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Abstract

With the democratization of EEG devices, the possibility of on-the-fly EEG analysis
has grown, although some of the major locks are the prices of this equipment and the
reliability of signal classification. In this study, we propose to use cost-effective materials
to develop reliable hardware and to train machine learning algorithm to prove that it
is possible to classify EEG signals on open environments. It was decided early in the
process to classify EEG signals corresponding to actions as it can be used to help people
with medical difficulties better interact with their environment. In addition, long-term
monitoring of the subject’s actions through their EEG signals could be useful to keep
an accurate record of their movements.

Keywords— biosensors, signal processing, EEG, wearable headset, dry EEG, BCI, movements, machine
learning

1 Introduction indirect measurement of the corresponding electric
field. By placing electrodes on a subject’s scalp,
This work aims to discuss the feasibility of on-the- these signals can be recorded. Usually wet elec-
fly human motion prediction, to improve users’ au- trodes are used but to reduce stress on the subject
tonomy and environment control, using dry elec- We have decided to use dry electrodes, although
troencephalography on a wearable headset. Elec- these dry electrodes provide poorer signal quality
troencephalography (EEG) is a method to record from many subjects|5].
bioelectrical activity in the brain[l] that can be EEG has long been reserved for medical fields as
linked to different actions or behaviors depending @ diagnostic tool[6], but the development of elec-
on the characteristics of the signal as well as the tronics and science in general has made EEG more
area of the brain generating the signal[2, 3] and the accessible, and the development of devices acqui-
frequencies within the signal or its waveform[4]. sition to be more versatile. Several EEG helmets
These signals are generated by the simultaneous are available for purchase, but since prices are a
activation of neurons and can be captured by an drawback for some research projects, we have de-
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cided to work with cost-effective equipment[7]. In
the context of actual and active Human movement
prediction research[8, 9], the aim of this study is to
prove that non-invasive methods can be used to de-
tect precise articulation activation. By being able
to classify on the fly EEG signals responsible for
specific movements, we could improve brain com-
puter interfaces[10] performances and enable direct
control of specific actuators through EEG[11].

2 Hardware

EEG studies are usually primarily performed in
clinical or at least highly controlled environments.
In order to be able to record data on a less con-
strained environment, it has been decided to devel-
opp a custom wearable EEG headset based on the
openBCI[12] project while using dry electrodes in
order to simplify experimental protocol and there-
fore be able to obtain a sufficient amount of data
relatively quickly. The headset is composed of 16
dry electrodes placed as shown in Figure 1.

Figure 1: Homemade portable EEG headset with
dry electrodes seen from back and front.

The acquisition frequency is 125 Hz, just above
the Nyquist condition for useful EEG signals wich
is from 1Hz to 60Hz in our case. The helmet
is adjustable to fit all head shapes and is com-
pletely wireless so the subject can move freely while
wearing it while following standard 10-20 electrode
placement [13] as presented in Figure 2. A1 and A2
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are in contact with earlobes and serves as ground-
ings because of their good vascularization and poor
innervation.
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Figure 2: 10-20 electrodes placement, colored
points are actual electrodes, gray points are place-
holders used to distribute headset weight.

As mentioned before, we have already developed
methods to detect eye blinks using EEG signals
[14], the ground truth of which was obtained by
the use of a camera [15, 16] , and automatic detec-
tion by image processing. For this work, we reused
the same method using image computation to de-
tect eye blinks. To record the images, we use a
simple webcam which provides 30 images in 720p
definition per second. We wanted to include the
detection of eye blinks to prove that it is possible
to detect different types of human actions through
their EEG signals while building on already proven
results. The second piece of hardware that has
been developed is a homemade glove that covers
the hand and elbow which is able to measure the
mechanical movements of these joints. This glove
consists of 3 main parts, the hand part where we
measure fingers flexion, the elbow part from which
is measured the elbow flexion, and the supply part
that we fixed on the forearm so that it does not
hamper subject movements. As can be observed
in Figure 3 marker (1) indicates location of the
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hand part, marker (2) the elbow part and finally
marker (3) the power and transmission part.

Figure 3: Mechanical movement measurement de-
vice.

For each joint measured, we used flexible resis-
tors that we attached to cotton fabric so that the
component was not in direct contact with the skin.
We used 100% cotton fabric to avoid allergic reac-
tions. The fabric is adjustable to fit all body types
and provide more accurate results, unlike loose fab-
ric that could create wrinkles that can reduce mea-
surement accuracy. When the subject moves, for
instance its elbow or its fingers, the value of the
flexible resistance will vary, the higher the value,
the higher the angle formed by the articulation,
as illustrated in Figure 4 where the subject fully
closes its fist then open it.

Figure 4: Exemple of resistance variation during a
movement, here closing then opening of the hand.

Flexion measurement is based on a simple con-
cept of resistance measure and mapping. The more
the articulation is flexed, the more the resistance
will go up. Then by measuring the angle formed by
the articulation, we can perform a correspondence
between the angle and the resistance value.

3 Database

As this paper deals with machine learning, the
database part is one of the most important. For
this work, we have developed our own database for
which an experimental protocol has been defined.
We decided to work on our own data because at the
time we started this research, we could not find any
pre-existing database corresponding to our needs.
The experimental protocol is as follows:

-The subject is placed so that its face is within the
camera range.

-The subject is asked to choose form a variety of
demanding task including but not limited to, read-
ing and summarazing texts, playing video or board
games, watching video and summarizing its con-
tent, writing an essay on specific questions, exer-
cising...

-The subject is asked to perform this task as long
as he feels comfortable and willing to do so.

-At the end of the session the subject is debriefed.
This experimental protocol is developed and tested
to allow the subject to pass through a wide vari-
ety of cognitive states and to ”forget” about the
ongoing experiment[17, 18, 19, 20] and to reduce
cognitive bias [21, 22, 23]. This should allow us to
retrieve a wide variety of signals and among them
those that should approximate "real life signals”.
Some subjects underwent this protocol for as long
as two hours, those extreme cases were treated
with caution but showed little to no differences in
retrieved signals from shorter experiments. This
experimental protocol was applied 56 times on 30
different subjects, mostly between 18 and 25 years
old. Around 1/3 of the participants declared them-
selves as females, the others as males. Later we ob-
served that some subjects were very static during
those experiments leading to a non equalized repar-
tition of events observed. We took this disparity
into account for the following data processing.
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4 Processing

With the database generated we decided to work
on six different events, for each event we extract
and pre-process the EEG signal[24] corresponding
to its time stamp and then flag it with the detected
event. The events are presented belows alongside
with signal examples that are chosen from specific
channels to provide visual cue for the reader to
better understand the kind of events classified.

- Event0: "something else” because there is no
time when there is no brain activity, so an action
is occurring but not one that we are able to record.
Those events are randomly picked when no other
event are detected. An illustration of such cases is
shown in Figure 5.

Exemple of the "something else” class [uV]

Figure 5: Exemple of signals corresponding to no
specific measured action.

- Eventl: ”blink”; the ground truth of these
events is determined when eyelid closure goes un-
der then over an automatically calculated trigger.
An exemple of this event in presented in Figure 6.
We used eye blinks detection because we already
worked on them with other methods[14, 25] and it
should provide great comparison points.

A @ e @

AF3 channel signal during an eye blink [uV]

\ /
\ -/
/
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AF4 channel signal during an eye blink [uV]
N

Figure 6: Eyeblink illustration, with illustration
signal from AF3 and AF4.
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- Event2: ”arm flexion”; an arm flexion event is
detected when the subject flexes its elbow by more
than 10% of its maximal movement amplitude on
a short time range, such as presented in Figure 7.

X.. P
CP1 channel signal during arm flexion [uV]

2

L

Resistive sensor value during arm flexion [Q]

SN

’/\/'/
/

Figure 7: Arm flexion illustration, with signal il-
lustration from CP1, along with sensor variation.

- Event3: ”"arm extension”; those events are the
opposite of arm flexion ones. It is detected when
the subject extends its arm by more than 10% of
its maximum movement range. An illustration of
this event is presented in Figure 8.

W-’ X
CP1 channel signal during arm extension [uV]

\ A N\
S
\\/ //

Resistive sensor value during arm extension [Q]

Figure 8: Arm extension illustration, with signal
illustration from CP1, along with sensor variation.

- Event4: "fingers flexion”; it corresponds to all
fingers closing by more than 10% of their maximal
movement range (see Figure 9 for illustration).
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CP1 channel signal during hand closure [uV]

Figure 9: Hand movement illustration.

- Event5: "fingers extension”; it corresponds to
all fingers opening, following the same reasoning
(see Figure 10 for illustration).

CRE

CP1 channel signal during hand extension [uV]

Figure 10: Hand movement illustration.

The groundtruth for flexions and extensions is
provided by the glove we introduced earlier. At
some point we observed that subjects would fre-
quently perform multiple actions at the same time
such as moving their arm and fingers. We decided
to reduce the number of data and only keep the
four first kinds. Reducing the number of events
leads to improve class differentiation and thus clas-
sification results, while we continue and try to im-
prove hand movement classification. As a side
note, hand movement signals were difficult to in-
terpret even from human expertise.

5 Machine learning

Once all the events are detected, timestamped and
that the EEG signals corresponding to those time
stamps are extracted we can ”feed” them to ma-
chine learning algorithms. The database is split-
ted in three to cross validate the results. We used
the deep learning architecture presented in Figure

p.5

12 where each step represent a layer. The archi-
tecture is an adaptation of the model presented
in paper [26] that is specialized in classifying time
series[27]. We splitted the database, two third for
the train/test process and one for the validation, no
training data should be present on the validation
set. The set was composed of around 1.5k class
0 events, 1k class 1, 0.3k for class 2 and 0.3k for
class 3. After training the model the proposed al-
gorithm reached an average score of 87% accuracy
on validation set. The confusion matrix presented
in Figure 11 shows very good results.

True label

200

Predicted label

Figure 11: Confusion matrix for EEG signals clas-
sification.

Class Precision | Recall | F1-Score
Event0 | 0.87 0.94 0.90
Eventl | 0.99 0.96 0.97
Event2 | 0.90 0.70 0.79
Event3 | 0.76 0.78 0.77
Average | 0.88 0.85 | 0.86

Table 1: Classification results.

The results can be summarized in Table 1, with
which in association with the confusion matrix we
can deduce that the classification process is effec-
tive to differentiate arm flexion from arm extension
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and eye blinks, most of the classifications errors are
between class 0 and others. Adding hand move-
ments would reduce classification performances to
an average of 60%, with virtually random classifi-
cation between class 0 and hand movements, but
little misclassification between classes 1,2,3 and 4,5
meaning that those signals are different but our
detection method is not reliable enough between
class 0 and 4,5. We can propose some explanations
about those classifications errors, the first and most
obvious one would be that in some cases the signals
were quite similar, another explanation would be
that some event were not appropriately detected
by our ground truth hardware.

iput_1 | input: 1520,1) | [Q¥one, 1520.1
one, 1520, one, 1520,
TnputLayer | output: o gt )l
(None, 1520, 1) | (None, 1520, 128)
ConviD | output:
(None, 1520, 128) | (None, 1520, 128)
leaky_re_In | input
(None, 1520, 128) | (None, 1520, 128)
convld_1 | input:
(None, 1520, 128) | (None, 1520, 128)
ConviD | output
batch_normalization_1 | input i i
(None, 1520, 128) | (None, 1520, 128)
. 1520, 128 L1520, 128
LeakyReLU | output (one ) | (ove )
convld_2 | input:
ComiD pr—s (None, 1520, 128) | (None, 1520, 128)
batch_normalization_2 .
BatciNormalization (None, 1520, 128) | (None, 1520, 128)
leaky_re Iu_2 | input
TelReLT o (None, 1520, 128) | (None, 1520, 128)
eakyRe outpul
dense | iput i
5 s (None, 1520, 128) | (None, 1520, 128)
ense | output
leaky re Iu_3 | input
TeiyRers | oupet (None, 1520, 128) | (None, 1520, 128)
eakyRe outpul
elobal_average_poolingld o
one, 1520, 128) | (None, 128)
GlobalAveragePoolingD | output: o

dense 1 | input
(None, 128)
Dense | output:

Figure 12: Machine learning model.

(None, 4)
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6 Results and discussion

In this project, all data are transmitted via Blue-
tooth Low Energy (BLE) to a computing termi-
nal near the headset, we tested different comput-
ing terminals such as laptop or smartphone, the
acquired EEG signal is transmitted in real time,
given that the classification algorithm works with
90 samples from each channels and that the ac-
quisition rate is 125Hz, it means that the decision
process needs at least 0.75s to gather enough in-
formation. When we tested the classification pro-
cess on our hardware (using CPU), it lasted be-
tween 0.12s and 0.26s on average, hence we can
assume a total decision time under a second from
the very begining of the event, or around 0.5s from
the peak/middle of the event. This computation
time could be optimized.

One of the main issue we faced was the simul-
taneity of some events, for instance moving the arm
and closing the hand. Such overlapping of event
triggered errors on the classification process. A
possibility we did not have time and resources to
try would be to create "double events”. We are
also quite aware that by using more performant
hardware would improve our results but we decided
to work with cost effective methods to prove that
it is possible to obtain results with cost effective
hardware. The proposed method can be improved,
especially for hand action detection.

7 Conclusion

This method allows an average of 86% good classi-
fication under a second from the start of the event
using only EEG signal form portable EEG headset.
Machine learning algorithms are efficient to clas-
sify time series but when it comes to EEG signals
one of the main difficulty is the quality of the sig-
nal. Dry electroencephalography provides signals
of lesser quality but greatly improves repeatabil-
ity of experiments. With reliable ground truth the
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correspondence between EEG signals and actions
can be made using machine learning algorithm. Al-
though the classified movement were quite simple
this method shows great potential for more com-
plex actions. This method could be used to predict
or accompany human movement in BCI applica-
tions. The proposed method shows that it is pos-
sible to use on the fly EEG analysis to classify cer-
tain actions, which could be used to accompany hu-
man autonomy through controlling actuators such
as mechanical orthosis, or autonomy monitoring by
measuring the difference between ”command sig-
nals” and actions.
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