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ABSTRACT
We study financial contagion in Compound V2, a decentralized
lending protocol deployed on the Ethereum blockchain. We explain
how to construct the balance sheets of Compound’s liquidity pools
and use our methodology to characterize the financial network. Our
analysis reveals that most users either borrow stablecoins or engage
in liquidity mining. We then study the robustness of Compound
through a series of stress tests, identifying the pools that are most
likely to set off a cascade of defaults.

CCS CONCEPTS
• Applied computing→ Economics; • Security and privacy→
Economics of security and privacy; • Computing methodologies
→ Simulation tools.
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1 INTRODUCTION
Smart contracts have enabled the rise of Decentralized Finance
(DeFi) protocols that offer financial services without relying on an
intermediary such as a bank or brokerage house. While it is widely
acknowledged that traditional financial systems are vulnerable
to contagion through various channels, including bank runs [7]
and default cascades [8], little is known about the contagion risks
potentially present in DeFi protocols.

To study this question, we focus on Compound V2 but note
that alternative protocols, such as AAVE and MakerDAO, share
a comparable architecture, potentially exposing them to similar
forces. Compound is a decentralized lending protocol built on the
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Ethereum blockchain [22]. The protocol manages multiple liquidity
pools, each dedicated to a specific token. Lenders can add liquidity
to any pool, while borrowers can withdraw liquidity by providing
collateral in the form of deposits in other pools. These operations
connect the various liquidity pools through a network of financial
liabilities.

Our first contribution lies in proposing a methodology for the
description of Compound’s financial network. We do so by charac-
terizing the balance sheet of its liquidity pools and identifying how
they are connected by the borrowing and collateral obligations of
users. Leveraging the public availability of Ethereum’s transaction
history, we reconstruct the balance sheet of each pool at any given
point in time and without measurement errors. The resulting finan-
cial network sheds light on the key functionalities of Compound.
Specifically, it indicates that users predominantly utilize Compound
for two types of financial operations: borrowing stablecoins and
participating in liquidity mining of Compound’s governance token.

Then, we assess the robustness of the protocol. Inspired by the
recent literature on financial contagion (e.g., [9, 19]), we investigate
how shocks propagate through the financial network. Our first set
of stress tests simulates the aftermath of a pool’s default, identifying
the pools that pose the highest level of systemic risk. In a second
set of simulations, we characterize which liquidity pools default
in response to a drop in the price of Bitcoin and Ether. We find
that cascading failure is a distinct possibility, albeit requiring fairly
sizeable price shocks. The pools of stablecoins are the most likely
to default, whereas the pools of Bitcoins and Ethers are the most
likely to set off a domino effect.

Related Literature. A growing body of research investigates
DeFi protocols in order to assess their robustness and vulnerabil-
ities. Formal analyses of lending pools can be found in [3, 4, 14].
Other studies simulate crash scenarios to explore how lending pro-
tocols respond to market price fluctuations [20, 24]. Additionally,
researchers have analyzed the resilience of lending protocols to
significant market events, such as the Ethereum Merge [18] and
governance attacks [13].

The examination of participants’ behavior highlights severe liqui-
dation risks due to their leverage [17] and risk appetite [23]. [6, 25]
show that using debt-financed collateral fosters interconnectivity,
whereas [5] explains why rigid haircut rules are likely to cause
price-liquidity feedback loops. Empirical studies of liquidations
reveal vulnerabilities leading to fire sales [24] and liquidation spi-
rals [29] that could potentially endanger the stability of the DeFi
ecosystem [21].

Instances of illiquidity have been documented, especially in
newly established platforms [13, 15, 27]. Our paper investigates
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whether liquidity pools are likely to become illiquid and explores
how such an occurrence might propagate across Compound’s net-
work. To model these scenarios, we draw upon the extensive re-
search that studies the mechanisms governing the transmission of
shocks and distress across financial markets [1, 9–11, 16]. Given
the extensive scope of the literature on financial contagion, we
direct interested readers to two comprehensive surveys [12, 19].
Our approach, like these studies, uses the balance sheets of financial
institutions to capture their connections and derive the correspond-
ing network structure. In this context, [2, 26] are closely related to
our research, as they use network analysis to assess the decentral-
ization of DeFi and the interconnectedness of various protocols. By
contrast, our paper pioneers the investigation of contagion risks
and network effects within lending protocols.

2 DESCRIPTION OF COMPOUND
We start by describing how users interact with Compound since
their actions determine the structure of the financial network.

2.1 Lending
When a user adds liquidity to a pool by depositing tokens, she
receives an equivalent amount of cTokens in return. Essentially,
cTokens are tokenized proofs of the deposit that can be redeemed
at any time. Users are incentivized to provide liquidity because
cTokens are deflationary and tend to increase in value relative to
the underlying asset, offering a rate of return on deposits.

For ease of notation, we will omit time indexes for all variables.
We use 𝑑𝑢

𝑖
≥ 0 to denote the amount of tokens held by user 𝑢 as

deposits in pool 𝑖 and gather all the deposits in the matrix 𝑑 .1 The
row vector 𝑑𝑢 = (𝑑𝑢1 , 𝑑

𝑢
2 , . . . , 𝑑

𝑢
𝑘
), where 𝑘 is the number of pools

managed by Compound, represents user 𝑢’s deposits across the dif-
ferent pools. The column vector 𝑑𝑖 = (𝑑1

𝑖
, 𝑑2
𝑖
, . . . , 𝑑𝑛

𝑖
), where 𝑛 is the

number of active users, lists all the deposits in pool 𝑖 . Consequently,
the sum of deposits in pool 𝑖 can be calculated as 𝑑𝑖 =

∑
𝑢 𝑑

𝑢
𝑖
.

To compare deposit values across pools, we convert them into
a common unit of account. Let 𝑝𝑖 represent the price of token 𝑖 in
US Dollars.2 By stacking all prices into the vector 𝑝 = (𝑝1, . . . , 𝑝𝑘 ),
we can express the value of user 𝑢’s deposits as 𝑣 (𝑑𝑢 , 𝑝) = 𝑑𝑢𝑝𝑇 =∑𝑘
𝑖=1 𝑑

𝑢
𝑖
𝑝𝑖 . Additionally, the vector of deposit values across all users

is given by 𝑣 (𝑑, 𝑝) = (𝑣 (𝑑1, 𝑝), . . . , 𝑣 (𝑑𝑛, 𝑝)) = 𝑑𝑝𝑇 .

2.2 Borrowing
Users have twoways of withdrawing tokens from liquidity pools. As
mentioned before, they can redeem their cTokens, which are then
burned by the protocol, effectively releasing their deposited tokens.
Alternatively, they can borrow tokens by using a portion of their
deposits as collateral. When borrows are backed by cTokens from
different pools, the loans create a web of liabilities interconnecting
the various liquidity pools.

Using a notation similar to that used for deposits, we denote
the amount of asset 𝑖 borrowed by user 𝑢 as 𝑏𝑢

𝑖
and collect these

1For simplicity, we present deposits in terms of the underlying token. In practice, when
you deposit funds into Compound V2, the protocol internally converts the underlying
tokens into an equivalent amount of cTokens based on the current exchange rate.
2Compound primarily relies on Chainlink’s Open Price Feed as its price oracle. The
protocol preforms sanity checks by comparing Chainlink’s price feeds to the prices
quoted by Uniswap V2.

borrow amounts in the matrix 𝑏. Before borrowing an asset, users
must select which cTokens they wish to use as collateral from the
various tokens they have supplied. When a user enters a market,
all cTokens they hold in that specific asset class are considered
collateral. Let 𝑒 be the matrix of dimension 𝑛×𝑘 , where the element
𝑒𝑢
𝑖
represents the “enterMarket” option chosen by user 𝑢 for token

𝑖 . It takes a value of 1 if the user intends to use this asset class as
collateral and 0 otherwise. Consequently, the collateral matrix 𝑐 is
given by 𝑐 = 𝑒 ⊙ 𝑑 where ⊙ denotes the Hadamard product.

Each cToken has its own collateral factor, indicating the pro-
portion of the underlying asset value that can be borrowed. These
collateral factors are determined and set by the governance of the
protocol. In general, tokens with a small market capitalization tend
to have a low collateral factor. Formally, let 𝜅 = (𝜅1, . . . , 𝜅𝑘 ) where
𝜅𝑖 ∈ [0, 1) for all 𝑖 , be a vector representing the collateral factors
associated with each pool.3 The maximal collateral value avail-
able to user 𝑢 for borrowing is given by 𝑣 (𝑐𝑢 , 𝜅𝑝) = 𝑐𝑢 (𝜅 ⊙ 𝑝)𝑇 =∑𝑘
𝑖=1 𝑐

𝑢
𝑖
𝜅𝑖𝑝𝑖 . This value represents the borrowing capacity of user

𝑢 since she faces the credit constraint 𝑣 (𝑏𝑢 , 𝑝) ≤ 𝑣 (𝑐𝑢 , 𝜅𝑝).
The financial health of each user is quantified by the ratioℎ𝑢 (𝑝) =

𝑣 (𝑐𝑢 , 𝜅𝑝)/𝑣 (𝑏𝑢 , 𝑝). Whenever a user’s health ratio falls below 1,
which can occur due to various reasons, such as an increase in the
price of the borrowed tokens, her collateral assets become eligible
for liquidation.

2.3 Borrowing and lending rates
Borrowers pay interest on their borrowed tokens, while lenders
receive interest for providing their assets. The interest rates for
borrowing and lending are determined algorithmically based on
the utilization rates of each pool, i.e., the proportion of the pool’s
tokens that have been borrowed [22]. The protocol maintains a
positive interest rate difference between borrowing and lending
to reward stakeholders and create liquidity reserves. Furthermore,
Compound introduced a liquidity mining program on June 16, 2020,
incentivizing user engagement through the distribution of its gov-
ernance token (COMP). The details of this distribution mechanism
are subject to governance control and may vary over time.4

3 COMPOUND’S FINANCIAL NETWORK
The liquidity pools within Compound’s financial network are inter-
connected through loans, as users lock tokens in one pool to borrow
from another. This mechanism is similar to repurchase agreements
(repos) between banks. Liquidity pools replace financial institutions,
with each loan representing a claim from the pool of the borrowed
asset towards the pool(s) providing collateral.

Compound’s financial network comprises a set K = {1, ..., 𝑘} of
pools or nodes. The balance sheets of the pools are constructed as
follows:
• On the liabilities side, we allocate the certificates of deposit
(cTokens) across three categories. Firstly, we collect the mar-
ket value of all deposits (𝐷𝑖 ) that have not entered anymarket
and are, therefore, external liabilities. Secondly, the interpool
liabilities of pool 𝑖 are the sum of all liabilities towards other
pools (

∑𝐾
𝑗=1 𝐿𝑖 𝑗 ). Specifically, when a user decides to lock

3See: https://docs.compound.finance/v2/comptroller/#collateral-factor
4See: https://compound.finance/governance/comp

https://docs.compound.finance/v2/comptroller/#collateral-factor
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their cTokens as collateral, an amount corresponding to the
debt becomes a liability of the pool towards the pool from
which the tokens have been borrowed. Thirdly, the remain-
ing portion of cTokens that have entered the market but are
in excess of the value of the debt is allocated to the pool’s
buffer (𝐵𝑖 ). We separate these cTokens from deposits because
they are not external liabilities. Instead, the buffer can be
mobilized to secure the debt of users with a deteriorating
health ratio.
• On the assets side, we aggregate the market value of all the
available tokens in each pool (𝑇𝑖 ),5 including the reserves
set aside by the protocol (𝑅𝑖 ) and the value of the interpool
assets (

∑𝐾
𝑗=1 𝐿𝑗𝑖 ), i.e., the value of all tokens from other pools

locked as collateral for loans originating from pool 𝑖 .
We use the following procedure to identify undercollateralized

claims. First, we define𝛼𝑢 = 𝑣 (𝑏𝑢 , 𝑝)/𝑣 (𝑐𝑢 , 𝑝) as user𝑢’s borrowing-
to-collateral ratio.6 Assuming proportional allocation of collateral,
if the user has non-negative net worth (𝛼𝑢 ≤ 1), then the effective
liability of pool 𝑖 towards pool 𝑗 corresponds in value to the nominal
debt, implying 𝑙𝑢

𝑖 𝑗
= 𝛼𝑢𝛽𝑢

𝑗
𝑐𝑖 where 𝛽𝑢𝑗 ≡ 𝑝 𝑗𝑏

𝑢
𝑗
/𝑣 (𝑏𝑢 , 𝑝) is the share

of 𝑢’s borrowing in pool 𝑗 . However, if the user has a negative net
worth (𝛼𝑢 > 1), the pool can only recover 𝑙𝑢

𝑖 𝑗
= 𝛽𝑢

𝑗
𝑐𝑢
𝑖
units of asset

𝑖 before depleting all the funds set aside in 𝑢’s buffer. Hence, the
liabilities and buffer of user 𝑢 read

𝑙𝑢𝑖 𝑗 = min{1, 𝛼𝑢 }𝛽𝑢𝑗 𝑐
𝑢
𝑖 and 𝐵𝑢𝑖 𝑗 = (1 −min{1, 𝛼𝑢 })𝛽𝑢𝑗 𝑐

𝑢
𝑖 . (1)

The matrices 𝐿 and 𝐿 summarize the nominal and effective in-
terpool liabilities. Nominal values represent the promised payments
associated with each claim, while effective values take into ac-
count users’ solvency by adjusting for all undercollateralized claims.
Therefore, 𝐿𝑖 𝑗 ∈ R+ (𝐿𝑖 𝑗 ∈ R+) represents the nominal (effective)
liabilities of pool 𝑖 towards pool 𝑗 . These values can be calculated
by aggregating the nominal and effective liabilities of all users as
follows: 𝐿𝑖 𝑗 =

∑𝑛
𝑢=1 𝛼

𝑢𝛽𝑢
𝑗
𝑐𝑢
𝑖
𝑝𝑖 and 𝐿𝑖 𝑗 =

∑𝑛
𝑢=1 𝑙

𝑢
𝑖,𝑗
𝑝𝑖 . Finally, the

buffer of each pool in K is given by 𝐵𝑖 =
∑
𝑗

∑
𝑢 𝐵

𝑢
𝑖 𝑗
𝑝𝑖 .

With this at hand, we can express the net worth of pool 𝑖 as

𝑉𝑖 =
∑︁
𝑗

𝐿𝑗𝑖 + 𝑅𝑖 +𝑇𝑖 −
∑︁
𝑗

𝐿𝑖 𝑗 − 𝐵𝑖 − 𝐷𝑖 . (2)

Figure 1 contains a schematic financial network with only two
liquidity pools. The arrows connecting the pools represent the
direction in which payments flow.

4 DATA AND DESCRIPTIVE STATISTICS
4.1 Data
The public availability of Ethereum’s transaction history allows us
to reconstruct the pools’ balance sheets at any desired time point.
By collecting the daily snapshots of users’ positions from Com-
pound V2’s subgraph,7 we obtain a comprehensive list of all users,

5More precisely, we calculate the total market value by multiplying the number of
tokens𝑇𝑖 available in pool 𝑖 by their market price 𝑝𝑖 .
6We define 𝛼 as the borrowing-to-collateral ratio, rather than the collateral-to-
borrowing ratio, in order to prevent infinite values for pure lenders.
7https://thegraph.com/hosted-service/subgraph/graphprotocol/compound-v2
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Interpool
Assets

𝐿𝑗𝑖
𝑗

Reserves 𝑅𝑖
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Deposits 𝐷𝑖

Interpool
Liabilities
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Interpool
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𝑖
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Interpool
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𝑖

Assets Liabilities

Buffer 𝐵𝑗

Figure 1: Pools’ balance sheets and interpool linkages.

denoted asU, along with their respective lending (𝑑𝑢
𝑖
) and borrow-

ing (𝑏𝑢
𝑖
) balances for each asset, including accrued interests from

both lending and borrowing. In order to convert all balances to US
Dollars, we rely on the market prices (𝑝) of the tokens provided by
Compound’s oracle. This results in a sizable dataset containing the
daily positions of 422,459 users across 19 pools, spanning from Jan-
uary 1, 2020, to June 30, 2023. Using this information, we construct
the liability matrices and balance sheets for each daily snapshot,
following the procedure outlined in Section 3.

4.2 Financial Network
Our procedure generates daily snapshots of the balance sheet of
each liquidity pool. Figure 2 presents a cross-section of the top 10
pools on September 7, 2021.8 Two observations stand out. Firstly,
the majority of all deposits are concentrated within five main pools,
which can be categorized into two groups: (i) stablecoin-pools
(cUSDC, cUSDT, cDAI), and (ii) crypto-pools (cETH, cWBTC2).9
Secondly, we notice consistent disparities between the balance
sheets of crypto and stablecoin pools. Specifically, stablecoin-pools
hold significant interpool-assets, whereas crypto-pools have mini-
mal interpool-assets. This observation suggests that users deposit
cryptoassets in Compound primarily to borrow stablecoins.

This intuition is confirmed by Figure 3, which presents the finan-
cial network on our reference day (September 7, 2021). The size of
the circles in the graph is proportional to the values in US Dollars
of the pools’ interpool assets. The arrows connecting the pools in-
dicate the direction of payment flows, while the size of the arrows
is proportional to the value of the claims. Upon analyzing Figure 3,
it becomes evident that the majority of interpool links originate
from the crypto-pools and connect to the stablecoin-pools. This
observation supports the notion that most borrowers utilize Com-
pound as a protocol to engage in repurchase agreements (repos) to
trade their cryptoassets for stablecoins.

8We selected this snapshot because it is the day on which Compound reached its
highest Total Value Locked (TVL). We show below that the network structure exhibits
persistent features, allowing us to extrapolate general insights from this specific day.
9WBTCs are wrapped bitcoins, i.e., ERC-20 tokens on the Ethereum blockchain pegged
to Bitcoin. The cWBTC2 pool replaced cWBTC in April 2021, following an upgrade
of the cToken contract implementation (See: https://compound.finance/governance/
proposals/41).

https://thegraph.com/hosted-service/subgraph/graphprotocol/compound-v2
https://compound.finance/governance/proposals/41
https://compound.finance/governance/proposals/41
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Figure 2: Balance sheets of the top 10 pools on Sept. 7, 2021.

Figure 3: Interpool liability network on Sept. 7, 2021.
The percentage of self-borrow represents the proportion of interpool assets

that consist of tokens from the same pool
(
𝐿𝑖𝑖/

∑𝐾
𝑗=1 𝐿𝑗𝑖

)
.

Figure 3 further illustrates an intriguing pattern: users often
engage in borrowing from the same pool they have previously
lent to. This self-borrowing behavior is captured by the color of
the nodes, with darker shades indicating a higher proportion of
cTokens being used for self-borrowing. Such a strategy can be
financially advantageous, despite the gap separating the borrowing
from the lending interest rates, because Compound encourages
liquidity provision by distributing its governance token (COMP).
Additionally, the benefits of liquidity mining motivate certain users
to utilize one stablecoin to borrow another, with cUSDC and cDAI
being particularly notable in this regard.

4.3 Centrality
The node-link diagram presented in Figure 3 may not readily apply
to generalization across multiple snapshots. To achieve this, we
build a scalar measure for each pool that effectively encapsulates

their centrality within the financial network. Centrality measures
can be computed from the liabilities matrix 𝐿.10 Specifically, there
are two measures of eigenvector centrality of node 𝑗 which can be
obtained in the following way [12]:

𝜆𝜈𝐿𝑗 =

𝑘∑︁
𝑖=1

𝜈𝐿𝑗 𝐿𝑖 𝑗 and 𝜆𝜈
𝑅
𝑗 =

𝑘∑︁
𝑖=1

𝐿𝑖 𝑗𝜈
𝑅
𝑗 , (3)

where 𝜆 represents the dominant eigenvalue of 𝐿. The left eigenvec-
tor 𝜈𝐿 measures funding centrality, attributing more centrality to
nodes that hold claims on nodes with higher centrality. Conversely,
the right eigenvector 𝜈𝑅 measures borrowing centrality, assigning
more centrality to nodes that hold obligations towards nodes with
greater centrality.

Figure 4 reports the evolution of the two centrality measures for
the dominant pools over time. Althoughwe observe some variations
in the relative importance of each pool, an underlying pattern
consistent with the earlier snapshot becomes apparent: Borrowing
centrality attributes most of the weights to crypto-pools (ETH and
either WBTC1 or WBTC2) while funding centrality is concentrated
within the stablecoin-pools (DAI, USDC, and USDT).

2020 2021 2022 2023
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(a) Funding centrality

2020 2021 2022 2023
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0.8
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(b) Borrowing centrality

cDAI cETH cUSDC cUSDT cWBTC cWBTC2Pool

crypto stablecoinAsset Type

Figure 4: Centrality of the six main pools over time.

We identified only two exceptions to this rule, occurring in July
2020 and September 2022, where stablecoins gained a higher bor-
rowing centrality than cryptoassets. In June 2020, following the
launch of the liquidity mining program, cDAI and cUSDC experi-
enced increased usage to borrow other stablecoins. Most of these
loans were repaid within a span of one to two weeks. In September
2022, a significant ETH price drop triggered a flight to stable assets,
temporarily making cUSDC the main collateral pool. Towards the
end of September, as ETH stabilized, cUSDC’s borrowing centrality
returned to its usual level.

To summarize, a descriptive analysis of Compound’s network
reveals that it serves two primary purposes. Firstly, it provides a de-
centralized protocol enabling users to issue repurchase agreements
of cryptoassets against stablecoins. Consequently, the main risk to
the stability of the protocol is a decline in the value of cryptoassets,
particularly ETH and BTC, as it would undermine the value of the
collateral supporting the majority of loans. Secondly, Compound
allows its investors to engage in liquidity mining, either by bor-
rowing from the same pool they have lent to or by utilizing one
10Since we focus on interpool links, we exclude self-borrowing by setting the diagonal
entries of the liability matrix to zero, i.e., �̄�𝑖𝑖 = 0 for all 𝑖 ∈ K
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stablecoin to borrow another. The latter strategy carries little risk,
except in cases where the stablecoin used as collateral undergoes a
depegging episode. We now investigate whether these two sources
of risks are likely to propagate across the network.

5 CONTAGION
Financial networks are prone to contagion episodes, wherein the
default of a financial intermediary triggers a cascade of failures [12,
19, 28]. We focus on the following contagion mechanism, which
proceeds in two steps. Initially, a wave of liquidations is set off
whenever a pool defaults on its obligations by suspending the con-
vertibility of its cTokens. If the shock is large enough, the liquidation
process fails to restore the value of all interpool assets, thereby bur-
dening the balance sheets of connected pools with bad loans. This
may lead to other pools becoming insolvent, further amplifying the
initial shock and causing a domino effect.

5.1 Liquidations
Compound’s liquidation process safeguards lenders by maintaining
an adequate level of collateralization. When a borrower’s health
ratio falls below 1, the liquidation of her position is automatically
triggered. Liquidators repay a portion of the debt, known as the
“close factor” (denoted by 𝛾 ), and receive collateral at the current
price plus a liquidation discount factor 𝜆 ∈ (0, 1). Multiple rounds
of liquidationmay occur until the borrower’s health ratio is restored
above 1.

Let’s consider a scenario where user 𝑢 becomes eligible for
liquidation after a change in price from 𝑝 to 𝑝′. For tractability,
we assume that liquidators follow a proportional rule, seizing all
borrowed assets based on their share of the user’s total debt.11
Under this assumption, the user’s borrowing balance is reduced
by 𝛾𝑣 (𝑏𝑢 , 𝑝′) and the liquidator acquires collateral worth (1 +
𝜆)𝛾𝑣 (𝑏𝑢 , 𝑝′) in return. As a result, all asset holdings of user 𝑢
after liquidation are diminished by 𝜓𝑢 (𝑝′)𝑐𝑢

𝑗
, where 𝜓𝑢 (𝑝′) ≡

(1 + 𝜆)𝛾𝑣 (𝑏𝑢 , 𝑝′)/𝑣 (𝑐𝑢 , 𝑝′). The liquidation process is explained
in more detail in Appendix A where we describe the algorithm used
for its simulation.

The health ratio of user 𝑢 after 𝑡 rounds of liquidation, which
we denote by ℎ𝑢𝑡 (𝑝′), obeys the following law-of-motion

ℎ𝑢𝑡+1 (𝑝
′) = 1 −𝜓𝑢 (𝑝′)

1 − 𝛾 ℎ𝑢𝑡 (𝑝′). (4)

This expression yields an intuitive threshold condition:
(1) 𝑣 (𝑐𝑢 , 𝑝′) > (1 + 𝜆)𝑣 (𝑏𝑢 , 𝑝′): In this case, the collateral value

exceeds the borrowed value multiplied by one plus the liqui-
dation discount. Here, liquidation improves the health factor
as the reduction in borrowing exceeds the reduction in col-
lateral (𝛾 > 𝜓𝑢 ). After potentially multiple rounds of liqui-
dation, the health of the account will eventually be restored
(ℎ𝑢 (𝑝′) > 1).

(2) 𝑣 (𝑐𝑢 , 𝑝′) < (1 + 𝜆)𝑣 (𝑏𝑢 , 𝑝′): Here, the collateral value is
lower than the borrowed value multiplied by one plus the

11In practice, liquidators have the flexibility to choose the token for repayment, the
amount to repay within the factor limit, and the collaterals to seize. We impose
proportional liquidations because it enables us to derive analytical results. We assess
the impact of this assumption in Appendix B.

liquidation discount. Then liquidation worsens the health
factor, triggering multiple rounds of liquidation until all of
user 𝑢’s collateral is liquidated [29]. Consequently, there will
be

(
1 − 𝑣 (𝑐𝑢 ,𝑝′ )

𝑣 (𝑏𝑢 ,𝑝′ ) (1+𝜆)

)
𝑏𝑢 bad loans left in the various pools

where 𝑢 chose to invest.

5.2 Cascades
The liquidation process has the following impact on the pools’ bal-
ance sheets. On the liabilities side, collateral assets are transferred
from borrowers to liquidators, effectively converting the interpool
liabilities of the pools where the borrowers held collateral into
deposits. On the assets side, all pools in which users borrow are
replenished in proportion to the amounts borrowed, thereby con-
verting the interpool assets into tokens. However, when the shock
is so severe that condition 2 mentioned above holds, a share of the
interpool assets is not fully repaid, which induces a fall in the net
worth of the lending pool.

The shortfall may result in a negative net worth, indicating
that the pool owes more than it owns. We follow the literature
on financial contagion in assuming that this signal triggers a run
wherein depositors try to withdraw all the available funds [7]. If
borrowers can mobilize external cash to repay their loans, they are
able to withdraw all the liabilities of the pool. But, since the pool
has a negative net worth, it cannot honor its commitment and must
suspend the convertibility of its cTokens.12

To avoid overestimating the likelihood of cascades, we consider
a more conservative scenario where users do not have access to
external funds.13 In this scenario, users can only redeem a portion
of the pool’s liabilities, specifically the cTokens held as deposit
and excess buffer.14 Then, the run on cTokens leads to default
solely when the combined value of the deposits and excess buffers
redeemed by users surpasses the value of the tokens and reserves
held by the pool.

We emphasize that our simulations should be seen as offering a
conservative estimate of the impact of liquidations. This is because
we do not account for the potential further price declines of the
liquidated asset. Empirical studies [5, 21, 30] indicate that this is
an optimistic scenario, as markets do not always have sufficient
liquidity to absorb selling pressure effectively.

5.3 Simulations
We combine the mechanisms discussed in the preceding subsections
to design an algorithm, outlined in Appendix A, that simulates the
spread of a pool default throughout the entire network. Running
this algorithm for each pool identifies those that pose the highest
level of systemic risk. We will defer the examination of the factors
that might initiate a particular pool’s default until the conclusion
of this subsection.

Focusing on our reference day (September 7, 2022), we present
the predictions of the contagion algorithm in Figure 5. Each row

12The suspension of convertibility is explicitly handled on lines 518-521 of the smart
contract CToken.sol for pool management.
13This assumption also has the advantage of being consistent with the premise that
users do not prevent liquidations by recapitalizing their undercollateralized positions.
14The excess buffer refers to the cTokens that have entered the market but can be
redeemed without triggering additional liquidations. In other words, the excess buffer
equals the buffer minus the haircut associated with the collateral factor of the loans.

https://github.com/compound-finance/compound-protocol/blob/master/contracts/CToken.sol
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Figure 5: Default cascades on Sept. 7, 2021.
Initial defaulting pool indicated by the row, affected pools indicated by the
columns. The pools with a negative net worth are encoded as a dot, while the
defaulting pools are encoded as an outer circle. The color indicates the round
in which a pool is affected.

tracks the contagion resulting from the default of a specific pool. As
expected, contagion risks are concentrated within the main pools,
except for cUSDT because its collateral factor is set to zero. Among
these pools, the crypto-pools (cETH and cWBTC2) are the primary
sources of contagion because they account for the bulk of collateral
assets. Meanwhile, the stablecoin-pools exhibit a higher likelihood
of default due to their elevated utilization rates.

Additionally, the stablecoin-pools also pose systemic risks to
other stablecoin-pools, as users partake in liquidity mining by utiliz-
ing one stablecoin to borrow another. These strategies are generally
considered riskless, unless one stablecoin depegs and, as captured
by our simulations, triggers the default of its borrowing pools.

We repeated these simulations for each day in our sample and
compiled the results in Figure 6. The left-hand panel summarizes
the number of pools affected by the cascades. Consistent with the
snapshot reported in Figure 5, cETH and cWBTC/cWBTC2 usually
trigger the largest number of defaults. However, by the end of
2022, cUSDC had emerged as a significant threat because users
responded to the significant decline in cryptocurrency prices by
diversifying their sources of collateral.15 The middle panel indicates
the depth of the cascades, i.e., the number of propagation rounds
triggered by the default of a particular pool. It reveals that most
cascades unfolded within one or two rounds before reaching a state
where no further defaults occurred. By the third round, all cascades
had been resolved. The right-hand panel depicts the percentage
of total asset loss caused by the cascades. The right-hand chart

15See Appendix C for further details on the composition of loans over time.

highlights episodes of significant losses, mostly involving the two
crypto-pools (cETH and cWBTC). It also indicates significant losses
resulting from a default of the cDAI pool towards the end of 2020,
when self-borrowing strategies were particularly widespread.16
It is worth noting that the protocol’s robustness improved over
time, as indicated by the diminishing losses in recent years. This
improvement is explained by the accumulation of reserves, resulting
in a higher net worth for the pools.

The aforementioned simulations follow the cascades that result
from the default of a specific pool without providing an explanation
for why the default occurred initially. In practice, the initial default
can be triggered by a decline in the market price of the pool’s
collateral. To evaluate the likelihood of this scenario, we subjected
the prices of the main cryptoassets (ETH and BTC) to negative
shocks. We use 𝛿 to denote the magnitude of the price shock, so
that 𝑝′{𝐸𝑇𝐻,𝐵𝑇𝐶 } = (1 − 𝛿)𝑝{𝐸𝑇𝐻,𝐵𝑇𝐶 } .

The outcomes of these experiments are depicted in Figure 7. It
shows that default cascades are more likely to originate from stable-
coin pools. This fragility can be primarily attributed to two factors:
high utilization rates and the reliance on cryptoassets as collateral
for the majority of stablecoin loans. Additionally, we observe that
cUSDT is the most prone to default, which rationalizes the proto-
col’s decision of curtailing the contagion that may originate from
cUSDT by setting its collateral factor to zero. Overall, we find that
to endanger the protocol, the shocks have to be fairly consequential,
involving a decline of 50% or more in market prices.

6 CONCLUSION
Smart contracts reduce counterparty risks, but, as illustrated by
the Terra debacle,17 they do not eliminate contagion risks resulting
from flaws in the economic design of their protocol. Fortunately,
the transparency of blockchains offers an opportunity to develop
sophisticated supervisory tools. The availability of exhaustive and
exact data makes it possible to monitor the sources of systemic
risks in real time with a precision that far exceeds what is possible
in the traditional financial sector. Our paper, by applying classical
methods for the analysis of financial networks, provides an example
of such an endeavor. It characterizes how contagion might spread
through Compound’s network, identifying the pools that are more
likely to set off or propagate a domino effect. Moving forward, we
aim to further explore this research avenue by delving deeper into
the trove of data accumulated during this study. In particular, we
intend to study the bipartite structure of the financial network and
interact it with the empirical behavior of users in order to identify
those that are more likely to endanger the stability of the protocol.
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A DESCRIPTION OF ALGORITHMS
This appendix outlines the logic of the algorithms used to simulate
default cascades. We first present in Algorithm 1 how liquidations
are simulated. All borrowers with an health factor ℎ𝑢 below one are
liquidated up to the maximum amount determined by the close fac-
tor (𝛾 ). The liquidator repays the borrowed assets and seizes the col-
lateral assets proportionally.18 Under proportional liquidations, the
liquidator acquires collateral worth (1 + 𝜆)𝜁𝑢

𝑗
(𝑝)𝛾𝑣 (𝑏𝑢 , 𝑝′) for each

asset 𝑗 used as collateral by user 𝑢. Here, 𝜁𝑢
𝑗
(𝑝) ≡ 𝑝 𝑗𝑐

𝑢
𝑗
/𝑣 (𝑐𝑢 , 𝑝)

represents the value of assets 𝑗 relative to the user’s total collateral
value.

For each liquidation round, the algorithm updates the new bor-
row (𝑏𝑢 ) and collateral (𝑐𝑢 ) positions of the borrower. Moreover, the
deposits of the collateral pools (𝐷 𝑗 ) and tokens of the borrowing
pools (𝐷𝑖 ) are also increased as a result of liquidation. The algorithm
liquidates the borrower’s position until ℎ𝑢 > 1. We set the gas costs
of liquidations equal to the median transaction fee on that snapshot
date (i.e.,𝑚𝑒𝑑𝑖𝑎𝑛(𝑔𝑎𝑠𝐹𝑒𝑒𝑠) × 𝑔𝑎𝑠𝑈𝑠𝑒𝑑 , where 𝑔𝑎𝑠𝑈𝑠𝑒𝑑 = 500, 000).

Algorithm 1: Simulation of liquidation process
1 for 𝑢 ∈ U do
2 while ℎ𝑢 < 1 do

// 1. Calculate % borrow and collateral.

3 𝛽𝑢 ← 𝑝𝑏𝑢/𝑣 (𝑏𝑢 , 𝑝);
4 𝜁𝑢 ← 𝑝𝑐𝑢/𝑣 (𝑐𝑢 , 𝑝);

// 2. Calculate repaid and seized amounts.

5 𝑟𝑒𝑝𝑎𝑦𝑢 ←𝑚𝑖𝑛{𝑣 (𝑏𝑢 , 𝑝) · 𝛾, 𝑣 (𝑐𝑢 , 𝑝)/(1 + 𝜆)};
6 𝑠𝑒𝑖𝑧𝑒𝑢 ← (1 + 𝜆) ∗ 𝑟𝑒𝑝𝑎𝑦𝑢 ;

// 3. Stop liquidating if profits ≤ 𝑡𝑥𝐹𝑒𝑒𝑠.

7 if 𝑠𝑒𝑖𝑧𝑒𝑢 − 𝑟𝑒𝑝𝑎𝑦𝑢 ≤ 𝑡𝑥𝐹𝑒𝑒𝑠 then
8 break;
9 end

// 4. Repay the borrowed assets.

10 𝑝𝑏𝑢 ← 𝑝𝑏𝑢 − 𝑟𝑒𝑝𝑎𝑦𝑢 ∗ 𝛽𝑢 ;
11 𝑇 ← 𝑇 + 𝑟𝑒𝑝𝑎𝑦𝑢 ∗ 𝛽𝑢 ;

// 5. Seize the collateral assets.

12 𝑝𝑐𝑢 ← 𝑝𝑐𝑢 − 𝑠𝑒𝑖𝑧𝑒𝑢 ∗ 𝜁𝑢 ;
13 𝐷 ← 𝐷 + 𝑠𝑒𝑖𝑧𝑒𝑢 ∗ 𝜁𝑢 ;

// 6. Update the health of user 𝑢

14 ℎ𝑢 ← 𝑣 (𝑐𝑢 , 𝜅𝑝)/𝑣 (𝑏𝑢 , 𝑝);
15 end
16 end

18We assess the impact of this assumption in Appendix B.

Algorithm 2 explains how we simulate the propagation of a
pool’s default across the network. Since the cTokens of the default-
ing pool are not anymore liquid, we set their collateral factor 𝜅𝑖 to
zero. This captures the fact that the cTokens cannot be used to repay
the loans. The algorithm calls two procedures. The first one, called
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑙𝑖𝑞𝑢𝑖𝑑𝑎𝑡𝑖𝑜𝑛, follows the logic outlined in Algorithm 1. It
returns the updated collateral (𝑐) and borrowing (𝑏) matrices de-
fined in Section 2, along with the deposits (𝐷) and token holdings
(𝑇 ) of each pool. The second function, called𝑢𝑝𝑑𝑎𝑡𝑒_𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑠ℎ𝑒𝑒𝑡 ,
follows the methodology presented in Section 3 to compute the in-
terpool liabilities (𝐿), reserves (𝑅), buffer (𝐵), excess buffer (𝑋 ), and
net worth (𝑉 ) of each pool. As explained in footnote 14, the excess
buffer collects all the cTokens in the buffer that can be redeemed
without triggering additional liquidations. The simulation iterates
until the cascade reaches a state where no further pools default.

Algorithm 2: Simulation of cascading default of the pools
Input :𝑖𝑛𝑖𝑡_𝑝𝑜𝑜𝑙 : initial defaulting pool
Output :𝐷𝑟 : list of defaulting pools at depth 𝑟 .

1 𝐷0 ← {𝑖𝑛𝑖𝑡_𝑝𝑜𝑜𝑙} ; // list of defaulting pools

2 r← 0 ; // depth of liquidation cascade

// Continue liquidation if any new pool

defaulted in the previous round

3 while 𝑟 > 0 and |𝐷𝑟 ∩ 𝐷𝑟−1 | > 0 do
4 𝜅{𝑑∈𝐷𝑟 } ← 0 ; // set 𝜅 = 0 for defaulting pools

5 r← r + 1 ; // increment the cascade depth

// Liquidate borrowers and update the balance

sheet

6 (c, b, D, T)← simulate_liquidation(c, b, D, T, p, 𝜅);
7 (L, R, B, X, V)← update_balance_sheet(c, b);

// Add default pools after liquidation

8 𝐷𝑟 ← 𝐷𝑟−1 ∪ {𝑘 ∈ K|𝑉𝑘 < 0 and 𝐷𝑘 + 𝑋𝑘 > 𝑇𝑘 + 𝑅𝑘 };
9 end

B ROBUSTNESS CHECK ON SIMULATIONS OF
LIQUIDATIONS

In this appendix, we explore an alternative scenario where the
liquidator’s approach to asset seizure differs from the one used in
the main analysis. Instead of seizing assets in proportion to their
share of the user’s total debt, we employ a sequential rule in which
the liquidator prioritizes the assets with the highest share of the
user’s total debt.

To assess the impact of this alternative liquidation strategy, we
rely on the Jaccard similarity index to compare the lists of defaulting
pools between our benchmark simulations and the simulations
based on sequential liquidations. The defaulting pools predicted by
the two simulations agree (i.e., Jaccard index = 1) 96.72% of the time.
Figure 8 illustrates the evolution over time of the Jaccard index for
the top six pools. It indicates that, in general, the outcomes of the
two simulations are either identical or very similar.

Despite the stability of our results, we do observe a few short-
lived periods of divergence. Particularly, on March 12 and 13, 2022,
the Jaccard index for the cDAI pool suddenly dropped to a very low

https://doi.org/10.1016/j.jfs.2010.12.001
https://doi.org/10.1016/j.jfs.2010.12.001
https://arxiv.org/abs/2212.07306
https://eprint.iacr.org/2023/892
https://eprint.iacr.org/2023/892
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Figure 8: Jaccard similarity index of defaulting pools between
benchmark and sequential simulations of liquidations.

value of 0.1429. To better understand this divergence, we report in
Figure 9 a comparison of the default cascades predicted by the two
simulation methods on March 13, 2022. It shows that a default of
the cDAI pool did not trigger a domino effect in the benchmark
simulation. However, in the sequential simulation, it triggered a
default of the cUSDC pool, which then propagated to other pools
heavily reliant on cUSDC, such as cLINK, cTUSD, cUSDT, and cYFI.
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Figure 9: Comparison of cascades triggered by a default of
the cDAI pool on March 13, 2022.

This difference in outcomes can be attributed to the fact that liq-
uidators now prioritize USDCs. This concentration of liquidations
on a specific asset can exacerbate the fragility of the network, par-
ticularly when the utilization rate and borrowing centrality of this
asset are high. In summary, our findings are usually robust across
the two specifications of the liquidation process. However, there
are specific periods where the selection rule followed by the liq-
uidators has an impact on the risk of contagion within the network.
An interesting avenue for future research would therefore consist
in studying the behavior of liquidators and devising a liquidation
algorithm that reflects their actions.

C COMPOSITION OF LOANS
This appendix provides additional information regarding the com-
position of loans. We categorize them into classes based on the
nature of the asset pairs, distinguishing between cryptoassets and
stablecoins. Additionally, we differentiate between self-borrowing
and interpool loans. Figure 10 confirms that self-borrowing is pri-
marily motivated by liquidity mining since pairs of self-borrowed
stablecoins gained prominence shortly after the introduction of
Compound’s liquidity mining program on June 16, 2020.

Figure 10 further corroborates the findings presented in Sec-
tion 4.3, according to which a majority of interpool loans use
cryptoassets as collateral for borrowing stablecoins. During the

bear market from late 2021 to mid-2022, the weight of cryptoasset–
stablecoin pairs significantly increased, which aligns with our simu-
lation results in Figure 6 where we observe a heightened contagion
risk emanating from cETH and cWBTC over this period.
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Figure 10: Distribution of nominal liabilities over time.

Subsequently, after the bear market phase, we notice a rise in
the proportion of loans associated with stablecoin-stablecoin pairs,
as well as an increase in self-borrowing of stablecoins. This trend
amplified the borrowing centrality and, consequently, the risk of
contagion associated with the cUSDC pool, as indicated in Figure 6.
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