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Abstract – Electroencephalography (EEG) has been exploited since 

a long time for Alzheimer’s disease (AD) diagnosis. Several studies in 

the literature investigated functional connectivity to distinguish 

between AD patients and Healthy controls. In this work, we 

investigate the impact of analyzing EEG signals with different epoch 

durations on classification performance, when discriminating AD 

patients from Subjective Cognitive Impairment (SCI) subjects, using 

Phase-Lag Index (PLI) to quantify functional connectivity. We find 

that the PLI measurement is more reliable to distinguish between SCI 

and AD epochs, when it is estimated on large epochs. Then, going 

towards the classification of AD and SCI patients, we average the 

classifier output scores of epochs, for each epoch duration. Results 

show that fusing the output scores of epochs allows achieving better 

classification performance, compared to the obtained results on 

separate epochs. The best classification performance of AD and SCI 

patients is obtained with epochs of 4 seconds (AUC=0.825, 

Accuracy=82%). Finally, we propose a new framework based on the 

fusion of classification results at different epoch durations. 

Experiments show that this proposal leads to an improvement of 

classification performance, reaching an AUC of 0.93 and an 

Accuracy value of 90%, with a good balance between Specificity and 

Sensitivity.  

 

Keywords: Electroencephalography; Alzheimer’s disease; epoch 

duration; score fusion; classifier probabilistic scores. 

 

I. INTRODUCTION 

    Alzheimer’s disease (AD) is a chronic, neurodegenerative 
disease caused by changes in the nerve cells of the brain. The 
causes of the disease are not totally identified; however, some 
medical studies have linked AD to the accumulation of amyloid 
plaques and neurofibrillary tangles in the brain, which disrupts 
the brain dynamics and leads to the death of neurons [1]. Other 
studies have identified other potential causes, which involve 
immune [2], inflammatory [3], and infectious phenomena [4]. 

    The disease at its early stage generally affects memory, 
language and reasoning functions [5]. AD is clearly distinct from 

ageing and its incidence increases sharply after age 65 [6]. AD 
accounts for about 70% of dementia cases in the world. It is 
estimated that AD affected 25 million people worldwide in 2010, 
and this number is rising sharply particularly in Western 
countries due to the unprecedented level of aging [5,6], thus 
imposing a highly health care costs. 

    The disease progresses over several years to decades. It 
consists of a pre-symptomatic stage, during which some 
characteristic changes of AD are already taking place in the 
brain, but the subjects have no symptom of AD and appear 
normal and unaffected. Then, subjects may go through a 
preclinical stage during which they may experience cognitive 
impairment, with very subtle cognitive changes that are not 
detectable with current memory and cognitive tests. This is the 
stage of Subjective Cognitive Impairment (SCI) [7]. There is a 
growing interest in detecting SCI subjects, because at this stage 
the developed therapeutics may have the greatest chance of 
success. Then, patients progress to a more advanced stage where 
memory and cognitive deficits start to be noticeable by close 
family and friends, but without making the patient dependent. 
This is the stage of Mild Cognitive Impairment (MCI). The 
patients then progress to the Mild AD stage, on which they 
exhibit more marked cognitive deficits, such as memory and 
learning impairments. These deficits become more severe in the 
moderate and the final stage of the disease. Such progression of 
the disease differs among patients, but it is inexorable and leads 
to a complete loss of autonomy [5]. 

    The diagnosis of AD is based on a battery of clinical tests, 
including neurological tests and medical recordings. 
Neuroimaging techniques, like Magnetic Resonance Imaging 
(MRI), are also used to investigate the brain damage. Usual 
medical imaging tools are expensive, not portable, and require 
complex facilities and protocols. Moreover, they are unsuitable 
to follow-up the ongoing brain dynamics. 

    Electroencephalography (EEG), on the other hand, is an 
inexpensive and non-invasive technique that can be performed in 
clinical or outpatient setting. It offers the possibility to study the 
functional brain dynamics thanks to its high temporal resolution. 
Many studies have exploited resting-state EEG to distinguish AD 
patients from healthy controls (HC) by investigating functional 
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connectivity, since AD is considered as a disconnection 
syndrome [8]. Different measures have been proposed to 
quantify functional connectivity [9,10], among them Phase-Lag 
Index [10-12], Phase Coherence [9], Mean Square Coherence 
[13], and Mutual Information [10,14]. To distinguish between 
HC and AD patients, functional connectivity values are 
computed between pairs of EEG signals; the common paradigm 
in the literature is to average the obtained connectivity values per 
EEG electrode, or to gather electrodes into regions and to average 
the connectivity values calculated between pairs of EEG signals 
per region [9,15]. The obtained average connectivity values are 
used as discriminative features for AD detection.  

    Our present work exploits Phase-Lag Index (PLI), as a 
measure of functional connectivity, to distinguish between SCI 
and AD patients (a classification problem). We have chosen to 
aggregate the electrodes into regions and compute one PLI value 
per region, in order to reduce the computational complexity and 
to deduce a comprehensive trend on brain activity. 

    The complete EEG signal recorded with each electrode of one 
person is split into small segments called “epochs” for further 
analysis. In the literature, there is a great variability in the 
duration of the studied EEG signals, ranging from 0.3s to 70s per 
epoch [8]. Also, there is a high variability in the number of 
epochs used for EEG analysis, ranging from 1 to 500 [8]. There 
is often no clear explanation about the chosen epoch duration or 
the number of epochs. To our knowledge, no study has 
investigated the impact of varying the epoch duration on the 
classification performance with functional connectivity.  

     By the way, in this work, we aim at filling this gap. First, by 
studying the impact of analyzing EEG signals with different 
epoch durations on classification performance, when 
discriminating AD patients from SCI subjects, using PLI to 
quantify functional connectivity. Then, by proposing a new 
framework for EEG analysis based on the fusion of classification 
results at different epoch durations. We will show that this 
proposal leads to a significant improvement of performance. 

 

II. MATERIAL AND METHODS 

A.   Description of the database  

    In this work, we analyze resting-state EEG data of 22 SCI 
patients and 28 AD patients, recorded in real-life conditions at 
Charles-Foix Hospital (Ivry-Sur-Seine, France). Subjects who 
complained of memory impairment were referred to the 
outpatient memory clinic of the hospital to undergo a battery of 
clinical and neuropsychological tests for brain disorders.  

    The diagnosis was performed on the basis of the clinical 
assessment, brain imaging, psychometric findings, interviews 
and neuropsychological tests, in agreement with the standard 
diagnostic criteria: DSM-IV, NINDS, Jessen criteria for SCI 
[16]. Patients with epilepsy were excluded and EEG was not 
used to establish the diagnosis.  

    This retrospective study was approved by the institutional 
review board of the local Ethics Committee Paris 6. Table I 
shows information about demographic and clinical 
characteristics of the patients.  

 
TABLE I: Clinical characteristics of the cohort. MMSE: Mini-Mental State 

Examination; BZD: benzodiazepine. 

 

 SCI 

(n=22) 

AD 

(n=28) 

Age (mean ± SD) 68.9 ± 10.3 80.8 ± 10.5 

Female (%) 81.8% 67.8% 

MMSE (mean ± SD) 28.3 ± 1.6 18.3 ± 6.1 

BZD use (%) 4 (18.2%) 8 (28.6%) 

Antidepressant use (%) 2 (9%) 12 (42.8%) 

Neuroleptic use (%) 0 5 (17.8%) 

Hypnotic use (%) 5 (22.7%) 7 (25%) 

 

    The acquisition of EEG signals was done at rest with eyes 
closed, and by making sure that the patients were not falling 
asleep. The raw EEG data duration is at least 20 minutes per 
patient.  

    EEG signals were acquired with a frequency sampling of    
256 Hz,  using 30 electrodes positioned over the whole head 
according to the 10-20 international system: Fp1, Fp2, F7, F3, 
Fz, F4, F8, FT7, FC3, FC7, FC4, FT8, T3, C3, Cz, C4, T4, TP7, 
CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz, and O2.  

    The EEG data were pre-processed off-line and continuous 
signals of 20 seconds, free from artifacts (ocular, muscular, 
instrumental) were selected manually after a visual inspection 
by an expert. Then, the obtained EEG signals were band-pass 
filtered in the frequency range [1-30] Hz with a third-order 
Butterworth filter. 

 

B. Methodology used to analyze EEG data 

    In this work, we evaluate the classification performance 
between AD and SCI populations using Support Vector 
Machine (SVM) classifier [17], and considering as input 
features the PLI connectivity values computed between pairwise 
EEG signals of different durations. From our past experience on 
the use of EEG connectivity measures, PLI has proven to be 
efficient because of its robustness to head volume conduction, 
which is a common issue in EEG recordings [10,12,18]. 

    For each patient, we split his/her whole EEG signal of 20s 
into epochs of different durations: 10s, 5s, 4s, and 2s. Thereby, 
we evaluate the classification performance between AD and SCI 
patients considering, separately, the 20s-signal, the two epochs 
of 10s, the four epochs of 5s, the five epochs of 4s, and the ten 
epochs of 2s. 

    For each of these epoch durations, we compute the PLI 
between pairs of EEG signals, as follows:   
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                        𝑃𝐿𝐼 = |〈𝑠𝑖𝑔𝑛(∆𝜙(𝑡𝑘))〉|      (1) 

 
where |. | represents the absolute value, 〈. 〉 indicates the mean 
(over index k), “sign” denotes the signum function and ∆𝜙(𝑡𝑘) is 
the phase difference between two time series at time 𝑡𝑘.  

     PLI quantifies the non-zero lags between the two EEG 
signals. More precisely, it quantifies the asymmetry of the 
distribution of the phase differences between two EEG signals 
over many trials above or below 0 degree. PLI values range 
between 0 and 1. A zero value indicates either no coupling or 
coupling with a phase difference centered around 0 mod π (see 
Fig. 1.a). A PLI equals to 1 indicates a perfect phase locking at 
a value of ∆∅ (see Fig. 1.b). The higher is this nonzero phase 
locking, the higher is the PLI.  

 

 

 

 

 
                       (a)                                          (b) 

Figure 1. Effects of time lag matching on phase-based connectivity [19].  

 

    This measure is not very sensitive to volume conduction since 
the instantaneous variations in the two EEG signals due to noise 
give a phase difference close to zero, which results in an equal 
proportion of negative and positive signs, thus having little 
effect on the whole distribution [12,18,19]. 

      We define 8 brain regions for PLI computation: 
frontal/prefrontal (Fp1, Fp2, Fz), frontal left (F7, F3, FT7, FC3), 
frontal right (F4, F8, FC4, FT8), central (FCz, C3, CZ, C4), 
temporal left (T3,  TP7,  CP3,  T5),  temporal right (T4, CP4, 
TP8, T6), parietal (P3,  Pz,  P4), and occipital (O1, Oz, O2) 
region, as shown in Figure 2.  

 
Figure 2. Visualization of the electrodes aggregated into 8 brain regions. 

         To estimate the functional connectivity of a brain region, 
we average the PLI values computed between all pairs of EEG 
signals associated to such region. For example, for the 
frontal/prefrontal region, we take the average of the PLI values 
computed between Fp1 and Fp2, Fp1 and Fz, Fp2 and Fz. We 
also estimate the connectivity inter-regions by taking the 
average of the PLI values computed between all pairs of EEG 
signals associated to such regions. For example, for the 
connectivity between the prefrontal/frontal region and the 
occipital one, we take the mean of the PLI values computed 
between Fp1 and O1, Fp1 and Oz, Fp1 and O2, Fp2 and O1, Fp2 
and Oz, Fp2 and O2, Fz and O1, Fz and Oz, Fz and O2.  

     Therefore, for each patient and for each signal duration, we 
obtain a feature vector containing 36 average PLI values: 8 intra-
region PLI values and 28 inter-regions PLI values. 

    To discriminate between AD and SCI populations, we 
perform a 10-folds SVM classifier (RBF kernel, default 
parameters in the Python library Sklearn), and estimate the 
posterior probabilities of AD and SCI using Platt’s estimation 
method [20]. Note that each patient has all his/her EEG epochs 
in the same fold. This is carried out in order to overcome the 
issue of bias when evaluating the classification performance. 

    To reduce the dimension of the input feature vector for the 
SVM classifier, we select the most relevant features, among the 
computed 36 features, with the Forward Orthogonal Regression 
(OFR) method [21,22]. This process is conducted for each time 
configuration (i.e. epoch duration).   

     Finally, for each patient, we obtain one probabilistic score 
associated to the 20s-signal, two SVM probabilistic scores 
associated to the two 10s-epochs, five scores for the 4s-epochs, 
four scores for the 5s-epochs, and ten scores for the 2s-epochs. 

 

III. EXPERIMENTAL RESULTS 

    In this section, we present the obtained classification results 
for each EEG epoch duration. We first analyze the classification 
performance of SCI and AD epochs, independently of the 
patient, and then we analyze the classification performance of 
SCI and AD patients by averaging the output SVM scores of 
epochs for each patient. This is carried out considering 
separately, the 20s-signal, 10s-epochs, 5s-epochs, 4s-epochs 
and 2s-epochs. Hence, we analyze the performance with five 
individual systems. 

    After that, we present the classification performance of SCI 
and AD patients, when fusing the individual systems, by 
averaging the output SVM scores of different epoch durations.  

 
A. Classification of SCI and AD epochs 

    Figure 3 shows the ROC curves of the individual SVM 
classifiers obtained for different EEG epoch durations, when 
discriminating AD from SCI epochs. Each epoch is assigned to 
the label of the corresponding patient.  



 
 

 p. 4                                           Colloque JETSAN 2023 

 

 
    

Figure 3. ROC curves for AD and SCI epochs classification, with different 

epoch durations: 20s, 10s, 5s, 4s and 2s. 

 
    We report in Table 2 the classification performance, in terms 
of Area Under the Curve (AUC), best Accuracy, Specificity 
(percentage of SCI epochs well classified) and Sensitivity 
(percentage of AD epochs well classified) values.  

 

TABLE II: Classification results when discriminating AD from SCI 

epochs, with different epoch durations. 

Epoch length   AUC Accuracy (%) Sensitivity (%) Specificity (%) 
20s 0.804 82  89.3 72.7 

10s 0.734 72  83.9 56.8 

5s 0.640 64.5 89.3 33 

4s 0.699 68 81.4 53.6 

2s 0.616 61.8 63.9 59.1 

 
    We first observe that we obtain good classification 
performance of AD and SCI epochs when estimating the PLI 
overall the 20s-signal, reaching an accuracy value of 82% and 
an AUC value 0.804. The performance is degraded when 
computing the functional connectivity on shorter epochs. Such 
degradation of performance is progressive, from 20s-signal to 
5s-epochs, as indicated by the AUC (from 0.804 to 0.64), the 
Accuracy (from 82% to 64.5%), and particularly the Specificity 
(from 72.7% to 33%).   

    By considering shorter epochs of 4s and 2s, the degradation 
of performance is also observed, particularly for 2s-epochs in 
which both Specificity and Sensitivity measures are much 
degraded. However, with 4s-epochs, an AUC value of 0.699 and 
an Accuracy of 68% are obtained, which are slightly higher than 
those obtained with 5s-epochs. This result highlights the 
difficulty of predicting the information content of EEG signals 
at different epoch durations. This may be explained by the fact 
that EEG signal is non-stationary and it contains naturally an 
intrinsic noise that is difficult to characterize. 

 

B. Classification of AD and SCI patients 

    In this section, we go towards the classification of AD 
patients from SCI patients, based on the SVM scores previously 
obtained on epochs, as presented in Section III.A.  

    For each epoch duration, we estimate the score of a patient by 
averaging the probabilistic SVM scores of his/her epochs. For 
example, in case of 5s-epochs, we average the probabilistic 
scores of the four epochs of 5s to obtain an average score per 
patient.   

    Figure 4 and Table III show the obtained classification results 
on patients, based on PLI measurement at different epoch 
durations. For a comparative analysis, we also report the results 
of 20s-signal, even there is no fusion since we consider the 
whole EEG signal of 20s. Specificity indicates the percentage of 
SCI patients well classified; Sensitivity indicates the percentage 
of AD patients well classified. 

 

     

Figure 4: ROC curves for AD and SCI patient classification, with different 

epoch durations: 20s, 10s, 5s, 4s and 2s. 

 

TABLE III: Classification results when discriminating AD from SCI 

patients, with different epoch durations. 

 
Epoch length AUC  Accuracy (%)  Sensitivity (%) Specificity (%) 

20s 0.804 82 89.3 72.7 

10s 0.789 80 92.9 63.6 

5s 0.724 74 89.3 54.5 

4s 0.825 82 78.6 86.4 

2s 0.774 76 71.4 81.8 

  
     We clearly observe that fusing the SVM scores of epochs 
leads to better classification performance, compared to the 
obtained results on separate epochs (see Fig. 3 and Table II). 
Indeed, for all epoch durations (except 20s of course), the AUC 
and the Accuracy values are significantly improved, particularly 
when PLI is computed on shorter epochs: the improvement of 
the Accuracy is between 8% (from 72% to 80%) with 10s-
epochs and 14% (from 68% to 82%) with 4s-epochs. We also 
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observe a significant improvement of Specificity, particularly 
with 4s-epochs, reaching 86.4% against 53.6% on separate 
epochs. 

    Moreover, we notice that the classification performance of 
patients using the whole 20s-signal or the five epochs of 4s is 
similar in terms of the Accuracy value (82%), as reported in 
Table III. However, we notice an inverse behavior in Specificity 
and Sensitivity. Actually, the fusion of the scores of the five 4s-
epochs increases the detection of SCI patients, considered as 
healthy controls, at the price of a decrease in Sensitivity, 
comparatively to 20s-signal. Nevertheless, in case of 4s-epochs, 
there is more balance between Specificity and Sensitivity, and 
on the associated ROC curve, we note that at a Sensitivity value 
of 78.6%, Specificity varies between 77.3% and 86.4%, while 
on the ROC curve of the 20s-signal, we see that at a Sensitivity 
value of 89.3%, Specificity is between 59% and 72.7%. 

    Although the classification performance of patients is better 
when fusing the scores of different epochs, no clear trend 
emerges on the relationship between performance and epoch 
duration. Indeed, the performance decreases for the 10s-epochs, 
and even more for the 5s-epochs, then increases at 4s-epochs, 
and decreases again with 2s-epochs but is better than at 5s-
epochs. 

    Given this fact, we propose to go a step forward in our fusion 
scheme, by combining the SVM scores of epochs of different 
durations.  We present in following the obtained results. 

 

C. Fusion of the scores of different epoch durations 

    We calculate a SVM probabilistic score per patient by 
averaging the obtained scores of all the epochs of such patient 
extracted at different durations. For example, to make the fusion 
of the 20s and 10s, we average the output score associated to the 
20s-signal and the two scores associated to the two epochs of 
10s. Then, relying on the average scores computed for all 
patients, we analyze the classification performance to 
discriminate AD from SCI patients. 

   In Table IV, we report the obtained results for different fusion 
configurations. Specificity indicates the percentage of SCI 
patients well classified; Sensitivity indicates the percentage of 
AD patients well classified.  

In Figure 5, we plot only four ROC curves associated to the 20s-
signal and three fusion configurations to facilitate the 
readability.  

    We clearly observe that the fusion of the SVM scores 
obtained at epochs of different durations allows to highly 
improving the classification performance of AD and SCI 
patients, compared to individual systems that have been fused 
(i.e. considering each epoch duration separately). Indeed, in 
Section III.B, the best performance is obtained with 4s-epochs 
duration (AUC=0.825, Accuracy=82%); whereas, when fusing 
the scores of epochs of different durations, we notice that better 
performance is obtained for all fusion combinations.   

    Besides, we observe that the fusion gives better results when 
we combine the whole signal with shorter epochs in a 
progressive manner. By the way, when fusing the scores of 20s-
signal, 10s-epochs, 5s-epochs (or 4s-epochs) and 2s-epochs, we 
obtain the best classification performance with an AUC value of 
0.93, and an Accuracy of 90%. We also notice a good balance 
between Specificity (81.8%) and Sensitivity (96.4%).   

     

 
 

Figure 5: ROC curves for AD and SCI patient classification, when fusing the 

output SVM scores at different epoch durations. 

 

Table IV: Classification results when discriminating AD from SCI 

patients, based on the fusion of time durations. 

 
Epoch lengths  AUC Accuracy 

(in %) 
Sensitivity 

(in %) 
Specificity 

(in %) 
20s – 10s 0.894 84 89.3 77.3 

20s – 5s 0.878 86 85.7 86.4 

20s – 4s 0.878 86 85.7 86.4 

20s – 2s 0.846 80 92.9 63.6 

10s – 5s 0.813 82 96.4 63.6 

10s – 4s 0.872 82 85.7 77.3 

4s – 2s 0.857 82 100 59.1 

20s – 10s – 4s 0.909 88 92.9 81.8 

20s – 10s – 5s  0.904 88 100 72.7 

10s – 4s – 2s 0.904 86 100 68.2 

20s – 10s – 4s – 2s 0.938 90 96.4 81.8 

20s – 10s – 5s – 2s 0.937 90 96.4 81.8 

 
    Finally, even we obtained different results with individual 
systems based on 4s-epochs and 5s-epochs (see Section III.B), 
we see that both systems contribute in the same way when they 
are fused with other systems.  

     

IV. DISCUSSION AND CONCLUSION 

    The classification performance of SCI and AD epochs 
obtained with different EEG epoch durations show that good 
performance is obtained when estimating the PLI on the whole 
20s-signal (AUC=0.804, Accuracy=82%). The performance 
decreases progressively on shorter epochs of 10s, 5s and 2s. On 
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4s-epochs, we notice a slight improvement of performance 
comparatively to those obtained on 5s-epochs. The results show 
that the PLI measurement is more reliable to distinguish 
between SCI and AD populations, when it is estimated on large 
epochs of 20s. Actually, when we consider shorter epochs, the 
Specificity decreases but the Sensitivity still maintained, but at 
2s-epochs (the shortest epoch configuration) both Specificity 
and Sensitivity are degraded. The predictive capabilities of PLI 
diminishes with the reduction of the signal length on which it is 
estimated.  

    Then, going towards the classification of AD and SCI 
patients, we average the output SVM scores of epochs, for each 
epoch duration. Hence, we analyze the classification 
performance with five individual systems, considering 
separately 20s-signal, 10s-epochs, 5s-epochs, 4s-epochs and 2s-
epochs. Results show that fusing the output scores of epochs 
allows achieving better classification performance, compared to 
the obtained results on separate epochs. The best discrimination 
between AD and SCI patients is obtained with 4s-epochs 
(AUC=0.825, Accuracy=82%).  

    Since the score fusion shows an improvement of 
performance, we propose to go a step forward in our fusion 
scheme, by averaging for each patient the SVM scores of all the 
epochs extracted at different durations. This proposal leads to a 
significant improvement of performance, outperforming the 
case when the 20s-signal is used. Indeed, when PLI is estimated 
on the whole 20s-signal, we obtain an AUC value of 0.804 and 
an Accuracy of 82%; when combining the scores of 20s-signal 
and 10s-epochs, we obtain an AUC of 0.894 and an Accuracy of 
84%. Such performance increases progressively when 
combining more shorter epochs. Indeed, we reach the best 
performance (AUC=0.93, Accuracy=90%) when fusing the 
scores of 20s-signal, 10s-epochs, 5s-epochs (or 4s-epochs) and 
2s-epochs.  

    These preliminary results first highlight that the EEG signal 
duration has an impact on the classification performance. This 
could explain in part the difference of results in the state of the 
art. Therefore, it is important to clarify in scientific articles the 
epoching process, such as the number and length of epochs.   

    Besides, our preliminary results demonstrate the effectiveness 
of analyzing the EEG signal at different epoch durations and 
fusing the classification scores of the extracted epochs. This 
framework allows a refine characterization of the brain 
dynamics across time by computing the functional connectivity 
on short epochs, while taking into account all the available 
information in the whole EEG signal. Our proposal is novel, 
since in the literature, we observe that the EEG epoch length is 
quite consistent across studies, using 5s-epochs or 2s-epochs [8]. 

    In the near future, we will conduct further analyses to confirm 
these results. We plan to investigate the effectiveness of our 
fusion scheme to discriminate between SCI, AD and MCI 
patients, in different frequency bands (delta, theta, alpha, and 
beta) and using other functional connectivity measures.  
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