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In Australia, the proportion of forest area that burns in a typical fire season is less than for other vegeta-
tion types. However, the 2019–2020 austral spring-summer was an exception, with over four times the
previous maximum area burnt in southeast Australian temperate forests. Temperate forest fires have
extensive socio-economic, human health, greenhouse gas emissions, and biodiversity impacts due to high
fire intensities. A robust model that identifies driving factors of forest fires and relates impact thresholds
to fire activity at regional scales would help land managers and fire-fighting agencies prepare for poten-
tially hazardous fire in Australia. Here, we developed a machine-learning diagnostic model to quantify
nonlinear relationships between monthly burnt area and biophysical factors in southeast Australian for-
ests for 2001–2020 on a 0.25� grid based on several biophysical parameters, notably fire weather and veg-
etation productivity. Our model explained over 80% of the variation in the burnt area. We identified that
burnt area dynamics in southeast Australian forest were primarily controlled by extreme fire weather,
which mainly linked to fluctuations in the Southern Annular Mode (SAM) and Indian Ocean Dipole
(IOD), with a relatively smaller contribution from the central Pacific El Niño Southern Oscillation
(ENSO). Our fire diagnostic model and the non-linear relationships between burnt area and environmen-
tal covariates can provide useful guidance to decision-makers who manage preparations for an upcoming
fire season, and model developers working on improved early warning systems for forest fires.
� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Australia is the driest ice-free continent and is second only to
Africa in terms of the total area burnt annually by vegetation fires
[1]. Approximately 5% (40 million ha) of the Australian continent
burns annually, and all but the most arid parts of the continent
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are susceptible to periodic fire [2]. Fire frequency is particularly
high in the tropical savannas of northern Australia, with fire return
intervals (FRIs) ranging from one to five years, associated with rel-
atively low intensity fires due to dominance of grass fuels [3]. By
contrast, the eucalypt forests and woodlands in south-eastern
(SE) and south-western Australia are characterised by much less
frequent fires (FRI > 20 years) [2]. While relatively infrequent,
southern forest fires nonetheless have potentially more profound
social, economic and ecological consequences as they have higher
fire intensities and often occur in close proximity to settlements
and infrastructure [4].

Driven by a long-term drought in eastern Australia [5], many
fires erupted in New South Wales (NSW) in early September
2019. Forest fires rapidly spread from north to south of eastern
NSW, and escaped control from September through January
despite tremendous efforts at containment from firefighters, land-
holders, and government. The MODIS Burned Area data products
(Terra and Aqua combined MCD64A1 Version 6) show that fires
burnt around 5.4 million ha of forestland from September 2019
to February 2020 over NSW and Victoria. More than one billion
mammals and birds were killed by the fires, and habitats of up
to 100 threatened plant and animal species were destroyed, push-
ing at least 20 threatened species closer to extinction [6]. Over 350
million tonnes of CO2 were released from bushfires during late
2019 [7], which is around two-thirds of Australia’s total annual
greenhouse gas emissions [8]. The total area burnt by the forest
fires in SE Australia was unprecedented in two decades of recorded
history [9,10]. Given that the occurrence of similar climate condi-
tions that preceded such fires is expected to increase under future
climate change [5], identifying and quantifying the key drivers of
forest fire activity is crucial for improved fire forecasting to inform
more effective fire management planning and mitigation.

The incidence of vegetation fires is controlled by many factors
including ignition sources (human-caused and dry lightning
strikes), fuel availability, fuel moisture, topography, land and forest
management, fire suppression, and human settlement patterns.
Weather (rainfall, temperature, relative humidity, and wind) is
an important driver of the rate of spread and hence area burnt
by individual fires [11,12]. Machine Learning (ML) confers several
advantages over traditional statistical modelling of ecological phe-
nomena, for example, ML can handle different data types (contin-
uous, categorical); it makes no assumptions about the training data
or prediction residuals; it can flexibly capture highly non-linear
relationships; and it can accommodate missing data, both in the
response and in the predictors [13]. In recent years, several studies
have used ML to quantify the links between antecedent environ-
mental conditions including hot, dry weather and burnt area in dif-
ferent regions [14]. For example, Amatulli et al. [15] used a
decision-tree based Random Forest (RF) ML model to estimate
burnt areas in the European Mediterranean countries with the
Canadian Fire Weather Index (FWI). Ma et al. [16] also trained a
RF model with the MODIS Global Fire Atlas dataset (2010–2016)
to analyse the impacts of climate, topography, vegetation, and
socioeconomic variables on forest fire occurrence in six geograph-
ical regions in China. In Australia, Dutta et al. [17] and Clarke et al.
[18] used Artificial Neural Networks (ANN) to model fire activity.
The former analysed fire frequency as a function of climate-
related variables on a weekly time step at major climate region/
state-wide resolutions; whereas, the latter predicted the probabil-
ity of large fires (classified as a binary variable based on a 50%
burnt area threshold) as a function of fire weather, biomass, fuel
moisture, and ignitions on an annual time step at a 5 km resolu-
tion. The fire data analysed in both studies were limited up to
the years 2013 and 2014, respectively.

There has been a long-term increase in extreme fire weather
and in the length of the fire season across SE Australia over the past
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few decades [19,20]. Although there is considerable inter-annual
variability in fire weather conditions in 1973–2017, there is also
a clear trend in more recent decades towards a greater number
of dangerous bushfire days characterised by severe fire weather
[20]. On the other hand, climate projections for the 21st century
show significant warming and decreased precipitation over Aus-
tralia, particularly in SE Australia [21]. These conditions will
increase the likelihood of extreme bush fires in the future. The
year-to-year changes in SE Australia’s climate are mostly associ-
ated with three major natural climate modes: the El Niño Southern
Oscillation (ENSO) in the tropical Pacific Ocean, the Indian Ocean
Dipole (IOD) in the Indian Ocean, and the Southern Annular Mode
(SAM) in the southern ocean [22]. The occurrence of prolonged
drought in forested areas is conducive for large bushfires [23]. Typ-
ically, the most severe drought and bushfire events in SE Australia
have been associated with the combination of an El Niño and a pos-
itive IOD disrupting the normal spring-summer rainfall patterns
[24–26]. The impacts of these climate modes on climate variability
in Australia have increased over the recent past and are predicted
to be enhanced in the future under anthropogenic warming
[27,28]. Numerous studies have used correlation analyses to exam-
ine statistical relationships between these climate modes and fire
weather in Australia [20,29,30]. However, as far we are aware,
few studies have assessed potential non-linear relationships
between these modes and extreme fire weather in forested regions
of southeast Australia.

Understanding non-linear relationships of fire activity versus
biophysical variables in concurrent season is a necessary precursor
to developing a fire forecasting system in Australia based on out-
puts from seasonal climate forecasts and vegetation models. An
awareness of such thresholds in biophysical parameters is useful
so that fire-fighting resources can be mobilised ahead of time to
prepare for potentially hazardous fire conditions several months
in advance. Here we aim to develop RF diagnostic models to quan-
tify important non-linear relationships between monthly burnt
area and biophysical variables at a resolution of 0.25� � 0.25�
across the SE Australia forest region (Fig. S1 online). The partial
dependence plot from the RF model can demonstrate how each
predictor variable dynamically affects burnt area, which is valuable
for identifying thresholds for environmental covariates associated
with extreme burnt area. As Australia’s climate has a strong tele-
connection with large-scale climate modes [22], we also use the
RF model to explore the non-linear relationship between the three
major climate modes (ENSO, IOD, and SAM) and fire weather
indices.
2. Materials and methods

2.1. MODIS burnt area

Fire activity is represented by burnt area (BA) in this study. BA
reflects the outcome of a fire season and integrates ignition events
as well as fire weather and fuel characteristics that determine fire
spread. Daily BA with 500-m resolution was obtained from the Col-
lection 6 Moderate Resolution Imaging Spectrometer (MODIS)
Burned Area product (MCD64A1, https://ladsweb.modaps.eos-
dis.nasa.gov/search/order/2/MCD64A1-6, accessed 20 May 2020)
[1]. We selected data from January 2001 to February 2020. In addi-
tion, we used the MODIS Land Cover Type Product (MCD12Q1,
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12Q1-6)
to derive and extract land cover data at 500 m spatial resolution.
MCD12Q1 product has been widely used in Australian fire studies
[31,32]. We chose this product since it has same resolution as the
MODIS Burned Area product. We used the MODIS Land Cover Type
Product to extract forest area from the MODIS Burned Area
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product, with focus on the southeast Australian forest region. Then
we calculated the proportion of area burnt (PAB) on a 0.25� grid for
each month in austral spring and summer over 2001–2020.

Annual, seasonal, and spatial variations in burnt area were
large, which resulted in a highly positively skewed distribution of
observed monthly PAB values over all samples. We restricted our
analyses to the main period of forest fire (October–February) to
predict non-zero PAB, that is, where at least some fire occurs. In
total, there were 3530 samples with non-zero PAB across SE Aus-
tralian forest areas in 2001–2020.

2.2. Fire weather conditions

Analyses of fire weather conditions were based on two main
systems: the Canadian Forest Fire Weather Index (FWI) System,
which provides a rating of fire danger based on fuel moisture
and fire behaviour potential [33,34] (see Section 1 in Supplemen-
tary materials), and the McArthur Forest Fire Danger Index [35].
The FWI outputs only depend on daily meteorological parameters
and do not consider differences in fuel types or topography, pro-
viding a uniform, relative rating of fire danger [33]. The FWI system
has six components, viz., three fuel moisture codes (Fine Fuel Mois-
ture Codes (FFMC), Duff Moisture Code (DMC), Drought Code (DC)),
and three fire behaviour indices (Initial Spread Index (ISI), Build Up
Index (BUI), Fire Weather Index (FWI)). Here we selected FFMC, DC,
and FWI to predict historical monthly PAB. The McArthur Forest
Fire Danger Index includes the Forest Fire Danger Index (FFDI)
and Keetch-Byram Drought Index (KBDI) [34,35].

We downloaded global gridded daily FFMC, DC, FWI, FFDI, and
KBDI historical data for the 1979–2020 period from the Copernicus
Emergency Management Service (https://cds.climate.copernicus.
eu/cdsapp#!/home) which were calculated using weather forecast
from historical simulations provided by ECMWF ERA5 reanalysis at
a resolution of 0.25� [36]. They were then clipped to the Australian
continent. We then calculated gridded monthly means
(FFMC_mean, DC_mean, FWI_mean, FFDI_mean, and KBDI_mean)
and the number of days when daily FFMC, DC, FWI, FFDI, KBDI
respectively exceeded the 90th percentile for each individual
month in September�February (FFMC90, DC90, FWI90, FFDI90,
and KBDI90).

2.3. Land use and vegetation

The catchment scale land use of Australia was downloaded from
the Australian Bureau of Agricultural and Resource Economics and
Sciences (ABARES, https://www.agriculture.gov.au/abares). There
were six primary and 33 secondary classifications according to
the Australian Land Use and Management (ALUM) Classification
version 8 (https://www.agriculture.gov.au/sites/default/files/
abares/aclump/documents/clum_data_2018/CLUM_map_Decem-
ber2018_ALUM_secondary.pdf). We calculated the percentage of
area under settlements and water (urbanization and water ratio,
UW_ratio), and the percentage of forests (forest ratio, F_ratio) at
each 0.25� grid cell.

The fractional cover of Photosynthetic Vegetation (f_PV, includ-
ing green plants), Non-Photosynthetic Vegetation (f_NPV, includ-
ing dry vegetation and dead woody material) and bare soil
(including stones and rock) are critical variables influencing bush-
fire occurrence and spread. Both PV and NPV represent opposing
yet complementary indicators of flammable fuel availability [37].
The monthly product of Vegetation Fractional Cover with 500 m
spatial resolution is derived from the MODIS Nadir BRDF-
Adjusted Reflectance product (MCD43A4) collection 6, starting
from January 2001 and actively maintained by the Earth Observa-
tion Landscapes team, CSIRO (https://eo-data.csiro.au/remotesens-
ing/v310/Australia/monthly/cover/). MODIS fractional cover data
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have been validated in Australia [38] and previous studies have
used this product to estimate soil properties [39]. Given that
f_PV and f_NPV had a strong correlation (R2 = 0.88), we selected
average f_NPV for the current month and the previous month to
represent fuel flammability in each month at 0.25� across the SE
Australian forest areas.

Long-term trend in Normalised Difference Vegetation Index
(NDVI) has been shown to reflect changes in biomass or fuel load
through time and space [40–42]. We used monthly average NDVI
with a 5 km spatial resolution from Australia Bureau of Meteorol-
ogy (http://www.bom.gov.au/jsp/awap/ndvi/index.jsp). These
NDVI data are computed from signals received from the Advanced
Very High Resolution Radiometer (AVHRR) instruments on board
the National Oceanic and Atmospheric Administration (NOAA) ser-
ies of satellites. We used MODIS Land Cover Type Product to
extract NDVI for forest vegetation and resampled NDVI data at
0.25� resolution. To capture biomass availability for each 0.25� grid
cell, we calculated the median of the 60 monthly average AVHRR-
derived NDVI values that preceded the fire season for that grid cell
over the past five years. This method follows Zhang et al. [40] who
demonstrated a close link between long-term NDVI, biomass avail-
ability and fire occurrence in SE Australian forests, and Guer-
schman et al. [43] who reported a close relationship between
60 months antecedent rainfall and vegetation cover across Aus-
tralia. We used long-term AVHRR-derived NDVI rather than
MODIS-derived NDVI because the latter only started when the
MODIS-derived BA record commenced in 2001. We conducted a
sensitivity analysis of the impact of choosing different period
lengths (1–6 years) on our results but found no discernible effect
on model performance. We were unable to explore longer periods
because there is a cluster of missing values from AVHRR satellite
across our study region in the mid-1990s (http://www.bom.gov.
au/climate/austmaps/about-ndvi-maps.shtml).

2.4. Climate drivers

There are three major climate drivers influencing Australia’s cli-
mate: the Southern Annular Mode, the El Niño–Southern Oscilla-
tion (ENSO), and the Indian Ocean Dipole (IOD). SAM describes
the north–south movement of the westerly wind belt circling
Antarctica and is an important indicator of rainfall in southern Aus-
tralia. We used an observation-based monthly SAM dataset based
on Marshall [44] (http://www.nerc-bas.ac.uk/icd/gjma/sam.html).
The IOD is the difference in sea surface temperatures in the tropical
western and eastern Indian Ocean. It has widespread impacts on
precipitation in countries surrounding the Indian Ocean, including
India, Indonesia, and Australia [26]. Monthly IOD series for the
study period were downloaded from JAMSTEC (http://www.jam-
stec.go.jp/virtualearth/general/en/index.html). There are a few
indicators used for measuring ENSO, such as Southern Oscillation
Index (SOI, a measurement of the anomalies of sea level pressure
from Darwin and Tahiti) and sea surface temperatures (SST) in
the tropical Pacific Ocean (Niño 3 and Niño 4). El Niño is a negative
phase of SOI and Australia usually experiences less rainfall in El
Niño years [45]. During year-to-year El Niño events in recent dec-
ades, major sea surface warming has occurred frequently in the
central Pacific (CP), which is different from the eastern Pacific
(EP) warming pattern [46]. We used a transformed index to repre-
sent SST in the central Pacific Ocean (CP = Niño4 – 0.5Niño3) and
eastern Pacific (EP = Niño3 – 0.5Niño4) El Niño events [47].

2.5. Random forest model and variable importance

To assess the interactions between environmental features and
burnt area, we used the Random Forest (RF) model [48], which has
been extensively adopted in ecological studies to analyse complex
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systems, including modelling spatial patterns of fire occurrence
[49]. RF is a tree-based ensemble machine learning approach that
simultaneously uses multiple decision trees to improve predictive
performance [48].

A useful characteristic of RF model is the ability to present the
relative importance of each predictor variable. The relative impor-
tance was estimated using the ‘‘%IncMSE” metric from the RF
model. The %IncMSE indicates the mean increase of mean square
error in nodes that use any particular variable in the RF model,
when values of that variable are randomly permuted [50].

We also used partial dependence analysis and plot (PDP) to
show the marginal effect each predictor variable has on the rele-
vant response variable in the RF model. The marginal effect can
be interpreted as the expected response, expressed as a function
of a given predictor. A PDP can show whether the relationship
between the response and a predictor is linear, monotonic, or more
complex. PDP and variable importance assessment were both
implemented in R (R-Core-Team, 2020), using the ‘‘randomForest”
and ‘‘pdp” package.

2.6. Synthetic Minority Over-Sampling Technique

The distribution of observed non-zero PAB values was heavily
positively skewed (Fig. S2 online) with comparatively few
instances of extreme fire events. This situation caused our RF
model to orient itself towards predicting non-extreme events,
essentially because such events were overwhelmingly most fre-
quent. However, despite trialling a log transformation of the non-
zero PAB data, which is recommended as a first-order correction
under skew situations [51], the distribution of observed non-zero
PAB values was still very skewed (Fig. S2 online), resulting in a
poor goodness-of-fit when we fitted a continuous regression RF
model to the data using the full above list of environmental fea-
tures (R2 was around 0.34, data not shown). To remedy the situa-
tion, we transformed all raw non-zero PAB values to resample
the rare cases using the Synthetic Minority Over-Sampling Tech-
nique (SMOGN) [52,53]. SMOGN has previously been applied to
other so-called ‘‘imbalanced data” regression problems like ours
where the machine learning model was being used to predict
extremely rare values of a continuous target variable. A detailed
description of the SMOGN technique especially for input parame-
ters can be found in the Python package (https://pypi.org/project/
smogn/). The correlation coefficient between PAB and each individ-
ual fire weather index was greatly improved after using SMOGN
pre-processing (Table S1 online).

2.7. Model development

We used Moran’s index [54] to test spatial autocorrelation of
PAB data over fire grid cells in each month and year. The results
show that our PAB data were not independent spatially with Mor-
an’s index greater than 0 (P < 0.01) for most months and years
(Table S2 online). To address the issue of spatial autocorrelation
of adjacent fire grids, we used a common way of dealing with this
problem by including coordinates (latitude and longitude) as
covariates in our model [55,56]. In addition, we observed a signif-
icant temporal autocorrelation of PAB with the previous month,
but no relationship with two and three months prior (Fig. S3
online). Therefore, we added PAB of the prior month as an addi-
tional predictor in models to include temporal inheritance follow-
ing Song and Wang [57].

We developed four types of RF models by using different groups
of fire weather indices, i.e., RF1 based on FWI_mean and FWI_90,
RF2 based on DC_mean, DC90, FFMC_mean, and FFMC90, RF3
based on FFDI_mean and FFDI90, and RF4 based on KBDI_mean
and KBDI_90. Other predictors including PAB_lag1, NDVI, UW_ra-
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tio, F_ratio, Latitude (Lat), and Longitude (Lon) were all the same
(Table S3 online). We developed these different RFs because (1) dif-
ferent fire weather indices and their components have different
definitions and limitations; (2) some weather indices were highly
correlated with each other as they are based on the same climate
variables; and (3) we aimed to assess whether these different com-
ponents of fire weather variability had similar capability to predict
forest burnt area. Variables with high multi-collinearity were
tested using variable inflation factor (VIF) analyses [58]. All covari-
ates used in each RF model were statistically independent of each
other (VIF < 10, Table S3 online).

There are two important parameters in the RF model: (1) num-
ber of trees in the forest (ntree) and (2) number of random vari-
ables in each tree (mtry). In the RF regression model, the value of
mtry commonly used is the number of predictor variables divided
by three [59,60], which is the default in the R package of ‘‘ran-
domForest”. Using a trial and error method to determine the value
of mtry, we found that the model accuracy did not increase appre-
ciably compared to that with default mtry. Therefore, we used
mtry of 3. We used ntree with 1000 following Ließ et al. [61] and
Wang et al. [60]. Same values of mtry and ntree were used for each
RF model to avoid any difference in model performance caused by
RF parameters.

There were 3635 SMONG data points used for RF model devel-
opment. We randomly selected 75% of the total dataset for model
development, with the remaining 25% used for validation. This cal-
ibration and validation procedure was repeated 100 times, apply-
ing a sampling with replacement method to obtain 100 random
subsamples of the data, each one with its own calibration and val-
idation dataset [39,62]. To evaluate the performance of RF for pre-
dicting PAB, we used the two performance measures, coefficient of
determination (R2) and relative mean error (RME, %) [63]:

R2 ¼
Pn

i¼1ðOi � OÞðPi � PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðOi � OÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðPi � PÞ2

s
0
BBBB@

1
CCCCA

2

; ð1Þ

RME %ð Þ ¼
Pn

i¼1ðOi � PiÞPn
i¼1Oi

� 100; ð2Þ

where Pi and Oi represent the predicted and observed PAB; P and O
represent the means for the predicted and observed PAB and n is the
number of samples.

3. Results and discussion

3.1. The trajectory of the 2019–2020 forest area burnt

Fig. S4 (online) shows the spatial distribution of the forest fires
in eastern Australia in the 2019–2020 fire season estimated by
MODIS MCD64A1 Burned Area product (accessed on 5th May
2020). As the majority of the burnt area was located in SE Australia,
we thus concentrated our study area in NSW, Victoria, and Aus-
tralian Capital Territory, one of the most fire-prone areas on earth
[25]. Fig. 1 shows the evolution of daily burnt area in NSW during
the 2019–2020 fire season from 1 September to 29 February, com-
pared with maximum daily values in the previous 20 years. There
was already a small peak of BA in early September 2019 when the
2019–2020 fire season started, much earlier than most previous
years. The first large peak of around 210, 000 ha occurred on 8
November 2019. Fires then remained very active until late Decem-
ber and daily BA was far higher than the maximum value in previ-
ous years. Exacerbated by continuous drought and record-breaking
daily heat waves, the second peak with 240,000 ha burnt occurred

https://pypi.org/project/smogn/
https://pypi.org/project/smogn/


Fig. 1. Daily burnt area (BA) in southeast Australian state of New South Wales
(NSW) from September 2019 to February 2020, compared to maximum values for
that day during the same periods of 2001–2019. The shaded grey area shows the
range of mean and maximum daily BA in September-February in 2001–2019. Daily
fire data were acquired from MCD64A1 Version 6 Burned Area data products
(https://lpdaac.usgs.gov/products/mcd64a1v006/).

Fig. 2. Scatter plot of estimated PAB against observed PAB based on 100 runs of the four
FFMC, (c) RF3 based on FFDI, and (d) RF4 based on KBDI. The detailed list of environmenta
all validation samples based on 100 runs. To maintain visual clarity, the plot is based on b
mean estimated PAB were calculated at each 0.1 interval or bin along the range [0, 1] (r
10th to 90th percentile range around the mean observed PAB and mean estimated PAB
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on 5 January 2020, four times greater than the daily maximum BA
recorded in the 2001–2018 period. Cumulative monthly BA in
2019–2020 showed a dramatic increase after October 2019
(Fig. S5 online). By the end of February 2020, the accumulated
BA in NSW was over four times that of the previous record fire
(the 2002–2003 fire season) (Fig. S5 online).
3.2. Predicting proportion of burnt area at 0.25� grid cell

We developed four types of RF models (RF1-RF4, see model
development in Methods) using different sets of environmental
covariates (Table S3 online) to estimate the PAB per month, trans-
formed by SMOGN (Fig. S2 online) during October to February at
0.25�. Fig. 2 summarises the results from 100 runs of validating RF
model performance. It is worth noting that all RF models yielded
similar results. The coefficient of determination (R2) rangedbetween
0.83 and 0.87 with a relative mean error (RME) of 3.5% to 4.2%. We
also built different MLR models to compare their performance with
RF. Note that MLR explained at most around 30% of the variance in
types of random forest (RF) models. (a) RF1 based on FWI, (b) RF2 based on DC and
l features is shown in Table S3 (online). The orange line represents the fitted line for
inning of the data along both the X and Y axes. Specifically, mean observed PAB and
efer blue rectangles). Each blue horizontal line and each blue vertical line represent
respectively for each bin.

https://lpdaac.usgs.gov/products/mcd64a1v006/
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PAB (Fig. S6 online), which was inferior to the RF models. This is
because machine learning can simulate both linear and non-linear
relationships between fire activity and driving factors [16,18,64].

Our RF model fitting displayed an overall accuracy that is com-
parable to analogous studies in other forested regions in which
monthly burnt area has been regressed as a continuous variable
on fire weather conditions [15,65]. However, while the model per-
formed well at intermediate levels of observed burnt area (Fig. 2),
it showed some overestimation of PAB where low observed PAB
coincided with high FWI (outliers in Fig. S7 online). This discrep-
ancy may be explained by the fact that not all dry forests burn
because of other important factors for fire occurrence. For example,
an ignition source was lacking, or there was insufficient fuel load
due to recent hazard reduction burns or previous wildfires. Addi-
tionally, the model tended to underestimate observed burnt area
at the high end of the scale (the regression coefficient of estimated
on observed burnt area was <1, Fig. 2). Possible causes of this
underestimation may stem from the non-linear nature of fire
Fig. 3. Partial dependence of the proportion of area burnt (PAB) on nine explanatory vari
exceeds 90th percentile of daily values, FWI90; (c) median Normalized Difference Ve
longitude; (g) urban and water ratio, UW_ratio; (h) monthly fractional cover of Non-Pho
represent the relative importance of each predictor variable based on 100 runs of the R
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spread under extreme fire weather conditions, which may not be
captured by the measures of fire danger indexes and vegetation
condition used in this study.

A range of factors not considered in the present study due to
insufficient data may explain some of the discrepancies between
observed and estimated PAB. Notably, ignition attribution data
linking remotely sensed burnt area polygons to either human igni-
tion or dry lightning strikes are lacking, as well as detailed infor-
mation on the role of barriers to fire spread such as roads, rivers,
urban districts, and farmland. Furthermore, our modelling was lim-
ited to 0.25� resolution because the fire weather data are based on
ERA5 reanalysis data, which are only available at this resolution.

3.3. Non-linear relationships between PAB and covariates

Fig. 3 shows the relative importance of explanatory variables in
determining PAB. Our model shows that PAB_lag1 (18%) was the
most important variable, followed by FWI90 (15.3%), NDVI
ables. (a) PAB of prior month, PAB_lag1; (b) the number of days per month that FWI
getation Index, NDVI; (d) the monthly mean of FWI, FWI_mean; (e) latitude; (f)
tosynthetic Vegetation, f_NPV; (i) forest cover ratio, F_ratio. The percentage values
andom Forest model. The grey shading area shows the 95% confidence interval.



Fig. 4. Scatter plot of cumulative monthly fire weather indices FWI_mean and
FWI90 in September–February in forested areas of NSW for the past 20 years
(2001–2020) against the SAM, IOD, and central Pacific El Niño (CP). The three
climate drivers are shown as cumulative values from September to February and
are all normalized. The Indian Ocean Dipole (IOD) is measured by the Dipole Mode
Index, SAM is an observation-based Southern Hemisphere Annular Mode Index, and
CP is the central Pacific El Niño transformed by Niño4 and Niño3 indices [47].
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(12.1%), FWI_mean (10.8%), Latitude (9.5%), Longitude (9.0%),
UW_ratio (8.9%), f_NPV (8.7%), and F_ratio (7.7%). Similar results
for variable importance were found in the other three types of RF
models (Figs. S8–S10 online). Although PAB_lag1 emerged as the
most important predictor of PAB, it is challenging to incorporate
it as part of future predictive modelling. It should be noted that
re-running the RF model with all environmental features except
PAB_lag1 could still explain around 76% of the variation in burnt
area (data not shown).

A non-linear relationship was detected between PAB of the
concurrent month and PAB of the prior month (Fig. 3a). When
PAB_lag1 is <0.125, PAB in the target month dramatically
increases, which indicates fire persists from the previous month
to current month. However, when PAB_lag1 is more than around
0.25, PAB in the current month drops steadily. The impact of fire
weather conditions on PAB is clear, evidenced by the strong rela-
tionship with FWI90 (Fig. 3b). The effect of previous-years NDVI
is non-linear with PAB; there is a peak of PAB when NDVI is
around 0.55 (Fig. 3c). This is because higher NDVI has a higher
proportion of green vegetation that reduces flammability. Pixels
with a longitude of between 147��150� E and latitude of more
than 36� S have a large PAB (Fig. 3e, f). As expected, a high pro-
portion of urban and water areas is associated with reduced area
burnt (Fig. 3g) as they break the fuel continuity. The PAB is
affected by monthly f_NPV (Fig. 3h) as f_NPV reflects the propor-
tion of area occupied by standing dry vegetation and litter, that
determine the fuel state [38]. Landscapes characterised by high
forest cover generally possess relatively high fuel loads (e.g., sus-
pended and fallen leaves, branches, bark, and vegetation litter)
under dry conditions that readily ignite and spread a wildfire
[2,66] (Fig. 3i).

Our results demonstrate the importance of fuel dryness driving
PAB variability. The data presented in Fig. S8 (online) show that
PAB is slightly more controlled by fluctuations in DC90 and
DC_mean than FFMC_mean and FFMC90. The former pair reflect
changes in the moisture content of slow-drying larger fuels
(branches) and the latter, more rapid changes to moisture content
in fine fuels (leaves and twigs) (Section 1 in Supplementary mate-
rials). All three fuel types (branches, leaves, and twigs) may influ-
ence fire rate of spread and hence burnt area [11,67]. While these
fire danger susceptibility indicators are not as sophisticated as
more physical-based models of fuel moisture, our results support
previous research in forested landscapes demonstrating a close
link between large fires and extended previous dry periods that
increase the connectivity of available fuels for burning [68].

Further, we considered how two-variable interaction affects
PAB under the combination of FWI90 and FWI_mean. As extreme
high temperature and low rainfall are favourable conditions for
large fires, PAB is greatest when both FWI90 and FWI_mean are
high (Fig. S11 online). In addition, using the threshold values
between PAB and important predictor variables, we could also
identify when and where extreme fires may occur in SE Australia
(Fig. S12 online).

If driven by appropriate outputs from seasonal climate fore-
casts and vegetation models, the non-linear relationships
between monthly burnt area and biophysical variables could
potentially be adapted for seasonal forecasting of Australian
bushfires. The ECWMF SEAS 5 seasonal forecast model [69] is
an ideal candidate for seasonal forecasting of climate variables
because our study used fire weather indices computed from
ECMWF ERA5 reanalysis data to build the PAB model, and
ERA5 fields have been used to improve, test, and constrain SEAS5
outputs for Australia [70]. In respect of forecasting vegetation
conditions and biomass, the AussieGRASS model [71] would be
a good option as it is used for seasonal prediction of vegetation
productivity in Australia [72].
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3.4. Dominant climate mode for fire weather conditions

In SE Australia, three large-scale atmospheric circulation pat-
terns, namely ENSO, SAM, and IOD, are key drivers of seasonal
and inter-annual climate patterns [22,73]. Identifying quantitative
relationships between fire weather conditions and these climate
modes (individually and in combination) can provide useful infor-
mation to guide effective fire planning and resource management
on seasonal timescales and beyond [20]. A positive IOD is typically
associated with persistent dry and hot conditions in SE Australia
[26], and the 2019–2020 season witnessed one of the strongest
positive IOD phases in recent history (Fig. S13b online). By con-
trast, SAM reached a record low in the 2019–2020 season, the low-
est since 2001 (Fig. S13a online). The importance of low SAM
values in driving fire activity is highlighted by a recent study show-
ing that in Australia, hot and dry extremes are induced by weaken-
ing and warming of the Southern Hemisphere stratospheric polar
vortex associated with a negative SAM during the austral spring
[74]. The stratospheric vortex was anomalously weak in the middle
spring and early summer of 2019 over the South Pole (65��90�S)
(Fig. S14 online). A sudden warming event in the stratosphere
(10 hPa) that occurred above Antarctica in September–October
(Fig. S14 online) is also likely to have contributed to low rainfall
with extreme hot conditions in SE Australia [74]. The El Niño phase
of the El Niño-Southern Oscillation (ENSO) characterised by warm
sea surface temperatures in the equatorial central-eastern Pacific is
also associated with dry conditions in eastern Australia [22]. We
used a transformed index based on the regions of Niño4 and
Niño3 with conditional constraints to depict central-Pacific El
Niño events (CP) [47]. New-record warming CP was observed in
this anomalous season (Fig. S13c online) compared to other ENSO
indices (Fig. S13d, e online).

Since the FWI and FFDI were highly correlated (Fig. S15 online)
[34], we assessed how climate modes influence fire weather condi-
tions by analysing the impacts on FWI only. The concurrent
impacts of strongly positive IOD and negative SAM with warmer
sea temperature in the central Pacific shifted the FWI towards
extremely fire-prone environmental conditions in NSW (Fig. 4).
Spatially, FWI90 in spring has a significantly positive relationship
with IOD in SE Australia and CP in NSW, whereas it is negatively
correlated with SAM (P < 0.05) in NSW (Fig. S16 online). This is
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consistent with Harris and Lucas [20] showing that the SAM pri-
marily influences fire weather in late-winter and spring. By con-
trast, for summer, only CP is significantly related to FWI90 over a
substantial area of NSW, while the impact of SAM is restricted to
southeast NSW and a small region on the eastern border of NSW
and Victoria is affected by IOD (Fig. S16 online). Similar results
can be seen for FWI_mean (Fig. S17 online).

Further analyses of FWI-driver dynamics were conducted to (1)
identify the contribution of individual large-scale climate modes
influencing FWI90; and (2) assess non-linear relationships
between climate modes and FWI90. We found that SAM (49.3%)
and IOD (47.2%) are the dominant climate drivers affecting
FWI90 in forest areas, followed by the CP El Niño index (3.5%)
(Fig. 5). Similar results were found for FWI_mean (Fig. S18 online).
This differs from previous studies reporting ENSO and IOD as the
predominant drivers of interannual fire weather conditions in SE
Australia, using correlation-based analysis [20,29,75,76]. The indi-
vidual single-variable partial dependence plot shows that when
the value of SAM is less than around �0.5r, the FWI90 increases
sharply (Fig. 5a). It is evident that high FWI90 occurs under the
positive phase of IOD, especially when IOD is more than 1r
(Fig. 5b). Meanwhile, FWI90 increases markedly when CP exceeds
around 0.5r (Fig. 5c). These fire weather threshold values identi-
fied for each climate mode provide an important evidence-based
guide for pre-empting extreme fire weather events for an upcom-
ing fire season. Further, we examined how two-variable interaction
affects the predictions of FWI90 under different combinations of
IOD, SAM, and CP. Fig. 5d–f shows the interactive effects of each
pair of drivers (IOD vs SAM, IOD vs CP, and SAM vs CP) on
FWI90. SAM mainly showed first-order effects on FWI90 irrespec-
Fig. 5. Partial dependence of FWI90 (days) on the three climate modes of SAM (a), IOD
importance of each driver as identified by the random forest model. The trend of the red li
shaded area indicates the range of each driver during November 2019–January 2020. W
variable drivers (d–f).
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tive of IOD and CP (Fig. 5d, f) as SAM had dominant effects on
FWI90 (Fig. 5a); significant interaction was only seen between CP
and IOD (Fig. 5e).

4. Conclusion

We used RF modelling to quantify important non-linear rela-
tionships between burnt area and a suite of key geographic and
bioclimatic explanatory variables in SE Australian forests (2001–
2020). Using multiple explanatory variables with different fire
weather indices, the RF models performed well in estimating
monthly burnt area with an overall accuracy of 83%�87%. We
found that large burnt areas were associated with elevated values
of fire weather indices (e.g., FWI_mean and FWI90) and regions
with high forest cover and low water/urban cover. RF model can
improve our understanding of the response of burnt area to each
predictor variable based on threshold values.

The RF model simulating FWI as a function of climate modes
identified non-linear relationships and thresholds in extreme fire
weather with respect to changes in major climate modes.
Australia’s climate is projected to become hotter and drier under
global warming, with extreme fire seasons such as the 2019–
2020 season likely to become more frequent in future. Further-
more, much of the projected change in southeast Australia’s cli-
mate is forecast to occur through an increased frequency of the
phases of the three major climate modes leading to drought events,
viz., El Niño, positive IOD, and negative SAM.

As our RF model performs well in estimating PAB, it could be
used by fire-fighting and forest conservation agencies to compute
the likely monthly burnt area at 0.25� resolution, up to several
(b), and central Pacific El Niño (CP) (c). The percentage values denote the relative
ne describes the nature of the dependence between the response and predictors. The
e also made partial dependence plots of FWI90 for combined values of the two-
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months in advance. Specifically, when seasonal forecast climate
data and forecasts of vegetation condition and biomass are avail-
able for the upcoming fire season, these agencies could use those
forecast data as inputs to our RF model to estimate burnt area
for any given target month based on the forecast values of environ-
mental variables during the concurrent month. In summary, an
early fire warning system would assist efforts to advance proactive
fire management in Australian forests including the deployment of
fire-fighting resources well ahead of potentially hazardous fire
conditions.
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