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Abstract—Graph Neural Networks (GNNs) are an effective
framework for graph representation learning in real-world appli-
cations. However, despite their increasing success, they remain
notoriously challenging to interpret, and their predictions are
hard to explain. Nowadays, several recent works have proposed
methods to explain the decisions made by GNNs. However, they
only aggregate information from the same type of neighbors or
indiscriminately treat homogeneous and heterogeneous neighbors
similarly. Based on these observations, we propose HGExplainer,
an explainer for heterogeneous GNNs to comprehensively capture
structural, semantic, and attribute information from homoge-
neous and heterogeneous neighbors. We first train the GNN
model to represent the predictions on a heterogeneous network.
To make the explainable predictions, we design the model to
capture heterogeneity information in calculating the joint mu-
tual information maximization, extracting the meta-path-based
graph sampling to generate more prosperous and more accurate
explanations. Finally, we evaluate our explainable method on
synthetic and real-life datasets and perform concrete case studies.
Extensive results show that HGExplainer can provide inherent
explanations while achieving high accuracy.

Index Terms—Explainable Artificial Intelligence (XAI), Graph
Neural Networks (GNNs), Heterogeneous Networks, Recom-
mender Systems, Trustworthy

I. INTRODUCTION

Graph Neural Networks (GNNs) have become increasingly

popular for learning representations of graph-structured data

in real-world applications, such as Social Networks [30],

Recommender Systems (RSs) [3], [12], [38], Molecules [7],

[9] and Citation Networks [33]. GNNs broadly employ a

message-passing scheme with features aggregated from its

neighbors to learn node representations [10], [36]. This scheme

enables the GNN to capture node features, neighborhood infor-

mation, and local graph topology. GNN-based methods have

achieved state-of-the-art performance in node classification

[35], graph classification [43], link classification [17], and link

prediction [42]. Despite the remarkable empirical effectiveness

of machine learning on graphs, explaining predictions made by

GNNs remains a challenging open problem. Although GNNs

make valuable predictions, due to the strong non-linearity of

the model, they act as black boxes, and proving that the model

has made the intended use of the graph structure is complex.

Furthermore, the lack of interpretability makes the GNNs un-

trustworthy, which prevents their application in safety-critical

areas. Therefore, significant subgraphs and a set of features,

also known as explanations, must be uncovered. The literature

has shown that this is still a new research area that requires

further investigation to understand the complexities involved

in the explainability of graph-based deep learning models.

Despite extensive research efforts on explainable techniques

for deep models on images and texts [2], [16], [29], most

of them cannot explain graph-based deep learning models

directly.

In contrast, graphs are non-Euclidean objects, meaning

no locality information exists. Each node has a different

number of neighbors and contains crucial structural informa-

tion, creating a sparse adjacency matrix with other nodes of

the same graph. Thus, explainable methods for images and

texts cannot be applied directly; still, the related problems

of neural debugging have received substantial attention in

deep learning. Recent methods have been proposed to explain

the predictions of GNNs as reported in some surveys [6],

[19], [40]. They provide different views to understand the

graph models. Two main classes are distinguished: instance-

level methods that provide input-dependent explanations by

identifying important features for the prediction and model-

level methods that explain general behavior and provide input-

independent explanations. GNNExplainer [37], XGNN [39],

PGExplainer [22], Grad [25], Grad-CAM [25] and SubgraphX

[41] are examples of instance-level methods. XGNN is the

only model-level method. However, despite the emergence of

new methods, GNNExplainer is still the leading method to

explain GNNs using a mutual-information approach.

For applications such as graph-based RSs, the input data

is typically heterogeneous graphs containing various types

of nodes and edges, and the recommendation problem is

modeled as a link prediction task [4], [11], [34]. However,

GNNExplainer is only designed for homogeneous graphs

and classification tasks. Since GNNs emerged, RSs have

become even more complex, and recommendations are more

challenging to explain. How to explain link predictions on
heterogeneous graphs containing rich semantic information
and easily generalize the learned explainer model remains

largely unexplored in the literature [24]. To shed some light

on this problem, we propose HGExplainer to overcome some

of GNNExplainer’s limitations in this paper. Indeed, although

GNNExplainer is currently the leading method to explain

GNN models, there is still room for improvement.

In that respect, our proposal, HGExplainer, provides expla-

nations of GNNs for the link prediction task in heterogeneous
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graphs. Extensive experiments on two real-world datasets

and two toy datasets show that HGExplainer provides built-

in interpretability while achieving comparable performance

with the non-interpretable counterparts. In summary, the main

contributions of this paper are as follows:

• We propose HGExplainer, an explainable method adapted

to heterogeneous graphs that improves the transparency of

the link prediction task, including RS applications. More

specifically, our model first constructs a meta-path-based

graph and then maximizes the joint mutual information,

paying attention to the richer heterogeneity information.

• To evaluate our work, we conduct extensive experi-

ments on two random and two real heterogeneous graph

datasets. The results demonstrate promising performances

of our model over baseline methods and the ability to

produce semantic-aware interpretable results.

• To the best of our knowledge, this is the first model that

explains heterogeneous GNNs and is being evaluated on

heterogeneous graph datasets.

The rest of the paper is organized as follows. Section

II discusses the literature review. Section III presents our

contribution, namely, HGExplainer. In Section IV, we present

our extensive experiments and discuss our results. Finally,

Section V concludes our work.

II. RELATED WORK

In this section, we first review the recent development of

explainability in GNN and provide a critical analysis; then,

we focus on the leading solution, GNNExplainer, and discuss

its benefits and weaknesses.

A. Explanations in GNNs

As the number of GNN applications grows, understand-

ing why GNNs make such predictions becomes increas-

ingly critical. To explain GNN algorithms, several methods

have been proposed [6], [19], [40]. Based on how the im-

portance scores are obtained, we divided them into differ-

ent classes: gradients/features-based methods, decomposition-

based methods, surrogate methods, perturbation-based meth-

ods, and model-level methods. The gradients/features-based

methods are the most straightforward approaches in a wide

range of explained image and text predictions. Due to their

simplicity, they can explain GNN models. These methods

compute the gradients of targeted prediction concerning input

features by back-propagation, and the key difference lies in

how different hidden feature maps are combined. Authors in

[25] extended explainability methods designed for CNNs to

GCNNs. According to their experiments, Grad-CAM [29] is

the most suitable among the studied methods for explanations

on graphs of moderate size. The decomposition-based methods

include GNN-LRP [28] and Excitation BP [25]. They build

score decomposition rules to distribute the prediction scores to

the input space. The surrogate methods, such as GraphLIME

[15] and PGM-Explainer [31], work through the generation

of a simpler surrogate model based on the relationships in

the neighboring areas of the input example. Furthermore,

several perturbation-based methods have been proposed, in-

cluding GNNExplainer [38], PGExplainer [22], GraphMask

[27], and SubgraphX [41]. Finally, the unique existing model-

level method is XGNN [39], based on graph generation for

graph classification only, providing high-level insights and a

generic understanding of how GNNs work. However, all the

surveyed methods explain only Node or Graph Classification
tasks in the context of homogeneous graphs. According to

recent surveys [19], [40], the perturbation-based methods

differ from concurrent ones by an efficient graph perturbation

and the exploitation of structural information, achieving the

most promising results. On the other hand, gradient-based

methods have several significant limitations, such as heuristic

assumptions. Moreover, these methods have special require-

ments for the GNN structure, limiting their application and

generalization. A significant limitation of decomposition-based

methods is that they can only study the importance of different

nodes, making it impossible to analyze the graph structure as

a crucial heterogeneous property. In addition, they require a

comprehensive understanding of the model structure, thereby

limiting the scope of their usage. Finally, surrogate methods

are challenging to apply to GNN models since graphs are

discrete and contain topology information, which makes it

challenging to define neighboring regions in graphs.

B. GNNExplainer

Although the study is still ongoing to develop an explainable

GNN method, among several perturbation-based methods, we

use GNNExplainer, which achieves noticeably better results

in terms of efficiency and complexity. It is a model-agnostic

method for learning soft masks for node features and edges

to explain the predictions made by GNNs. Given a graph

with node features and a trained GNN model, the method

randomly initializes soft masks and treats them as trainable

variables. Then, they are combined with the original graph

via element-wise multiplications. Then, GNNExplainer runs a

mask optimization algorithm that finds a selection of edges that

maximize the model output, providing explanations for any

node. Specifically, GNNExplainer extracts the subgraph and

the associated subset of node features that are important for

prediction. GNNExplainer explains GNN models based on the

input graph perturbation and exploits the structural information

from GNNs. However, the mask optimization runs for each

input graph individually, which lacks a global understanding of

predictions. Besides, the method only provides homogeneous

explanations for node and graph classification. Even though

the authors of GNNExplainer have vaguely mentioned its

possible use with heterogeneous graphs in the link prediction

task, it is only at a theoretical level without any experi-

mental justification. As a result, we propose an extension

of GNNExplainer adapted to the link prediction task on

heterogeneous graphs, proving that the original method cannot

work directly to explain more complex applications such as

RSs and explaining the link prediction task on heterogeneous

graphs is obviously not straightforward and not yet proven

experimentally.
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TABLE I
NOTATIONS USED IN THIS PAPER.

Symbols Definitions

G A heterogeneous graph G = (V, E,R, T )

V The set of nodes in a graph with different types

E The set of edges in a graph with different types

R The set of relation types

T The set of node types

v A node v ∈ V in a graph

e An edge e ∈ E in a graph

r A edge type in a graph

t A node type in a graph

Mpath The set of meta-path Mpath in a graph

Gs The set of meta-path-based graph of G
◦ The composition operator on relations

| · | The cardinality of a set

Y, U,C The set of discrete random variables

P (Y ), P (U) A probability distribution

H(Y ), H(Y, U) Entropy of a discrete random variables

H(U |Y ) Conditional entropy of the variable Y given U

I(Y ;U) Mutual information of two random variables Y and U

Xs Associated feature information of Gs

F Feature mask used to select features

D An indicator of the links probability belonging to R
M The result of maxI for each T
q An indicator for positive and negative triples

Φ A heterogeneous GNN model

d̂ A link prediction of the node pair (v1, v2)

L A loss function

Gc A computation graph, i.e., L-hop ego-graph of (v1, v2)

C. Heterogeneity Challenges

Different from homogeneous graphs, where the fundamental

problem is preserving structure and property in node embed-

ding [5], heterogeneous graph embedding imposes more chal-

lenges, including complex structure and attributes as well as

complex applications. As nodes and edges in a homogeneous

graph have the same type, each dimension of the node’s or

edge’s attributes has the same meaning. It means that a node

can directly merge the attributes of its neighbors. However, in

heterogeneous graphs, the attributes of different types of nodes

and edges may have different meanings [32]. For example,

the attributes of node author can be the research fields, while

the node paper may use keywords as attributes. Therefore,

how to overcome the heterogeneity of attributes and effectively
fuse the attributes of neighbors poses another challenge in

heterogeneous graph embedding.

III. METHODOLOGY

In this section, we present in detail our proposed explainable

method, called HGExplainer, which can be applied in various

heterogeneous GNN models, including RS applications. Fig. 2

illustrates the overall framework, which falls into two parts: (1)

subgraph sampling and (2) heterogeneous explainer. We first

introduce the notations and problem formulation, then discuss

Fig. 1. An illustration of the terms defined in Section III (a) An example
heterogeneous graph with three types of nodes (i.e., user, movie, and genre).
(b) The User-Movie-Genre-Movie (U-M-G-M) metapath. (c) Example meta-
path instances of the U-M-G-M metapath. (d) The metapath-based graph for
the U-M-G-M metapath.

the proposed framework’s details. The workflow is that we

first use heterogeneous GNN incorporating node types to learn

the graph representation for the link prediction of whether the

user likes the item or not. We then generate a meta-path-based

graph and maximize the mutual information to calculate the

most important nodes and edges for the prediction. Besides,

the mathematical notations used in this paper are summarized

in Tab. I.

Heterogeneous Graph definition. Let G = (V, E ,R, T ) be

a heterogeneous graph, where V denotes a set of nodes with

different types, E ⊆ V×V denotes a set of edges with different

types, R = {r1, r2, ..., rb} is the set of |R| > 1 relation types,

and T = {t1, t2, ..., ti} is the set of |T | > 1 node types. Each

node v ∈ V and each edge e ∈ E are associated with node

type mapping function ψ : V → T and edge type mapping

function φ : E → R.

Meta-path-based Graph definition. A meta-path Mpath is

defined as a path in the form of v1
r1−→ v2

r2−→ · · · rb−→ vl+1

which describes a composite relation r1 ◦ r2 ◦ · · · ◦ rb between

nodes v1 and vl+1 where ◦ denotes the composition operator

on relations. The meta-path-based neighbor is defined as the

set of nodes connecting to a node v via meta-path Mpath. For

example, considering a heterogeneous graph with three types

of nodes (i.e., users (U ), movies (M ), and genres (G)) and the

meta-paths U−M−U , U−M−G that represent two different

semantics, U − M − U means that two users rate the same

movie and U −M −G means that a user rates a movie that

belongs to a genre. Considering the meta-path U−M−G−M

(Fig. 1), Tom
rates−−−→ StarWars

hasGenre−−−−−−→ Sci-fi
hasGenre←−−−−−−

TopGun represents its instance. Based on this information,

TopGun is a meta-path-based neighbor of Tom. Then, the

meta-path-based graph Gs is a graph constructed by all meta-

path neighbor pairs based on meta-paths Mpath in a graph

G.

Entropy and Mutual Information definition. Let Y be

a discrete random variable taking on values in a set Y =
(y1, y2, · · · , yn), defined by a probability distribution P (Y ).
Then, the entropy of a discrete random variable is denoted by
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Fig. 2. Illustration of HGExplainer for explaining heterogeneous GNNs on link prediction task. The solution mainly consists of four steps: (1) train a link
prediction model, (2) generate a meta-path-based graph, (3) calculate the joint mutual information maximization, (4) visualize the explanations based on a
threshold.

H(Y ), where yi refers to the possible values that Y can take.

H(Y ) is defined as follows:

H(Y ) = −
n∑

i=1

P (yi)log(P (yi)) (1)

Entropy is a measure of the uncertainty of a random

variable. For any two discrete random variables Y and U =
(u1, u2, · · · , um), we denote P (Y ) and P (U) as two different

random variables. The joint conditional entropy of a pair

of discrete random variables with a joint distribution and a

conditional distribution are defined as:

H(Y, U) = −
m∑

j=1

n∑
i=1

P (yi, uj)log(P (yi, uj)) (2)

H(U |Y ) = −
m∑

j=1

n∑
i=1

P (yi, uj)log(P (uj |yi)) (3)

The conditional entropy is the uncertainty left in U when

a variable Y is introduced, so it is less than or equal to the

entropy of both variables. The conditional entropy is equal to

the entropy if, and only if, the two variables are independent.

The relation between joint entropy and conditional entropy is:

H(Y, U) = H(Y ) +H(U |Y ) (4)

H(Y, U) = H(U) +H(Y |U) (5)

Mutual information is the amount of information that Y
and U share. In particular, it measures how much information

is communicated, on average, in one random variable about

another. It is defined as:

I(Y ;U) =

m∑
j=1

n∑
i=1

P (yi, uj)log

(
P (yi, uj)

P (yi)P (uj)

)
(6)

I can be expressed as the amount of information provided

by variable Y , which reduces the uncertainty of variable U .

Then, the joint mutual information is defined as:

I(Y ;U |C) = H(Y |U)−H(Y |U,C) (7)

I(Y,C;U) = I(Y ;U |C) + I(C;U) (8)

where C is a discrete variable in a set C = (c1, c2, · · · , ck).
Interaction information can be defined as the amount of

information shared by all features, but is not found within

any feature subset.

A. Problem Formulation

Our key insight is the observation that the heterogeneous

computation graph Gc of a pair of nodes vi and vj , which

is defined by the GNN’s neighborhood-based aggregation,

fully determines all the information the GNN uses to gen-

erate prediction d̂ at link vi → vj . A heterogeneous GNN’s

prediction is given by d̂ = Φ(Gc(vi, vj);Xc(vi, vj)) meaning

that it is fully determined by the model Φ, graph structural

information Gc(vi, vj), node feature information Xc(vi, vj).
Formally, HGExplainer generates explanation for prediction

d̂ as (Gs,XF
s ), where Gs is a meta-path-based graph of the

computation graph Gc. Furthermore, Xs is the associated

feature of Gs, and XF
s is a subset of node features, where

F is a feature mask used to select features that are important

to preserve original prediction d̂.

An overview of the proposed model architecture is shown

in Fig. 2. Given the input graph G, a pair of nodes (vi, vj),
a trained heterogeneous GNN model Φ, and node features

Xs, our goal is to identify the most important nodes and

edges for the link prediction d̂. After training, a model with

a selected edge to explain is passed to the HGExplainer. By

creating a proper meta-path-based graph Gs with a pair of

nodes (vi, vj), negative subgraph Ĝs, and their node features

Xs is generated as input to the HGExplainer training. Then,

entropy is calculated for each class of nodes separately in

the joint mutual information maximization process. Finally, it

yields common node and edge masks based on the approach

presented in the next subsection.
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B. Mutual Information for Heterogeneity Information

After training the GNN model, we use the trained param-

eters to learn which nodes and edges on the heterogeneous

graph are important. We note that if removing the edge

decreases the performance of the GNN model, this edge should

be important and can be used for the explanation. Similar

to [37], our objective is to maximize the mutual information

between the GNN’s prediction d̂ and the distribution of meta-

path-based graph Gs structure. Given a pair of nodes (vi, vj),

the goal is to identify a meta-path-based graph Gs ⊆ Gc

and the associated features Xs = {xi,j |(vi, vj) ∈ Gs(vi, vj)}
that are important for the GNN’s prediction. GNNExplainer

is an optimization framework using the following mutual

information formula:

max
Gs

I(D, (Gs,Xs)) =

H(D)−H(D|G = Gs,X = Xs)
(9)

where D indicates the probability of links belonging to each

of the relation type R. In the framework of GNNExplainer

[37], the difficulty of using the model on heterogeneous graphs

is conditioned by the lack of capturing semantic information

and different meanings of different classes, which treats all

graphs at a homogeneous level. Therefore, we update the

above maximization of the mutual information equation (Eq.

9) taking into consideration the class label T as follows:

max
Gs

I(D, (Gs,X T
s )) =

H(D)−H(D|G = Gs,X = X T
s )

(10)

Given a trained GNN model Φ and a prediction d̂ or set

of predictions, HGExplainer will generate an explanation by

identifying a meta-path-based graph Gs of the computation

graph Gc and a subset of node features XF
s that are most

influential for the model’s prediction d̂. Let X T
s be a subset of

d-dimensional node features. It measures how many probabil-

ities the explainable meta-path-based graph can approximate

the original input heterogeneous graph G. The total mutual

information maximization is calculated as follows:

max
Gs

I(D, (Gs,X T
s )) =

T∑

z=1

I(Mz) (11)

where M is the result of the mutual information maximization

for each class T . Note that once the GNN model is trained,

entropy term H(D) is constant and no longer changes because

the model Φ is fixed for a trained heterogeneous GNN. As a

result, maximizing mutual information between the predicted

weight distribution and explanation is equivalent to minimizing

the conditional entropy H(D|G = Gs,X = X T
s ) which can

be expressed as follows:

H(D|G = Gs,X = X T
s ) =

−ED|Gs,XT
s
[logP (Y |G = Gs,X = X T

s )]
(12)

In the setting of the heterogeneous graphs, the used node

embeddings from the classifier keep the heterogeneous node

information. In contrast, the edge-type embeddings contain

heterogeneous edge information. It promotes the interpreter

to learn the edge distributions in a heterogeneous manner.

In applications such as RSs, instead of finding an explana-

tion regarding the model’s confidence, the users care more

about why the trained model predicts a certain edge weight.
Inspired by [37], we modify the conditional entropy objective

I(H, (D|G = Gs)) with a cross-entropy objective between

the ground truth edge weight and the model prediction. The

loss function for the HGExplainer is formulated as follows:

Llatent = −
T∑

m=1

qmlog(d̂) + (1− qm)log(1− d̂) (13)

where q is an indicator set to q = 1 for positive triples and

q = 0 for negative ones. Our framework is flexible with vari-

ous regularization terms to preserve desired properties on the

explanation. Following [37] to obtain a compact and succinct

explanation, we impose a constraint on the explanation size by

adding the sum of all elements of the mass parameters as the

regularization term, and element-wise entropy is also applied

to achieve discrete edge weights further. The loss consists of

the loss from the latent parameters defined in Eq. (13) and the

cross-entropy reconstruction loss (Lcross):

L = λLlatent + Lcross (14)

where hyper-parameter λ ∈ [0, 1] is a trade-off weight to

balance two loss functions. We iteratively train our model

until stop conditions are satisfied, like the maximum number

of iterations. The final explanation is an aggregation of the

mutual information maximization of each class.

C. Meta-path-based Graph Explanations

The meta-path-based graph Gs is generated depending on

the high-order topology structure, describing the multi-hop

structural interactions between two nodes. Different meta-

paths Mpath represent different semantics.

In order to thoroughly learn the information of each meta-

path Mpath, we generate the corresponding meta-path-based

subgraphs according to the meta-path definition and then apply

aggregation methods to each meta-path-based subgraph. After

aggregating the node and edge data within each meta-path,

we combine the semantic information revealed by all meta-

paths. Following the meta-path types, the generated meta-path-

based graph Gs can be passed to calculate the joint mutual

information (as shown in Fig. 2). Then, we map the generated

meta-path-based graph with the k-hop subgraph generated for

a link (v1, v2) to explain the prediction d̂. Finally, we use the

threshold to identify low-weight edges and remove low-weight

edges, and identify the explanation subgraph Gs. To find an

optimal threshold, we propose using the Graph Embedding

Similarity approach to find a trade-off between the average
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neighbor distances and the total number of the sampled nodes.

The embedding similarity approach is also found in Reinforced

Neighbor Sampler [20], albeit with different motivations and

objectives.
Since the search space of meta-path-based graph Gs is

enormous and a candidate explanation for prediction, direct

optimization of HGExplainer’s objective needs to be tractable.

By doing so, it is consistent that not all edges in the original

graph contribute to the model’s prediction. For a specific

type of node, their connections to the neighbors in different

subgraphs carry different semantic information so that each

subgraph can be regarded as an interaction graph with specific

semantic information. Since the subgraphs are independent,

learning tasks can be carried out on each subgraph in parallel,

which results in more efficient learning.

D. Node and Graph Classification Tasks
So far, we have focused on the link prediction task, in-

cluding the RS application. However, HGExplainer provides

explanations of node and graph classification without mod-

ifying its optimization algorithm. When classifying a node,

HGExplainer learns a separate mask for each class of nodes.

The same principle applies to graph classification. We make

the union of adjacency matrices and semantic information for

all the nodes and edges of the graph whose labels we want to

explain.

E. Any Heterogeneous GNN Model
Modern Heterogeneous GNNs are based on message-

passing, encoder-decoder, or adversarial architectures. Unlike

homogeneous graphs, we cannot predict all complex architec-

tures because of the unlimited possibilities of heterogeneous

graphs. However, HGExplainer can be applied to different

architectures such as R-VGAE [18], R-GCN [26], HAN [21],

and GraphRec [8] for applications such as RS, and many other.

Note that our model can be easily extended to other GNN

models and heterogeneous information.

F. Computational Complexity
The number of parameters in HGExplainer’s optimization

depends on the size of the computation graph Gc for a pair

of nodes vi and vj and the subgraph’s k-hop value, whose

prediction we aim to explain. As a comparison, the time

complexity of HGExplainer is similar to GNNExplainer. They

have to retrain for the new instance, leading to the time

complexity of O(w|E|), where w is the number of epochs

for retraining.

TABLE II
STATISTICS AND PROPERTIES OF THE DATASETS USED IN EXPERIMENTS.

Dataset #Nodes #Edges #Features #Classes

Hetero SG-Base 13,150 46,472 11 2

SG-Heterophilic 13,150 46,472 11 2

IMDB 10,352 100,836 1,266 2

Epinions 279,737 715,821 1,024 2

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of

our framework. We first describe the graphs, implementation

details, and experimental setup. Then, we present the eval-

uation results for link prediction tasks on the homogeneous

and heterogeneous graph datasets. Our analysis demonstrates

that HGExplainer is a promising method for identifying ex-

planations regarding graph structure and node features. The

experiments aim to address the following research questions:

• RQ1: How does HGExplainer perform in explaining link

prediction?

• RQ2: What is the impact of the major components of the

HGExplainer described in the previous section?

• RQ3: How does HGExplainer perform in explaining

heterophilic GNNs?

A. Datasets

To fairly evaluate the performance of our model, we

conducted the experiments on two real datasets, including

recommendation data from the most popular movie online

database IMDB [13] and popular social networking website

Epinions [23]. Each collection allows users to rate items and

browse/write reviews. Hence, they provide a large amount

of rating information. Moreover, we chose two toy datasets

Heterogeneous SG-Base and SG-Heterophilic, which are gen-

erated using GraphXAI framework [1]. Heterogeneous SG-

Base and SG-Heterophilic are homophilic and heterophilic

large datasets containing house-shaped motifs for ground-

truth explanations. The node features in this graph exhibit

homophily, a property commonly found in social networks.

With over 10,000 nodes, this graph also provides enough

examples of ground-truth explanations for rigorous statistical

evaluation of explainer performance. The statistics of these

datasets are sketched in Tab. II.

B. Experimental Settings

1) Parameter settings: We use R-VGAE [18] GNN archi-

tectures for the link prediction task in our evaluation. Finally,

we follow GNNExplainer to split train/validation/test with

80/10/10% for all datasets. Each model trained deep neural

networks with 300 epochs. We adopt the ADAM optimizer

with a learning rate of 0.005. All experiments are conducted

on a Linux machine with an NVIDIA Tesla P100-PCIE with

16GB memory. CUDA version is 11.2, and the Driver Version

is 460.32.03. HGExplainer is with Python 3.9, PyTorch 1.12.1,

and PyTorch Geometric 2.1.0.
2) Baselines: Many explainable methods cannot be directly

applied to heterogeneous graphs. Nevertheless, we consider

the following alternative gradient-based approaches, Grad [25]

and Grad-CAM [25], that can provide insights into predictions

made by heterogeneous GNNs. We compute the gradient of the

GNN’s loss function concerning the adjacency matrix and the

associated node features, similar to a saliency map approach.

Many explainability methods cannot directly explain graph-

based deep learning models (as mentioned in Section II),

especially for the link prediction task. To the best of our
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TABLE III
THE EVALUATION OF HGEXPLAINER FOR REAL-WORLD RECOMMENDATION DATASETS BASED ON ACCURACY AND MAX-JACCARD METRIC.

HGEXPLAINER OBTAINED A HIGHER SCORE ACROSS ALL TWO DATASETS. THE BEST PERFORMANCES ON EACH DATASET ARE SHOWN IN BOLD.

Method IMDB Epinions

Gen Precision Gen Recall Gen F1 Max-Jaccard Gen Precision Gen Recall Gen F1 Max-Jaccard

Grad 0.079 0.088 0.082 0.081 0.167 0.177 0.171 0.168

GradCAM 0.083 0.097 0.086 0.084 0.171 0.181 0.174 0.172

GNNExplainer 0.103 0.111 0.108 0.102 0.183 0.191 0.186 0.184

PGExplainer 0.123 0.131 0.127 0.125 0.191 0.201 0.198 0.192

HGExplainer 0.141 0.155 0.148 0.141 0.199 0.208 0.204 0.201

knowledge, HGExplainer is the first model being evaluated

on heterogeneous graph datasets. As a result, GNNExplainer

[37] and PGExplainer [22] are designed for the setting of

homogeneous graphs. It generates an interpretable graph by

identifying the subgraph of a given graph and a subset of

node features. We adapt GNNExplainer and PGExplainer in a

heterogeneous setting by applying the same techniques used

in our method to deal with heterogeneous graphs.

3) Evaluation metrics: We evaluate the interpretability of

models by the fidelity and sparsity [25]. Fidelity measures

the change of the shift detection result if removing the inter-

pretable edges, and sparsity reflects the percentage of remain-

ing edges after removing the interpretable edges. High values

of both fidelity and sparsity indicate the strong interpretability

the model has. Furthermore, we proposed the use of the Max-

Jaccard across all possible explanations for a given subgraph.

The Max-Jaccard score measures if the explanation method

is able to accurately predict one of the possible explanations

to choose from. Moreover, the generalized precision (Gen

Precision) and recall (Gen Recall) measure if the predicted

explanation was given a high intuitive score assigned by users,

and the generalized F1 (Gen F1) provides an overview of

performance on the generalized precision and recall. Following

[1], we use evaluation metrics for generated datasets, mea-

suring accuracy (GEA), faithfulness (GEF), stability (GES),

Counterfactual fairness mismatch (GECF), and Group fairness

mismatch (GEGF).

C. Explainability Analysis

The evaluation measures for Explainable Artificial Intelli-

gence (XAI) systems are another essential factor in the design

process of XAI systems. Explanations should correspond to

different interpretability goals. Hence, to be valid for the

intended purpose, the information about the quality of expla-

nations requires different measures. Herman [14] notes that

reliance on human evaluation of explanations may lead to

persuasive explanations rather than transparent systems due

to users’ preference for simplified explanations.

1) Analyses (RQ1, RQ2): Assessing the quality of GNN

explanations is challenging as existing evaluation strategies

depend on specific datasets with no or unreliable ground-

truth explanations and GNN models. An essential criterion for

explanations is that they must be interpretable, i.e., provide a

qualitative understanding of the relationship between the input

Fig. 3. Since the sparsity scores cannot be fully controlled, we compare
different methods with fidelity scores under similar levels of sparsity. A larger
fidelity at a given sparsity indicates a higher importance of the extracted
explainable subgraph.

nodes and the prediction. Such a requirement implies that

explanations should be easy to understand while remaining

exhaustive. It means that HGExplainer should consider both

the structure of the underlying graph and the associated

features when they are available. Tab. III shows the results

of our experiments in which HGExplainer jointly considers

structural information and information from a small number

of feature dimensions. We observed the highest accuracy of

HGExplainer, which performed the best explanations regard-

ing the generalized F1 score on the R-VGAE link prediction

task. In addition, we evaluate the performance of HGExplainer

on a collection of synthetically generated graphs. The results in

Tab. IV show that, while no explanation method performs well

across all properties, HGExplainer outperforms other methods

on average. In particular, HGExplainer generates more accu-

rate and the least unstable explanations with the second-lowest

unfaithfulness score than other GNN explanation methods.

While HGExplainer highlights a compact feature representa-

tion, PGExplainer has the best counterfactual fairness score,

and gradient-based approaches struggle to cope with the added

noise, giving high importance scores to irrelevant feature

dimensions.

Since evaluating of explanations is challenging in the ab-

sence of ground truth, we further conduct quantitative studies

to compare these methods. In the absence of ground truth for
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TABLE IV
THE EVALUATION OF HGEXPLAINER WITH A BASELINE ON HETEROGENEOUS SG-BASE GRAPH DATASET. ARROWS (↑/↓) INDICATE THE DIRECTION OF

BETTER PERFORMANCE. OVERALL, HGEXPLAINER FAR OUTPERFORMS OTHER METHODS IN ACCURACY, STABILITY, AND GROUP FAIRNESS METRICS,
WHILE PGEXPLAINER IS BEST FOR COUNTERFACTUAL FAIRNESS, AND GRADIENT METHODS PRODUCE THE MOST FAIR EXPLANATIONS. THE BEST

PERFORMANCES ARE SHOWN IN BOLD.

Method GEA (↑) GEF (↓) GES (↓) GECF (↓) GEGF (↓)

Grad 0.198±0.002s 0.602±0.005s 0.748±0.005s 0.166±0.004s 0.069±0.002s

GradCAM 0.204±0.001s 0.634±0.007s 0.311±0.004s 0.044±0.003s 0.041±0.001s

GNNExplainer 0.133±0.003s 0.622±0.006s 0.412±0.005s 0.225±0.007s 0.027±0.002s

PGExplainer 0.140±0.002s 0.632±0.007s 0.241±0.005s 0.074±0.003s 0.030±0.002s

HGExplainer 0.221±0.002s 0.617±0.006s 0.224±0.004s 0.144±0.003s 0.022±0.001s

explanations, we can still evaluate post hoc explanations using

the desirable properties of the explanations we introduced.

The Fidelity metric measures whether the explanations are

faithfully important to the model’s predictions. It removes the

important structures from the input graphs and computes the

difference between predictions. In addition, the sparsity metric

measures the fraction of structures identified as important by

explanation methods. Note that high sparsity scores mean

smaller structures are identified as important, which can affect

the fidelity scores since smaller structures (high sparsity)

tend to be less important (low fidelity). We see in Fig. 3

that HGExplainer has higher fidelity at all sparsity levels

than GNNExplainer and PGExplainer on both real datasets.

It indicates that our model can better detect important edges

on heterogeneous graphs.

2) Heterophilic analyses (RQ3): At first, the homophily

assumption defines that nodes with similar features or same

class labels are linked together. In contrast, the heterophily

defines that linked nodes have dissimilar features and differ-

ent class labels. We compare HGExplainer with other GNN

explainers by generating explanations on GNN models trained

on homophilic and heterophilic graphs generated using the

SG-Heterophilic generator [1]. Then, we compute the graph

explanation unfaithfulness scores of output explanations gener-

ated using different gradient-based methods, PGExplainer and

GNNExplainer with HGExplainer. We find that HGExplainer,

like the other methods, produces more faithful explanations

when ground-truth explanations are homophilic than when

ground-truth explanations are heterophilic (i.e., low unfaith-

fulness scores for light blue bars in Fig. 4). Since most local

neighbor nodes are not in the same class, heterophily makes

the explanations more challenging. Moreover, extracting ex-

plainable subgraphs from highly heterophilic graph data is

much more complex, where proximal and distant topological

structures must be discovered and exploited. These results

reveal an essential limitation of existing GNN explainers and

highlight an opportunity for future algorithmic innovation in

GNN explainability.

V. CONCLUSION AND FUTURE WORK

In this paper, we present HGExplainer, which provides an

improved insight into the explanations of the link prediction

task built on heterogeneous graphs. Extensive experimental

Fig. 4. Unfaithfulness scores across four GNN explainers and HGExplainer on
SG-Heterophilic graph dataset consisting of either homophilic or heterophilic
ground-truth (GT) explanations. GNN explainers produce more faithful expla-
nations (lower GEF scores) on homophilic graphs than heterophilic graphs.

results show that our method can provide a human-intelligible

reasoning process with acceptable classification accuracy.

However, it requires additional work on time complexity

and the heterophilic model improvement. To the best of our

knowledge, this work is the first one that explains the link

prediction task in the context of applications such as RSs, and

we hope it will serve as a beacon for works to come.

We only incorporate the heterogeneous graphs into the link

prediction task and RS. At the same time, many real-world

industries are associated with rich other-side information on

users and items. For example, social RSs and their users

are associated with social interactions and rich attributes.

Therefore, exploring explanations of GNN for social rec-

ommendation with attributes would be an interesting future

direction. Moreover, the explanations in RSs are crucial for

end users, so one of the future steps would be to make them

more interpretable using a neurosymbolic approach, including

knowledge graphs and first-order logic. Finally, a user study

should conducted to achieve better trustworthy feedback.
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