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Abstract
Protein Film Electrochemistry is a technique in which a redox enzyme is directly wired to an
electrode, which substitutes for the natural redox partner. In this technique, the electrical current
flowing through the electrode is proportional to the catalytic activity of the enzyme. However, in
most cases, the amount of enzyme molecules contributing to the current is unknown and the
absolute turnover frequency cannot be determined. Here, we observe the formation of
electrocatalytically active films of E. coli hydrogenase 1 by rotating an electrode in a
sub-nanomolar solution of enzyme. This process is slow, and we show that it is mass-transport
limited. Measuring the rate of the immobilization allows the determination of an estimation of the
turnover rate of the enzyme, which appears to be much greater than that deduced from solution
assays under the same conditions.

Protein Film Electrochemistry is a technique in which a redox enzyme is immobilized on an
electrode in a configuration allowing direct electron transfer[1–3]. The enzyme retains its native
catalytic activity on the electrode, which acts as a substitute for its redox partner, which can be
either in solution or membrane-bound. The catalytic reaction generates a current whose
magnitude is proportional to the enzyme’s turnover rate, according to equation (1):

where is the Faraday constant, the current density, the “electroactive coverage”, the
surface concentration of electrically connected enzymes, and the turnover rate. The
electrochemical measurement can be used to monitor variations of turnover frequency under
various experimental conditions (electrode potential, pH, substrate/product concentration)[1–5], or
as a function of time when the enzyme inactivates or reactivates following exposure to inhibitors or
changes in potential[6]. These variations can be interpreted quantitatively to yield mechanistic
information[7]. However, most of the studies focus on the interpretation of relative variations of
current, since it is difficult to determine the absolute value of the turnover frequency of an
immobilized enzyme. Indeed, the catalytic current is also proportional to the electroactive
coverage, which is most often unknown and impossible to determine. In rare cases, when the
electroactive coverage is high, it is possible to measure non-catalytic signals, which result from the
stoichiometric reduction/reoxidation of the redox centers present in the enzyme. These
experiments must be conducted in the absence of substrate or at rates that outrun catalysis[8].
Optimisation of the interaction between the enzyme and the electrode can help increase the
coverage enough to obtain non-catalytic signals[9,10]. Several strategies can be used, including
some based on computational methods[11]; the reader is referred to recent reviews for further
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reading[4,12,13].These signals can be integrated to yield the electroactive coverage; combining
this information with the measurement of the magnitude of the catalytic current gives the turnover
frequency. This strategy has been used successfully with a number of enzymes, such as sulfite
oxidase [14], formate dehydrogenase[15], fumarate reductase[16] and Allochromatium vinosum
hydrogenase[17], Aquifex aeolicus hydrogenase[10]. Alternatively, it is possible to determine the
enzymatic coverage in the absence of non-catalytic signals, by using strategies such as quartz
microbalance electrodes[18,19], ellipsometry[20] or surface plasmon resonance[21] These
techniques allow the determination of the total coverage, including enzyme molecules that do not
undergo electron transfer with the electrode and therefore do not contribute to the catalytic current.
It is also sometimes possible to determine an upper limit of the electroactive coverage by
measuring the amount of protein consumed by the immobilization process[10].
Here we focus on a NiFe hydrogenase, Hyd-1 from Escherichia coli (Ec Hyd-1), which catalyzes
the oxidation of dihydrogen to protons and electrons at a bimetallic NiFe active site. This protein
gives very stable and active films on graphite electrodes, which has been used to study its
behavior, and, in particular, its high tolerance to inactivation by oxygen[22,23]. We show that it is
possible to make electroactive films of Ec Hyd-1 by rotating the electrode in a sub-nanomolar
solution of the enzyme, and that the adsorption is mass-transport-limited. Following the change of
coverage as a function of time makes it possible to provide an estimation of the turnover frequency
of Ec Hyd-1. This approach may be applied to other enzymes, even in the case that the amount of
immobilized enzymes is indetectable via non-catalytic signals.

Figure 1 shows a series of voltammograms recorded rotating a freshly polished pyrolytic graphite
edge electrode in a solution containing only 0.7 nM Ec Hyd-1 under 1 atm. of H2. The
voltammograms show H2 oxidation currents at high potentials. The shape of the voltammograms is
similar to that previously published by us and others[22,23]. What is new is that the magnitude of
the signal increases steadily, from a current density of approximately 24 µA/cm2 for the first scan to
about 360 µA/cm2 after about 15 minutes. Transferring the electrode to a solution devoid of
enzyme stops the increase (see SI figure S5), which shows that the growth does not reflect the
activation of the enzyme, but rather a slow adsorption process that is dependent on the presence
of the enzyme in solution. The process slows over time, and after 16 voltammograms (at 20 mV/s,
this takes about 15 minutes), the current density reaches a maximum and starts to decrease
slowly. The process does not change the shape of the catalytic response (see SI figures S3 and
S4), and hence does not affect the chemistry of the hydrogenase.

Figure 1 Top panel: successive
voltammograms of a graphite electrode
rotating at 3000 rpm in a solution containing
0.7 nM Ec Hyd-1 and equilibrated under one
atm. of H2 by bubbling inside the
electrochemical buffer. The successive
voltammograms are colored from light blue to
dark blue and then to red.
Bottom panel: plot of the current density at
0.04 V vs SHE for each voltammogram as a
function of the time, together with a linear fit of
the initial variation.
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The bottom panel of figure 1 shows the evolution of the maximum current density of each
voltammogram, which starts with an initial linear increase (until about 350 s), followed by a slower
increase until a peak of the current (here about 800 s). The shape suggests a transition from an
initial regime in which the enzyme adsorbs onto the electrode at a constant rate, to a regime in
which the surface becomes saturated. We examine the two regimes one after the other below. The
current density is given by equation (1) above. As the shape of the voltammograms does not
change, there is no reason to assume that changes during the experiments, so that all
changes in arise from variations in the surface concentration :

In a first step, we hypothesize that the initial linear increase reflects an adsorption process entirely
rate-limited by the transport of the enzyme to the electrode. Under this assumption, the rate of
increase of the surface concentration is the flux of enzyme towards the electrode:

in which is the surface concentration, is the concentration of enzyme in the bulk (away
from the electrode), and is the mass-transport coefficient for the transport of enzyme towards
the rotating electrode (in cm/s), which is given by the Levich equation[24]:

in which is the diffusion coefficient of the enzyme in solution (in cm2/s), is the angular
velocity of the rotating disc electrode (in rad/s) and is the kinematic viscosity of water (in cm2/s).
Combining equation (3) into equation (2) yields:

As a consequence, under the assumption that the adsorption is fully mass-transport limited, the
slope of the initial linear increase in current is proportional to the square root of the electrode
rotation rate. We have therefore repeated experiments similar to that in figure 1, varying the
electrode rotation rate. We have determined the slope of the initial linear variation and plotted it as
a function of the square root of the electrode rotation rate in figure 2. The data confirm that the
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slope is proportional to the square root of the rotation rate, as expected from equation (3), which
validates the hypothesis that the initial linear increase in the current is mass-transport limited. We
have also verified that the rate of initial linear increase is proportional to the concentration of
enzyme in the bulk, as expected from equation (3) (see SI figure S2).

In equation (2), the only unknown, besides the catalytic turnover rate , is the diffusion
coefficient of the enzyme. We estimated a value of = 10-6 cm2.s-1 based on the
Stokes-Einstein relationship, assuming a hydrodynamic radius of 3.5 nm (see SI section 5). With
this value, we deduce a value of of 2700 ± 300 s-1 from the linear fit to the data of figure 2.
This value is a lower bound because it is likely that only a fraction of the enzyme molecules
adsorbed are immobilized in a configuration that actually allows electron transfer. Indeed, it is very
common that the enzymes are immobilized with a dispersion of distances [25], and indeed the
voltammograms of figure 1 show the typical linear increase at high potentials that is indicative of a
uniform distribution of the distance between the redox active centers and the electrode[26,27].

Figure 2: slope of the initial linear increase in
current density (the slope of the red dotted line
in figure 1) as a function of the square root of
the electrode rotation rate. Conditions as in
figure 1. The error bars represent the standard
deviation across two experiments except for
3000 rpm (3).

It is also possible to analyze the complete dependence over time of the increase in current, and in
particular to reproduce the transition to a plateau after some time. We hypothesized that the
immobilization of the enzyme follows a Langmuir adsorption isotherm, and that the plateau reflects
that the surface sites are in equilibrium with the bulk concentration of the enzyme. Under this
assumption, we derived equation (6), a differential equation predicting the evolution over time of
the surface concentration and, hence, of the current density (see SI section 6):

This equation can be integrated numerically to fit the experimental traces, using the free software
QSoas[28]. The parameters of the fit are , which was calculated from equation (2), the
solution concentration of enzyme nM, and three free parameters: the catalytic rate
constant , the surface concentration of sites and the equilibrium constant of the
reaction of a molecule of enzyme in solution with a free surface site to form a surface-bound
enzyme molecule. Equation (6) predicts that the adsorption process gradually slows down until the
surface concentration of enzymes corresponds to the value in equilibrium with the concentration in
the bulk.
Figure 3 shows the evolution of the current over time for one of the adsorption experiments,
together with the fit of an exponential decay to the data (blue dashes) and the fit of equation (6)
(red dashes). The latter fits the experimental trace better than the former (with a corresponding
five-fold reduction of the residuals from 7.5 µA/cm2 to 1.4 µA/cm2 average error), although both
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equations depend on the same number of free parameters (3). This confirms that the adsorption
follows a Langmuir isotherm. The parameters determined from the fit are = 2220 ± 40 s-1 (in
which the error corresponds to the 95% confidence interval of the fit), consistent with the value
deduced from the slope of figure 2 and equation (3), a density of sites of = 1.2 pmol/cm2 and a
dissociation constant = 0.26 nM, which suggests that the surface sites are about 75 %
saturated when the plateau of the current density is reached. The density of sites corresponds to
an intersite distance of 12 nm, i.e. slightly less dense than in a fully packed monolayer, considering
that the size of the enzyme is about 8 nm, and an atomically flat electrode surface. However the
latter assumption greatly underestimates the actual surface available for adsorbing the enzyme.
Similar parameters were obtained from the experiments carried out at other rotation rates (see
supplementary figure S6).

Figure 3: Top panel: evolution of the current
density as a function of time during the course
of an immobilization process, together with a
mono-exponential fit (blue dashed line) and the
fit of equation (6) (red dashed line). The black
dots are are the same data as those in
figure 1.
Bottom panel: residuals of the two fits (same
color code as for the top panel).

In parallel to the determination of the catalytic activity from electrochemistry experiments, we
performed solution assays to determine the catalytic activity of Ec Hyd-1 in various H2-saturated
buffers, using 10 mM of benzyl viologen as electron acceptor. The results are presented in table 1.

Tris HCl 0.1 M pH 8 Tris HCl 0.1 M pH 7 Electrochemical buffer
(pH 7)

Specific activity
(µmol H2/min/mg)

88 ± 7 50 ± 8 92 ± 10

Catalytic rate (s-1) 139 ± 11 79 ± 12 146 ± 15

Table 1: results of the solution assays of Ec Hyd-1, using various buffers as indicated, saturated
with 1 atm. H2 and containing 10 mM benzyl-viologen. Temperature: 40°C.

Since the beginning of Protein Film Electrochemistry, a range of techniques to prepare the
electroactive films were employed, from simply drop-casting, sometimes with a co-adsorbant to
help the adhesion to the electrode[1], to the chemical modification of electrodes and proteins to
allow covalent grafting[29–32]. Films have also been made by slowly rotating an electrode in a
buffer containing micromolar concentrations of enzyme under catalytic conditions, leading to a
gradual increase over time of the catalytic current[17]. Here, we observed that in the case of Ec
Hyd-1, it is possible to apply this strategy from solutions containing sub-nanomolar concentrations
of enzyme, and that under these conditions, the adsorption process is limited by the transport of
the enzyme towards the electrode, which is induced by the rotation of the electrode. We showed
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that, by following the increase in current over time due to very diluted enzyme solutions adsorbing
under mass-transport control, it is possible to determine a higher boundary estimate of the amount
of enzyme immobilized on the electrode, by quantifying the amount of enzyme that actually
reaches the electrode per unit of time. Like the other methods that quantify the total amount of
enzyme immobilized on the electrode, based on surface plasmon resonance or on quartz
microbalance, this method only provides a higher boundary of the number of connected enzyme
molecules – however the approach we propose here does not require specifically engineered
electrodes. In all of these approaches, the number of electrically connected enzyme molecules can
be significantly lower than the enzyme loading – for instance, in the case of macroporous carbon
felt electrode modified by carbon nanotubes, Mazurenko and coworkers were able to determine
both the amount of electroactive enzymes (from non-catalytic signals) and the total amount of
immobilized enzymes (by comparing the activity of the solution before and after immobilization);
they found that under their conditions, only 14% of the enzymes were immobilized in a
configuration that allowed direct connection.
There is often an important discrepancy between the value of the catalytic rate determined by
solution assays and that determined by electrochemical methods, be it a true value or a lower
boundary estimate. In the case of human sulfite oxidase, it was remarked early on that the
catalytic rate determined from catalytic voltammogram was 20 times lower than the rate
determined in solution assays under similar conditions, leading to the initial conclusion that only a
small subset of the immobilized enzymes was in an active conformation[14]. However, it was later
demonstrated that the reason for the decreased activity is that a conformational change necessary
for the catalytic activity[33] is slowed down on the electrode to the point of becoming
rate-limiting[34]. In some cases, the activity deduced from solution assays matches the value
determined from catalytic voltammograms, as was the case for E. coli fumarate reductase FrdAB
on pyrolytic graphite edge electrodes[16], or bilirubin oxidase immobilized on carbon felt modified
with carbon-nanotubes[10]. Sometimes, the catalytic rate measured in solution was much smaller
than that deduced from protein film electrochemistry experiments; this is the case of
Allochromatium vinosum hydrogenase, for which values of the turnover rates in the 1500 s-1 –
9000 s-1 range were extrapolated from Koutecky–Levich plots[17], with solution assays in similar
conditions giving values up to 900 s-1. It should be noted however that enzyme-modified electrodes
are not expected to obey Koutecky-Levich relationships[35], therefore, the catalytic rates deduced
by these extrapolations are likely to be overestimations.
Concerning Ec Hyd-1, solution assays conducted under the same conditions as those of figure 1,
yielded values of turnover rates of 146 ± 15 s-1, more than 15 times lower than the lower values
deduced from experiments such as that of figure 1 (it should be noted that, as the same
determination of the enzyme concentration is used for both computations, errors in the
determination of the concentration would have no impact on the final ratio). This suggests that
solution assays greatly underestimate the actual catalytic activity of Ec Hyd-1. This may arise from
non-optimal conditions being used in the solution assays, in particular in terms of choice of artificial
redox partner. Our conclusion is consistent with the fact that early electrochemical studies of Ec
Hyd-1 yielded very large current densities in spite of solution assays giving very small activities
(1.5 s-1)[22], for which it is usually considered that catalytic currents should be very hard to detect.
Our results are also consistent with the relatively high values of the catalytic rate (around 600 s-1)
measured using Fourier-transformed AC voltammetry with the same enzyme[36].
Using a complete model taking into account Langmuir adsorption isotherms, we could also
determine the adsorption equilibrium constant (3.8 nM-1, corresponding to a half-saturated layer at
0.26 nM), which is comparable to those determined for the hydrogenase from Aquifex aeolicus
(0.16 nM-1, corresponding to a half-saturated layer at 6.3 nM)[10]. These low values also suggest
that very dilute solutions may be used to form films using the usual drop-casting methods. The
decrease observed at high times cannot be explained by the Langmuir adsorption process, which
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predicts that the system reaches an equilibrium between the surface-immobilized enzyme and the
one in solution. It is more likely attributable to irreversible damage, like enzyme inactivation on the
electrode.
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