
HAL Id: hal-04220560
https://hal.science/hal-04220560v1

Submitted on 28 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guiding Backtrack Search by Tracking Variables During
Constraint Propagation

Gilles Audemard, Christophe Lecoutre, Charles Prud’Homme

To cite this version:
Gilles Audemard, Christophe Lecoutre, Charles Prud’Homme. Guiding Backtrack Search by Tracking
Variables During Constraint Propagation. International Conference on Principles and Practice of
Constraint Programming (CP’23), 2023, Toronto ( CA ), Canada. �10.4230/LIPIcs.CP.2023.9�. �hal-
04220560�

https://hal.science/hal-04220560v1
https://hal.archives-ouvertes.fr


Guiding Backtrack Search by Tracking Variables
During Constraint Propagation
Gilles Audemard #

CRIL, Univ. Artois & CNRS, France

Christophe Lecoutre #

CRIL, Univ. Artois & CNRS, France

Charles Prud’homme #

TASC, IMT-Atlantique, LS2N-CNRS, France

Abstract
It is well-known that variable ordering heuristics play a central role in solving efficiently Constraint
Satisfaction Problem (CSP) instances. From the early 80’s, and during more than two decades,
the dynamic variable ordering heuristic selecting the variable with the smallest domain was clearly
prevailing. Then, from the mid 2000’s, some adaptive heuristics have been introduced: their principle
is to collect some useful information during the search process in order to take better informed
decisions. Among those adaptive heuristics, wdeg/dom (and its variants) remains particularly robust.
In this paper, we introduce an original heuristic based on the midway processing of failing executions
of constraint propagation: this heuristic called pick/dom tracks the variables that are directly
involved in the process of constraint propagation, when ending with a conflict. The robustness
of this new heuristic is demonstrated from a large experimentation conducted with the constraint
solver ACE. Interestingly enough, one can observe some complementary between the early, midway
and late forms of processing of conflicts.
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1 Introduction

Backtrack search remains a classical approach for solving instances of the Constraint Satis-
faction Problem (CSP), and the related Constraint Optimization Problem (COP). It is based
on depth-first exploration, which is conducted by instantiating variables in sequence and
backtracking when dead-ends occur. For efficiently exploring the search space, a filtering
process is performed at each step of the search so as to reduce the domains of the variables;
typically most of the constraints guarantee the property known as (generalized) arc consist-
ency [5, 1, 26, 14]. The order in which variables are chosen during the depth-first traversal
of the search space is decided by a variable ordering heuristic H. At each internal node of
the search tree built by the backtrack search algorithm, the next variable x is selected by
H, and a value is assigned to x according to a value ordering heuristic. Choosing the right
heuristics for solving a given constraint network is a key issue since different heuristics can
lead to drastically different search trees.

In modern constraint solvers, three main principles are considered for guiding search (i.e.,
performing depth-first exploration):

First, one should start by assigning variables that belong to the most difficult part(s)
of the problem instance. This principle is derived from the recognition that there is no
point in traversing the easy part(s) of an instance and then backtracking repeatedly when
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9:2 Guiding Backtrack Search by Tracking Variables During Constraint Propagation

it turns out that the first choices are incompatible with the remaining difficult part(s).
Here the underlying fail-first principle is [13]: “To succeed, try first where you are most
likely to fail”.
Second, value selection should be based on the succeed-first or promise principle, which
comes from the simple observation that to find a solution quickly, it is better to move at
each step to the most promising subtree, primarily by selecting a value that is most likely
to participate in a solution.
Third, when starting to build the search tree, one should pay attention to the initial
variable/value choices that are particularly important. Indeed, bad choices near the root
of the search tree may turn out to be disastrous because they lead to exploration of
very large fruitless subtrees. To make good initial choices, one strategy is to select the
first branching decisions with special care, perhaps calling sophisticated and expensive
procedures for this purpose. Another relevant strategy is to restart search several times,
ideally learning some information each time in order to refine search guidance.

The current response (in solvers) to following these principles is as follows:
Generic adaptive variable ordering heuristics that learn from conflicts during exploration
are usually employed; a classical such heuristic being wdeg/dom [3], possibly combined
with a mechanism, called last-conflict reasoning (lc) simulating a certain form of intelligent
backjumps [18].
Promising attempts to select values (or pairs variable-value) according to some elegant
mechanisms such as Belief Propagation [23] have been introduced, but, unfortunately,
we are not aware of any generic robust value ordering heuristic. One exception may be
BIVS (Bound-Impact Value Selector) [8], but controlling its computation cost remains
a difficult question. Consequently, it is rather frequent that the first (smallest) value
be the default choice. Interestingly, for optimization, it is highly recommended to use
in priority the value present in the last found solution, which is a technique known as
solution(-based phase) saving [27, 7], clearly in concordance with the promise principle
(as initially mentioned in [6, 10]).
To address the issue of heavy-tailed runtime distributions [11], the search is restarted
regularly, following a geometric progression (or the Luby sequence). Besides, by collecting
nogoods [17] along the leftmost branch of the search tree at the end of each run (i.e.,
just before restarting), we have the guarantee of never exploring again the same parts of
the search space (which is a nice feature when exhibiting all distinct solutions of a CSP
instance).

This is the context of our contribution. More specifically, we focus our interest on the
first crucial component: variable ordering heuristics. Indeed, in this paper, we introduce
an original heuristic called pick/dom that learns from conflicts by identifying the variables
that are directly involved in the process of constraint propagation (when failing). We show
how to implement it in the variable-oriented propagation scheme. The robustness of this
new heuristic is demonstrated by conducting a large experimentation with the well-known
constraint solver ACE [15].

2 Preliminaries

A Constraint Network (CN) is composed of a finite set of n variables X , and a finite set of e

constraints C. Each variable x must be assigned a value from its current domain, denoted by
dom(x). Each constraint c represents a mathematical relation over an ordered set of variables,
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called the scope of c, and denoted by scp(c). The arity of a constraint c is the size of its
scope. The degree of a variable x is the number of constraints of C involving x. A solution to
a CN P = (X , C) is the assignment of a value to each variable of X such that all constraints
of C are satisfied. A constraint network is satisfiable iff it admits at least one solution. The
Constraint Satisfaction Problem (CSP) is to determine whether a given constraint network is
satisfiable, or not. A classical approach for solving this NP-complete problem is to perform
a depth-first search with backtracking, while filtering domains after each taken decision.
This procedure builds a binary search tree T : for each internal node ν of T , a pair (x, v) is
selected where x is a variable and v is a value in dom(x). Then, two cases are considered:
the assignment x = v (positive decision) and the refutation x ̸= v (negative decision). The
future variables of a constraint c, denoted by fut(c), are the variables in scp(c) at a given
node of the search tree that have not been explicitly assigned by the search algorithm.

When an objective function (integer or real-valued function defined on a subset of
variables of X ) is added to the constraint network, we obtain an instance of the Constraint
Optimization Problem (COP). Backtrack search for COP relies on an optimization strategy
based on decreasingly updating the maximal bound (assuming minimization) whenever a
solution is found; this is a kind of ramp-down strategy (related to Branch and Bound), whose
principle is equivalent (still assuming a minimization problem) to adding a special objective
constraint obj <∞ to the constraint network (although it is initially trivially satisfied), and
to update the limit of this constraint whenever a new solution is found.

3 Variable Ordering Heuristics

We provide in this section a quick overview of popular general-purpose search heuristics. The
simple variable ordering heuristic dom [13], which selects variables in sequence of increasing
size of domain, has long been considered as the most robust backtrack search heuristic.
However, twenty years ago, adaptive heuristics were introduced: they take into account
information collected along the part of the search space (tree) already explored.

In this paper, we shall mainly focus our attention to the popular adaptive heuristics
based on constraint weighting (wdeg, wdeg/dom, cacd, chs), and failure rating (frba/dom).
We will also refer to impact, activity and counting-based heuristics, which are defined as
follows:

impact, or ibs (Impact-Based Search), selects in priority the variable with the highest
impact. The impact of a variable x gives a measure about the importance of x in reducing
the search space [25]. The size of the search space of a CN P is the product of all current
domain sizes:

size(P ) =
∏
x∈X
|dom(x)|

The impact I of a variable assignment x = a on P is computed as follows:
I(x = a) = 1− size(P ′)

size(P )
where P ′ = ϕ(P |x=a) denotes the CN obtained after assigning x to a and running the
filtering process ϕ (e.g., enforcing arc consistency). Note that if P ′ leads to a failure, then
I(x = a) = 1. It is easy to see that this heuristic can be used for value selection as well.
activity, or abs (Activity-Based Search), selects in priority the variable with the highest
activity. The activity of a variable x is roughly measured by the number of times the
domain of x is reduced during search [22]. This heuristic is motivated by the key role of
propagation in constraint programming and relies on a decaying sum to forget the oldest
statistics progressively. More formally, the activity A(x) of a variable x is updated at

CP 2023



9:4 Guiding Backtrack Search by Tracking Variables During Constraint Propagation

each (new) node of the search tree (after a decision has been taken by the solver followed
by constraint propagation) regardless of the outcome (success or failure) by the following
two rules:

A(x) = A(x) ∗ γ, where 0 ≤ γ ≤ 1 is an age decay parameter, if the domain of x has
not been affected (i.e., has not been reduced)
A(x) = A(x) + 1 otherwise

The activities are initialized by making random probing in the search space.
Counting-based search relies on computing the solution density of each variable-value
assignment for a constraint in order to build an integrated variable-selection and value-
selection heuristic [24]. Depending on the constraints, computing such information can
carry a high computational cost although some mechanisms have been proposed to
accelerate it [9].

Now, to introduce wdeg and wdeg/dom, we need to describe the way constraint propagation
is run each time a decision is taken by the backtrack search algorithm. Algorithm 1 describes
the constraint-oriented propagation scheme, which uses of a set of constraints for piloting
propagation. This simplifies the presentation here, whereas later, we will introduce the
new heuristic pick/dom in the context of the variable-oriented scheme. Initially, the set Q

contains the whole set of constraints of the constraint network. Then, each constraint c in
Q is picked in turn and a filtering process is applied from c: typically, this is for enforcing
arc-consistency (or a partial form) by calling filter(c) at Line 4. The call to this function
returns a subset of variables involved in c, denoted by X, whose domains have been modified
(i.e., such that at least one value has been removed from each of these domains). By means
of X, we can update Q so as to ensure constraint propagation is run until a fixed point is
reached. If ever the domain of one variable of X is empty, it simply means that a conflict
occurred (a dead-end has been identified) and so, a backtrack is required. This is triggered
by the returned Boolean value false, after having called the function incrementWeight
with the culprit constraint (responsible for the domain wipeout) passed as a parameter. In
the initial paper [3], the principle of constraint weighing is very simple: the weight of the
culprit constraint c is incremented by 1.

Algorithm 1 propagate((X , C): CN): Boolean.

1 Q← C
2 while Q ̸= ∅ do
3 pick and delete c from Q

4 X ← filter(c) // X are variables in scp(c) with reduced domains
5 if ∃x ∈ X | dom(x) = ∅ then
6 incrementWeight(c)
7 return false // detected inconsistency

8 foreach c′ ∈ C | c′ ̸= c ∧X ∩ scp(c′) ̸= ∅ do
9 Q← Q ∪ {c′}

10 return true

To summarize, each constraint c admits a weight, initially set to 1, which is incremented
whenever a domain wipeout occurs while filtering c. Importantly, it was observed experi-
mentally that it was more effective to consider only the future variables involved in a culprit
constraint. Technically, instead of associating a global weight c.weight with each constraint
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c, one can introduce a local weight c.weight[x] to be associated with each variable x in
scp(c). Hence, when a conflict occurs, instead of incrementing the weight c.weight of the
culprit constraint, one can decide to increment the local weight c.weight[x] of each future
variable involved in scp(c).

The heuristics wdeg and wdeg/dom are defined as follows:
wdeg selects in priority the future variable with the highest “weighted degree”. Each
variable x is given a weighted degree, which is the sum of the weights over all constraints
involving x and at least another future variable. For each future variable x, the score of
x according to wdeg is:∑

c∈C : x∈scp(c)∧|fut(c)|>1

c.weight[x]

wdeg/dom selects in priority the future variable with the highest ratio “weighted degree to
current domain size”. For each future variable x, the score of x according to wdeg/dom is:∑

c∈C : x∈scp(c)∧|fut(c)|>1 c.weight[x]
|dom(x)|

In classical forms of wdeg and wdeg/dom, counters are incremented by 1., which remains
very simplistic and does not differentiate between constraints. This is why constraint
weighting, in the so-called variant cacd [28], has been refined by exploiting as information
both the “current arity” of the culprit constraint (i.e., the number of future variables) and
the size of the current domains of the future variables. The increment values computed for
the classical and cacd variants are precisely shown in Algorithm 2.

Algorithm 2 incrementWeight(c: Constraint).

1 foreach x ∈ fut(c) do
2 if variant cacd then
3 c.weights[x]← c.weights[x] + 1

|fut(c)|×(1+|dom(x)|)
4 else
5 c.weights[x]← c.weights[x] + 1

Note that to break ties, which correspond to sets of variables that are considered as
equivalent by the heuristic, one can use a second criterion. However, for adaptive heuristics,
it is usual that the first encountered variable with the best score is selected.

Finally, we introduce two recent heuristics: the former, chs [12], exploits the history of
search failures, while the latter, frba/dom [20], computes the proportion of failing assignments
for each variable.

chs (Conflict-History Search), selects in priority variables appearing in recent failures.
All failures are registered with a timestamp. More precisely, chs maintains for each
constraint c, a score q(c) and updates it at every domain wipeout with an exponential
recency weighted average:

q(c) = (1− α)× q(c) + α× r(c)

where α = 0.4 (decreasing as time goes by) and r(c) is the reward given when a domain
wipeout occurred. The reward is higher when the constraint frequently enters in conflict:

r(c) = 1
#Conflicts− Conflict(c) + 1

CP 2023
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where #Conflicts is the total number of conflicts and Conflict(c) stores the last value
of #Conflicts when c led to a failure. The conflict history score of a variable x which
will be used in selecting the branching variable is given by:

∑
c∈C : x∈scp(c)∧|fut(c)|>1 q(c) + δ

|dom(x)|

where δ is a positive real number close to 0 that avoids random selection at the beginning
of search.
frba/dom (Failure Rate Based Search), selects in priority the variables that most often lead
to a conflict when assigning them. For this purpose, two counters are associated with each
variable x: the former, #Conflicts(x), records the number of times a failure has been
observed just by propagating an assignment involving x, and the latter, #Assigns(x),
the number of times the variable x was assigned. The failure rate of a variable x is then:

fr(x) = #Conflicts(x)
#Assigns(x)

In addition, similarly to the factor used for chs, we compute:

a(x) = 1
#Conflicts− Conflict(x) + 1

where #Conflicts is the total number of conflicts and Conflict(x) stores the last value
of #Conflicts when x being assigned led to a failure.
The failure rate score of a variable x by frba/dom is then:

fr(x) + a(x)
|dom(x)|

4 Variable Tracking in Conflicting Propagation

In this section, we introduce the principle of Variable Tracking in Conflicting Propagation
(VTCP). More specifically, we introduce a new variable ordering heuristic called pick/dom,
whose principle is to track the variables that are used to trigger filtering operations during
constraint propagation. However, it is important to note that this tracking is only used to
update counters (called “pick degrees”) associated with variables when constraint propagation
ends with a conflict. We show how to implement such variable tracking within the variable-
oriented propagation scheme.

To record information about tracked variables, we just need to associate a counter pick[x]
with each variable x of the CN. Initially, this counter (“pick degree”) is set to 0. According
to the selected mode (see below) used to update these counters, recorded values may be in
real or integer forms. The heuristic pick/dom is simply defined as follows:

pick/dom selects in priority the future variable with the highest ratio “pick degree to
current domain size”. For each future variable x, the score of x according to pick/dom is:

pick[x]
|dom(x)|

In the rest of this section, we show how pick degrees are computed.
In ACE, constraint propagation follows the variable-oriented scheme (as initially intro-

duced in [21]): the set Q contains variables. The principle is that whenever a value is removed
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from the domain of a variable x, this variable is added to Q. In a first step, by ignoring
any statement related to L and ∆x, we can rather easily recognize the variable-oriented
propagation scheme in Algorithm 3: as long as there is a variable in Q, one of them, x is
picked, and we execute the filtering algorithms (propagators) attached to all constraints
involving x, while updating Q when necessary.

Algorithm 3 propagate((X , C): CN): Boolean.

1 L = ⟨⟩
2 Q← X
3 while Q ̸= ∅ do
4 pick and delete x from Q

5 ∆x ← 0
6 for c ∈ C | x ∈ scp(c) do
7 X ← filter(c, ∆x) // ∆x is updated during call
8 if ∃y ∈ X | dom(y) = ∅ then
9 append (x, ∆x) to L

10 incrementPick(L)
11 return false // detected inconsistency

12 Q← Q ∪X

13 if ∆x > 0 then
14 append (x, ∆x) to L

15 return true

Algorithm 4 incrementPick(L: Sequence).

1 foreach i ranging from 1 to |L| do
2 (xi, ∆xi)← L[i]
3 switch VARIANT do
4 case 0 do
5 increment← 1
6 case 1 do
7 increment← ∆xi

8 case 2 do
9 increment← 100× ∆xi

Σ|L|
j=1∆xj

10 case 3 do
11 increment← n−depth

n × 100× ∆xi

Σ|L|
j=1∆xj

12 pick[xi]← pick[xi] + increment

Now, let us consider first the structure L, which is a list, initially empty, keeping track of
any variable x that plays a role (i.e., triggers some effective filtering) during propagation,
together with an information indicating the degree ∆x of this role. Notice that, since L is
a list, the same variable may occur several times. Concerning the local variable ∆x, it is
initialized to 0 in Line 5. When the loop starting at Line 6 ends, ∆x indicates how many

CP 2023



9:8 Guiding Backtrack Search by Tracking Variables During Constraint Propagation

values have been deleted from the domain of x in the different calls to Function filter at
Line 7. In practice, it is possible to handle ∆x in a non-intrusive way by introducing a global
variable whose value is incremented whenever a value is deleted (whatever the domain is). If
at Line 13, the value of ∆x is 0, it means that no filtering/reduction was performed at all
since the time x was picked. This is then a useless “pick”, which is the reason why we do
not update the structure L at Line 14. Importantly, the list L is only exploited if Algorithm
3 returns false (because a conflict is detected). Before returning false, the last picked
variable is added to L (because we have the guarantee of some filtering) and the function
incrementPick is called in order to update some picked degrees.

The way picked degrees are updated is shown in Algorithm 4. Four modes (denoted by
values ranging from 0 to 3) are possible. In mode 0, the picked degree of any occurrence
of a variable present in L is incremented by 1. In mode 1, the increment is given by ∆x,
the impact of x after having been picked. In mode 2, each time constraint propagation is
run, 100 points are shared according to the relative impacts of the variables present in L. In
mode 3, a coefficient is applied to 100, depending on the current depth of the solver. As a
first extreme case, the current depth is 0, which means that we are at the root node, and so,
100 points are spread. As a second extreme case, the current depth is n, meaning that we
are a leaf, and 0 point is shared. The rationale is that we give more importance to nodes
near the top of the search tree.

5 Experimental Results

In our experiments, we have compared general-purpose variable ordering heuristics based
on constraint weighting, failure rating and variable tracking during conflicting propagation,
with the constraint solver ACE [15]. More specifically, we have compared the four variants of
pick/dom with wdeg-cacd [28], wdeg/dom [3] and chs [12], as well as the recently introduced
frba/dom. From now on, for simplicity, pick/dom, wdeg-cacd and frba/dom will be referred
as pick (while appending the mode in subscript text), cacd and frba, respectively. Note
that ibs and abs are not retained in our experiments because they are usually outperformed
when used in ACE. Concerning the value ordering heuristic, it systematically chooses the
smallest value in domains.

We have considered two benchmarks, denoted by xcsp-csp and xcsp-cop, which are
respectively composed of all CSP and COP instances selected for the main tracks of the
XCSP3 competitions (In 2019, instances were randomly selected from existing series, and
there were no competitions held in 2020 and 2021) organized in 2017, 2018 [16] and 2022
[2] (most of them generated by the Python library PyCSP3 [19]). They correspond to two
full sets of 942 and 1, 034 instances in format XCSP3 [4], for exactly 77 and 50 problems,
respectively. A time limit of 1, 200 seconds was given per instance.

Ranking. Results will be partly analyzed from the scoring function used for the 2022 XCSP3

competition. For self-containedness, we recall it now. The number of points won by a solver
S is decided as follows:

for CSP, this is the number of times S is able to solve an instance, i.e., to decide the
satisfiability of an instance (either exhibiting a solution, or indicating that the instance is
unsatisfiable)
for COP, this is, roughly speaking, the number of times S gives the best known result,
compared to its competitors. More specifically, for each instance I:
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if I is unsatisfiable, 1 point is won by S if S indicates that the instance I is unsatisfiable,
0 otherwise,
if S provides a solution whose bound is less good than another one (found by another
competing solver), 0 point is won by S,
if S provides an optimal solution, while indicating that it is indeed the optimality, 1
point is won by S,
if S provides (a solution with) the best found bound among all competitors, this
being possibly shared by some other solver(s), while indicating no information about
optimality: 1 point is won by S if no other solver proved that this bound was optimal,
0.5 otherwise.

5.1 Global Overview of Results

We start this experimental section with a global overview of the obtained results. The scores
of tested heuristics on xcsp-csp and xcsp-cop are given in Table 1 and Table 2. First, let
us make some comments on CSP. Here, the default version of ACE is the best one (cacd).
The heuristics are relatively close, and the differences mainly come from the number of
(solved) SAT instances. On our benchmark, the heuristic frba appears to be the worst one.
Concerning the pick variants, they are quite close, even if pick3 is the one that is most
often the fastest heuristic.

Table 1 Ranking on xcsp-csp. For each heuristic, we report the number of SAT/UNSAT
instances, the total number of solved instances and the number of times a heuristic is the fastest for
solving an instance. We also report the result for the virtual best solver/heuristic (VBS).

Heuristic Solved SAT UNSAT Fastest

VBS 676 481 195 676

cacd 646 457 189 411
chs 636 449 187 390
pick3 632 441 189 442
pick0 631 442 188 439
pick1 630 441 189 427
wdeg/dom 626 442 183 377
pick2 625 437 188 434
frba 618 431 187 391

For COP, all pick variants are the most efficient heuristics: indeed, the gap with the other
heuristics is significant. The variant pick3 is the best one in terms of the number of proved
optima and the number of found best bounds. The heuristics based on constraint weighting
got quite similar results, and even if the heuristic frba appears to be also outperformed, it
is important to report that this heuristic is very good in proving optima.

In order to provide a deeper analysis of the results of our experiments, we propose, in the
next section, to focus only on the following three heuristics:

cacd as a robust representative of the heuristics based on constraint weighting. The
results of cacd, wdeg/dom and chs are quite similar on COP but cacd appears to be the
most efficient heuristic on CSP. In addition, this is the default search strategy of ACE.
frba as a recent proposed heuristic based on failure rating.

CP 2023



9:10 Guiding Backtrack Search by Tracking Variables During Constraint Propagation

Table 2 Ranking on xcsp-cop. For each heuristic, we report the number of proved optima, the
number of times the best bound has been found and the score as computed for the 2022 XCSP3

competition. We also report the results for the virtual best solver/heuristic (VBS).

Heuristic Score Optimum Best Bound

VBS 959.00 372 956

pick3 624.50 347 627
pick2 618.00 343 621
pick1 617.50 336 621
pick0 612.50 341 617
wdeg/dom 569.50 312 583
cacd 557.50 315 570
frba 557.00 341 560
chs 554.50 324 563

pick3 as the best variant of variable tracking in conflict propagation. Actually, it is the
best heuristic on COP, able to find, most often, best bounds and also to prove them. On
CSP, it is also the most efficient variant of VTCP and the fastest one.

5.2 Comparing Best Heuristics
In this section, we compare the three selected heuristics, namely, cacd, frba and pick3. We
start this comparison on the xcsp-csp benchmark with Figure 1, which shows some classical
scatter plots (permitting to compare two algorithms with rather good precision).
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(c) frba vs pick3.

Figure 1 Scatter plots for CSP instances. Each dot represents an instance: its value on the x-axis
(resp. y-axis) represents the time needed by the heuristic labelling the x-axis (resp. y-axis) to solve
it. Blue (resp. Orange) dots corresponds to SAT (resp. UNSAT) instances. The dots below the
diagonal represent then the instances where the y-axis heuristic is faster than the x-axis one.

Here, it is clear that frba is less efficient than cacd and pick3. Even if cacd is the best
heuristic on CSP (see Table 1), notably on the hardest instances, an instance-by-instance
comparison between cacd and pick3 looks less obvious, as the dots are uniformly distributed
over both parts separated by the diagonal.

As an alternative for visualizing these results, a Venn diagram is depicted in Figure 4a.
In such a diagram, each circle represents the instances solved by a heuristic. An overlapping
region represents a set of instances solved in an equivalent manner by two heuristics, or
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three in the case of the central region. For CSP, two heuristics are equivalent if they require
the same amount of time (with a tolerance of one second) to find the same result (SAT or
UNSAT). A region with no overlap emphasizes the instances that are better solved by a
single heuristic. Here, the ranking is clear: pick3 is the winner, followed by cacd and finally
frba. To summarize the results for CSP: although cacd is the most robust heuristic when
considering the number of solved instance (with a timeout set to 1, 200 seconds), pick3 is
usually the fastest heuristic.

Next, we consider the xcsp-cop benchmark. A first analysis can be made from the scatter
plots in Figure 2. Each plot is based only on the instances whose optimality has been proved
by at least one of the two compared heuristics. On the one hand, one can see in Figure 2a
and Figure 2b that frba and pick3 are better at proving optimality than cacd. On the
other hand, Figure 2c does not show any dominance between frba and pick3.
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(a) cacd vs frba.
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(b) cacd vs pick3.
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(c) frba vs pick3.

Figure 2 Scatter plots for COP instances. Each dot represents an instance: its value on the
x-axis (resp. y-axis) represents the time needed by the heuristic labelling the x-axis (resp. y-axis)
to prove its optimum. The dots below the diagonal represent then the instances where the y-axis
heuristic is faster than the x-axis one.

(a) cacd vs frba. (b) cacd vs pick3. (c) frba vs pick3.

Figure 3 Plots for COP Instances. Above each figure, the number of instances (partially) solved
by at least one of the two heuristics as well as the total number of instances is indicated. When a
heuristic is better than the other, this contributes to its area, representing the difference in resolution
time. The vol. value indicates the volume of this surface, the perc. value indicates the ratio of the
volume to the sum of the two volumes. The difference between two heuristics takes into account the
best bounds found and possibly the proof of optimality.

Figure 3 allows a complementary analysis. Each graphics shows a pairwise comparison
with two areas. When a heuristic is better than the other, the difference in solving time is

CP 2023
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computed. An heuristic a is better than a heuristic b if it proves optimality whereas b does
not, or if it finds a better bound than b, or, finally, if they find the same bound and it is
faster than b. In the two first cases, the resolution time of b is set to the time limit, namely
1, 200. Each computed time difference contributes to the area of the best heuristic. Hence, a
larger area means that the attached heuristic offers better performances than the other one.
Each area is annotated with vol. and perc. which respectively denote the volume of the area
and the ratio, in percentage, of the volume to the sum of the two volumes. Finally, strictly
equivalent instances are indicated between the 2 vertical bars. In Figure 3a, one can observe
that cacd is slightly more robust than frba. Interestingly, in Figure 3b and Figure 3c, the
competitiveness of pick3 is clearly visible: the area of pick3 is almost twice as large as that
of cacd or frba.

(a) Venn Diagram on CSP Instances. (b) Venn Diagram on COP Instances.

Figure 4 Venn diagrams for cacd, frba and pick3 on CSP and COP instances. Each circle
represents the instances solved by a heuristic. An overlapping region represents a set of instances
solved in an equivalent manner by two heuristics, or three in the case of the central region. Two
heuristics are considered as being equivalent if they found the same result in the same amount of
time. For CSP, this is the time for proving (un)satisfiability. For COP, this is for getting the best
bound or proving optimality. A region not overlapped emphasizes the instances that are better
solved by a single heuristic.

These results are confirmed by the Venn diagram in Figure 4b. The circles, and especially
the one for pick3, stand out from the centre. This Venn diagram also suggests that each
heuristic would be more suitable for certain problems. This is confirmed in Table 3. First,
frba performs particularly well on five problems, namely Cutstock, DC, ItemsetMining
OpenStacks and TravelingSalesman. Indeed, it is able to close more instances and provides
better bounds than cacd and pick3. In turn, cacd behaves better on six problems: Cyc-
licBandwith, Ramsey, StillLife and Taillard, and to a lesser extent PseudoBoolean and
QueenAttacking. As for pick3, the set of problems where it dominates is clearly larger:
Auction, BinPacking, ChessBoardColoration, CoinsGrid, EchelonStock2, FAPP, GraphColor-
ing, MultiAgentPathFinding, NurseRostering, OPD, QuadraticAssignment, RCPSP, RLFAP,
Spot, SteelMillSlab, SumColoring TAL, TravelingTournament, Triangular and Warehouse.
This is just under half of the problems. For some problems the gap is quite large, namely
BinPacking, FAPP or RCPSP.

Finally, we show in Table 4 some details for some chosen (representative and singular)
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instances of some problems. This may be helpful for testing and reproducing the results we
have obtained.

Table 3 Details per problem (COP). For each problem, the number of instances is displayed, and
for each heuristic, the couple ’number of proved optima : number of best bounds found’ is provided.
Best results are highlighted (when at least one heuristic is outperformed by the other(s)).

Problem cacd frba pick3 Problem cacd frba pick3

AirCraft (13) 4:10 5:6 4:10 NursingWork (12) 1:2 1:4 1:4
Auction (16) 2:6 2:4 2:14 OPD (17) 8:9 9:14 9:15
BACP (24) 4:24 4:24 4:24 OpenStacks (16) 12:16 14:16 12:16
BinPacking (51) 1:17 0:25 2:33 PeacableA (14) 4:9 4:9 4:8
BusScheduling (10) 1:5 1:5 1:8 PizzaVoucher (10) 4:7 6:8 5:10
CVRP (10) 0:2 0:2 0:8 PseudoB (30) 13:23 13:18 13:22
ChessBoard (17) 3:13 2:13 3:14 Quadratic (36) 6:26 6:14 6:27
ClockTriplet (10) 2:9 2:6 2:9 QueenAtt (17) 7:11 5:3 8:6
CoinsGrid (10) 2:7 2:4 3:9 Rack (4) 2:4 3:4 3:4
CrosswordDes (13) 3:5 3:3 3:5 Ramsey (17) 5:17 4:16 5:14
CutStock (17) 6:9 8:9 7:9 RCPSP (43) 31:34 34:35 35:43
CyclicBand (12) 4:9 2:3 2:6 RLFAP (50) 10:22 12:32 12:48
DC (26) 7:14 10:25 12:18 Spot (10) 2:7 2:6 2:8
EchelonStock2 (10) 0:9 0:7 0:10 SteelMill (17) 2:2 2:2 2:7
FAPP (18) 2:2 2:7 3:13 StillLife (47) 15:46 14:21 13:29
FastFood (17) 17:17 17:17 17:17 SumColoring (14) 4:8 4:7 4:10
Filters (8) 8:8 8:8 8:8 Taillard (51) 5:17 5:6 5:13
GolombRuler (47) 19:31 18:27 18:35 TAL (20) 9:16 10:15 10:18
GraphCol (28) 14:24 15:23 17:24 TemplateDes (15) 12:13 12:13 11:12
ItemsetMining (15) 3:10 7:12 6:10 TravelingTour (14) 2:7 2:2 2:10
Knapsack (31) 22:31 26:31 26:31 TravelingSale (29) 3:16 3:17 3:15
LowAuto (31) 12:21 12:23 14:19 Triangular (10) 0:3 1:5 1:9
Mario (10) 10:10 10:10 10:10 VRP (17) 0:9 0:1 0:9
MultiAgentP (20) 4:6 8:9 9:17 WarOrPeace (10) 6:10 6:10 6:10
NurseRost (41) 2:16 3:3 3:29 WareHouse (9) 0:3 0:0 0:9

6 Discussion

The three different ways of exploiting conflicts for guiding search, as experimented in the
last section, show somewhat complementary behaviors. This can be explained by the fact
that information is extracted at different moments: at the very beginning of the process
conducting to a conflict (i.e., at the time of the decision), during constraint propagation,
or at the time the last propagator (filtering algorithm) is solicited. One can then refer to
such approaches as early (E), midway (M) and late (L) operational treatment of conflicts.
This is illustrated in Figure 5 where a new decision x = a is taken, when solving a CN P , in
the continuity of two previously taken decisions v = a and w ̸= b. In our scenario, running
constraint propagation ϕ on (the current state of) P after having assigned the value a to
x, i.e., ϕ(P |x = a), reveals a new conflicting (dead-end) situation (denoted by ⊥). The
early processing of this new conflict consists in considering the variable x involved in the
decision as the main culprit. This is the principle behind the heuristic frba/dom. The
midway processing of this conflict consists in considering all variables having played a role
(i.e., having been picked) during propagation as having contributed to the failure. This is
the principle underlying the heuristic pick/dom. The late processing of this conflict consists
in considering the last constraint (here, c2

w) provoking a domain-wipeout (i.e., removing the
last value of a domain) as the object of interest. This is the principle of constraint weighting,
as in wdeg/dom.

One related heuristic, which is based on some form of midway strategy, is abs. However,
VTCP and abs collect information according to different strategies. abs updates activity
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Figure 5 Illustration of pivotal moments for collecting information about conflicts: this correspond
to early (E), midway (M) and late (L) processing of conflicts.

counters at each node, whereas VTCP only considers conflicting nodes. abs systematically
updates the activity counters of each variable, whereas VTCP only increments the counters
of variables at the origin of calls to effective propagators.

Importantly, we do believe that the experimental results we have obtained are significant,
for several reasons. First, they can be reproduced in an open-source constraint solver (with
a repository available in GitHub). Second, the number of models and instances used for
our experiments is very large, involving more than 120 problems of various nature. Third,
ACE is a competitive constraint solver and (although not officially engaged) showed good
performances in (notably the COP main track) of the 2022 XCSP3 competition.

Finally, it is true that the importance of variable tracking in conflicting propagation looks
more limited when solving CSP instances. Actually, solving a (satisfiable) CSP instance
involves one single phase: finding a solution, whereas solving a COP instance involves two
subsequent phases: moving down towards an optimal solution, and proving optimality. We
believe that pick/dom is rather efficient for the first phase of COP solving (for the second
phase, a learning mechanism like in Picat [29] or OR-Tools becomes central).

7 Conclusion

In this paper, we have introduced a new way of exploiting conflicts during backtrack search so
as to build a well-informed variable ordering heuristic. In contrast to existing heuristics relying
on the early and late treatments of failing nodes, this new heuristic, pick/dom, consists
in a midway processing of conflicts by tracking variables during constraint propagation.
The robustness of pick/dom has been demonstrated from a vast experimentation campaign
involving more than 120 problems (and around 2, 000 instances). Interestingly, the three
different forms of exploiting conflicts, based on different moments when to collect information,
entail somewhat complementary behaviours of the solver. This opens some perspectives for
building a still more robust solver by combining these conflict-based heuristics in a clever
way. Identifying features or properties of problem instances (e.g., tree width, backbone size,
presence of strong communities, structure of variable arrays, etc.) which are favorable for a
certain form of conflict processing is an issue which would deserve to be addressed.
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Table 4 Details per instance. For each selected instance and each heuristic, the best bound,
the time (in seconds) to find it (TB) and the time (in seconds) to prove the optimum (TO, if
proven) are provided. Best results are highlighted. DC-A, DC-B, DC-C and DC-D stands for
DC-midori-xor4-d1-t0-r05-v128, DC-midori-xor4-d1-t0-r08-v128, DC-skinny-xor0-d0-t0-r09-v64-z0,
and DC-midori-xor4-d1-t0-r09-v128, respectively. Some other names have been shortened for more
visibility.

cacd frba pick3

Instance Bound TB TO Bound TB TO Bound TB TO

DC-A 5 733 739 5 9 23 5 21 28
DC-B 41 59 - 8 174 - 8 316 484
DC-C 41 5 - 41 9 - 41 3 1,087
DC-D 53 753 - 9 699 - 43 179 -

Fapp-m2s-21-0500 180,499K 1,195 - 63,832K 870 881 177,187K 1,008 -
Fapp-m2s-02-0250 221,762K 1,191 - 221,520K 1,158 - 221,591K 1,197 -
Fapp-m2s-test03-0400 453,213K 1,199 - 449,289K 1,192 - 450,098K 1,200 -

QueenAttacking-09 0 94 98 1 119 - 0 439 442
QueenAttacking-11 2 245 - - - - 1 708 736
QueenAttacking-13 11 158 - - - - - - -

StillLife-11-14 81 264 - 79 652 - 81 625 -
StillLife-wastage-12 76 12 872 76 23 - 76 549 -
StillLife-wastage-37 681 1,189 - 619 1,182 - 585 398 -

Auction-cnt-d100 829K 200 - 825K 1,099 - 849K 1,197 -
Auction-sum-d100 840K 69 - 824K 77 - 854K 102 -
Auction-sum-d500 3,368K 186 - 3,264K 224 - 3,344K 89 -

CVRP-A-n32-k5 1,095 15 - 1,006 257 - 835 492 -
CVRP-A-n36-k5 1,050 77 - 1,039 1,112 - 892 74 -
CVRP-A-n34-k5 - - - 915 57 - 813 385 -

NurseRostering-01 607 1 - 607 1 11 607 1 10
NurseRostering-02 1,024 5 - 928 62 - 833 383 -
NurseRostering-19 68,621 1,200 - - - - 60,805 1,197 -

Rlfap-graph-05-opt 2,882 883 - 221 2 10 221 62 70
Rlfap-graph-06-opt 46,647 1,198 - 34,004 1,198 - 8,882 769 -
Rlfap-scen-06-opt 11,211 1,166 - 10,102 491 - 3,389 124 -

Triangular-10 20 89 - 20 4 138 20 0 142
Triangular-22 50 46 - 50 161 - 52 167 -
Triangular-38 95 10 - 97 224 - 97 337 -

SteelMillSlab-m2s-3-0 68 1,059 - - - - 43 995 -
SteelMillSlab-m2s-3-2 306 794 - - - - 171 1,177 -
SteelMillSlab-m2s-4-0 161 1,109 - - - - 94 1,186 -
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