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INTRODUCTION

L'optimisation est devenue de nos jours une étape primordiale dans le processus de dimensionnement des machines électriques. Cette étape consiste à trouver le bon compromis entre l'ensemble des objectifs visés, tout en respectant les différentes contraintes qui peuvent s'imposer. Dans les applications de mobilité électrique, on cherche souvent à maximiser le rendement du moteur électrique tout en minimisant le poids et le coût. Le dimensionnement par optimisation se présente alors comme une stratégie efficace et un outil de prise de décision.

Un problème d'optimisation de machines électriques est un problème complexe. D'une part, et à cause du comportement non-linéaire des matériaux magnétiques, le modèle électromagnétique utilisé pour simuler les performances de ces machines est aussi non linéaire. Cela conduit, par exemple, à l'utilisation de la méthode des Eléments Finis (EF) surtout que cette méthode présente aussi d'autres avantages comme sa précision et sa généricité (applicable sur n'importe quel dessin). D'autre part, les variables de conception impliquées dans cette optimisation sont nombreuses. Les concepteurs ont souvent recours à des algorithmes d'optimisation stochastiques tels que des algorithmes génétiques et l'optimisation par essaims particulaires [START_REF] Ma | Multiobjective Optimization of Switched Reluctance Motors Based on Design of Experiments and Particle Swarm Optimization[END_REF][2] pour explorer l'espace de conception afin d'échapper aux optima locaux. Cependant, ces méthodes nécessitent un grand nombre de simulations EF, ce qui engendre un coût de calcul important.

Les approches classiquement utilisées pour réduire le temps d'une optimisation reposent sur des modèles de substitution des sorties d'intérêt du simulateur. Dans [START_REF] Reyes | Robust design optimization taking into account manufacturing uncertainties of a permanent magnet assisted synchronous reluctance motor[END_REF], des modèles de substitution fixes ont été construits à partir d'un échantillon limité de simulations EF et utilisés dans un algorithme d'optimisation multi-objectifs convergeant rapidement vers une approximation du front de Pareto « réel ». Cependant, des différences ont été constatées entre les résultats prédits par les modèles de substitution et ceux prédits par le simulateur EF. Afin d'améliorer la précision d'une telle optimisation, les modèles de substitution doivent être mis à jour à partir de nouvelles simulations pendant le processus d'optimisation, par exemple en utilisant une approche adaptative comme l'Optimisation Bayésienne (BO) [START_REF] Zhang | An Efficient Multi-Objective Bayesian Optimization Approach for the Automated Analytical Design of Switched Reluctance Machines[END_REF] [START_REF] Lei | A Review of Design Optimization Methods for Electrical Machines[END_REF].

Dans ce travail, nous avons appliqué trois méthodologies d'optimisation au problème de dimensionnement d'une machine électrique synchro-réluctante assistée d'aimants (PMaSynRel) : une première optimisation utilisant une approche basée sur des modèles de substitution fixes (Optim1), et deux approches d'optimisation bayésienne (Optim2 et Optim3). Les résultats issus de ces optimisations sont par la suite comparés et analysés. Dans la section suivante, nous introduirons la topologie de la machine ainsi que les paramètres de conception. Ensuite, nous allons décrire les processus d'optimisation et comparer les résultats obtenus.

GEOMETRIE DE LA MACHINE ETUDIEE ET VARIABLES D'OPTIMISATION

La machine étudiée dans cet article est illustrée à la Fig. 1. Il s'agit d'une machine triphasée synchro-réluctante assistée d'aimants à 8 pôles, 48 encoches et 3 aimants permanents par pôle. Le Tableau 1 présente les variables utilisées dans les optimisations. On peut noter que ces variables sont normalisées entre 0 et 1. Pour calculer la valeur réelle d'une variable, nous appliquons la formule suivante : Pour cette optimisation il existe trois bornes fixes : Beta_L1_min = 10°, Beta_L2_min = 10° et Beta_L3_min = 10°. A préciser que les paramètres géométriques du stator ont été fixés et seul le rotor a été optimisé.

𝑋 𝑟é𝑒𝑙 = 𝑋 𝑟é𝑒𝑙-𝑚𝑖𝑛 + (𝑋 𝑟é𝑒𝑙-𝑚𝑎𝑥 -𝑋 𝑟é𝑒𝑙-𝑚𝑖𝑛 ) * 𝑋 𝑛𝑜𝑟𝑚 (1)

OPTIMISATION D'UNE MACHINE PMASYNREL

Les trois optimisations seront utilisées pour maximiser le couple moyen de la machine ainsi que son rapport de puissance qui est défini comme le rapport entre la puissance à la vitesse maximale et la puissance maximale. Ce dernier objectif vise à obtenir des machines qui présentent une faible chute de puissance entre la vitesse de base et la vitesse maximale. Une seule contrainte limitant la FEM à vitesse maximale sera utilisée. Le problème d'optimisation multiobjectifs sous contraintes à résoudre s'écrit comme suit :

min x∈D x {f 1 (x),f 2 (x)} tel que g(x) ≤0 (2) 
où f 1 et f 2 sont les opposés du couple moyen et du rapport de puissance (afin de les maximiser), et g la valeur maximale de la FEM (peak) à la vitesse maximale (8000 RPM) moins un seuil de 650 V pp . D x est l'espace des variables d'optimisation présenté dans le Tableau 1. Le Tableau 2 résume les objectifs et contraintes utilisés. Dans cette étude, la fonction de covariance utilisée pour le couple moyen ainsi que la FEM est la fonction Matérn 5/2. Pour le ratio des puissances et vu que c'est irrégulier, on a utilisé la fonction exponentielle. Le plan d'expériences initial est un Hypercube Latin optimisé avec un critère « Maximin » car il présente de bonnes propriétés de projection (sur chacun des axes d'entrée) et est optimisé pour couvrir au mieux l'espace de recherche [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF].

Méthodologies d'optimisation

Pour l'optimisation basée sur des modèles de substitution fixes (Optim1), nous avons utilisé l'algorithme génétique NSGA II [START_REF] Deb | A Fast and Elitist Multiobjective Genetic Algorithm: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[END_REF] Dans cette étude, nous avons utilisé deux critères d'enrichissement : Pour Optim2, on a utilisé q-batch Pareto Efficient Global Optimization (qParEGO) [START_REF] Daulton | Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization[END_REF]. Pour Optim3, c'était q-batch Expected Hypervolume Improvement (qEHVI) [START_REF] Daulton | Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization[END_REF]. Nous décrivons brièvement ces méthodes dans les sections suivantes. 

q-batch Pareto Efficient Global Optimization

L'algorithme Pareto Efficient Global Optimization (ParEGO) [START_REF] Knowles | Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[END_REF] et sa version à q points (qParEGO) est une généralisation directe de l'algorithme bien connu Efficient Global Optimization (EGO) [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] aux problèmes d'optimisation multi-objectifs. L'algorithme EGO vise à résoudre le problème suivant :

min x∈D x f(x) (3) 
L'algorithme EGO est illustré par la Fig. 3. La fonction à minimiser, 𝑓, en pointillés noirs n'est connue que par un nombre limité de simulations représentées par les points rouges. A partir de ces points, un processus gaussien f ̂ est construit : sur la figure, sa moyenne est représentée par la courbe bleue et un intervalle de confiance de ce métamodèle (en gris) est déduit de l'écart type du GP (±1,96√(C(x, x)). La ligne pointillée rouge représente la valeur minimale/optimale trouvée avec les simulations (points rouges). Nous définissons ensuite un point 𝑥 en bleu, candidat pour une nouvelle simulation. En ce point, nous pouvons prédire, grâce au GP f ̂, une amélioration par rapport au point minimum actuel (Predicted improvement for the candidate for a new simulation using current kriging model). Mathématiquement, cette fonction est définie comme suit : Nous ne connaissons pas la valeur réelle de l'amélioration obtenue avec 𝑥 puisque nous n'avons pas évalué f au point 𝑥 à ce stade, mais nous pouvons estimer une moyenne de l'amélioration prédite par le GP à partir de la densité de probabilité associée au GP au point 𝑥, qui est la zone verte sous la courbe gaussienne autour de 𝑥. Nous définissons donc l'amélioration espérée (EI : Expected Improvement) comme l'espérance d'améliorer la meilleure valeur simulée courante : où 𝔼 f ̂ est l'espérance par rapport à la densité de probabilité déduite du GP associée à f ̂ évaluée en x, et dℙ f ̂ est la mesure de cette densité. Cette expression peut être calculée analytiquement [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF].

I(x) = (min(𝑓(𝑥 𝑖 )) i∈1,2,…n -f ̂(x)) + ( 
EI(x) = 𝔼 f ̂[I(x)|D n ] = ∫ I(x) ∞ -∞ dℙ f ̂ (5) 
Dans notre étude, nous traitons un problème multiobjectifs. La première approche pour résoudre un problème multi-objectifs consiste à résoudre plusieurs problèmes monoobjectifs, par exemple, définis avec une nouvelle fonction objectif F(x) représentant une combinaison (généralement une somme pondérée) des fonctions objectives originales. Plus précisément, ParEGO utilise la fonction suivante :

F(x) = α(wf 1 (x) + (1 -w)f 2 (x)) + max(wf 1 (x), (1 -w)f 2 (x)) (6) 
avec 𝛼 généralement égal à 0,05 [START_REF] Knowles | Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[END_REF]. Grâce au terme nonlinéaire max(wf 1 (x), (1 -w)f 2 (x)), nous pouvons obtenir des solutions dans les zones non convexes du front Pareto de f 1 et f 2 [START_REF] Knowles | Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[END_REF]. Ces zones ne seraient pas accessibles avec une optimisation uniquement de α(wf 

3.4.

q-step Expected Hypervolume Improvement Une autre approche d'optimisation Bayésienne dédiée à l'optimisation multi-objectifs est basée sur l'amélioration espérée de l'hypervolume (EHVI : Expected HyperVolume Improvement). Par analogie avec le critère EI, un critère d'amélioration en espérance est maximisé afin de choisir le point 𝑥 pour la prochaine simulation. Pour la méthode EHVI, la "qualité" de la solution actuelle (donnée par l'ensemble de Pareto actuel défini par les points noirs sur la Fig. 4, noté Par({x i } i=1 n )) est mesurée par l'hypervolume dominé (surface en bleu sur la Fig. 4, notée HV(Par({x i } i=1 n )) ) par rapport à un point de référence f HV (point rouge sur la Fig. 4). Plus l'hypervolume dominé est grand, meilleure est la solution. L'amélioration est alors obtenue en calculant l'hypervolume "gagné" (surface en vert dans la Fig. 4) lors de l'ajout d'un nouveau point (point vert dans la Fig. 4). Nous définissons l'amélioration de l'hypervolume comme étant : Comme suggéré précédemment, le critère de remplissage EHVI peut être converti en un critère multipoint grâce à une stratégie greedy.

HVI(x) = HV (Par({x i } i=1 n ) ∪ f ̂J(x)) -HV(Par({x i } i=1 n )) (7 

Gestion des contraintes

La manière la plus connue de traiter les contraintes g(x) ≤ 0 en optimisation Bayésienne est d'utiliser l'amélioration faisable (FI : feasibility improvement) :

FI(x) = I(x)1 [g(x) ≤0] (9) 
Fig. 4. Représentation de l'EHVI pour un problème de minimisation biobjectifs. Figure adaptée de [START_REF] Palar | On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design[END_REF].

où 1 [g(x) ≤0] est la fonction indicatrice sur g(x) ≤ 0. Elle est égale à 1 si g(x) ≤ 0 et à 0 sinon. Ce faisant, le critère d'EI devient l'amélioration faisable en espérance (EFI) :

EFI(x) = 𝔼[I(x)1 [g(x) ≤0] ]= EI(x) ℙ g ̂(g(x) ≤0) (10) 
où P 𝑔 ̂(g(x) ≤0) est la probabilité de satisfaire les contraintes, obtenue à partir du GP g ̂ associé à g. Des expressions similaires peuvent être facilement obtenues avec EHVI. Les critères qParEGO et qEHVI utilisés dans ce travail sont calculés avec Botorch, un paquet codé en Python [START_REF] Balandat | BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization[END_REF]. Dans Botorch, la fonction indicatrice est remplacée par une fonction sigmoïde pour régulariser [START_REF] Daulton | Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization[END_REF].

Processus d'optimisation

Les méta-modèles fixes pour Optim1 ont été construits en utilisant un plan d'expériences LHS maximin de 450 points. Pour les 2 optimisations Optim2 et Optim3, nous avons utilisé la même approche LHS maximin mais avec 250 points. Une fois le DOE initial de 250 points obtenu, nous avons effectué 50 itérations de BO ; à chaque itération, nous avons optimisé les deux critères BO en ajoutant 4 points, ce qui a permis d'ajouter un total de 200 points pour chaque BO. D'un point de vue temps de calcul, les 3 approches font le même nombre d'appels (450) du simulateur EF ce qui permet une comparaison équitable.

RESULTATS DES OPTIMISATIONS

La Fig. 5 montre les points ajoutés x new tout au long des itérations pour les optimisations bayésiennes qParEGO et qEHVI. Le rapport de puissance de la machine c) est égal à 0,95. Pour augmenter ce rapport, un couple plus faible est à accepter ce qui montre que les deux objectifs choisis sont contradictoires.

La puissance maximale de 182,7 kW est atteinte pour la machine b). Cette machine possède aussi la quantité d'aimants la plus élevée avec 1,84 kg. 

CONCLUSIONS

Nous avons présenté dans cet article une comparaison entre une optimisation par métamodèles fixes et deux approches bayésiennes appliqués au cas du dimensionnement du rotor d'une machine synchro-réluctante assistée par aimants permanents. Pour la première approche, nous avons remarqué des différences entre les performances des solutions prédites et simulées. Les approches bayésiennes basées sur des simulations éléments finis à chaque itération évitent cet écueil.

Grâce à la mise à jour adaptative des modèles de substitution, les approches bayésiennes permettent de trouver des solutions avec de meilleures performances, tout en utilisant un nombre limité de simulations éléments finis. Ce type d'approches peut être utile lorsqu'on est face à un problème d'optimisation nécessitant un nombre important de simulations ou bien utilisant un simulateur gourmant en temps de calcul comme dans des problèmes 3D, des problèmes multiphysiques ou bien des problèmes tenant compte des incertitudes.
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Fig. 1 .

 1 Fig. 1. Géométrie de la PMaSynRel.

Tableau 2 :

 2 Objectifs et contrainte de l''optimisation Fonction Objective 1 𝑓 1 Maximiser le couple moyen Fonction Objective 1 𝑓 2 Minimiser les ondulations couple Contrainte 𝑔 FEM à vitesse maximal ≤ 650 𝑉 𝑝𝑝 3.1. Construction des méta-modèles Pour construire le métamodèle d'une fonction f, nous supposons que f est une réalisation d'un processus Gaussien entièrement défini par sa fonction moyenne, μ(x) et sa fonction de covariance C(x, x ′ ) qui mesure la corrélation entre les valeurs de la fonction f entre deux points différents x et x ′ . Si x = x ′ , C(x, x) est égale à la variance de densité de probabilité Gaussienne en x qui estime l'erreur de prédiction du métamodèle en ce point. Partant d'un plan d'expériences initial D n = {x i , f(x i )} i=1 n , le modèle de substitution f ̂|D n (noté f ̂ pour simplicité) est la moyenne μ n (x) du GP conditionné aux données observées D n , et sa variance donne une estimation des erreurs de prédiction. Plus de détails sur la construction des métamodèles du type GP pourront être trouvés dans [6].

Fig. 2 .

 2 Fig. 2. Approche d'optimisation bayésienne.

  [START_REF] Zhang | An Efficient Multi-Objective Bayesian Optimization Approach for the Automated Analytical Design of Switched Reluctance Machines[END_REF] avec (𝑥) + = max(𝑥, 0). Ainsi, si la prédiction d'un point quelconque n'améliore pas le minimum actuel (f ̂(x) ≥ min(𝑓(𝑥 𝑖 )) i∈1,2,…n ), alors son amélioration est égale à zéro.

Fig. 3 .

 3 Fig. 3. Illustration de la méthode EGO pour un problème de minimisation.Figure adaptée de [12].

  ) où nous notons f ̂J le modèle GP joint pour les 2 objectifs. Comme dans le cas de l'EI, nous ne connaissons pas la valeur réelle de l'hypervolume vert au point candidat x car nous n'avons pas calculé f 1 and f 2 à ce point. Nous pouvons néanmoins estimer l'espérance de cette amélioration de l'hypervolume grâce aux GPs f ̂1 et f ̂2 associés à f 1 et f 2 : EHVI(x) = 𝔼 f ̂J[HVI(x)]= ∫ HV

Fig. 5 . 6 :

 56 Fig. 5. Points de simulation ajoutés au fil des itérations (l'itération zéro correspond au plan d'expériences initial). Le graphique supérieur correspond à l'algorithme qEHVI et le graphique inférieur à l'algorithme qParEGO.

Fig. 6 .

 6 Fig. 6. Comparaison des résultats obtenus par les 3 méthodologies d'optimisation : avec modèles de substitution fixes : points bleus et cyans (points orange correspondent aux vérification EF des points cyans) et points non-dominées des stratégies bayésiennes qParEGO et qEHVI : points noirs et rouges respectivement.

Fig. 7 .

 7 Fig. 7. Résultats des optimisations : Optim1 (points bleus), et le DOE initial associé (points rouges).

Fig. 8 .

 8 Fig. 8. Designs des machines pour des solutions sélectionnées dans la Fig. 6 : a) Optm1, b) Optim2, et c) Optim3.

  qui a été couplé aux métamodèles créés.

	Pour Optim2 et Optim3, une approche BO a été adoptée.
	Cette approche est souvent dédiée à l'optimisation des
	fonctions boîte noire dont les évaluations sont coûteuses en
	termes de calcul. Elle s'appuie sur des GPs construits à partir
	n . Comme décrit de données simulées D n = {x i , f(x i )} i=1 précédemment, ces GPs sont notés f ̂1, f ̂2, et g ̂. Ensuite, de
	nouveaux points de simulation x new = {x new j	} j=1 q sont choisis
	en fonction d'un critère de remplissage (infill criterion) basé
	sur les modèles GP courants, plus précisément sur leurs
	moyennes et leurs variances. L'objectif de ce critère est
	double : explorer le domaine de conception pour rendre le
	modèle GP plus prédictif dans les zones inexplorées (objectif
	d'exploration) et également dans les zones présentant un
	grand potentiel par rapport aux objectifs d'optimisation
	(exploitation). Ainsi, l'optimisation de ce critère de
	remplissage fournit à chaque itération des points à simuler.
	Les nouvelles simulations Y new sont ainsi utilisées pour
	mettre à jour les modèles GP. Cette procédure est répétée
	jusqu'à ce qu'un critère d'arrêt soit satisfait. Le critère d'arrêt
	est souvent défini comme un budget maximal de simulations.
	Cette approche est schématisée à la Fig. 2.	

Tableau 3 :

 3 Résultats des optimisation : Variables de conception et quantités d'intêret.

			Machine a) Machine b) Machine c)
	Variables	Rad_PM_L1	0,86	0,89	0,89
	de conception	Rad_PM_L3 Rad_PM_L3	0,82 0,64	0,66 0,6	0,66 0,8
		Rad_Brid_L1	0,2	0,1	0,24
		Rad_Brid_L2	0,17	0,23	0,1
		Rad_Brid_L3	0,43	0,51	0,38
		Beta_L1	0,87	0,83	0,67
		Beta_L2	0,41	0,72	0,29
		Beta_L3	0,53	0,7	0,5
		PM_Len_L1	0,78	0,9	0,86
		PM_Len_L2	0,84	0,9	0,85
		PM_Len_L3	0,77	0,7	0,9
	Quantités	Couple	326,2 N.m	335,7 N.m	345,8 N.m
	d'intêret	Rapport de	0,98	0,99	0,95
		puissance			
		Puissance	180,2 kW	182,7 kW	177,4 kW
		maximale			
		FEM à 8000	624,6 Vpp	629,9 Vpp	649,6 Vpp
		rpm			
		Poids aimants	1,69 kg	1,84 kg	1,79 kg