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Abstract

Background: Hypomimia is a symptom of Parkinson’s disease (PD), characterized
by a decrease in facial movements and loss of face emotional expressions. This study
aims to detect hypomimia in participants with early-stage PD based on facial action
units (AUs). Methods: A total of 299 video recordings were included, consisting of 208
PD subjects and 91 healthy controls (HC), asked to perform fast syllable repetitions.
To distinguish typical facial muscle movements from PD subjects associated with
hypomimia, we compute the AUs derivatives. Global features were extracted based
on the AUs intensities and their derivatives, and XGBoost was used to classify PD vs.
HC. Results: We obtain classification scores up to 73.00% in terms of balanced accuracy
(BA) and an area under the curve (AUC) of 78.38% at video visit level. These results
are promising for detecting hypomimia at an early stage of PD, and this work could
potentially allow for continuous monitoring of hypomimia outside of hospitals through
telemedicine.
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1 Introduction
Context and motivation: Parkinson’s
disease (PD), first described by James
Parkinson in 1817, is the second most common
neurodegenerative disease, affecting 1% of people
over 60 years [1]. PD affects the central nervous
system by the destruction of dopaminergic

neurons in the substantia nigra [2]. PD causes
motor deficits like rigidity, bradykinesia and
rest tremor, and non-motor ones like depression,
anxiety and dysautonomia [3]. These symptoms
occur years after disease onset [4] and by the time
PD is diagnosed, 60% of the dopaminergic neurons
are already lost [5]. Early-stage PD detection [6],
therefore, is key to test treatments before large
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irreversible brain damages occur, and to slow
down, or even stop, its progression. A common,
often-early stage, PD symptom [7] is hypomimia,
or masked face, reflecting a decrease in facial
movement and loss of face emotional expressions.
This loss has negative social consequences on
patients, who may face social rejection [8].
Hypomimia is also used in the MDS-UPDRS
scale [9] by neurologists to track PD progression.
To quantify facial muscles’ movement and detect

hypomimia, participants are proposed different
scenarios. Some evoke their emotional side by
asking them to make facial expressions like smile,
anger, surprise, disgust [10, 11] upon clinician’s
request, by imitating emotive faces shown on
screen, or by eliciting spontaneous emotions as
in [12] where the participants are shown a movie.
Others evoke non-emotional facial movements by
asking the subjects to make different facial gestures
(close eyes, moving the eyebrows, look down) [13],
and recording them talking about a positive and
negative experience [14]. Hypomimia can be
detected by single face image-based methods [15,
16], and face video-based approaches [17, 18].
Electromyography (EMG) signals can also be used
by positioning small electrodes on the skin above
the facial muscles to capture the electrical signals
created by muscle movements [12].
Video-based state-of-the-art approaches can be

split into two categories. The first extracts motion
features from facial landmarks [10, 17, 19] or facial
action units (AUs) intensities [14, 20] and uses
them as input to shallow classifiers or statistical
tests to discriminate PD from healthy control (HC)
subjects. The second extracts the features by
Convolutional Neural Networks (CNNs), that are
then fed as input to shallow classifiers [16, 21], or
directly to the CNN for classification [18, 22].
The first type of facial landmarks-based

approaches compute changes in facial landmarks
across frames. Concretely, global parameters
quantifying the trajectory movement of these key

points across the frames are extracted. On the
other hand, facial action units-based approaches
compute the intensity of AUs over time. First,
each action unit representing a facial movement
of a particular muscle or group of muscles is
detected on a scale from 0 (absent) to 5 (maximal
intensity). Then, features related to AU frequency,
amplitude, variance, are extracted. These global
parameters are then fed as input to machine
learning algorithms such as KNN, Random forest,
SVM or to statistical tests.
In the second type, the video RGB images

are fed as input to CNNs to extract embedding
features, which are provided as input to shallow
classifiers or directly used by the CNNs. The RGB
frames, however, represent only the video spatial
component, and thus the dynamics is often lost.
To consider dynamic information, Su et al. [22]
combined the optical flow with spatial information
to form a two-stream network (the optical flow and
the spatial streams). The optical stream network
captures the dynamic changes of facial muscles by
taking as input a stack of optical flow images.
The spatial stream network captures the spatial
information by taking a sequence of RGB frames
as input.
Our approach relies on facial AUs, which

has yielded promising results in the literature.
Moshkova et al. [23], for instance, computed the
Euclidian distance between AUs of posed emotions
and neutral states and found PD patients with
significantly lower distances than HC subjects
for all six emotions. [20] found that kinematic
parameters of AUs, computed on smiling and
eyebrow movement tests, found PD patients with
decline in the frequency and speed of facial
movements. Priebe et al. [24] calculated a
composite score by multiplying the mean intensity
with some selected AU frequency values and then
averaged these product terms. They found that PD
patients had a significantly lower pain-indicative
composite score than the HC group in off state.
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Langevin et al. [25] found a significant difference
in the average intensity of AU4 (brow lowerer)
between PD and HC during the ”resting facial
expression” task. Guan et al. [26] extracted 36
global features for each AU in time and frequency
domains, selected relevant features using U-test,
and applied five-fold CV. They achieved an AUC
of 96.42%. However, feature selection was applied
on the whole dataset, not the training set only.
Additionally, CV was not stratified, implying
different class distributions in the training and
test sets. Gomez et al. [27] adapted a CNN
model, originally designed for face recognition
to detect AUs in the emotion net dataset, and
fine-tuned it to classify PD vs. HC; they obtained
an accuracy of 87.3%. Finally, Wu et al. [12]
devised a scoring system to measure the change
in AUs’ intensities and their mean. This score,
used to quantify the degree of facial expressivity
and calculated as the difference between the scores
obtained for disgust and neutral expressions, was
shown to discriminate PD vs. HC subjects, and
demonstrated that as PD severity increased, facial
expressivity decreased. Despite their promising
results, the studies above have some limitations.
Except the study in [24], PD patients were not
in their early stage. Furthermore, some studies
perform feature selection on the whole dataset,
instead of the training set only, which leads to
biased results compared to the ones expected in
a realistic test setting.

Paper contributions: We propose a study for
hypomimia detection in early stage PD patients
by analyzing their face videos. To characterize
the facial muscles’ movement from the videos, we
calculate the facial AUs derivatives with order
of k of the AUs intensities, that we call delta
features. Since these derivatives are computed at
the frame level, the resulting representation of each
video is in the form of a time series. To obtain
a global video representation, we compute the
variance across the delta features. Additionally,

we extract another global representation of the
video by calculating the variance across the action
unit intensities. We conducted three experiments,
each of which involved evaluating an XGBoost
model using nested cross validation on one of three
different feature types: delta feature, variance of
delta features, and variance of intensities.
The paper is structured as follows. Section 2

presents the database and our approach based on
action unit derivatives. In Section 3, the results
are presented along with their analysis. Finally,
we conclude and discuss future work in Section 4.

2 Methods
2.1 Database
The dataset was collected as part of the ICEBERG
protocol, a longitudinal study conducted at the
Paris Brain Institute (ICM), aiming to identify
and validate biomarkers of Parkinson’s disease.
The study enrolled 112 PD patients (73 men, 39
women) and 45 HC subjects (26 men, 19 women),
according to the following inclusion criteria : (1)
clinical diagnosis of idiopathic PD based on the
United Kingdom Parkinson’s Disease Society Brain
Bank criteria [28], with a disease duration of
less than 4 years and (2) controls without any
neurological disorders. The participants come once
a year to the Pitié Salpêtrière hospital for 5 years
to undergo several examinations (neurological
examination, motor and cognitive tests, biological
sampling, and brain MRI) and audio visual
recordings. PD subjects were pharmacologically
treated and their faces were recorded while on
state.
A total of 299 videos, denoted as ICEBERG

Video-Feb2023 dataset, were included, consisting
of 208 PD (129 males, 79 females) and 91 HC
(58 males, 33 females). Information at visit level
on age, Hoehn and Yahr stage, MDS-UPDRS III
score (off state), MDS-UPDRS III face item, Moca
is given in Table 1. The recording session lasts
15 to 20 minutes, where participants are asked to

p.3 Colloque JETSAN 2023



perform 29 vocal tasks, explained through a user
interface. We have considered three tasks where
the participants repeat a set of syllables (/pataka/
(twice) /bagada/) as rapidly and continuously
as possible, without taking pauses to breathe.
These tasks can reveal articulation difficulties,
enabling their visual capture. The recording
device is a Webcam with integrated encoding and
compression of the type 195 Logitech C922 Pro
StreamWebcam, with a frame rate of 24 fps (frame
per second) and a resolution of 1920 * 1080 pixels.

PD HC
Biological sex Male Female Male Female
No. of videos 129 79 58 33
No. of subjects 73 39 26 19
Age (years) 64.23 ± 9.23 66.23 ± 8.17 63.46 ± 9.38 63.73 ± 8.46

Hoehn & yahr 1.92 ± 0.35 1.86 ± 0.55 - -
MDS-UPDRS

III total
32.6 ± 6.83 27.31 ± 9.32 4.24 ± 2.72 4.39 ± 2.98

MDS-UPDRS III
face item

1.2 ± 0.55 0.85 ± 0.51 - -

MoCA 26.59 ± 2.72 28.09 ± 1.77 27.52 ± 2.56 28.03 ± 1.67

Table 1: Information related to the ICEBERG
Video-Feb2022 dataset recordings

2.2 Approach
2.2.1 Facial Action Units

Paul Ekman developed the Facial Action Coding
System (FACS) [29], which identifies the basic
movements of facial muscles known as facial action
units (AUs). FACS categorizes the facial muscles
into 44 action Units (AUs), each corresponding to
a distinct movement pattern in the facial muscles.
These AUs can be used to describe a wide range of
facial expressions. OpenFace [30] is an open-source
software tool that performs precise facial landmark
detection, head pose estimation, facial action unit
recognition, and eye-gaze estimation.

2.2.2 Feature Extraction

OpenFace was used to extract from each video 17
AUs (Figure 1) and providing information on the
presence (0 or 1) and intensity level (ranging from
0 to 5) of each AU for every video frame.

Figure 1: AU diagrams adapted from [31]

Delta features: To encode the video facial
muscles’ movement, we calculate for each action
unit AUj its delta feature DfAUj

. For each
frame, delta feature DfAUj

at frame i is defined
by computing the difference in intensities between
frame i+ k and frame i of AUj with fixed k (1).

DfAUj
(F (i)) = InAUj

(F (i+k))−InAUj
(F (i)) (1)

where InAUj
(F (i)) is the AUj intensity at frame i.

Variance delta features: After computing the
delta features of each video with step k, a video
is represented as time series of delta AU features.
To globally represent it, we calculate the variance
of each delta feature DfAUj

across the frames (2).

Var(DfAUj
) =

1

N

N∑
i=1

(DfAUj
(F (i))−D̄fAUj

)2 (2)

where D̄fAUj
= 1

N

∑N
i=1 DfAUj

(F (i)), and N is the
number of frames in the video.

Baseline features: We extract other basic
features by calculating for each AUj the variance of
the intensities across the frames (3). These features
are used as reference to evaluate their predictive
power in comparison to the variance delta features.

Var(AUj) =
1

N

N∑
i=1

(InAUj
(F (i))− ĪnAUj

)2 (3)

where ĪnAUj =
1
N

∑N
i=1 InAUj

(F (i)), and N is the
number of frames in the video

2.2.3 Classification

We use XGBoost to classify PD vs. HC, for
each task, where we conduct three experiments,
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associated with our three feature types, i.e. delta
features, variance delta features, and baseline
features. We evaluate XGBoost using stratified
nested cross validation (CV) with five folds in the
inner and outer loops. Stratification is based on
biological sex to ensure the training, validation
and test sets have equal representation of male
and female for each class (PD or HC). Note that
same-subject videos appear in only one of these
three sets. The XGBoost hyperparameters were
optimized by performing an inner loop of CV with
five folds in each training fold of the outer loop.
The best hyperparameters and their corresponding
estimated models were selected based on the
highest average balanced accuracy (BA) over the
validation folds. This ensures that although the
number of final estimated models in the nested
CV is kouter = 5, the optimal hyperparameters are
consistent across all estimated XGBoost models.

2.2.4 Training Phase

Training with delta features: For each task,
we calculate the delta features with a step size k
from 1 to 20. Then, we evaluate XGBoost for each
training set of the nested cross-validation (2.2.3),
which results in model’s performance on the
corresponding validation set in terms of BA at
frame level for each task and k. As the three
tasks involve the same phonetic aspect (/pataka/
(performed twice), /bagada/), we select a single
optimal k for them, by computing the average BA
across the three tasks for each value of k, and
selecting the one that yields the highest average
performance among the 20 estimated values.
XGBoost inference is performed at the frame level,
resulting in a classification score (between 0 and 1)
for PD and HC for each frame. The mean of the
classification scores across the video frames is then
used to predict the class (PD or HC). Finally, BA
and AUC are used to assess model performance at
the visit level and at the subject level.
By training each task separately, we obtain a

classification score for each task in each visit. To

Figure 2: Mean balanced accuracy on validation
sets across the three tasks

determine the classification score for a specific
visit, we average the individual task scores
obtained for that visit across the tasks. To get
a classification score per subject, we average the
visit-based classification scores for that subject.

Training with global features: Our global
features, which provide a global video
representation, are either the variance delta
features or the baseline features. For each task, the
former are calculated using the optimal k obtained
when performing the delta features experiments.
We employ each of these two global feature
representations as input to XGBoost to classify
PD vs. HC through nested cross-validation.

3 Results and Discussion
3.1 Classification Results
3.1.1 Results with Delta Features

We have assessed the model’s performance on
validation sets for the three tasks and k values
ranging from 1 to 20. We used BA score at
both the frame and visit (video) levels to evaluate
performance. Figure 4 displays the average BA
across the three tasks for each k, at the frame and
video visit level. The graphs exhibit a periodic
pattern that is inherent to tasks involving rapid
and continuous repetition of a set of syllables. The
graph period, approximately 10, corresponds to
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Visit level Subject level
BA AUC BA AUC

Delta AU (k = 7) % 67.17 73.71 70.56 78.33
Variance Delta AU (k = 7) % 70.94 77.97 75.28 82.28

Variance AU % 69.36 74.74 74.62 80.33
Three approaches combined % 73.00 78.38 77.29 83.11

Table 2: Results of proposed approaches for the
ICEBERG Video-Feb2022 dataset

the average number of frames that the expressions
(/pataka/, /bagada/) last. The optimal k for
frame-based evaluation was 7, with a BA of 61.76%
at the frame level and 67.49% at the visit level on
the validations sets. The results on the test sets
using the models with the optimal k are as follows:
62.5% BA at the frame level, 67.17% BA at the
video visit level and 70.56% at subject level.

3.1.2 Results with Global features

Using the optimal k (k=7) selected above, variance
delta features were defined by calculating the
variance across the frames of each delta feature.
The PD vs. HC classification results show that the
variance delta features have a discrimination BA of
70.94% at the visit level and 75.28% at the subject
level, which are better than the results obtained
with delta features. The classification using the
variance across the action units intensities shows a
BA of 69.36% at the visit level and 74.62% at the
subject level. These results are similar to those
obtained with the variance delta features.

3.1.3 Results of the Combined Approaches

By combining the scores provided by the three
approaches, we obtain BA of 73% at visit level
and 77.29% at subject level. Combining their
complementary information thus improves overall
performance. Table 2 shows the results at visit
and subject levels. As shown, repeating a set
of syllables (/pataka/ and /bagada/) through
vocal tasks is effective in detecting hypomimia.
This is consistent with existing literature on
voice analysis, which suggests that these vocal
tasks highlight PD related articulation issues [32].
This also suggests that hypomimia is one of
the factors contributing to articulation problems.

To evaluate the statistical significance of these
results, we conducted a McNemar’s test [33], that
compares the proportions of well-classified visits
or subjects across the proposed approaches. This
test revealed that, at the visit and subject levels,
the improvements, w.r.t delta approach, of delta
variance, variance and combination approaches are
statistically significant (p-value = 0.003, 0.009,
3e-07 at visit level) and (p-value = 0.002, 0.005,
0.001 at subject level) respectively. However, no
statistical significance was observed for the delta
variance approach compared to the variance and
combination approaches (p-value = 0.658, 0.576 at
visit level) and (p-value = 1, 1 at subject level)
respectively. Similarly, there was no significant
difference observed between the variance approach
and the combination of approaches (p-value =
0.351 at visit level and p-value = 1 at subject
level). Globally, our results compare favorably
with the state of the art ([15] [34] [35]) in terms
of BA or AUC. However, this comparison must be
approached with caution, as these works sometimes
optimize some hyperparameters on the test set.
Additionally, the datasets have varying sizes, and
patients may have been recorded at different
medication states, and are usually at later stages
of the disease.

3.2 Model Interpretablity
SHAP (SHapley Additive exPlanations) [36] is
a technique that assigns importance values to
each feature to explain model prediction for each
instance and globally. Figure 3 displays the SHAP
values with XGBoost for one of the three tasks
(/bagada/). We observe that features with lower
values of the variance of intensity derivatives (blue
dots) contribute more to PD prediction, whereas
those with higher values (red dots) contribute more
to HC prediction. This makes sense as hypomimia,
characterized by the loss of facial muscles, is
typically observed in PD patients and is likely to
result in lower values of the variance of intensity
derivatives as compared to HC. Moreover, the top
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Figure 3: Shap values of variance delta features for
the /bagada/ task

5 features with greater impact on discriminating
PD vs. HC are those in the mouth region, namely
AU12, AU25, AU17, AU20, and AU26. This
finding is consistent with the fact that the subjects
in this study were required to perform vocal tasks.

4 Conclusion
We have proposed a new method to detect
hypomimia in early stage Parkinson’s patients,
that characterizes the facial muscles’ movement
by their facial action unit intensities’ derivatives.
By combining three tasks across visits for each
subject, we obtain a BA of 77.29% and an AUC of
83.11% at subject level in PD vs. HC classification.
In the future, we will combine optical-flow-based
CNNs and AUs-based classifiers, and integrate
facial and vocal features. Our work is limited by
our insufficient dataset, although it is relatively
large w.r.t to other datasets, and by the imbalance
in the PD vs. HC and biological sex distributions.
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