There is a significant difference in the exam scores of the two groups. 𝐻 𝑎 :𝜇 𝐴 ≠ 𝜇 𝐵 .

Research question:

Is there a relationship between gender and voting preference? 𝐻 0 : There is no association between gender and voting preference. 𝐻 0 : Gender and voting preference are independent. 𝐻 𝑎 : There is a relationship between gender and voting preference. 𝐻 𝑎 : Gender and voting preference are dependent.

Research question:

Is there a significant difference in blood pressure before and after a new treatment? 𝐻 0 : There is no significant difference in blood pressure before and after the treatment. 𝐻 0 : 𝜇(before) = 𝜇(after). 𝐻 𝑎 : There is a significant difference in blood pressure before and after the treatment. 𝐻 𝑎 : 𝜇(before) ≠ 𝜇(after).

Research question:

Is there a correlation between the number of hours spent studying and the exam scores? 𝐻 0 : There is no correlation between the number of hours spent studying and exam scores. 𝐻 0 : 𝜌 = 0 (where 𝜌 is the population correlation coefficient) 𝐻 𝑎 : There is a correlation between the number of hours spent studying and exam scores. 𝐻 𝑎 : 𝜌 ≠ 0.

Research question:

Is the proportion of people who prefer brand 𝑋 over brand 𝑌 significantly different from 0.5? 𝐻 0 : The proportion of people who prefer brand 𝑋 over brand 𝑌 is equal to 0.5. 𝐻 0 : 𝑝 = 0.5 (where 𝑝 is the population proportion) 𝐻 𝑎 : The proportion of people who prefer brand 𝑋 over brand 𝑌 is not equal to 0.5. 𝐻 𝑎 : 𝑝 ≠ 0.5.

Research Question:

Is the average time it takes to complete a task using Method A less than the average time using Method B? 𝐻 0 : The average time to complete the task using Method A is greater than or equal to the average time using Method B. 𝐻 𝑎 : The average time to complete the task using Method A is less than the average time using Method B.

Research Question: Is the average time it takes to complete a task using Method A greater than the average time using Method B? 𝐻 0 : The average time to complete the task using Method A is less than or equal to the average time using Method B. 𝐻 𝑎 : The average time to complete the task using Method A is greater than the average time using Method B.

Consider a population having a distribution 𝐹 𝜃 , where 𝜃 is an unknown parameter, and suppose we want to test a specific hypothesis about 𝜃. For example, if 𝐹 𝜃 is a normal distribution function with mean 𝜃 and variance equal to 1, then, for example, two possible null hypotheses about 𝜃 are (a) 𝐻 0 : 𝜃 = 1, (b) 𝐻 0 : 𝜃 ≤ 1.

Thus, the first of these hypotheses states that the population is normal with mean 1 and variance 1, whereas the second states that it is normal with variance 1 and a mean less than or equal to 1. Note that the null hypothesis in (a), when true, completely specifies the population distribution, whereas the null hypothesis in (b) does not. A hypothesis that, when true, completely specifies the population distribution is called a simple hypothesis; one that does not is called a composite hypothesis.

To test a specific null hypothesis 𝐻 0 , a population sample of size 𝑛say 𝑋 1 , . . . , 𝑋 𝑛is to be observed. Hypothesistesting procedures rely on using the information in a random sample from the population of interest. If this information
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Type II error (False Negative):

• A Type II error occurs when the null hypothesis 𝐻 0 is incorrectly failed to be rejected when it is false. In other words, it is a false negative error where we fail to detect a significant effect or difference that exists in reality. The probability of making a Type II error is denoted by the symbol "𝛽". It represents the probability of failing to reject the null hypothesis when it is false, i.e., the probability of not detecting a true effect or difference.

• The power of a statistical test is equal to (1 -𝛽) and represents the probability of correctly rejecting the null hypothesis when it is false. In other words, it is the probability of correctly detecting a real effect or difference. • Researchers can control the Type II error rate by increasing the sample size, which generally improves the power of the test. A larger sample size allows for more precise estimates and increases the likelihood of detecting true effects. Additionally, researchers can choose more sensitive statistical tests or modify experimental designs to enhance the chances of detecting effects if they exist.

Example 20.4

Scenario: A new medical test is developed to diagnose a particular disease. The null hypothesis 𝐻 0 states that the patient does not have the disease.

Type I error: Situation:

The test results show that a healthy patient has the disease (reject 𝐻 0 ), but in reality, the patient is disease-free.

Consequence:

The patient may undergo unnecessary and potentially harmful treatments or surgeries.

Type II error: Situation:

The test results show that a patient does not have the disease (fail to reject 𝐻 0 ), but in reality, the patient has the disease.

Consequence:

The disease goes undetected, and the patient misses the opportunity for early treatment and intervention.

Example 20.5

Scenario: A manufacturing process produces a batch of products and the null hypothesis 𝐻 0 states that the batch meets the required quality standard.

Type I error: Situation:

The quality control test rejects the batch (reject 𝐻 0 ), but in reality, the batch meets the required standard. Consequence:

The entire batch is discarded or reworked, leading to unnecessary costs and waste.

Type II error: Situation:

The quality control test accepts the batch (fail to reject 𝐻 0 ), but in reality, the batch does not meet the required standard.

Consequence: Substandard products are released into the market, potentially leading to customer dissatisfaction and recalls.

Example 20.6

Scenario: A researcher investigates the effects of a new drug on a certain condition and the null hypothesis 𝐻 0 states that the drug has no effect.
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Type I error: Situation:

The study shows that the drug has a significant effect (reject 𝐻 0 ), but in reality, the drug has no effect on the condition. Consequence: False claims of the drug's effectiveness may lead to unwarranted prescriptions and wasted resources.

Type II error: Situation:

The study fails to find a significant effect of the drug (fail to reject 𝐻 0 ), but in reality, the drug does have a beneficial effect. Consequence:

The potential benefits of the drug remain undiscovered, and patients miss out on a useful treatment.

Remarks:

• The probabilities of Type I and Type II errors are related, and decreasing one type of error typically increases the other type. Statisticians and researchers need to balance these error probabilities depending on the context of the study and the potential consequences of each error. This balance is usually achieved by adjusting the sample size or the significance level of the hypothesis test.

• In practice, one type of error may be more serious than the other, and so a compromise should be reached in favor of limiting the more serious error. The only way to reduce both types of error is to increase the sample size, which may or may not be possible. • Type I errors are generally considered more serious than type II errors. For example, it is mostly agreed that finding an innocent person guilty is a more serious error than finding a guilty person innocent. Here, the null hypothesis is that the person is innocent, and the alternative hypothesis is that the person is guilty. "Not rejecting the null hypothesis" is equivalent to acquitting a defendant. It does not prove that the null hypothesis is true, or that the defendant is innocent. • The significance level, 𝛼, is the probability of making a Type I error, that is, of rejecting a true null hypothesis.

Therefore, if the hypothesis test is conducted at a small significance level (e.g., 𝛼 = 0.05), the chance of rejecting a true null hypothesis will be small. In this book, we generally specify a small significance level. Thus, if we do reject the null hypothesis, we can be reasonably confident that the null hypothesis is false. In other words, if we do reject the null hypothesis, we conclude that the data provide sufficient evidence to support the alternative hypothesis. • However, we usually do not know the probability, 𝛽, of making a Type II error, that is, of not rejecting a false null hypothesis. Consequently, if we do not reject the null hypothesis, we simply reserve judgment about which hypothesis is true. In other words, if we do not reject the null hypothesis, we conclude only that the data do not provide sufficient evidence to support the alternative hypothesis; we do not conclude that the data provide sufficient evidence to support the null hypothesis.

Rejection and non-rejection regions: Tests involving normal distribution

To illustrate the ideas presented above, suppose that under a given hypothesis the sampling distribution of a statistic Sta is a normal distribution with mean 𝜇 Sta and standard deviation 𝜎 Sta . Thus, the distribution of the standardized variable (or 𝑧 score), given by 𝑧 = (Sta -𝜇 Sta )/𝜎 Sta , is the standardized normal distribution (mean 0, variance 1), as shown in Figure 20.1.

As indicated in Figure 20.1, we can be 95% confident that if the hypothesis is true, then the 𝑧 score of an actual sample statistic Sta will lie between -1.96 and 1.96 (since the area under the normal curve between these values is 0.95). However, if on choosing a single sample at random we find that the 𝑧 score of its statistic lies outside the range -1.96 to 1.96, we would conclude that such an event could happen with a probability of only 0.05 (the total non-shaded area in the figure) if the given hypothesis were true. We would then say that this 𝑧 score differed significantly from what would be expected under the hypothesis, and we would then be inclined to reject the hypothesis.
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The 𝑃-value of a hypothesis test is also referred to as the observed significance level. To understand why, suppose that the 𝑃-value of a hypothesis test is 𝑃 = 0.07. Then, for instance, we can reject the null hypothesis at the 10% significance level (because 𝑃 ≤ 0.10), but we cannot reject the null hypothesis at the 5% significance level (because 𝑃 > 0.05). Here, the null hypothesis can be rejected at any significance level of at least 0.07 and cannot be rejected at any significance level less than 0.07. More generally, we have the following fact.

Definition (𝑷-Value as the Observed Significance Level):

The 𝑃-value of a hypothesis test equals the smallest significance level at which the null hypothesis can be rejected, that is, the smallest significance level for which the observed sample data results in rejection of 𝐻 0 .

Procedure 20.1.

The general steps involved in hypothesis testing are as follows:

1. State the null hypothesis 𝐻 0 and the alternative hypothesis 𝐻 𝑎 :

The null hypothesis represents the default assumption, while the alternative hypothesis represents the claim or the hypothesis to be tested.

Choose the significance level (𝛼):

The significance level, often denoted by 𝛼, determines the probability of rejecting the null hypothesis when it is actually true. Commonly used significance levels are 0.05 (5%) and 0.01 (1%).

Select an appropriate test statistic:

The choice of test statistic depends on the nature of the problem, the type of data, and the hypothesis being tested. Common test statistics include t-tests, z-tests, chi-square tests, and F-tests.

Determine the critical region:

The critical region is the set of values of the test statistic that leads to the rejection of the null hypothesis.

It is determined based on the significance level and the distribution of the test statistic under the null hypothesis.

Collect and analyze the sample data:

Obtain a sample of data from the population of interest. Calculate the test statistic using the sample data. 6. Make a decision 1: (Critical value approach)

Compare the calculated test statistic with the critical values from the distribution.

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 7. Calculate the 𝑃-value associated with the test statistic. This is the probability of obtaining a test statistic as extreme as the observed one, assuming the null hypothesis is true.

• For a two-tailed test, calculate the area in both tails of the distribution.

• For a one-tailed test, calculate the area in the appropriate tail.

Make a decision 2: (𝑃 value approach)

Compare the 𝑃-value to the significance level (𝛼).

• If the 𝑃-value is less than 𝛼, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 9. Draw conclusions:

Based on the decision in steps 6 and 8, draw conclusions about the population.

• If the null hypothesis is rejected, it suggests evidence in favor of the alternative hypothesis.

• If the null hypothesis is not rejected, there is insufficient evidence to support the alternative hypothesis. 10. Report the results:

Report the test statistic, the critical values, the decision, and the conclusions in a clear and concise manner. The steps for conducting a hypothesis test for one population mean when the population standard deviation (𝜎) is known:

1. State the null and alternative hypotheses:

• 𝐻 0 : The population mean is equal to a specified value.

• 𝐻 𝑎 : The population mean is not equal to the specified value (two-tailed test), or it is greater than/less than the specified value (one-tailed test). 2. Set the significance level, 𝛼, for the test. 
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• For a two-tailed test, divide the significance level by 2 and find the corresponding 𝑧-score(s) using the standard Mathematica normal distribution. • For a one-tailed test, find the 𝑧-score corresponding to the desired tail area. 5. Calculate the test statistic using the formula:

For a 𝑧-test:

where 𝑥̅ is the sample mean, 𝜇 0 is the hypothesized population mean, 𝜎 is the known population standard deviation, and 𝑛 is the sample size. 6. Compare the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 7. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the area in both tails of the distribution.

• For a one-tailed test, calculate the area in the appropriate tail. 8. Compare the 𝑃-value to 𝛼.

• If the 𝑃-value is less than 𝛼, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 9. Draw a conclusion based on the results:

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis. conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 Conclusion using P value approach: Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ] 
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Conclusion using critical value approach: Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 Conclusion using P value approach: Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of 0.05 conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ]; 
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conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ] conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "left-tailed", If[ testStatistic<criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "right-tailed", If[ testStatistic>criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString The steps for conducting a hypothesis test for one population mean when the population standard deviation (𝜎) is unknown (small sample):

1. State the null and alternative hypotheses:

• 𝐻 0 : The population mean is equal to a specified value.

• 𝐻 𝑎 : The population mean is not equal to the specified value (two-tailed test), or it is greater than/less than the specified value (one-tailed test). 2. Set the significance level, 𝛼, for the test. conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "left-tailed", If[ testStatistic<criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "right-tailed", If[ testStatistic>criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ] ]; (* Step 8. Compare the P-value to the significance level: *) pvalueapproach=If[ pValue<α, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "left-tailed", If[ testStatistic<criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) CHAPTER 20
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conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "right-tailed", If[ testStatistic>criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ] ];

(* P value approach: *) (* Step 7. Calculate the p-value: *

(* Step 8. Compare the P-value to the significance level: *) pvalueapproach=If[ pValue<α, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( • 𝐻 1 : The means of the two populations are not equal (𝜇 1 ≠ 𝜇 2 , two-tailed test), or one mean is greater than/less than the other (𝜇 1 > 𝜇 2 or 𝜇 1 < 𝜇 2 , one-tailed test). 2. Set the significance level, 𝛼, for the test. 3. Collect random samples from both populations and calculate the sample means (𝑥̅ 1 and 𝑥̅ 2 ), the sample standard deviations (𝑠 1 and 𝑠 2 ), and the sample sizes (𝑛 1 and 𝑛 2 ). 4. Calculate the pooled standard deviation (s) using the formula:

5. Calculate the test statistic using the formula: For a t-test:

6. Determine the degrees of freedom (𝑑𝑓) for the t-distribution using the formula: 𝑑𝑓 = 𝑛 1 + 𝑛 2 -2 7. Determine the critical value(s) for the test statistic.

• For a two-tailed test, divide the significance level by 2 and find the corresponding t-score(s) from the Mathematica t-distribution. • For a one-tailed test, find the t-score corresponding to the desired tail area. 8. Compare the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis.

CHAPTER 20

DECISION THEORY AND HYPOTHESIS TESTING 892 9. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the area in both tails of the t-distribution with the degrees of freedom. • For a one-tailed test, calculate the area in the appropriate tail. 10. Compare the 𝑃-value to 𝛼.

• If the 𝑃-value is less than 𝛼, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 11. Draw a conclusion based on the results.

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis. conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "left-tailed", If[ testStatistic<criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "right-tailed", If[ testStatistic>criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ] ]; (* Step 10. Compare the p-value to the significance level: *) pvalueapproach=If[ pValue<α, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( 

Significance level 𝛼

Test statistic:

For details see Chapter 18.

. The steps for conducting a hypothesis test for the means of two populations using independent samples, specifically when the variances are unknown and unequal: 1. State the null and alternative hypotheses:

Critical value approach

• 𝐻 0 : The means of the two populations are equal (𝜇 1 = 𝜇 2 ).

• 𝐻 1 : The means of the two populations are not equal (𝜇 1 ≠ 𝜇 2 , two-tailed test), or one mean is greater than/less than the other (𝜇 1 > 𝜇 2 or 𝜇 1 < 𝜇 2 , one-tailed test). 2. Set the significance level, 𝛼, for the test. 3. Collect independent random samples from both populations and calculate the sample means (𝑥̅ 1 and 𝑥̅ 2 ), the sample standard deviations (𝑠 1 and 𝑠 2 ), and the sample sizes (𝑛 1 and 𝑛 2 ). 4. Calculate the degrees of freedom (𝑑𝑓) for the test statistic using the formula:

.

5. Calculate the test statistic using the formula: For a t-test:

6. Determine the critical value(s) for the test statistic.

• For a two-tailed test, divide the significance level by 2 and find the corresponding t-score(s) from the Mathematica t-distribution. • For a one-tailed test, find the t-score corresponding to the desired tail area. 7. Compare the absolute value of the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 8. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the area in both tails of the t-distribution with the degrees of freedom. • For a one-tailed test, calculate the area in the appropriate tail. 9. Compare the 𝑃-value to the 𝛼.

• If the 𝑃-value is less than 𝛼, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 10. Draw a conclusion based on the results.

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis. The steps for conducting a hypothesis test for a population standard deviation: 1. State the null and alternative hypotheses:

• 𝐻 0 : The population standard deviation is equal to a specific value (𝜎 = 𝜎 0 ).

• 𝐻 1 : The population standard deviation is not equal to the specific value (𝜎 ≠ 𝜎 0 , two-tailed test), or it is greater than/less than the specific value (𝜎 > 𝜎 0 or 𝜎 < 𝜎 0 , one-tailed test). 2. Set the significance level, 𝛼, for the test. 3. Collect a random sample from the population of interest. 4. Calculate the sample standard deviation (s) of the sample. 5. Determine the degrees of freedom (𝑑𝑓) for the chi-square distribution. For a sample size of 𝑛, 𝑑𝑓 = 𝑛 -1 6. Calculate the test statistic using the formula:

For a chi-square test:

Determine the critical value(s) for the test statistic.

• For a two-tailed test, divide the significance level by 2 and find the corresponding critical value(s) from the Mathematica chi-square distribution. • For a one-tailed test, find the critical value(s) corresponding to the desired tail area. 8. Compare the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 9. Calculate the p-value associated with the test statistic.
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• For a two-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the negative of the observed value from the chi-square distribution with the degrees of freedom. • For a one-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the observed value, depending on the alternative hypothesis. 10. Compare the p-value to 𝛼.

• If the p-value is less than α, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 11. Draw a conclusion based on the results.

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis.

Example 20.16

(* The code demonstrates the steps for conducting a hypothesis test for a population standard deviation. The code will output the sample standard deviations, test statistic, critical value, p-value, and the conclusion based on the user-specified type of hypothesis test: *) (* Specify the type of hypothesis test, choose one of the following, "two-tailed","lefttailed", or "right-tailed": *) hypothesisType="two-tailed"; σ0=20;

(* Step 1. State the null and alternative hypotheses: *) (* Null hypothesis:Population standard deviation is equal to σ0: *) "H0:σ==σ0";

(* Alternative hypothesis: *) alternativeHypothesis=Switch[ hypothesisType, "two-tailed", "H1:σ!=σ0", "left-tailed", "H1:σ<σ0", "right-tailed", "H1:σ>σ0" ];

( conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "left-tailed", If[ testStatistic<criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "right-tailed The steps for conducting a hypothesis test for one population proportion:

1. State the null and alternative hypotheses:

• 𝐻 0 : The population proportion is equal to a specific value (𝑝 = 𝑝 0 ).

• 𝐻 1 : The population proportion is not equal to the specific value (𝑝 ≠ 𝑝 0 , two-tailed test), or it is greater than/less than the specific value (𝑝 > 𝑝 0 or 𝑝 < 𝑝 0 , one-tailed test). 2. Set the significance level, 𝛼, for the test. • For a two-tailed test, divide the significance level by 2 and find the corresponding critical value(s) from the standard normal distribution table. • For a one-tailed test, find the critical value(s) corresponding to the desired tail area. 8. Compare the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 9. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the negative of the observed value from the standard normal distribution. • For a one-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the observed value, depending on the alternative hypothesis. 10. Compare the 𝑃-value to 𝛼.

• If the 𝑃-value is less than α, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 11. Draw a conclusion based on the results.

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis.
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• If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis.

Example 20.18

(* The code demonstrates the steps for conducting a hypothesis test for one population proportion. The code will output the sample proportion, standard error,test statistic, critical value, p-value, and the conclusion based on the results of the hypothesis test for the population proportion: *) (* Specify the type of hypothesis test, choose one of the following, "two-tailed", "lefttailed", or "right-tailed": *) hypothesisType="two-tailed"; p0=0.5;

( conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "left-tailed", If[ testStatistic<criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "right-tailed", If[ testStatistic>criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ] ]; conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( {1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1,1,1,0,0,1,0,0,1,0,1,1,1,1,0,0 ,0,1,0,0} • For a two-tailed test, divide the significance level by 2 and find the corresponding critical value(s) from the standard normal distribution table. • For a one-tailed test, find the critical value(s) corresponding to the desired tail area. 9. Compare the test statistic to the critical value(s).

• If the test statistic falls within the critical region, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 10. Calculate the 𝑃-value associated with the test statistic.

• For a two-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the negative of the observed value from the standard normal distribution. • For a one-tailed test, calculate the probability of the test statistic being greater than the observed value or less than the observed value, depending on the alternative hypothesis. 11. Compare the 𝑃-value to 𝛼.

• If the 𝑃-value is less than α, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 12. Draw a conclusion based on the results.

• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis.
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• If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis.

Example 20.19

(* The code demonstrates the steps for conducting a hypothesis test for two population proportions using the pooled sample proportion. The code will output the sample proportions,pooled sample proportion, standard error, test statistic, critical value, pvalue,and the conclusion based on the results of the hypothesis test for the two population proportions using the pooled sample proportion: *) (* Specify the type of hypothesis test, choose one of the following, "two-tailed","lefttailed", or "right-tailed": *) hypothesisType="two-tailed";

( conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "left-tailed", If[ testStatistic<criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ], "right-tailed", If[ testStatistic>criticalValue, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ] ]; 
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conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( {0,0,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,1,1 ,1,0,0,1} {1,0,1,0,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,1,1,1,0,1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0,1,1 ,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,1,1,1,0,0,0,1,0,0} • 𝐻 0 : The observed frequencies in each category follow the expected frequencies.

• 𝐻 1 : The observed frequencies in at least one category do not follow the expected frequencies. 2. Set the significance level, 𝛼, for the test. 3. Define the observed frequencies in each category. These are the frequencies or counts you have obtained from your data. 4. Determine the expected frequencies in each category. These are the frequencies you would expect to observe if the null hypothesis is true. The expected frequencies can be calculated based on a specified distribution or a hypothesis about the proportions in each category. 5. Calculate the test statistic using the Chi-Square formula:

Expected where 𝛴 represents the sum of all categories. 6. Determine the degrees of freedom (𝑑𝑓) for the test. This is equal to the number of categories minus 1 (𝑑𝑓 = 𝑘 -1), where 𝑘 is the number of categories. 7. Determine the critical value of the Chi-Square distribution for the specified significance level and degrees of freedom. This critical value separates the rejection region from the non-rejection region. 8. Compare the test statistic to the critical value.

• If the test statistic is greater than the critical value, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 9. Calculate the p-value associated with the test statistic. The p-value can be calculated using the Chi-Square distribution and the cumulative distribution function (CDF). 10. Compare the p-value to 𝛼.

• If the p-value is less than α, reject the null hypothesis.

• Otherwise, fail to reject the null hypothesis. 11. Draw a conclusion based on the results.
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• If the null hypothesis is rejected, conclude that there is sufficient evidence to support the alternative hypothesis. • If the null hypothesis is not rejected, conclude that there is not enough evidence to support the alternative hypothesis. conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

(* Step 9. Calculate the p-value: *) pValue=N[1-CDF[ChiSquareDistribution [df],chiSquare]];

(* Step 10. Compare the p-value to the significance level: *) pvalueapproach=If[ pValue<α, (* Reject the null hypothesis: *) conclusion="Reject the null hypothesis, there is sufficient evidence to support the alternative hypothesis, at the significance level of "<>ToString [α],

(* Fail to reject the null hypothesis: *) conclusion="Fail to reject the null hypothesis, there is not enough evidence to support the alternative hypothesis, at the significance level of "<>ToString [α] ];

( 

MATHEMATICA LAB: DECISION THEORY AND HYPOTHESIS TESTING

Mathematica offers a wide range of built-in functions and tools to perform various statistical analyses and decisionmaking tasks. In this chapter, we will explore several essential Mathematica functions that are commonly used in decision theory and statistical tests. These functions enable researchers and data analysts to draw reliable inferences from data and make well-informed choices based on statistical evidence.

The following Mathematica functions will be covered in this chapter: (* Manipulate Parameters*) {{μ,0,"Mean of Distribution"},-5,5,0.1}, {{σ,1,"Standard Deviation"},0.1,5,0.1}, {{n,20,"Sample Size"},10,100,10}, {{μ0,0,"Null Hypothesis Mean"},-5,5,0.1}, {{alpha,0.05,"Significance Level"},0.01,0. (* Controls for parameters*) {{μ1,0,"Mean 1:"},-5,5,0.1}, {{μ2,0,"Mean 2:"},-5,5,0.1}, {{μ3,0,"Mean 3:"},-5,5,0.1}, (* Control for the significance level*) {{alpha,0.05,"SignificanceLevel:"},0.01,0. (* Manipulate Parameters: *) {{μ,0,"Mean of Distribution"},-5,5,0.1}, {{σ,1,"Standard Deviation"},0.1,5,0.1}, {{n,20,"Sample Size"},10,100,10}, {{σ0,1,"Null Hypothesis Mean"},-5,5,0.1}, {{alpha,0.05,"Significance Level"},0.01,0. 

Input

(* The code performs a hypothesis test to determine whether the ratio of variances σ1^2/σ2^2 is equal to 0.5. It does so by generating two sets of random data samples, data1 and data2, from normal distributions with different standard deviations. It then calculates the variance ratio σ1^2/σ2^2 and performs a variance test to assess if this ratio significantly differs from 0.5. The output of the code includes: The calculated ratio of variances σ1^2/σ2^2. The results of the variance test, including the test statistic and p-value. This helps determine whether there is sufficient evidence to either reject or fail to reject the null hypothesis that σ1^2/σ2^2=0.5.

A plot with two smooth histograms representing the two data populations, data1 and data2. Each population is visualized with a distinct color (purple and blue) and is accompanied by corresponding plot legends. By analyzing the p-value obtained from the variance test, one can draw conclusions about the statistical significance of the difference in variances between the two datasets. The smooth histogram plot helps visualize the distributions of the two populations and provides insights into their variability: *) (* Test whether the ratio σ1^2/σ2^2=0. Input (* The code demonstrates a test for independence between two vectors, vector1 and vector2, which are generated using RandomVariate with 500 samples each from the standard normal distribution (NormalDistribution[]). The ListPlot function is then used to visualize the relationship between vector1 and vector2 as a scatter plot. The data points are displayed with a purple color and some opacity, which can be helpful in identifying any patterns or correlations between the two vectors. Finally, the code performs the independence test using the "IndependenceTest" function with the options "TestDataTable" and "All" specified.