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Abstract. In this article, we study the problem of recovering sparse spikes with over-
parametrized projected descent. We first provide a theoretical study of approximate
recovery with our chosen initialization method: Continuous Orthogonal Matching
Pursuit without Sliding. Then we study the effect of over-parametrization on the
gradient descent which highlights the benefits of the projection step. Finally, we show
the improved calculation times of our algorithm compared to state-of-the-art model-
based methods on realistic simulated microscopy data.
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1. Introduction

Off-the-grid super-resolution is the problem of recovering off-the-grid spikes from
linear measurements. It has applications in many fields. A prime example is single
molecule localization microscopy (SMLM) where positions and amplitudes of fluorescent
molecules have to be recovered from their diffraction limited measurements. The signal
of interest x0 is modeled as a sum of K Dirac measures over Rd:

x0 =
K∑
i=1

aiδti (1)

where a = (a1, . . . , aK) ∈ RK are the amplitudes and t = (t1, . . . , tK) ∈ RK×d are the
positions of the spikes. The vector y ∈ Cm of measurements is modeled as

y = Ax0 + e, (2)

where A is a linear operator that maps the space M of finite signed measures over
Rd to Cm with m the number of observations and e a noise. For example, in SMLM
with multi-angle total internal reflection fluorescence (MA-TIRF), the operator A is
the measurement of the intensity of illuminated cells on a 3D grid (2D position plus
incidence). Each measurement is the duality product ⟨x0, αl⟩ between the spikes and the
response of the system evaluated on a grid. For example, in SMLM each measurement
corresponds to the duality product between the signal and a shifted version of the
impulse response, i.e., ym = ⟨x0, h(· − tm)⟩ where h is the impulse response and tm the
position of the m-th camera pixel. In other fields, the operator A can be a finite number
of Fourier measurements, i.e. each measurement is the duality product with a sinusoid
at a given frequency, e.g. αl(t) = e−j⟨ωl,t⟩ for some frequencies ωl.

A way to recover the true signal x0 from (2) is to find the minimizer of a non-convex
least-squares problem:

x∗ ∈ argmin
x∈ΣK,ϵ

∥Ax− y∥22 (3)

where

ΣK,ϵ :=

{
K∑
i=1

aiδti : ai ∈ R, ti ∈ Rd;∀i, j ∈ {1, . . . , K}, i ̸= j, ∥ti−tj∥2 > ϵ, ti ∈ D

}
(4)

is a set modeling K spikes on a given domain D ⊂ Rd with a separation constraint
between spikes. Theoretical guarantees for the recovery of x0 have been given in [26] for
measurements operators A having a restricted isometry property (RIP). This property
is verified for a sufficiently large number of random Fourier measurements (see Section
4 for details). Another approach is to consider the convex program in the space of
measures

x∗ ∈ argmin
x∈M

∥Ax− y∥22 + λ∥x∥TV (5)
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where ∥x∥TV is the total variation for measures (i.e. the sum of absolute amplitudes for
spikes).

In [12], using Fourier measurements up to a frequency fc, sparse signals with a
minimal distance between spikes of 2/fc can be recovered exactly.

To solve (3), it has been shown [40, 38] that given an initialization sufficiently close
to the true positions, an unconstrained gradient descent in the space of parameters
converges to x∗. These results partly explain the success of greedy sliding continuous
orthogonal matching pursuit (Sliding COMP, [29] called CL-OMP there) for the recovery
of x∗. This algorithm adds a spike maximally correlated with the residual between
observations and the current estimation at each iteration and performs a descent (the
sliding step) on all parameters at each iteration. It was proposed in [7] (improving
on [39]) to perform an over-parametrized continuous OMP without sliding (OP-COMP)
followed by a projected gradient descent (PGD, projection on the separation constraint)
to avoid the costly sliding step at each iteration of Sliding COMP. This method has been
shown experimentally to be more efficient than Sliding COMP for large numbers of spikes
in a synthetic random Fourier measurement setting. However, there is no theoretical
study of the over-parametrized-COMP+ PGD method.

To solve the convex problem (5), Sliding Frank-Wolfe (SFW) [20] is the most
efficient algorithm compared to the earlier dual methods [10, 17, 33], especially in
higher dimension. It is the continuous version of the Frank-Wolfe algorithm [25]. In
[20], Sliding Franke-Wolfe is guaranteed to converge to x∗ if there exists a non-generate
dual certificate, which is a difficult condition to check in practice (beyond the low-pass
filtering case). The approach of SFW is to construct x∗ by adding iteratively spikes and
to perform a sliding step on the regularized function at each iteration. In practice the
SFW is very close to Sliding COMP in terms of performed operations and recovery (see
Section 5).

In this article, we focus on the non-convex formulation with COMP, and we propose
a theoretical study of continuous orthogonal matching pursuit without sliding to provide
insights in the success of the over-parametrized COMP + PGD method. We provide a
fast implementation of this method and we evaluate its performance on synthetic SMLM
data.

1.1. Contributions

In the following, we focus on the noiseless setting. We give the following contributions.

• In Section 2, we detail the implementation of Over-parametrized Continuous
Orthogonal Matching Pursuit (without sliding) and Projected Gradient Descent.
Compared to [7] where it was first introduced, we provide an accelerated
implementation where we replace all gradient descents by their accelerated version
using FISTA (Fast Iterative Shrinkage Thresholding Algorithm) with restart.
• In Section 3, we give theoretical guarantees for Continuous Orthogonal Matching

Pursuit without sliding under a restricted isometry property (RIP) condition on
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the measurement operator A. In general, COMP without sliding does not yield
the true positions of x0. However, we show that the output of the K-th first
iterations of COMP without sliding still approximates the true positions with a
precision depending on the quality of the RIP constant. Qualitatively, this shows
that we can remove the sliding step from Sliding COMP and still be in a basin
of attractions of x0 if enough measurements are available. In practice, adding an
over-parametrization permits to go beyond the quality of approximation given by
our result at the K-th step.

• While over-parametrization permits to better localize spikes, we show experimen-
tally in Section 4, that the Hessian of the considered over-parametrized functional
becomes very ill-conditioned and even non-positive around the true solution. This
shows the necessity of a projection step to reduce the number of spikes in order to
estimate positions accurately in a computationally efficient way.

• Finally, in Section 5, we compare OP-COMP + PGD with Sliding COMP on
two problems: spike estimation for microscope calibration and single molecule
localization microscopy with data from the SMLM Challenge [35]. We show
that OP-COMP + PGD estimates positions with accuracy at least as good as
Sliding COMP with improved computation times. The computational improvement
increases when the number K of illuminated molecules increases showing that we
gain an order of magnitude with respect to K.

1.2. Related work

To solve directly the non-convex minimization problem (3), works are mainly focused
on studying the success of descent algorithms in the space of parameters (amplitude and
positions). It has been shown that, for operators having a restricted isometric property,
we can estimate the size of the basin of attraction of the global minimum [38, 40]. This
size is increasing explicitly with respect to the number of measurements through the RIP
constant for e.g. random measurement operators. The greedy Sliding COMP has been
used in the context of k-means clustering [30] or radar detection for off-the-grid targets
[18]. Exact recovery of COMP has been studied for kernels of particular shape (e.g.
exponential) [21, 22] (see Section 2). Our article focuses on approximate recovery. Still
in the non-convex context, preconditioning with respect to amplitudes and positions to
help local convergence for first-order methods has been studied in [16] when the number
of particles is known.

The idea of projected gradient descent for non-convex problems has been used
successfully in several domains such as sparse recovery (in the finite dimensional
context), low rank matrix recovery [13] or in spectral compressed sensing [9]. In
the specific case of off-the-grid sparse recovery, PGD (with a suboptimal initialization
scheme) has been proposed in [39].

For convex methods solving (5), other than Sliding Frank-Wolfe, there is a whole
body of works [10, 17, 33] based on solving the dual problem, which poses difficulties
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in high dimensions, even if we can cite recent advances using methods with adaptive
refining of a grid [23]. Concerning Sliding Frank-Wolfe, in the context of acoustic impulse
response estimation, the idea of performing a single descent over all parameters after a
greedy initialization is also used in [36].

Recently the idea of over-parametrization has emerged as a powerful tool to solve
non-convex problems. Chizat and Bach [15] showed that for an infinite number of
particles, the particle gradient descent converges to the global minimizer of a total-
variation regularized problem lifting an original non-convex problem.

Our main tool for the study of OMP is the restricted isometry property, as
introduced by Candès in compressed sensing [11]; it has many applications on inverse
problems with, for examples, low-rank matrix factorization [14] and deep-learning [31].
In particular, in the finite dimensional case, the RIP guarantees the success of sparse
recovery with OMP (e.g. [24]).

2. Sliding Continuous Orthogonal matching pursuit, Projected Gradient
Descent and over-parametrized initialization: definitions and
implementation

In this Section, we give the definition of COMP with or without sliding and of the
Projected (accelerated) Gradient Descent.

2.1. (Sliding) COMP and Over-Parametrized COMP without sliding

Sliding Continuous OMP [30] is based on the discrete OMP algorithm (that is
theoretically studied in [41]). Sliding COMP is described in Algorithm 1. We can choose
to perform the sliding step or not, and even over-parametrize (parameter K) if we desire.
We call over-parametrized COMP (OP-COMP) the simple execution of COMP without
sliding with Kop > K steps. It was observed in [7] that the complexity with respect to
K with the sliding step is O(K2) and O(K) without. From a computational point of
view, this shows the interest of avoiding the sliding step for large number of spikes if
possible.
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Algorithm 1 (Sliding) Continuous Orthogonal Matching Pursuit algorithm (COMP).
procedure COMP(A, y,K, is_sliding)

r(0) ← y

t(0) ← {}
for k = 1→ K do

tnew ← argmaxt⟨Aδt, r(k−1)⟩ ▷ Add new spike
t(k) ← t(k−1) ∪ {tnew}
a(k) ← argmina ∥A

∑k
i=1 aiδt(k)i

− y∥22
if is_sliding then

a(k), t(k) ← descent(a(k), t(k)) ▷ Sliding step
end if
r(k) ← y − A

∑k
i=1 a

(k)
i δ

t
(k)
i

end for
return a(K), t(K)

end procedure

In [21, 22], it is shown that COMP without sliding recovers exactly K spikes in K

steps for exponential impulse response but these results cannot be applied for low-pass
filter such as Gaussian filters which are more common in signal and image processing.
In particular the Gaussian case is close to the example of microscopy (see Section 5).
Our analysis of COMP without sliding in the next section relies on a restricted isometry
condition which includes these two examples.

2.2. Our method: OP-COMP + Projected Gradient Descent

It was observed in [39, 7] that over-parametrization (i.e. OP-COMP) permits to ensure
the approximate localization of all the spikes in the signal even without using the
sliding step (see also Section 4 and related work for a discussion on very heavy over-
parametrization). It is a way to go beyond the theoretical results from the next Section.
Unfortunately, the Hessian of the considered functional becomes ill-conditioned and non-
positive yielding very slow convergence of classical gradient descent to the true positions
as we will see in Section 4. Hence the motivation to add a projection step in the descent.

A legitimate question to ask ourselves is when to stop the over-parameterization. In
our implementation, we use a relative criterion based on the observation of the ground
truth y = Ax0 and the observation of our estimation Ax,

∥Ax− Ax0∥2
∥Ax0∥2

≤ ϵ. (6)

This criterion gives us a good estimation on when to stop the over-parameterization
as it guarantees that the over-parametrized solution reaches the same objective value
as a K-spike estimation that estimates well true positions. Indeed, under a restricted
isometry property assumption on A with constant γ with respect to a kernel norm ∥ · ∥h
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(see Definition 4), given x ∈ ΣK,ϵ, we have that ∥Ax− Ax0∥2 ≤ ϵ∥Ax0∥2 implies

√
1− γ∥x− x0∥h ≤ ϵ

√
1 + γ∥x0∥h i.e.

√
1− γ

1 + γ

∥x− x0∥h
∥x0∥h

≤ ϵ. (7)

This means that if A has a sufficiently good RIP constant (i.e.
√

(1− γ)/(1 + γ) is
close to 1), we can have a good control on the relative error of the spikes only with their
observations. In our experiments (see Section 5), we observe that a relative stopping
criterion of ϵ = 5% yields accurate estimations.

To reduce the number of spikes, we perform a heuristic projection Pϵ based on the
separation constraint at each descent step. If two spikes are too close from each other,
their positions and amplitudes are merged, i.e. the projected descent is described by

(a(n+1), t(n+1)) = Pϵ

(
descent(a(n), t(n))

)
(PGD)

where our actual fast implementation of descent(a(n), t(n)) is described in Section 2.3.
The heuristic projection Pϵ is described in Algorithm 2. An important step in our

heuristic projection Pϵ is that the merged positions are barycenters (using absolute value
of amplitudes) of previous positions. This way, we ensure that the projection step yields
a spike located in the convex hull of previous considered positions. As we suppose that
for a small enough ϵ, the positions of all merged spikes belong in the same basin of
attraction, the output of Pϵ also belongs in this basin of attraction. Note that Pϵ also
performs a thresholding of very small amplitudes. It is possible to consider theoretical
“projections” on the separation constraints, e.g. considering for some given norm onM
the problem

inf
x∈ΣK,ϵ

∥∥∥∥∥x−
K∑
i=1

aiδti

∥∥∥∥∥ . (8)

However, the choice of norm (kernel norm, Wasserstein distance) and the resolution of
this problem is not straightforward. To show the convergence of the whole method, one
would need to guarantee that the projection keeps positions in basins of attraction of
the functional, which is out of the scope of this paper.
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Algorithm 2 Projection on the separation constraint Pϵ.
procedure P(a, t, ϵ, threshold)

sort(ai, ti)i=1,...,k such that |a1| ≥ · · · ≥ |ak|
for i = 1, . . . , k do

if ai = 0 then
Skip iteration

else if ai ≤ threshold then
ai ← 0

else
Get J = {j, j ≥ i, ∥ti − tj∥2 ≤ ϵ}
ti ← 1∑

j∈J |aj |
∑

j∈J |aj|tj
ai ←

∑
j∈J aj

aj ← 0 for all j ∈ J, j ̸= i

end if
end for
return (ai, ti)i∈I with I = {i, ai ̸= 0}

end procedure

In the experiments, we will compare K step Sliding COMP with OP-COMP
followed by accelerated PGD.

2.3. Implementation of descent algorithms with FISTA with restart

We describe the specific choices we made for each part of COMP (Algorithm 1).

• Calculating argmaxt⟨Aδt, r(k−1)⟩: we perform a descent on −⟨Aδt, r(k−1)⟩ using
FISTA restart (see Algorithm 3) until convergence to an estimate tconv. For spatial
measurements on a grid with impulse response concentrated around spikes we
initialize the descent with the minimum on the grid (as is done in the experimental
part of this article). For Fourier measurements, it was observed that a random
initialization on D was efficient [7].
• Calculating argmina ∥A

∑k
i=1 aiδt(k)i

−y∥22: This can be solved using the conventional
finite dimensional least-squares method. Indeed, we have

A

k∑
i=1

aiδti = Ba (9)

where B is the matrix whose columns are defined by Bi = Aδti .
• Calculating descent(a(k), t(k)): as it is crucial to perform this step quickly given the

dimension of the objects, we use the FISTA restart algorithm (also called monotone
FISTA) [1] on the function

g(a, t) =

∥∥∥∥∥A
k∑

i=1

aiδti − y

∥∥∥∥∥
2

2

. (10)
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Indeed the inertia introduced by FISTA can cause the following problem. Instead
of decreasing towards the minimum of the basin of attraction, it can spiral around.
This is called the rebound phenomenon. This bouncing effect slows the convergence
of the system. To counter this effect, the FISTA restart method of resetting the
inertia at the lowest stage of the rebound was introduced. While some papers work
on an estimation of when to restart the inertia [2], we can simply look at when the
energy of the system increases and reset the inertia. No theoretical works on this
prove the acceleration of this method compared to FISTA, but it is very efficient
in practice and simple to implement, [4, 5, 32].

Algorithm 3 FISTA restart for a function f(z).
procedure FISTA restart(z,N, τ)

x(0) ← z

y(0) ← z

k ← 0

n← 0

repeat
k ← k + 1

n← n+ 1

x(k) ← y(k−1) − τ∇f(y(k−1))

y(k) ← x(k) + n−1
n+2

(x(k) − x(k−1))

if f(x(k)) > f(x(k−1)) then
n← 0

end if
until k ≥ N

return x(K)

end procedure

We note that for all descent algorithms used in Sliding COMP and OP-COMP +
PGD, we use the FISTA restart. In PGD, after each projection, if at least two spikes
are merged, we reset the inertia of the system. Moreover, since we want our spikes to
be in the domain D, we perform another projection which clips the spikes outside of D.

3. Theoretical study of COMP without sliding

We show in this section that with some additional hypotheses, it is not necessary to
perform the descent step in Sliding COMP to obtain a controlled approximation of the
positions of the spikes. We first proceed to introduce some facts and assumptions on
the linear operator A and on Dirac measures.
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3.1. Definitions

We first introduce the notion of kernel norm which permits to use the restricted isometry
property in off-the-grid spike estimation (see e.g. [37]),

Definition 1 (Kernel, scalar product and norm). For finite signed measures over Rd,
the Hilbert structure indexed by a kernel h (a smooth function from Rd × Rd → R) is
defined by the following scalar product between 2 measures ν1 and ν2,

⟨ν1, ν2⟩h =

∫
Rd

∫
Rd

h(t1, t2)dν1(t1)dν2(t2). (11)

We can consequently define
∥ν1∥2h = ⟨ν1, ν1⟩h. (12)

We have the relation
∥ν1 + ν2∥2h = ∥ν1∥2h + 2⟨ν1, ν2⟩h + ∥ν2∥2h. (13)

For the rest of the paper, we use the Gaussian kernel h(t, s) = e−∥t−s∥2/(2σ2) taken
from [26]. We have that h follows Assumptions 1 hereafter.

A fundamental object used in our study is the concept of dipole.

Definition 2 ((ξ-)Dipole and separation). A ξ-dipole (noted dipole for simplicity) is
a measure π1 = a1δt1 − b1δs1 where ∥t1 − s1∥2 ≤ ξ, with a1, b1 ∈ R. Two dipoles
π1 = a1δt1 − b1δs1 and π2 = a2δt2 − b2δs2 are ϵ-separated if their support are strictly
ϵ-separated (with respect to the l2-norm on Rd), i.e. if ∥t1 − t2∥2 > ϵ, ∥t1 − s2∥2 > ϵ,
∥s1 − t2∥2 > ϵ and ∥s1 − s2∥2 > ϵ.

A typical assumption is that the kernel makes separated dipoles incoherent, i.e.
their scalar product yields a small residue controlled by the kernel.

Assumption 1. A Gaussian kernel h follows this assumption if there is a constant µh

such that, for all two ϵ
3
-separated dipoles, ⟨π1, π2⟩h ≤ µh∥π1∥h∥π2∥h (mutual coherence).

Since we fix the kernel h for this paper, for simpler notations, we note µ := µh.

With a Gaussian kernel h, we have the following properties.

Lemma 3.1 (Consequences of choosing a Gaussian kernel). Let h(t, s) = e−∥t−s∥22/(2σ2)

a Gaussian kernel of variance 2σ2.
Then,

(i) the kernel h is symmetrical with respect to 0 and translation invariant;

(ii) we have h(t, t) = 1 = max
t∈Rd,s∈Rd

|h(t, s)|;

(iii) if h verifies Assumption 1, then for any two ϵ
3
-separated spikes δt, δs,

⟨δt, δs⟩h = e−
∥t−s∥22
2σ2 ≤ µ∥δt∥h∥δs∥h = µ. (14)

The following Lemma is an approximate Pythagorean identity where the norm of
the sum of dipoles is approximately equal to the sum of the norm of the dipoles.
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Lemma 3.2. (from [37]) Suppose for all two ϵ
3
-separated dipoles, ⟨π1, π2⟩h ≤

µ∥π1∥h∥π2∥h (mutual coherence). Then for k, ϵ
3
-separated dipoles π1, . . . , πk such that

maxi ∥πi∥h > 0, we have

1− (k − 1)µ ≤
∥
∑

i=1,k πi∥2h∑
i=1,k ∥πi∥2h

≤ 1 + (k − 1)µ. (15)

To define the restricted isometry property (RIP), we need the notion of secant set.

Definition 3 (Secant set). The secant set S(ΣK,ϵ) of the model set ΣK,ϵ is defined as

S(ΣK,ϵ) := {x− y, x ∈ ΣK,ϵ, y ∈ ΣK,ϵ}. (16)

Note: S(ΣK,ϵ) can be written as ΣK,ϵ − ΣK,ϵ.

We can now introduce the Restricted Isometry Property (see [26]).

Definition 4 (RIP). The linear operator A has the γ-RIP on S(ΣK,ϵ) with constant
0 < γ < 1 if for all x ∈ S(ΣK,ϵ):

(1− γ)∥x∥2h ≤ ∥Ax∥22 ≤ (1 + γ)∥x∥2h. (17)

Suppose that the operator A has the γ-RIP on S(ΣK,ϵ) and consider ϵ-separated
dipoles πi. Then we have

(1− γ)

∥∥∥∥∥
k∑

i=1

πi

∥∥∥∥∥
2

h

≤

∥∥∥∥∥A
k∑

i=1

πi

∥∥∥∥∥
2

2

≤ (1 + γ)

∥∥∥∥∥
k∑

i=1

πi

∥∥∥∥∥
2

h

. (18)

Finally we introduce the set Zl,ξ,ϵ of ξ-concentrated dipoles, pairwise ϵ-separated,

Zl,ξ,ϵ =

{
l∑

i=1

πi : πi = aiδti − biδsi ; a, b ∈ Rl; ti ∈ D; si ∈ Rd; ∀i ∈ {1, . . . , l},

∥ti − si∥2 ≤ ξ; ∀i, j ∈ {1, . . . , l}, i ̸= j, πi and πj are ϵ-separated.

}
(19)

3.2. Main theorem

Let us first state our main result.

Theorem 3.3. Let K ∈ N with K > 0. Let ϵ > 0. Let xK,ϵ =
∑K

i=1 aiδti ∈ ΣK,ϵ

where ∥a∥∞ = |a1| ≥ |a2| ≥ . . . ≥ |aK |. Denote α = |a1|/|aK |. Assume that the
linear operator A has the γ-RIP on S(ΣK, ϵ

3
) with a Gaussian kernel h with variance σ2

following Assumption 1. We define s∗1, . . . , s
∗
K the ordered K-th first output of COMP

without sliding. Let

ξ :=

√
2σ2 ln

(
1

1− (4Kα− 1) (µ+ γ)

)
. (20)
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Suppose

µ+ γ ≤ 1

5K (4Kα− 1)
(21)

and
ϵ2 > 18 ln

(
10

9

)
σ2. (22)

Then for every l ∈ {0, . . . , K}, there exists i ∈ {0, . . . , K}, such that ∥s∗l − ti∥2 ≤ ξ.

This result states that if the unknown signal follows a separation assumption,
the operator A has a γ-RIP on such separated signals with respect to a kernel norm
following the mutual coherence assumption, then we can bound the estimation error of
the positions. The main hypothesis of this Theorem is the condition that µ+γ = O

(
1
K2

)
which seems restrictive; it is also dependent on the ratio of amplitudes. We express in
the following a second theorem where the amplitude are known and set to 1, yielding
more favorable conditions. We attribute this restrictive conditions to the fact that we
do not have exact orthogonality between spikes in this continuous setting compared to
the discrete finite dimensional case ([24, Theorem 6.24]).

The hypothesis ϵ2 > 18 ln
(
10
9

)
σ2 is guaranteed if

ϵ > 1.37σ (23)

This inequality means that the minimum separation needed for a full recovery of the
spikes’ positions is larger than the standard deviation of the kernel h. This is in
accordance with the idea that if two spikes are too close with respect to the kernel width,
their observations are not separated enough to get recovered independently. Note that
we did not look to achieve the best constants to keep the proof as simple as possible.

The localization error of the spikes is bounded by ξ which converges to 0 when
µ + γ is sufficiently small. Hence, for very well conditioned operators A, the K step
COMP without sliding has good recovery guarantees. Note that for a final descent
on parameters to converge, the bound ξ must be smaller than the size of basins of
attraction of g. In fact, using results on basins of attraction from [38] we just proved
that there exists a linear operator (with possibly a very large number of measurements)
where COMP with a final gradient descent converges to x0. For example, with a linear
operator composed of a large number of random Fourier measurements following the
RIP, this result is true (see [38] for a precise study of the basins of attraction of (3)).

The proof of this theorem is an induction on the steps of COMP where approximate
recovery at one step guarantees approximate recovery at the next steps. The main
difficulty is to control all residuals generated by the fact that we only have approximate
orthogonality between atoms (through the kernel norm).

3.3. Theorem for signals with fixed amplitudes

The previous Theorem 3.3 is a general case that applies for signals with variable
amplitudes. For sparse signals of the form x0 =

∑K
i=1 δti , we give a theorem with

weaker conditions.
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Theorem 3.4. Let K ∈ N with K > 0. Let ϵ > 0. Let xK,ϵ =
∑K

i=1 δti ∈ ΣK,ϵ.
Assume that the linear operator A has the γ-RIP on S(ΣK, ϵ

3
) with a Gaussian kernel h

with variance σ2. We define s∗1, . . . , s
∗
K the ordered K-th first output of COMP without

sliding. Let

ξ :=

√
2σ2 ln

(
1

1− (4K − 1) (µ+ γ)

)
. (24)

Suppose

µ+ γ ≤ 1

10 (4K − 1)
(25)

and
ϵ2 > 18 ln

(
10

9

)
σ2. (26)

Then for every l ∈ {0, . . . , K}, there exists i ∈ {0, . . . , K}, ∥s∗l − ti∥2 ≤ ξ.

3.4. Relation between the RIP hypothesis and number of measurements

The major difference between the two theorems is the less restrictive upper bound on
µ + γ. Instead of having an upper bound of the order 1

K2 , it is just of the order 1
K

without dependency on the ratio of amplitudes. This means that the Gaussian kernel
can be larger as it implies a less strict condition on the observation to observe a full
recovery of the true signal.

In the context of random Gaussian measurements we can guarantee that the
condition on γ is verified if the number of measurements m is of order 1

γ2K
2d times

some logarithmic terms as demonstrated in [27]. In our case, this gives a number of
measurements m needed to guarantee an upper-bound on γ of order K6d. For signals
with fixed amplitudes, m must be of order of K4d.

For the discrete sparse recovery case, success of OMP is guaranteed (neglecting log
terms) for m = O(K). Thus an open question is to determine if our conditions on γ can
be loosened to yield better recovery results with respect to the number of spikes K.

4. Ill-posedness of the over-parametrized problem

In this section, we show with simple experiments that, even if over-parametrization
permits to minimize the energy (3) (see next Section), it leads to badly conditioned
problem leading to slow and poor convergence of gradient descent. This illustrates the
fact that performing a projection in the descent is a key part of our algorithm for a fast
convergence. The code for these experiments is available for download at [8].

4.1. Presentation of the experiments

We place ourselves in the case of the recovery of one spike (note that this case is often
very informative for the study of limits of super-resolution algorithms [19, 38]). Results
on basins of attractions show that if the descent is initialized sufficiently close to the
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observed spike, then under the RIP condition there will be convergence to the desired
position (at a linear rate).

We place ourselves in 2D, i.e. x0 = δt with t = 0. We observe this signal through
random Fourier measurements (where the RIP with a Gaussian kernel is guaranteed
theoretically). For this example, we take the number of measurements to be m = 40.
Then we initialize our signal xinit to be a sum of spikes positioned near the origin. This
aims to recreate the output of OP-COMP.

For our experiments, we compare four cases.

• Case 1: we set xinit = δs where s is close to t, ∥t − s∥ = 0.2. In this case the
number of true spikes is equal to the number of initialized spikes and there is no
need for a projection.

• Case 2: we set xinit =
1
2

∑2
i=1 δti where t1 = (0.2, 0) and t2 = (−0.2, 0).

• Case 3: we set xinit = 1
5

∑5
i=1 δsi where for all i = 1, . . . , 5, ∥t− si∥2 = 0.2 and each

si is equally distant from the other si.

• Case 4: we set xinit = 1
5

∑5
i=1 δsi where for all i = 1, . . . , 5, ∥t − si∥2 = 10−4 and

each si is equally distant from the other si. The initialized spikes are very close to
the true spike (same as case 3 but initialized very close to the solution).

For each case, we perform a simple gradient descent without projection for a large
number of iterations and with a step selected with a line search.

A classical way to study the well posedness of first order algorithms is to calculate
the Hessian H of the function g in (10) (calculated in [37, Proposition 2.2]). The
conditioning and non-negativeness of H permits to show local convexity and gives
information on convergence speed of gradient descent. We recall the expression of the
condition number of H, noted κ(H), with H a complex square matrix,

κ(H) =
|λmin(H)|
|λmax(H)|

(27)

where |λmin(H)| and |λmax(H)| are respectively the moduli of the minimal and maximal
eigenvalues of H.

4.2. Results and remarks

In Case 1, the estimated spike converges to the true spike, see Figure 1. The norm of the
residue decreases to the numerical precision 10−14. For the smallest eigenvalue of H, it is
negative only for the first iteration (we set manually the initialization). But after its first
iteration of Gradient Descent, it goes back to being positive and stabilizes at λmin ≈ 2,
see Figure 2. For the condition number of H, it also stabilizes at κ(H) ≈ 25. This value
is fairly low compared to our following tests. The positiveness of λmin indicates that H
is positive definite at our estimated signal, i.e. it is in a basin of attraction.
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Figure 1: (left) Iterations of intermediate points xtemp and trajectory from
xinit = δs toward x0 using Gradient Descent. (right) Norm of residue

∥y − Axtemp∥2 at each iteration of Gradient Descent.

Figure 2: (left) Smallest eigenvalue and (right) Condition number of H at
each iterations of the Gradient Descent for a one spike signal.

In Case 2, the trajectories of the spikes for the over-parameterized signal seem to
converge towards the ground truth, Figure 3. However, when we observe the norm of
the residue of the system, it decreases very slowly and does not have the same linear
convergence rate as Case 1. The estimation error on positions is approximately 10−3

after 10 000 steps. When looking at the smallest eigenvalue and the conditioning of
the system, we observe that at least one eigenvalue of the Hessian is negative, Figure 4.
This indicates that the estimated over-parametrized functional is not convex around the
global minimizer. When looking at the conditioning of the Hessian, while manageable
far from the global optimum, it keeps increasing during convergence. This implies that
the system is numerically unstable as it gets closer to the global minimizer.
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Figure 3: (left) Iterations of intermediate points xtemp and trajectory from
xinit =

1
2
δs1 +

1
2
δs2 toward x0 using Gradient Descent. (right) Norm of

residue ∥y − Ax∥2 at each iteration of Gradient Descent.

Figure 4: (left) Smallest eigenvalue and (right) Condition number of H at
each iterations of the Gradient Descent for a two spikes over-parameterized

signal.

In Case 3, we observe the same phenomena as in Case 2. The five spikes of the
over-parameterized signal converge towards the solution. However, this convergence is
very slow, Figure 5. For the smallest eigenvalue of the Hessian, it is still negative but
gets closer to 0 through the iterations of Gradient Descent. As for the condition number
of H, it increases and leads to computational instability (Figure 6). The estimation
error on positions is approximately 10−3 after 10 000 steps.

Figure 5: (left) Iterations of intermediate points xtemp and trajectory from
xinit =

1
5

∑5
i=1 δsi toward x0 using Gradient Descent. (right) Norm of

residue ∥y − Ax∥2 at each iteration of Gradient Descent.
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Figure 6: (left) Smallest eigenvalue and (right) Condition number of H at
each iterations of the Gradient Descent for a five spike over-parameterized

signal.

The idea for Case 4 is to see what happens when we initialize the spikes closer to
the solution (distance lower than 10−5) than the final estimation obtained after all the
iterations of a Gradient Descent from Case 3. In Case 4, the descent does not seem
to bring our initialized spikes closer to x0, see Figure 7. Between the first and last
iterations of Gradient Descent, the residue’s difference is in the order of 10−15 and the
residual is of the order of 10−10. There is a convergence of the iterates towards x0 but
it is very slow. At this scale, we attribute this behavior to the bad conditioning and
non-convexity of the functional: the smallest eigenvalue is very small (λmin ≈ −10−15)
and does not get positive during any step of the Descent, see Figure 8.

Figure 7: (left) Iterations of intermediate points xtemp and trajectory from
xinit =

1
5

∑5
i=1 δsi toward x0 using Gradient Descent. (right) Norm of

residue ∥y − Ax∥2 at each iteration of Gradient Descent.
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Figure 8: (left) Smallest eigenvalue and (right) Condition number of H at
each iterations of the Gradient Descent for a five spikes over-parameterized

signal.

We see that when the number of initialized spikes is larger than the number of true
spikes, the signal does not converge towards the ground truth with good accuracy and
in finite time. Gradient iterations do not improve the solution due to the ill-posedness
of this situation. A solution for this problem is to reduce the number of spikes during
the descent. In practice, the solution that we propose is to merge spikes close to each
other (see Algorithm 2) to avoid dealing with ill conditioned problems and project the
iterates into a convex basin of attraction of the global minimum. We must remark that
the choice of the separation criterion for merging spikes is a trade-off between accuracy
of the algorithm (resolving spikes close to each other) and computational speed (project
as fast as possible in the descent).

5. Experiments

In this section, we apply our OP-COMP + PGD algorithm to two microscopy
problems and compare its performances to the state-of-the-art method Sliding COMP.
More precisely, we consider the problems of microscope calibration from fluorescent
microbeads acquisitions (Section 5.4) and super-resolution reconstruction from SMLM
data (Section 5.5). While both problems are related to the recovery of sparse spike
signals, in the former microbeads usually follow a minimal separation distance in line
with the assumptions of our theoretical results. The code for the following experiments
is available for download at [8].

5.1. The MA-TIRF model

All reported experiments are performed with the multi-angle total internal reflection
fluorescence (MA-TIRF) model, which we briefly describe here. The principle of TIRF
is to illuminate the sample with an incident angle in the regime of total reflection [3].
In this regime, although all the incident light is reflected, an evanescent wave is created
above the glass coverslip. It allows for the excitation of fluorophores within a thin
layer of few hundred of nanometers at the basal surface of cells. MA-TIRF then simply
consists in the consideration of a set of acquisitions for multiple TIRF angles. As the
axial decay of the evanescent wave is related to the incident angle, MA-TIRF data
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convey information about the axial position of fluorophores. Let y ∈ RN1×N2×Kangle be
our observation with N1 and N2 the number of pixels for the first two dimensions and
Kangle the number of incidence angles. Each entry of y is expressed as a weighted sum of
the application of an impulse response αi,k, with i ∈ {1, . . . , N1N2}, k ∈ {1, . . . , Kangle},
on each spike of x0 =

∑K
j=1 ajδtj with tj ∈ R3, i.e. yi,k =

∑K
j=1 ajαi,k(tj). The expression

of αi,k(tj) for the MA-TIRF model is given by

αi,k(tj) :=
ξ(tj,3)e

−sktj,3

2πσ1σ2

∫
Ωi

e
−
(

(tj,1−s1)
2

2σ2
1

+
(tj,2−s2)

2

2σ2
2

)
ds1s2 (28)

where ξ(tj,3) =
(∑Kangle

k=1 e−2sktj,3

)−1/2

and Ωi the i-th camera pixel region. It corresponds
to the combination of the evanescent excitation in the axial (third) dimension and
the lateral (first two dimensions) convolution with the impulse response, which we
approximate by a Gaussian kernel. For further details on this model, we refer the
reader to [20]. To implement this continuous formulation, we discretize it to obtain

αi,k(tj) =
ξ(tj,3)e

−sktj,3

4

(
erf(v+x )− erf(v−x )

)(
erf(v+y )− erf(v−y )

)
(29)

with erf(x) = 2√
π

∫ x

0
e−t2dt the error function and

v−x =
tj,1 −∆px/2− xi√

2σ1

v+x =
tj,1 +∆px/2− xi√

2σ1

(30)

v−y =
tj,2 −∆px/2− yi√

2σ2

v+y =
tj,2 +∆px/2− yi√

2σ2

(31)

with (xi, yi) the coordinates of the ith pixel and ∆px its width. This derivation from the
continuous formulation is straightforward by considering Ωi = [xi−∆px/2, xi+∆px/2]×
[yi −∆px/2, yi +∆px/2].

Finally, we recall that we place ourselves in the noiseless case, i.e. y = Ax0 with y

the observation, A the linear measurement operator following the MA-TIRF model and
x0 the original signal to recover.

5.2. Metrics to evaluate the performance of algorithms

To evaluate the performance of each algorithm, we take into account the computation
time and the accuracy of the estimation. We introduce the true positive (TP), false
positive (FP) and false negative (FN) notations. They label each ground truth (GT)
and estimated spike differently according to whether a GT and an estimated spike are
close to each other (TP), if a GT spike is alone (FN) and if an estimated spike is alone
(FP). These notations are used to compute the Jaccard (Jac) index, the Recall (Rec)
and the Precision (Pre) metrics [35]:

Jac =
#TP

#TP +#FP +#FN
Rec =

#TP
#TP +#FN

Pre =
#TP

#TP +#FP
. (32)



Estimation of off-the grid sparse spikes with over-parametrized PGD 20

These indexes and metrics allows us to evaluate the capability of an algorithm to give a
good estimation. The scores are between 0 and 1, ranging the performance from worst
to best. We note that to identify an estimated spike as TP, we check its distance to
the closest GT spike noted dTP,GT. We distinguish two cases in function of the smallest
distance between two spikes of the ground truth noted dmin. Either the spikes of the
ground truth are well separated from each other, i.e. dmin ≥ 40nm, then dTP,GT = 20nm.
Either dmin < 40nm, then dTP,GT =

1
2
dmin.

We also introduce the root mean squared error (RMSE) between the pairs of GT
and estimated spikes (from the TP set) along each dimension,

RMSExi
=

√
1

#TP

∑
j∈TP

([xj]i − [x0,j]i)
2. (33)

This metric gives us an estimation on how close the estimated signal is to the ground
truth in each dimension for every pair of GT and TP spikes.

5.3. Benchmarking algorithms and parameters

As previously introduced, there are two main differences between Sliding COMP and
OP-COMP + PGD. The first one is the absence of the sliding step within OP-COMP,
the second one is the addition of an over-parameterization step in OP-COMP and a
descent on all parameters with projections performed in PGD. To test if both differences
between the algorithms bring an added value, we introduce in our experiments the
modified sliding COMP algorithm: COMP + GD. It is a hybrid algorithm between
Sliding COMP and OP-COMP + PGD. For the initialization, it behaves as OP-COMP
to the difference that it stops at exactly K iteration for a K-spikes signal. It then
performs a Gradient Descent on all parameters but does not perform any projection.
This algorithm permits to ensure that the over-parameterization with projection is a
key part in improving the recovery of the positions of the spikes.

Regarding the projection step in OP-COMP + PGD, to set the projection distance
eps_dist, we use an oracle: we compute beforehand the smallest distance between all
the spikes in the true signal min_dist and set the projection distance eps_dist to be
0.75×min_dist. However, this user-defined parameter can be easily estimated from the
observation of the dataset. In practice, if it is too large, we risk to project two estimated
spikes that should not be projected. In the opposite case, if it is too small, PGD does
not merge spikes that should be merged and slows down the computation due to the
large number of spikes and the slow convergence of an ill-posed problem (see Section 4).

5.4. Microscope calibration from fluorescent beads acquisitions

A standard practice for calibration in fluorescent microscopy is to image fluorescent
microbeads. They behave as point sources and the associated images thus constitute
direct measures of the system impulse response. The process of calibration then consists
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in a joint estimation of the impulse response and the microbeads position from these
data. This is usually addressed with alternating methods and we focus here on the
microbeads localization subproblem. Usually, such calibration samples are prepared
such that microbeads follow a minimal separation distance, in line with the assumptions
of theoretical results of the present work.

In this context, we synthesized fluorescent beads uniformly in the volume. We first
set a uniform grid of points in our volume. Then, from each point x = (x1, x2, x3) of the
grid, we randomly generated a spike t = (t1, t2, t3) within an ellipse centered at x, i.e.

(x1 − t1)
2

(s1/2)2
+

(x2 − t2)
2

(s2/2)2
+

(x3 − t3)
2

(s3/2)2
≤ 1. (34)

with s1, s2, s3 the lengths of each axis of the ellipse. Regarding spikes amplitudes, they
are sampled uniformly between 1 and 1.5. We show in Figure 9 a slice of the observation
y along two different incident angles. We observe that there is separation between the
beads with some responses still intersecting one another (i.e. we are not in the most
favorable case in terms of separation).

Figure 9: Observation of a signal composed of 98 spikes along two different
incident angles through the MA-TIRF model.

We compare OP-COMP + PGD, COMP + GD and Sliding COMP on a signal
composed of 98 spikes. The 3D localization is presented in Figure 10. Most of the
spikes have been recovered by the three methods
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Figure 10: 3D Plots of a signal of size K = 100 and its estimation by
OP-COMP (in green) and then PGD (in blue) (top left), its estimation by
COMP (in green) and then GD (in blue) (top right) and its estimation by

Sliding COMP (in blue) (bottom center).

We plot the residues ∥y−Ax∥2 at each step of all three algorithms in Figures 11, 12
and 13. At the end of OP-COMP, the initialized signal is composed of 135 spikes. After
10 000 steps and about 35 projections in PGD, the norm of the residue stops decreasing
and we obtain a signal composed of 95 spikes. We observe that the norm of the residue
decreases far less than with GD without projection. Compared to Sliding COMP, the
norm of the residue of OP-COMP+PGD is similar.
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Figure 11: Norms of residue ∥y − Ax∥2 at each iteration of OP-COMP
(left), Projected Gradient Descent (right) for a 98-spikes signal.

Figure 12: Norms of residue ∥y − Ax∥2 at each iteration of COMP (left),
Gradient Descent (right) for a 98-spikes signal.

Figure 13: Norms of residue ∥y − Ax∥2 at each iteration of Sliding COMP
for a 98-spikes signal.

To compare these estimations in terms of localization, we use the metrics we
introduced previously (see Section 5.2) and the norm of the residue of each estimation.
Results with computation times are reported in Table 1. We conclude that for
solving (3), OP-COMP + PGD performs better than its counterpart with no over-
parameterization nor projection.
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OP-COMP + PGD COMP + GD Sliding COMP

Computation time 129 minutes 115 minutes 272 minutes

Norm of residue

of estimation
5.84× 10−3 2.08× 10−2 8.69× 10−3

Jaccard Index 0.771 0.567 0.664

Recall 0.857 0.727 0.806

Precision 0.884 0.720 0.790

RMSE (x1, x2, x3)

in nm
(2.70, 1.68, 2.05) (3.39, 3.56, 4.83) (1.43, 1.58, 1.55)

Table 1: Table of comparison between OP-COMP + PGD, COMP + GD
and Sliding COMP on computation time, norm of residue, Jaccard index,

Recall and Precision metrics, and on RMSE along each dimensions.

We observe that in terms of computation time, Sliding COMP is largely outclassed
by both OP-COMP + PGD and COMP+GD. For all three Jaccard, Recall and Precision
metrics, we note that OP-COMP + PGD performs better than both COMP + GD and
Sliding COMP.

We conclude that in the setting where we need to estimate a large number of spikes
in the signal with a (relatively) good separation between each pair of spikes, OP-COMP
+ PGD is a well suited algorithm to recover such signal as it offers a lower computation
time and better performances when compared to the state of the art Sliding COMP.

5.5. SMLM localization problem

Single molecule localization microscopy is currently one of the most powerful super-
resolution technique in fluorescence microscopy with the potential to reach a resolution
of up to ten nanometers [35]. As opposed to conventional fluorescence microscopy where
all fluorescent molecules are activated and imaged at the same time, it proceeds by
sequentially activating and localizing sparse subsets of these molecules. The density of
molecules activated on each SMLM frame comes as a trade-off between the difficulty of
the localization problem (easier for low densities) and the temporal resolution in live
imaging (better for high densities).

Three-dimensional SMLM can be achieved by using a modified impulse response
whose shape varies axially (third dimension). These include for instance the popular
astigmatism [28] and double helix [34] responses. To encode the depth of molecules
through axial variations, such exotic impulse responses come with a larger lateral
support than conventional responses, thus increasing the difficulty of the localization
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problem. An alternative is to exploit MA-TIRF excitations to encode the depth of
molecules while keeping a conventional, narrower, response. This approach has been
numerically investigated and compared to the use of astigmatism and double helix
responses in [20].

In this work, we consider the simulated microtubules structures proposed in [35].
From the available ground truth positions of the Ktot simulated molecules, we generate
SMLM (with MA-TIRF) frames, each containing a subset of K ≪ Ktot molecules. In the
state-of-the art reference [20], K varies between 5 to 15. As K gets larger, the probability
of two molecules being close from each other increases and the localization problem
becomes harder. In our experiments, we evaluate the performance of OP-COMP +
PGD and Sliding COMP over 100 batches where a batch corresponds to an observation
of a signal composed of K ∈ {5, 10, 15, 30} spikes (i.e., an SMLM frame). Regarding
parameters of model (28), we consider the setting described in [20]. In particular, we use
the number of pixels of the grid detector N1 = N2 = 64, the number of different angles
Kangle = 4 and the excitation wavelength λl = 660nm. The latter is directly related to
the decay of the evanescent wave of the TIRF illumination. Moreover, following [20],
the variances σ1 and σ2 of the Gaussian filter used in model (28) have been set to
σ1 = σ2 = 0.42λl/NA with NA = 1.49 the numerical aperture of the system. This
corresponds to a fitting of the Gaussian filter model to the experimentally measured
filter of the SMLM challenge [35]. In this way, λl is also related to the spread of the
impulse response. A smaller wavelength leads to a narrower response and allows for a
better separability of the molecules’ observations.

In this setting, as opposed to the calibration problem presented in Section 5.4, the
separation assumption with respect to the shape of the measurements is not completely
verified: some spikes from the ground truth are very close to each other and the linear
measurements operator A does not give enough information to distinguish them. With
these shortcomings in mind, a direct application of OP-COMP without sliding + PGD
does not work as well as in the previous section. In these experiments, we add a small
sliding step at each iteration for both OP-COMP and COMP. In comparison to Sliding
COMP where several hundred iterations are performed in every sliding step, we only
performs 10 to 20 iterations of descent. This number is low enough to not slow down
the whole algorithms while still improving the global convergence.

Finally, to perform an adequate comparison, the number of iterations in the final
(projected) gradient descent is set to provide similar performance in terms of recovery
of positions when possible. When comparing execution times of OP-COMP + PGD,
COMP + GD and Sliding COMP in Figure 14 (in logarithmic scale) and their relative
differences in Table 2, we observe that for K ∈ {5, 10} (i.e. a small number of spikes), our
OP-COMP + PGD algorithm and COMP + GD are slower than Sliding COMP. But as
the number of spikes per batch grows, we notice an increasing time gain for OP-COMP
+ PGD compared to Sliding COMP as predicted by the theoretical computational
complexity of the algorithms. We gain 10% of computation time for K = 15 up to
75% for K = 30. Indeed, as the number of spikes gets larger, the descent step at each
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iteration of the Sliding COMP takes longer to compute.

Figure 14: Computation time in logarithmic scale for OP-COMP + PGD,
COMP + GD and Sliding COMP on a 100 batches of sizes

K = 5, 10, 15 and 30.

Number of spikes K

Relative difference from

Sliding COMP to
5 10 15 30

OP-COMP + PGD (in %) 34.8 19.6 −11.6 −76.6

COMP + GD (in %) 125.5 63.9 1.7 −73.6

Table 2: Relative differences in computation time in percentage between
Sliding COMP and both methods OP-COMP + PGD and COMP + GD

on a 100 batches of sizes K = 5, 10, 15 and 30.

The recovery results in terms of Jaccard index, Recall and Precision metrics are
given in Figure 15.

We observe that the different indices and metrics are very similar for all three
methods for K = 5, 10 and 15. This means that even if our method OP-COMP + PGD
and COMP + GD are faster than Sliding COMP, there is no significant degradation of
the quality of the estimation.

For the case of K = 30, we notice a drop in performance for every index and
metrics for all methods. This result is to be expected as the size of our observation y

as some spikes become very close. Both OP-COMP + PGD and Sliding COMP have
similar metrics in this setting for all three performance measures. However, for COMP
+ GD, we notice a drop in performances compared to OP-COMP + PGD. This validates
the benefit of having an over-parameterized initialization and a projection in the final
Gradient Descent.
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Figure 15: Score of Jaccard index, Recall and Precision metrics for
OP-COMP + PGD, COMP + GD, and Sliding COMP on a 100 batches of

sizes K = 5, 10, 15 and 30.

For the RMSE metric for each dimension, we see that the distance between GT and
TP spikes is small for all three algorithms (Figure 16). We note that the RMSE in the
third dimension (the same associated to the different angles of incidence in MA-TIRF)
is lower than the RMSE for the first two dimensions.

An expected, we also observe that the RMSE increases with the number of spikes
K as the observation y limits our accuracy and the probability of having two ground
truth spikes close to each other increases with more spikes per batch.
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Figure 16: RMSE in each dimension for OP-COMP + PGD, COMP + GD,
and Sliding COMP on a 100 batches of sizes K = 5, 10, 15 and 30.

We also combine all batches from our tests with K = 15 in a single plot in the same
style as in [20] to obtain Figure 17. We note that all three estimations are close to our
initial microtubules. This supports our RMSE results presented earlier as for all three
algorithms, their RMSE are very similar and close to 0 in each dimension.

Figure 17: 3D Plot of estimations of a signal of size K = 15× 100 by
OP-COMP + PGD (left) by COMP + GD (center) and by Sliding COMP
(right) with a color gradient for the third dimension and a size associated

to the amplitude of each spike.

In conclusion to this subsection, even though the signals recovered do not perfectly
fit the central separation assumption (very small distances between spikes for a low
quality observation), OP-COMP + PGD does perform as well as the state-of-the-art
Sliding COMP in classical metrics. As the number of spikes in a signal gets bigger, OP-
COMP + PGD gets faster than Sliding COMP. We provide in Section D an SMLM
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experiment with 50 spikes with much smaller wavelength (which are unfortunately
not available in real set up). This experiment shows that, should the resolution
of instruments improve, our algorithm will provide a consequent improvement on
computation times.

6. Conclusion

In this article, we showed, for an off-the-grid K sparse signal with separation condition,
that with a sufficiently good RIP constant of the linear measurement operator, we
can estimate a solution in K iterations up to a controlled accuracy for the non-convex
problem.

We also showed that in comparison to Sliding COMP, our method OP-COMP +
PGD becomes really efficient when the number of spikes is large. In bad and good
settings (depending on the separation between spikes of a signal), OP-COMP + PGD
has at least comparable precision to Sliding COMP. We also showed that the over-
parametrization step and the projection in the descent bring a non-negligible added
value to our method as removing these steps decreases the precision.

For future works, we can investigate the same convergence guarantees for noisy
observations. A possible extension of our theorem could be to extend the setting to
kernels beyond the Gaussian case. Moreover, is it possible to get less strict bound for
the γ RIP as in the discrete case? Also, we can focus on determining conditions on
estimating a projection distance instead on relying on an oracle projection distance.
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A. Appendix: Proofs of technical results

In this appendix, we detail the proofs of the technical results we need to prove our main
theorem.

We start with the proof of Lemma 3.1,

Proof of Lemma 3.1. We have that h(t, s) = e−∥t−s∥22/(2σ2),

(i) We can write h(t, s) = ρ(∥t − s∥2) where ρ(x) = e−x2/(2σ2) for t, s ∈ Rd, i.e. h is
symmetrical with respect to 0 and translation invariant.

(ii) We have that h(t, t) = ρ(0) = 1. However, −x2/(2σ2) ≤ 0 for x ∈ R with equality
when x = 0, i.e. h(t, t) = max

t∈Rd,s∈Rd
|h(t, s)|

https://www.plafrim.fr
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(iii) For any two spikes δt0 , δs0 such that ∥t0 − s0∥2 = ϵ/3, from the definition of the
scalar product with respect to h, we have ⟨δt0 , δs0⟩h = e−∥t0−s0∥22/(2σ2) = e−(ϵ/3)2/(2σ2).
Moreover, from Assumption 1 and (ii), ⟨δt0 , δs0⟩h ≤ µ. By combining both
equations, we have

⟨δt0 , δs0⟩h = e−
(ϵ/3)2

2σ2 ≤ µ∥δt∥h∥δs∥h = µ. (35)

Taking t, s such that ∥t− s∥2 ≤ ϵ/3 = ∥t0 − s0∥2, we have

⟨δt, δs⟩h ≤ e−
(ϵ/3)2

2σ2 ≤ µ. (36)

Lemma A.1 (Bound on the norm of a dipole). Let π = aδt − bδs be a dipole and h a
kernel. Then, we have,

∥π∥h ≤ |a− b|+ |a|∥δs − δt∥h. (37)

Proof. Remark that aδt − bδs = a(δt − δs) + (a− b)δs. With the triangle inequality,

∥π∥h ≤ ∥(a− b)δs∥h + ∥a(δt − δs)∥h = |a− b|+ |a|∥δt − δs∥h. (38)

Lemma A.2 (Norm of a dipole for a Gaussian kernel). Let π = aδt− bδs be a ξ0-dipole
such that 0 ≤ ξ0 ≤ ξ and h be a Gaussian kernel of variance 2σ2. Then, we have the
following properties:

(i) ∥π∥2h = (a− b)2 + 2ab(1− e−
ξ20
2σ2 ), (39)

(ii) ∥π∥2h ≤ (a− b)2 + 2|ab|(1− e−
ξ2

2σ2 ). (40)

Proof. From ∥π∥2h, we develop to get (39),

∥π∥2h = ∥aδt − bδs∥2h (41)

= a2∥δt∥2h + b2∥δs∥2h − 2ab⟨δt, δs⟩h (42)

= a2 + b2 − 2abe−
∥t−s∥22
2σ2 (43)

= a2 + b2 − 2ab+ 2ab− 2abe−
∥t−s∥22
2σ2 (44)

∥π∥2h = (a− b)2 + 2ab(1− e−
ξ20
2σ2 ). (45)

Then, since ξ0 ≤ ξ, e−ξ20/(2σ
2) ≥ e−ξ2/(2σ2) and

2ab(1− e−
ξ20
2σ2 ) ≤ 2|a||b|(1− e−

ξ2

2σ2 ). (46)

We inject (45) into (46) to get (40).
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Lemma A.3 (Bound scalar product of two spikes). Let δs, δt be two Dirac measures
with s, t ∈ Rd. Let A be a linear operator with the γ-RIP on S(ΣK,ϵ). Then,

(1 + γ)⟨δs, δt⟩h − 2γ ≤ ⟨Aδs, Aδt⟩ ≤ (1− γ)⟨δs, δt⟩h + 2γ, (47)

and
|⟨Aδs, Aδt⟩| ≤ (1− γ)⟨δs, δt⟩h + 2γ. (48)

Proof. Let us start by developing ⟨Aδs, Aδt⟩,

⟨Aδs, Aδt⟩ =
1

2

(
∥Aδs∥22 + ∥Aδt∥22 − ∥A(δs − δt)∥22

)
(49)

The γ-RIP and Lemma 3.1 imply

⟨Aδs, Aδt⟩ ≥
1

2

(
(1− γ)∥δs∥2h + (1− γ)∥δt∥2h − (1 + γ)∥(δs − δt)∥2h

)
(50)

= (1− γ)− 1

2
(1 + γ)∥(δs − δt)∥2h (51)

= 1− γ − 1

2
(1 + γ)

(
∥δs∥2h + ∥δt∥2h − 2⟨δs, δt⟩h

)
(52)

= 1− γ − (1 + γ)(1− ⟨δs, δt⟩h) (53)

= (1 + γ)⟨δs, δt⟩h − 2γ. (54)

Similarly,

⟨Aδs, Aδt⟩ ≤
1

2

(
(1 + γ)∥δs∥2h + (1 + γ)∥δt∥2h − (1− γ)∥(δs − δt)∥2h

)
(55)

= (1 + γ)− 1

2
(1− γ)∥(δs − δt)∥2h (56)

= 1 + γ − 1

2
(1− γ)

(
∥δs∥2h + ∥δt∥2h − 2⟨δs, δt⟩h

)
(57)

= 1 + γ − (1− γ)(1− ⟨δs, δt⟩h) (58)

= (1− γ)⟨δs, δt⟩h + 2γ. (59)

We have just shown the first result. Now, to bound |⟨Aδs, Aδt⟩|, we compare the upper
and lower bounds. If (1 + γ)⟨δs, δt⟩h − 2γ ≥ 0, then

|(1− γ)⟨δs, δt⟩h + 2γ| ≥ |(1 + γ)⟨δs, δt⟩h − 2γ|. (60)

Otherwise consider the case (1 + γ)⟨δs, δt⟩h − 2γ ≤ 0. Then as γ < 1, we have
(1 − γ)⟨δs, δt⟩h + 2γ > 0. By taking the difference between the two absolute values,
we obtain

|(1− γ)⟨δs, δt⟩h + 2γ| − |(1 + γ)⟨δs, δt⟩h − 2γ|
= (1− γ)⟨δs, δt⟩h + 2γ − (−1)×

(
(1 + γ)⟨δs, δt⟩h − 2γ

)
(61)

= (1− γ)⟨δs, δt⟩h + 2γ + (1 + γ)⟨δs, δt⟩h − 2γ (62)

= 2⟨δs, δt⟩h ≥ 0. (63)
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We conclude

|⟨Aδs, Aδt⟩| ≤ max
(
|(1− γ)⟨δs, δt⟩h + 2γ|, |(1 + γ)⟨δs, δt⟩h − 2γ|

)
(64)

= (1− γ)⟨δs, δt⟩h + 2γ. (65)

Lemma A.4 (Bound on the scalar products of two dipoles). Let π1, π2 be two ϵ-separated
dipoles. Let A be a linear operator with the γ-RIP on S(ΣK,ϵ). Then we have,

(1 + γ)⟨π1, π2⟩h − γ(∥π1∥2h + ∥π2∥2h) ≤ ⟨Aπ1, Aπ2⟩ ≤ (1− γ)⟨π1, π2⟩h + γ(∥π1∥2h + ∥π2∥2h)
(66)

and
|⟨Aπ1, Aπ2⟩| ≤ |⟨π1, π2⟩h|+ γ

∣∣∥π1∥2h + ∥π2∥2h − ⟨π1, π2⟩h
∣∣ . (67)

Proof. With the γ-RIP, we have,

⟨Aπ1, Aπ2⟩ =
1

2

(
∥Aπ1∥22 + ∥Aπ2∥22 − ∥A(π1 − π2)∥22

)
(68)

≥ 1

2

(
(1− γ)(∥π1∥2h + ∥π2∥2h)− (1 + γ)∥π1 − π2∥2h

)
. (69)

We develop the norm of the difference between two dipoles,

∥π1 − π2∥2h = ∥π1∥2h + ∥π2∥2h − 2⟨π1, π2⟩h. (70)

By injecting in our previous inequality (68), we get,

⟨Aπ1, Aπ2⟩ ≥
1

2

(
(1− γ)

(
∥π1∥2h + ∥π2∥2h

)
− (1 + γ)

(
∥π1∥2h + ∥π2∥2h − 2⟨π1, π2⟩h

) )
(71)

= (1 + γ)⟨π1, π2⟩h − γ(∥π1∥2h + ∥π2∥2h). (72)

Similarly,

⟨Aπ1, Aπ2⟩ ≤
1

2

(
(1 + γ)(∥π1∥2h + ∥π2∥2h)− (1− γ)∥π1 − π2∥2h

)
. (73)

We inject in this result (70) and obtain

⟨Aπ1, Aπ2⟩ ≤
1

2

(
(1 + γ)(∥π1∥2h + ∥π2∥2h)− (1− γ)(∥π1∥2h + ∥π2∥2h − 2⟨π1, π2⟩h)

)
(74)

= (1− γ)⟨π1, π2⟩h + γ(∥π1∥2h + ∥π2∥2h). (75)

The previous bounds (72) and (75), combined and rewritten, give

γ
(
⟨π1, π2⟩h − ∥π1∥2h − ∥π2∥2h

)
≤ ⟨Aπ1, Aπ2⟩−⟨π1, π2⟩h ≤ γ

(
∥π1∥2h + ∥π2∥2h − ⟨π1, π2⟩h

)
.

(76)
The bounds are symmetrical, giving us,

|⟨Aπ1, Aπ2⟩ − ⟨π1, π2⟩h| ≤ γ
∣∣∥π1∥2h + ∥π2∥2h − ⟨π1, π2⟩h

∣∣ . (77)

Using the triangle inequality, we get

|⟨Aπ1, Aπ2⟩| − |⟨π1, π2⟩h| ≤ |⟨Aπ1, Aπ2⟩ − ⟨π1, π2⟩h| . (78)



Estimation of off-the grid sparse spikes with over-parametrized PGD 33

This implies
|⟨Aπ1, Aπ2⟩| ≤ |⟨π1, π2⟩h|+ γ

∣∣∥π1∥2h + ∥π2∥2h − ⟨π1, π2⟩h
∣∣ . (79)

B. Appendix: Proofs for Theorem 3.3

In this appendix, we detail the proof of our main theorem. We start by technical
Lemmas.

Lemma B.1. Let δs a Dirac measure and zl =
∑l

i=1 πi ∈ Zl,ξ, ϵ
3

such that ∀i = 1, . . . , l,
δs and πi are ϵ

3
-separated and ξ < ϵ/3. Assume that the linear operator A has the γ-RIP

on S(ΣK, ϵ
3
). Denote D = max

i∈{1,...,l}
∥πi∥h/∥a∥∞ where a ∈ RK. Then,

∥Azl∥22
∥a∥2∞

≤ l(1 + γ)(1 + (l − 1)µ)D2. (80)

Furthermore, we have,
|⟨Aδs, Azl⟩|
∥a∥∞

≤ κl := (1 + γ)µlD + γl
(
1 +D2

)
. (81)

Proof. With the γ-RIP,

∥Azl∥22 = ∥A
l∑

i=1

πi∥22 ≤ (1 + γ)∥
l∑

i=1

πi∥2h. (82)

From Lemma 3.2, we get

∥Azl∥22
∥a∥2∞

≤ (1 + γ)(1 + (l − 1)µ)
l∑

i=1

∥πi∥2h
∥a∥2∞

≤ l(1 + γ)(1 + (l − 1)µ)D2. (83)

This concludes the first part of the proof.
We now bound |⟨Aδs, Azl⟩|. With the triangle inequality,

|⟨Aδs, Azl⟩|
∥a∥∞

≤
l∑

i=1

|⟨Aδs, A
πi

∥a∥∞
⟩|. (84)

Then, using the result (67) from Lemma A.4,

|⟨Aδs, Azl⟩|
∥a∥∞

≤
l∑

i=1

(∣∣∣∣⟨δs, πi

∥a∥∞
⟩h
∣∣∣∣+ γ

∣∣∣∣∥δs∥2h + ∥πi∥2h
∥a∥2∞

− ⟨δs,
πi

∥a∥∞
⟩h
∣∣∣∣) . (85)

As δs and πi, i = 1, . . . , l are ϵ/3-separated, we have ⟨δs, πi⟩h ≤ µ∥δs∥h∥πi∥h = µ∥πi∥h.
We inject this into our inequality (85) to obtain

|⟨Aδs, Azl⟩|
∥a∥∞

≤
l∑

i=1

(
µ
∥πi∥h
∥a∥∞

+ γ

(
1 +
∥πi∥2h
∥a∥2∞

+ µ
∥πi∥h
∥a∥∞

))
. (86)
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After rearranging the terms in (86), we get

|⟨Aδs, Azl⟩|
∥a∥∞

≤
l∑

i=1

(
(1 + γ)µ

∥πi∥h
∥a∥∞

+ γ

(
1 +
∥πi∥2h
∥a∥2∞

))
(87)

≤ (1 + γ)µlD + γl
(
1 +D2

)
. (88)

The following lemma gives a condition on ξ to bound the scalar product of a ξ-
separated dipole.

Lemma B.2 (Condition on ξ). Let k + l = K with k, l,K ∈ N and K > 0. Let α ≥ 1

and

ξ ≥

√
2σ2 ln

(
1

1− (4Kα− 1) (µ+ γ)

)
, (89)

with µ, γ ∈ R+
∗ such that µ+ γ < 1

4Kα−1
. Consider κl and D defined in Lemma B.1 and

suppose D < 1. Then

e−
ξ2

2σ2 <
1− ((2k − 1)α− 1)(1− γ)µ− (4kα− 1)γ − 2κlα

1− γ
. (90)

Proof. Using the hypothesis that D < 1, we obtain κl < (1 + γ)µl + 2γl. Hence (90) is
verified if

e−
ξ2

2σ2 <
1− ((2k − 1)α− 1)(1− γ)µ− (4kα− 1)γ − 2α(1 + γ)µl − 4αγl

1− γ
(91)

=
1− [((2k − 1)α− 1)(1− γ) + 2α(1 + γ)l]µ− [(4k + 4l)α− 1]γ

1− γ
. (92)

Since we suppose that 0 < γ < 1, this inequality is verified if

e−
ξ2

2σ2 < 1− [((2k − 1)α− 1)(1− γ) + 2α(1 + γ)l]µ− [(4k + 4l)α− 1]γ. (93)

Using our hypothesis on γ, we can bound some values of our previous inequality,

1− γ < 1 and 2α(1 + γ) < 4α. (94)

Thus, (93) is verified if the following inequality is true,

e−
ξ2

2σ2 < 1− [(2k − 1)α− 1 + 4αl]µ− [(4k + 4l)α− 1]γ. (95)

Finally the previous inequality is verified if the following inequalities are true,

e−
ξ2

2σ2 < 1− [4kα+ 4lα− 1]µ− [4(k + l)α− 1]γ (96)

e−
ξ2

2σ2 < 1− [4(k + l)α− 1](µ+ γ). (97)

Using our hypothesis that k + l = K, we obtain the condition

e−
ξ2

2σ2 ≤ 1− (4Kα− 1)(µ+ γ); (98)

which is exactly (89) (by taking the natural log).
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The following lemma gives a bound on µ by rewriting some conditions on µ+γ and
κl.

Lemma B.3 (Condition on γ and µ). Let k + l = K with k, l,K ∈ N, K > 0. Let
a ∈ Rk and α ≥ 1. Let κl := (1+ γ)µlD+ γl(1 +D2) and suppose D < 1. Suppose that

γ + µ <
1

4Kα− 1
with γ, µ ∈ R+. (99)

Then
µ <

1− (4kα− 1)γ − 2κlα

(2kα− 1)(1− γ)
. (100)

Proof. Since D < 1, we have

κl = (1 + γ)µlD + γl(1 +D2) < (1 + γ)µl + 2γl (101)

We deduce that our conclusion (100) is verified if

µ <
1− (4kα− 1)γ − 2α((1 + γ)µl + 2γl)

(2kα− 1)(1− γ)
. (102)

Because 0 < γ < 1, we have that (102) is guaranteed if

(2kα− 1)µ < 1− (4kα− 1)γ − 2α((1 + γ)µl + 2γl); (103)

which, since 1 + γ < 2, is in turn guaranteed if

(2kα− 1)µ < 1− (4kα− 1)γ − 4αl(µ+ γ). (104)

By rearranging the terms in this inequality, we obtain,

((2k + 4l)α− 1)µ+ (4(k + l)α− 1)γ < 1. (105)

Since 0 ≤ k, l ≤ K and k + l = K, the above inequality is guaranteed if

(4Kα− 1)µ+ (4Kα− 1)γ < 1, (106)

which is equivalent to the hypothesis µ+ γ < 1/(4Kα− 1).

The following lemma gives a numerical bound on the norm of the difference between
the amplitudes of the true signal and their estimation by a least-squares estimation.

Lemma B.4 (Bound for estimated amplitudes). Let y =
∑k

i=1 aiδti ∈ ΣK,ϵ, and
s1, . . . , sl ∈ Rd, with l, k ∈ N such that k+ l = K ≥ 2. Suppose ∥si− ti∥2 ≤ ξ < ϵ/3 and
max
i ̸=j
|⟨δsi , δsj⟩| ≤ µ for all 1 ≤ i, j ≤ l. Suppose µ+ γ ≤ 1

5K(4Kα−1)
with α ≥ 1. Assume

that the linear operator A has the γ-RIP on S(ΣK, ϵ
3
). Let

ξ :=

√
2σ2 ln

(
1

(1− (4Kα− 1) (µ+ γ))

)
. (107)
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and let

b ∈ argmin
b̃∈Rl

∥A(
l∑

i=1

b̃iδsi − aiδti)− A

K∑
i=l+1

aiδti∥22. (108)

Then
∥b− a1:l∥2
∥a∥∞

≤ 0.77. (109)

Proof. For this proof, we note the upper-bound of µ + γ ≤ 1
βK(4K−1)

with β = 5 for
simpler notations.

Let π = biδsi − aiδti . With Lemma A.1, we have ∥πi∥h = ∥biδsi − aiδti∥h =

∥(bi−ai)δsi−ai(δti−δsi)∥h ≤ ∥(bi−ai)δsi∥h+ |ai|∥(δti−δsi)∥h = |bi−ai|+ |ai|∥δti−δsi∥h.
Consider the matrix B = (Aδs1 , . . . , Aδsl) with BH its conjugate transpose, we

have b = (BHB)−1BHy is the solution of the least squares estimation (108) with
y = A

∑K
i=1 aiδti .

The norm ∥(BHB)−1∥22 is linked to the smallest eigenvalue of BHB that we note
λmin(B

HB). Indeed, we have

∥(BHB)−1∥2op =
1

|λmin(BHB)|2
. (110)

To find a bound on λmin(B
HB), we use the Gershgorin circle theorem [6]. There exists

1 ≤ i ≤ l, such that,∣∣λmin(B
HB)− ∥Aδsi∥22

∣∣ ≤∑
j ̸=i

∣∣⟨Aδsi , Aδsj⟩∣∣. (111)

With the triangle inequality, we have∣∣λmin(B
HB)− ∥Aδsi∥22

∣∣ ≥ ∥Aδsi∥22 − |λmin(B
HB)|. (112)

Multiplying by −1 and injecting (111), we get∣∣λmin(B
HB)

∣∣− ∥Aδsi∥22 ≥ −∑
j ̸=i

∣∣⟨Aδsi , Aδsj⟩∣∣ (113)

∣∣λmin(B
HB)

∣∣ ≥ ∥Aδsi∥22 −
∑
j ̸=i

∣∣⟨Aδsi , Aδsj⟩∣∣ (114)∣∣λmin(B
HB)

∣∣ ≥ ∥Aδsi∥22 − (l − 1)max
i ̸=j

∣∣⟨Aδsi , Aδsj⟩∣∣. (115)

Using Lemma A.3, we have
∣∣⟨Aδsi , Aδsj⟩∣∣ ≤ (1− γ)⟨δsi , δsj⟩+ 2γ. Thus, using the RIP,

we have

|λmin(B
HB)| ≥ (1− γ)∥δsi∥2h − 2(l − 1)γ − (l − 1)(1− γ)max

i ̸=j
|⟨δsi , δsj⟩| (116)

= 1− (2l − 1)γ − (l − 1)(1− γ)max
i ̸=j
|⟨δsi , δsj⟩|. (117)
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Using the mutual coherence (see (14)) and the hypothesis on γ + µ, we obtain

|λmin(B
HB)| ≥ 1− (2l − 1)γ − (l − 1)(1− γ)µ (118)

≥ 1− (2l − 1)γ − (l − 1)µ (119)

≥ 1− 2Kγ −Kµ ≥ 1− 2K(γ + µ) (120)

≥ 1− 2K

βK(4K − 1)
≥ 1− 2

β(4K − 1)
. (121)

As K ≥ 2, we conclude with

|λmin(B
HB)| ≥ 1− 2

7β
. (122)

Now that we have a bound on the lowest eigenvalue of BHB, we calculate and bound
∥b− a1:l∥22. We have

b− a1:l = (BHB)−1BHy − a1:l = (BHB)−1(BHy −BHBa1:l). (123)

On the one hand, we have

BHy =

 Aδs1
...

Aδsl

A
K∑
j=1

ajδtj i.e.
[
BHy

]
i
=

K∑
j=1

aj⟨Aδsi , Aδtj⟩. (124)

On the other hand,

BHBa1:l =

 ⟨Aδs1 , Aδs1⟩ · · · ⟨Aδs1 , Aδsl⟩... . . . ...
⟨Aδsl , Aδs1⟩ · · · ⟨Aδsl , Aδsl⟩


 a1

...
al

 . (125)

Hence, [
BHBa1:l

]
i
=

l∑
j=1

aj⟨Aδsi , Aδsj⟩. (126)

Using (123) and combining (124) and (126), we obtain,

∥b− a1:l∥22 = ∥(BHB)−1(BHy −BHBa1:l)∥22 (127)

≤
l∑

i=1

∣∣∣∣∣
K∑
j=1

aj⟨Aδsi , Aδtj⟩ −
l∑

j=1

aj⟨Aδsi , Aδsj⟩

∣∣∣∣∣
2

1

|λmin(BHB)|2
(128)

=
l∑

i=1

∣∣∣∣∣
l∑

j=1

aj⟨Aδsi , A(δtj − δsj)⟩+
K∑

j=l+1

aj⟨Aδsi , Aδtj⟩

∣∣∣∣∣
2

1

|λmin(BHB)|2
. (129)

With the triangle inequality,

∥b−a1:l∥22 ≤
l∑

i=1

(
l∑

j=1

|aj||⟨Aδsi , A(δtj − δsj)⟩|+
K∑

j=l+1

|aj||⟨Aδsi , Aδtj⟩|

)2

1

|λmin(BHB)|2
.

(130)
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To find an upper bound to this equation, let us bound each term separately.
Firstly, for all 1 ≤ i ≤ l, l + 1 ≤ j ≤ K, with Lemma A.3, we have,

|⟨Aδsi , Aδtj⟩| ≤ (1− γ)⟨δsi , δtj⟩h + 2γ ≤ (1− γ)µ+ 2γ. (131)

Secondly, for all 1 ≤ i ≤ l, 1 ≤ j ≤ l, we separate the cases where i = j and i ̸= j. We
use the Cauchy-Schwarz inequality and Lemma A.4,

|⟨Aδsi , A(δtj − δsj)⟩| ≤


∥Aδsi∥2∥A(δtj − δsj)∥2, i = j∣∣⟨δsi , δtj − δsj⟩h

∣∣
+γ
∣∣∥δsi∥2h + ∥δtj − δsj∥2h − ⟨δsi , δtj − δsj⟩h

∣∣ , i ̸= j
(132)

Using the property that |⟨π1, π2⟩| ≤ µ∥π1∥h∥π2∥h for π1, π2
ϵ
3
-separated dipoles from

Assumption 1, the Cauchy-Schwarz inequality, and ∥Aπ∥2 ≤
√
1 + γ∥π∥h with the RIP,

we get

|⟨Aδsi , A(δtj − δsj)⟩| ≤


(1 + γ)∥δtj − δsj∥h, i = j

µ∥δtj − δsj∥h
+γ
(
1 + ∥δtj − δsj∥2h +

∣∣⟨δsi , δtj − δsj⟩h
∣∣) , i ̸= j

(133)

≤


(1 + γ)∥δtj − δsj∥h, i = j

µ∥δtj − δsj∥h
+γ
(
1 + ∥δtj − δsj∥2h + µ∥δtj − δsj∥h

)
,

i ̸= j
(134)

=

{
(1 + γ)∥δtj − δsj∥h, i = j

µ(1 + γ)∥δtj − δsj∥h + γ
(
1 + ∥δtj − δsj∥2h

)
, i ̸= j.

(135)

We use the fact that ∥si− ti∥2 ≤ ξ =

√
2σ2 ln

(
1

(1−(4Kα−1)(µ+γ))

)
from hypothesis (107),

|⟨Aδsi , A(δtj − δsj)⟩| ≤

 (1 + γ)

√
2(1− e−

ξ2

2σ2 ), i = j

µ(1 + γ)

√
2(1− e−

ξ2

2σ2 ) + γ + 2γ(1− e−
ξ2

2σ2 ), i ̸= j

(136)

≤


(1 + γ)

√
2(4Kα− 1)(µ+ γ), i = j

µ(1 + γ)
√

2(4Kα− 1)(µ+ γ)

+γ + 2γ(4Kα− 1)(µ+ γ)
, i ̸= j.

(137)

With the hypothesis on µ+ γ, we have,

|⟨Aδsi , A(δtj − δsj)⟩| ≤

 (1 + γ)
√

2
βK

, i = j

µ(1 + γ)
√

2
βK

+ (1 + 2
βK

)γ, i ̸= j.
(138)
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By injecting the bounds (131) and (138) in (130), we get

∥b− a1:l∥22 ≤
1

|λmin(BHB)|2
l∑

i=1

[
(1 + γ)

√
2

βK
|ai|

+

(
µ(1 + γ)

√
2

βK
+ (1 +

2

βK
)γ

) l∑
j=1
i ̸=j

|aj|+
(
(1− γ)µ+ 2γ

) K∑
j=l+1

|aj|

]2
.

(139)

By dividing both sides by ∥a∥2∞, we obtain the following upper-bound,

∥b− a1:l∥22
∥a∥2∞

≤ l

|λmin(BHB)|2

[
(1 + γ)

√
2

βK

+

(
µ(1 + γ)

√
2

βK
+ (1 +

2

βK
)γ

)
(l − 1) +

(
(1− γ)µ+ 2γ

)
(K − l)

]2
.

(140)

Taking the square root on both sides of this inequality, we get

∥b− a1:l∥2
∥a∥∞

≤
√
l

|λmin(BHB)|

[
(1 + γ)

√
2

βK

+

(
µ(1 + γ)

√
2

βK
+ (1 +

2

βK
)γ

)
(l − 1) +

(
(1− γ)µ+ 2γ

)
(K − l)

]
.

(141)

We take the max between µ(1 + γ)
√

2
βK

+ (1 + 2
βK

)γ and (1− γ)µ+ 2γ to obtain

∥b− a1:l∥2
∥a∥∞

≤
√
l

|λmin(BHB)|

[
(1 + γ)

√
2

βK

+max

(
µ(1 + γ)

√
2

βK
+ (1 +

2

βK
)γ, (1− γ)µ+ 2γ

)
(K − 1)

]
.

(142)

Remarking that

c1 := µ(1 + γ)

√
2

βK
+

(
1 +

2

βK

)
γ ≤ 2µ

√
2

βK
+

(
1 +

2

βK

)
γ ≤ 2(µ+ γ) (143)

and
c2 := (1− γ)µ+ 2γ ≤ 2(µ+ γ), (144)

we have max(c1, c2) ≤ 2(µ+ γ) and

∥b− a1:l∥2
∥a∥∞

≤ 1

|λmin(BHB)|
√
l

(
(1 + γ)

√
2

βK
+ 2(µ+ γ)K

)
(145)

≤ 1

|λmin(BHB)|
√
K

(
(1 + γ)

√
2

βK
+

2

β(4Kα− 1)

)
(146)

≤ 1

|λmin(BHB)|

(
(1 + γ)

√
2

β
+

2
√
K

β(4K − 1)

)
. (147)
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For K ≥ 2, we can bound γ by

γ ≤ µ+ γ ≤ 1

βK(4Kα− 1)
≤ 1

14β
. (148)

We get, for K ≥ 2,

∥b− a1:l∥2
∥a∥∞

≤

(
1 + 1

14β

)√
2
β
+ 2

√
K

β(4K−1)

|λmin(BHB)|
≤

(
1 + 1

14β

)√
2
β
+ 2

√
2

7β

|λmin(BHB)|
. (149)

Using the bound (122) on λmin(B
HB), we get

∥b− a1:l∥2
∥a∥∞

≤ 1

1− 2
7β

((
1 +

1

14β

)√
2

β
+

2
√
2

7β

)
. (150)

By choosing β = 5, we obtain numerically that

∥b− a1:l∥2
∥a∥∞

≤ 0.77 . (151)

The next proposition states that for any ϵ-separated signal plus a residue, the
output given by the maximum of the correlation between this signal and a single spike
is in the ξ-radius of a spike of the signal.

Proposition B.1. Let k, l,K ∈ N such that k+ l = K ≥ 2. Let xk,ϵ =
∑k

i=1 aiδti ∈ ΣK,ϵ

where ∥a∥∞ = |a1| ≥ |a2| ≥ . . . ≥ |aK |. Denote α = |a1|/|aK |. Assume that the linear
operator A has the γ-RIP on S(ΣK, ϵ

3
) with a Gaussian kernel h of variance σ2.

Let

ξ :=

√
2σ2 ln

(
1

(1− (4Kα− 1) (µ+ γ))

)
. (152)

Let X = xk,ϵ + zl where zl =
∑K

i=k+1 aiδti − biδsi ∈ Zl,ξ, ϵ
3

and s∗ ∈ argmax
s̃∈Rd

|⟨Aδs̃, AX⟩|.

Suppose

µ+ γ <
1

5K (4Kα− 1)
(153)

and
ϵ2 > 18σ2 ln

(
10

9

)
. (154)

Then, there exists i0 ∈ {1, . . . , k} such that ∥s∗ − ti0∥2 < ξ < ϵ
3
.

Proof. Preliminary bounds.

• With our hypotheses (152) and (153), we have, for K ≥ 2

e−
ξ2

2σ2 = (1− (4Kα− 1)(µ+ γ)) > 1− 1

5K
≥ 9

10
. (155)
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We obtain
2

(
1− e−

ξ2

2σ2

)
≤ 2

(
1− 9

10

)
=

1

5
. (156)

Using Lemma A.2, we have

∥aiδti − biδsi∥h
∥a∥∞

≤ |ai|∥δti − δsi∥h + |bi − ai|
∥a∥∞

. (157)

On one hand, |ai|/∥a∥∞ ≤ 1. On the other hand, applying Lemma B.4 guarantees
that ∥b − a1:l∥2/∥a∥∞ ≤ 0.77. We deduce that |bi − ai|/∥a∥∞ ≤ 0.77. Combined
with (157), we obtain

∥aiδti − biδsi∥h
∥a∥∞

≤ ∥δti − δsi∥h + 0.77 ≤ 1

5
+ 0.77 < 1. (158)

Hence,

D := max
i∈{k+1,...,K}

∥aiδti − biδsi∥h
∥a∥∞

< 1. (159)

This inequality (158) will be useful to use Lemma B.2 and Lemma B.3 later in the
proof.

• From (153), we deduce that the hypothesis

µ+ γ ≤ 1

4Kα− 1
. (160)

of Lemma B.3 is verified.

• We have that (155) implies:
1

1− (4Kα− 1) (µ+ γ)
<

10

9
(161)

and

ξ =

√
2σ2 ln

(
1

1− 4 (4Kα− 1) (µ+ γ)

)
<

√
2σ2 ln

(
10

9

)
=

1

3

√
18σ2 ln

(
10

9

)
.

(162)
Using the hypothesis (154), we obtain

ξ <
ϵ

3
. (163)

Main proof of Proposition B.1. We divide Rd into three sets:

• E1 = {s ∈ Rd : ∃i0 ∈ {1, . . . , k} / ∥s− ti0∥2 < ξ};
• E2 = {s ∈ Rd : ∃i0 ∈ {1, . . . , k} / ξ ≤ ∥s− ti0∥2 < ϵ

3
};

• E3 = {s ∈ Rd : ∀ti, ∥s− ti∥2 ≥ ϵ
3
}.

We note that E1, E2 and E3 are pairwise disjoint and E1 ∪ E2 ∪ E3 = Rn. Moreover,
since ξ < ϵ

3
, the set E2 is non-empty.
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a) Construction of the proof Our goal is to show that if s∗ ∈ argmax
s̃∈E1∪E2∪E3

|⟨Aδs̃, AX⟩|

then s∗ ∈ E1. To proceed, we separate the proof in two parts.
First, we choose a specific element s1 ∈ E1 and any s2 ∈ E2. Then, by showing that
|⟨Aδs1 , AX⟩| > |⟨Aδs2 , AX⟩|, we rule out the possibility that s∗ ∈ E2.
Then, we choose a specific element s1 ∈ E1 and any element s3 ∈ E3. By showing that
|⟨Aδs1 , AX⟩| > |⟨Aδs3 , AX⟩|, we rule out the possibility that s∗ ∈ E3.
Finally, since s∗ /∈ E2 ∪ E3 and that E1 ∪ E2 ∪ E3 = Rn, then s∗ ∈ E1 i.e.
∃i0 / ∥s∗ − ti0∥2 < ξ.

b) Comparison between s1 ∈ E1 and s2 ∈ E2 Let s1 ∈ E1 and i0 such that
∥s1 − ti0∥2 ≤ ξ. As s∗ does not change if we multiply X by −1, we suppose that
a0 ≥ 0 without loss of generality. We have

|⟨Aδs1 , AX⟩| ≥ ⟨Aδs1 , AX⟩ (164)

= ⟨Aδs1 , Aai0δti0 + A
k∑

i=1;i ̸=i0

aiδti + Azl⟩ (165)

= ⟨Aδs1 , Aai0δti0 ⟩+ ⟨Aδs1 , A
k∑

i=1;i ̸=i0

aiδti⟩+ ⟨Aδs1 , Azl⟩. (166)

We focus on the term ⟨Aδs1 , A
∑k

i=1;i ̸=i0
aiδti⟩. We split the sum in two terms, with

I = {i ̸= i0 : ai ≥ 0} and J = {i ̸= i0 : ai < 0} to get,

⟨Aδs1 , A
k∑

i=1;i ̸=i0

aiδti⟩ =
k∑

i=1;i ̸=i0

ai⟨Aδs1 , Aδti⟩ (167)

=
∑
i∈I

|ai|⟨Aδs1 , Aδti⟩ −
∑
i∈J

|ai|⟨Aδs1 , Aδti⟩. (168)

Using Lemma A.3, we get

⟨Aδs1 , A
k∑

i=1;i ̸=i0

aiδti⟩ ≥ (1 + γ)
∑
i∈I

|ai|⟨δs1 , δti⟩h − 2γ
∑
i∈I

|ai|

− (1− γ)
∑
i∈J

|ai|⟨δs1 , δti⟩h − 2γ
∑
i∈J

|ai|

= (1 + γ)
∑
i∈I

|ai|⟨δs1 , δti⟩h − 2γ
∑
i∈I

|ai|

− (1− γ)
∑
i∈J

|ai|e−
∥s1−ti∥

2
2

2σ2 − 2γ
∑
i∈J

|ai|.

(169)

Since we have ∥ti0−s1∥2 ≤ ξ < ϵ
3

and the ti are pairwise ϵ-separated, we use the triangle
inequality to get for i ̸= i0,

∥ti0 − s1∥2+ ∥s1− ti∥2 ≥ ∥ti0 − ti∥2 i.e.
ϵ

3
+ ∥s1− ti∥2 > ϵ so that ∥s1− ti∥2 >

2ϵ

3
.

(170)
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This means that for i ̸= i0, with Lemma 3.1 (iii), we have e−∥s1−ti∥22/(2σ2) ≤ µ. By
injecting this result into (169), we obtain

⟨Aδs1 , A
k∑

i=1;i ̸=i0

aiδti⟩ ≥ (1 + γ)
∑
i∈I

|ai|⟨δs1 , δti⟩h − 2γ
∑
i∈I

|ai|

− (1− γ)µ
∑
i∈J

|ai| − 2γ
∑
i∈J

|ai|.
(171)

Since ∀i ∈ I, ⟨δs1 , δti⟩h ≥ 0 and |I|+ |J | = k − 1, we have that

⟨Aδs1 , A
k∑

i=1;i ̸=i0

aiδti⟩ ≥ −(1− γ)µ
∑
i∈J

|ai| − 2γ
k∑

i=1;i ̸=i0

|ai|. (172)

In the worst case, all the amplitudes ai are negative (i.e. |J | = k − 1), this implies

⟨Aδs1 , A
k∑

i=1;i ̸=i0

aiδti⟩ ≥ − ((1− γ)µ+ 2γ)
k∑

i=1;i ̸=i0

|ai|. (173)

Going back to |⟨Aδs1 , AX⟩|, we use Lemma B.1 with the upper bound κl ≥
|⟨Aδs1 , Azl⟩|/∥a∥∞ defined in (81). Using Lemma A.3, with (166) and (173), we obtain
with ai0 ≥ 0,

|⟨Aδs1 , AX⟩| ≥ (1 + γ)|ai0|⟨δs1 , δti0 ⟩h − 2|ai0|γ − ((1− γ)µ+ 2γ)
k∑

i=1;i ̸=i0

|ai| − ∥a∥∞κl

= (1 + γ)|ai0|e
−

∥s1−ti0
∥22

2σ2 − (1− γ)µ
k∑

i=1;i ̸=i0

|ai| − 2γ
k∑

i=1

|ai| − ∥a∥∞κl.

(174)

Now that we have a lower bound for |⟨Aδs1 , AX⟩|, let us calculate an upper bound for
|⟨Aδs2 , AX⟩|,

|⟨Aδs2 , AX⟩| =

∣∣∣∣∣
k∑

i=1

ai⟨Aδs2 , Aδti⟩+ ⟨Aδs2 , Az⟩

∣∣∣∣∣ ≤
k∑

i=1

|ai⟨Aδs2 , Aδti⟩|+ |⟨Aδs2 , Az⟩| .

(175)
There is j0 such that ξ ≤ ∥tj0 − s∗∥2 < ϵ/3. With Lemma B.1, we get an upper bound
for |⟨Aδs2 , Az⟩| /∥a∥∞,

|⟨Aδs2 , AX⟩| ≤ |aj0||⟨Aδs2 , Aδtj0 ⟩|+
k∑

i=1;i ̸=j0

|ai||⟨Aδs2 , Aδti⟩|+ ∥a∥∞κl. (176)
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We use the upper bound given in Lemma A.3 to get,

|⟨Aδs2 , AX⟩| ≤ (1− γ)|aj0 |⟨δs2 , δtj0 ⟩h + 2γ|aj0|

+ (1− γ)
k∑

i=1;i ̸=j0

|ai|⟨δs2 , δti⟩h + 2γ
k∑

i=1;i ̸=j0

|ai|+ ∥a∥∞κl

(177)

|⟨Aδs2 , AX⟩| ≤ (1− γ)|aj0|e
−

∥s2−tj0
∥22

2σ2 + 2γ|aj0|

+ (1− γ)
k∑

i=1;i ̸=j0

|ai|e−
∥s2−ti∥

2
2

2σ2 + 2γ
k∑

i=1;i ̸=j0

|ai|+ ∥a∥∞κl.
(178)

Since ∥tj0 − s2∥2 ≤ ϵ
3
< ϵ

2
, with the triangle inequality, we get, for i ̸= j0,

∥tj0 − s2∥2 + ∥s2− ti∥2 ≥ ∥tj0 − ti∥2 i.e.
ϵ

2
+ ∥s2− ti∥2 > ϵ so that ∥s2− ti∥2 >

ϵ

2
.

(179)
By using this property in (178) and by the fact that, as in (14), for all i ̸= j0,
e−∥s2−tj0∥

2
2/(2σ

2) ≤ µ, we obtain

|⟨Aδs2 , AX⟩| ≤ (1− γ)|aj0|e
− ξ2

2σ2 + (1− γ)µ
k∑

i=1;i ̸=j0

|ai|+ 2γ
k∑

i=1

|ai|+ ∥a∥∞κl. (180)

A sufficient condition to prove |⟨Aδs1 , AX⟩| > |⟨Aδs2 , AX⟩| is

|⟨Aδs1 , AX⟩| ≥ (1 + γ)|ai0|e
−

∥s1−ti0
∥22

2σ2 − (1− γ)µ
k∑

i=1;i ̸=i0

|ai| − 2γ
k∑

i=1

|ai| − ∥a∥∞κl >

(1− γ)|aj0 |e
− ξ2

2σ2 + (1− γ)µ
k∑

i=1;i ̸=j0

|ai|+ 2γ
k∑

i=1

|ai|+ ∥a∥∞κl ≥ |⟨Aδs2 , AX⟩| .

(181)

Consider any s1 ∈ E1, if for all s2 ∈ E2, the previous inequality (181) is verified, then
s∗ /∈ E2. Now take s1 = t1 = ti0 ∈ E1 with i0 = 1 and, we rewrite the middle inequality
in (181) as

(1− γ)|aj0|e
− ξ2

2σ2 < (1 + γ)|a1| − (1− γ)µ

(
k∑

i=2

|ai|+
k∑

i=1;i ̸=j0

|ai|

)

− 4γ
k∑

i=1

|ai| − 2∥a∥∞κl.

(182)

By dividing both sides by (1− γ)|aj0|, we get that the inequality above is verified if the
one following is verified,

e−
ξ2

2σ2 <
1

(1− γ)|aj0|

[
|a1| − (1− γ)µ

(
k∑

i=2

|ai|+
k∑

i=1;i ̸=j0

|ai|

)

− γ

(
4

( k∑
i=1

|ai|
)
− |a1|

)
− 2∥a∥∞κl

]
.

(183)



Estimation of off-the grid sparse spikes with over-parametrized PGD 45

If we rewrite
∑k

i=1 |ai| as ∥a∥1, we obtain

e−
ξ2

2σ2 =
1

1− γ

[
|a1|
|aj0|

− (1− γ)µ

(
∥a∥1 − |a1|
|aj0|

+
∥a∥1 − |aj0|
|aj0|

)

− 4∥a∥1 − |a1|
|aj0|

γ − 2
∥a∥∞
|aj0|

κl

]
.

(184)

With α = |a1|/|ak| = ∥a∥∞/mini |ai| then (∥a∥1 − |a1|)/|aj0| ≤ (k − 1)α, (∥a∥1 −
|aj0|)/|aj0 | ≤ kα − 1 and (4∥a∥1 − |a1|)/|aj0| ≤ (4k − 1)α. We deduce that the above
inequality is verified if

e−
ξ2

2σ2 <
1− ((2k − 1)α− 1)(1− γ)µ− (4kα− 1)γ − 2κlα

1− γ
. (185)

With Lemma B.2, since (152) is verified and we have shown with (159) that D < 1,
we have that (185) is verified and in turn |⟨Aδs1 , AX⟩| > |⟨Aδs2 , AX⟩|. We deduce that
|⟨Aδs∗ , AX⟩| ≥ |⟨Aδs1 , AX⟩| > |⟨Aδs2 , AX⟩|.

c) Comparison between s1 ∈ E1 and s3 ∈ E3 For this case, we use the same lower
bound (174) for |⟨Aδs1 , AX⟩|. Let s3 ∈ E3,

|⟨Aδs3 , AX⟩| =

∣∣∣∣∣
k∑

i=1

ai⟨Aδs3 , Aδti⟩+ ⟨Aδs3 , Azl⟩

∣∣∣∣∣ ≤
k∑

i=1

|ai⟨Aδs3 , Aδti⟩|+ |⟨Aδs3 , Azl⟩| .

(186)
We use Lemma B.1 and the upper bound κl defined in (81) to get

|⟨Aδs3 , AX⟩| ≤
k∑

i=1

|ai||⟨Aδs3 , Aδti⟩|+ ∥a∥∞κl. (187)

Using Lemma A.3,

|⟨Aδs3 , AX⟩| ≤ (1− γ)
k∑

i=1

|ai|⟨δs3 , δti⟩h + 2γ
k∑

i=1

|ai|+ ∥a∥∞κl. (188)

Since s3 ∈ E3, we have that ∀i ∈ {1, . . . , K}, ∥s3 − ti∥2 ≥ ϵ
3

and with Lemma 3.1 (iii),
we obtain

|⟨Aδs3 , AX⟩| ≤ (1− γ)µ
k∑

i=1

|ai|+ 2γ
k∑

i=1

|ai|+ ∥a∥∞κl. (189)

A sufficient condition to prove |⟨Aδs1 , AX⟩| > |⟨Aδs3 , AX⟩| is

(1 + γ)|ai0|e
−

∥s1−ti0
∥22

2σ2 − (1− γ)µ
k∑

i=i;i ̸=i0

|ai| − 2γ
k∑

i=1

|ai| − ∥a∥∞κl >

(1− γ)µ
k∑

i=1

|ai|+ 2γ
k∑

i=1

|ai|+ ∥a∥∞κl.

(190)
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Consider any s1 ∈ E1. If for all s3 ∈ E3, the previous inequality (190) is verified, then
s∗ /∈ E3. Now take s1 = t1 = ti0 ∈ E1 with i0 = 1 , we rewrite (190) as

(1 + γ)|a1| − 2κl∥a∥∞ > (1− γ)µ

(
2

k∑
i=1

|ai| − |a1|

)
+ 4γ

k∑
i=1

|ai|. (191)

By isolating µ, we get

µ <
|a1| − (4

∑k
i=1 |ai| − |a1|)γ − 2κl∥a∥∞

(2
∑k

i=1 |ai| − |a1|)(1− γ)
=

1− (4∥a∥1/|a1| − 1)γ − 2κl∥a∥∞/|a1|
(2∥a∥1/|a1| − 1)(1− γ)

.

(192)
This is verified if

µ <
1− (4kα− 1)γ − 2κlα

(2kα− 1)(1− γ)
. (193)

As shown in Lemma B.3 thanks to (160) and the fact that D < 1 (from (159)), we have
that (193) is true. We deduce that |⟨Aδs1 , AX⟩| > |⟨Aδs3 , AX⟩| and |⟨Aδs∗ , AX⟩| ≥
|⟨Aδs1 , AX⟩| > |⟨Aδs3 , AX⟩|.

d) Conclusion: We have shown that for all s ∈ E2 ∪ E3, there is s1 ∈ E1 such that
|⟨Aδs1 , AX⟩| > |⟨Aδs, AX⟩|. This shows that s∗ is necessarily in E1 as E1∩(E2∪E3) = ∅
i.e. there exists an i0 such that ∥s∗ − ti0∥2 < ξ.

We can now prove Theorem 3.3 by induction.

Proof for Theorem (3.3). Let us define the set

X ϵ,ξ
K,l :=

{
xk,ϵ + zl,ξ, ϵ

3
: k = K − l; xk,ϵ =

k∑
i=1

aiδti ∈ ΣK,ϵ;

zl,ξ, ϵ
3
=

k+l∑
i=k+1

aiδti − biδsi ∈ Zl,ξ, ϵ
3
; {ti, i = 1, . . . , K} pairwise ϵ-separated

}
.

(194)

Let us define XK,0 := xK,ϵ and, for l ∈ {1, . . . , K − 1}, XK,l = xK,ϵ −
∑l

i=1 biδs∗i , where
bi is the amplitude output by OP-COMP at step i. Our goal is to show by induction
that for all l = 0, . . . , K, we have that XK,l ∈ X ϵ,ξ

K,l.

a) Induction assumption For every l ∈ {0, . . . , K}, XK,l ∈ X ϵ,ξ
K,l.

Let P(l): XK,l ∈ X ϵ,ξ
K,l. We give a proof by induction on l.

b) P(0) We have XK,0 = xK,ϵ ∈ ΣK,ϵ. Using the definition of X ϵ,ξ
K,l, we have that

XK,0 = xK,ϵ ∈ X ϵ,ξ
K,0 with zl,ξ, ϵ

3
= 0, P(0) is true.
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c) Induction step Let l ∈ {0, . . . , K − 1} and k = K − l. Assume P(l). We show
P(l + 1).
To ease our notations, we consider a permutation t̃ of the positions t (and the
corresponding permutation ã of the amplitudes a) such that for the first l outputs
of COMP without sliding s∗1, . . . , s

∗
l , we have ∀i = 1, . . . , l + 1, ∥t̃K−l+i − s∗i ∥2 < ξ. The

hypotheses of Proposition B.1 are verified for XK,l, so there exists i0 ∈ {1, . . . , k − l}
such that ∥s∗l+1 − t̃i0∥2 < ξ < ϵ

3
and

XK,l+1 = xK,ϵ −
l+1∑
j=1

bjδs∗j =
K∑
i=1

ãδt̃i −
l+1∑
j=1

bjδs∗j (195)

=
k∑

i=1;i ̸=i0

ãiδt̃i

=xk−1,ϵ∈Σk−1,ϵ

+
K∑

i=K−l+1

ãiδt̃i −
l∑

j=1

bjδs∗j

=y∈Zl,ξ, ϵ3

+ãiδt̃i0 − bl+1δs∗l+1
. (196)

To show that y + ãiδt̃i0 − bl+1δs∗l+1
∈ Zl+1,ξ, ϵ

3
, as we have ensured that πl+1 :=

ãiδt̃i0 − bl+1δs∗l+1
is a ξ-concentrated dipole, we just need to make sure that πl+1 is

ϵ
3
-separated with every πi := ãK−l+iδt̃K−l+i

− biδs∗i for i = 1, . . . , l.

d) ϵ
3
-separated dipoles Using the reverse triangle inequality we have for all i ∈

{1, . . . , l}, ∥t̃i − s∗l+1∥2 ≥ ∥t̃i − t̃i0∥2 − ∥t̃i0 − s∗l+1∥2 ≥ ϵ− ξ > ϵ− ϵ
3
> ϵ

3
.

To control distances ∥s∗l+1 − s∗i ∥2 for i = 1, . . . , l, we use that ∥t̃K−l+i − s∗i ∥2 ≤ ξ < ϵ
3

(from P(l)). Starting from ∥t̃i0 − t̃K−l+i∥2 ≥ ϵ, we have

∥t̃i0 − t̃K−l+i∥2 ≥ ϵ (197)

i.e. ∥t̃i0 − s∗l+1 + s∗l+1 − s∗i + s∗i − t̃K−l+i∥2 ≥ ϵ (198)

so that ∥t̃i0 − s∗l+1∥2 + ∥s∗l+1 − s∗i ∥2 + ∥s∗i − t̃K−l+i∥2 ≥ ϵ (199)

hence
ϵ

3
+ ∥s∗l+1 − s∗i ∥2 +

ϵ

3
≥ ϵ (200)

so ∥s∗l+1 − s∗i ∥2 >
ϵ

3
. (201)

We showed that {s∗i , i = 1, . . . , l} are ϵ
3
-separated with s∗l+1. Since the supports of

{πi, i = 1, . . . , l} are ϵ
3
-separated with the support of πl+1, we have that y + ãiδt̃i0 −

bl+1δs∗l+1
∈ Zl+1,ξ, ϵ

3
.

Finally, by setting zl+1,ξ, ϵ
3
= y + ãiδt̃i0 − bl+1δs∗l+1

, we get

XK,l+1 = xk−1,ϵ + zl+1,ξ, ϵ
3
∈ X ϵ,ξ

K,l+1. (202)

That is, the statement P(l + 1) also holds true, establishing the induction step.

e) Conclusion Since both the base case and the induction step have been proven as
true, by induction, the statement P(l) holds for every l ∈ {0, . . . , K} which implies that
for every l ∈ {0, . . . , K} there is i ∈ {0, . . . , K}, ∥s∗l − ti∥2 ≤ ξ.
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C. Appendix: Proofs for Theorem 3.4 (result without amplitudes)

The proof is essentially the same as Theorem 3.3. As the induction is same, we just
update the induction step in the following Proposition.

Proposition C.1. Let k, l,K ∈ N such that k+ l = K ≥ 2. Let xk,ϵ =
∑k

i=1 δti ∈ ΣK,ϵ.
Assume that the linear operator A has the γ-RIP on S(ΣK, ϵ

3
) with a Gaussian kernel h

of variance σ2. Let

ξ :=

√
2σ2 ln

(
1

(1− (4K − 1) (µ+ γ))

)
. (203)

Let X = xk,ϵ + zl where zl =
∑K

i=k+1 δti − δsi ∈ Zl,ξ, ϵ
3

and s∗ ∈ argmax
s̃∈Rd

|⟨Aδs̃, AX⟩|.

Suppose

µ+ γ <
1

10 (4K − 1)
(204)

and
ϵ2 > 18σ2 ln

(
10

9

)
. (205)

Then, there exists i0 ∈ {1, . . . , k} such that ∥s∗ − ti0∥2 < ξ < ϵ
3
.

This proof is similar to the one of Proposition B.1. The elements that differs are
the less strict hypothesis.

Proof. Preliminary bounds.

• With our hypotheses (203) and (204), we have, for K ≥ 2,

e−
ξ2

2σ2 = 1− (4K − 1)(µ+ γ) > 1− 1

10
=

9

10
. (206)

We obtain
2

(
1− e−

ξ2

2σ2

)
≤ 2

(
1− 9

10

)
=

1

5
. (207)

We can bound ∥δti − δsi∥h for all i ∈ {k + 1, . . . , K},

∥δti − δsi∥h = ∥δti∥h + ∥δsi∥h − 2⟨δti , δsi⟩h = 2(1− e
∥ti−si∥

2
2

2σ2 ) (208)

so that ∥δti − δsi∥h < 2

(
1− e−

ξ2

2σ2

)
=

1

5
. (209)

Hence,
D := max

i∈{k+1,...,K}
∥δti − δsi∥h < 1. (210)

This inequality (210) will be useful to use Lemma B.2 and Lemma B.3 later in the
proof.
• From (204), we deduce that the hypothesis

µ+ γ ≤ 1

4Kα− 1
. (211)

of Lemma B.3 is verified.
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• We have that (206) implies
(
1− (4K − 1) (µ+ γ)

)−1
< 10

9
, so that

ξ =

√
2σ2 ln

(
1

1− (4K − 1) (µ+ γ)

)
<

√
2σ2 ln

(
10

9

)
=

1

3

√
18σ2 ln

(
10

9

)
.

(212)
Using the hypothesis (205), we obtain ξ < ϵ

3
.

Main proof of Proposition C.1. We divide Rd into three sets:

• E1 = {s ∈ Rd : ∃i0 ∈ {1, . . . , k} / ∥s− ti0∥2 < ξ} ;

• E2 = {s ∈ Rd : ∃i0 ∈ {1, . . . , k} / ξ ≤ ∥s− ti0∥2 < ϵ
3
};

• E3 = {s ∈ Rd : ∀ti, ∥s− ti∥2 ≥ ϵ
3
}.

We note that E1, E2 and E3 are pairwise disjoint and E1 ∪ E2 ∪ E3 = Rn. Moreover,
since ξ < ϵ

3
, the set E2 is non-empty.

b) Comparison between s1 ∈ E1 and s2 ∈ E2 Let s1 ∈ E1 and i0 such that
∥s1 − ti0∥2 ≤ ξ. We have

|⟨Aδs1 , AX⟩| ≥ ⟨Aδs1 , AX⟩ = ⟨Aδs1 , Aδti0 + A
k∑

i=1;i ̸=i0

δti + Azl⟩ (213)

= ⟨Aδs1 , Aδti0 ⟩+ ⟨Aδs1 , A
k∑

i=1;i ̸=i0

δti⟩+ ⟨Aδs1 , Azl⟩. (214)

Using Lemma A.3, we get

⟨Aδs1 , A
k∑

i=1;i ̸=i0

δti⟩ ≥ (1 + γ)
k∑

i=1;i ̸=i0

⟨δs1 , δti⟩h −
k∑

i=1;i ̸=i0

2γ ≥ −2γ(k − 1). (215)

Going back to |⟨Aδs1 , AX⟩|, we use Lemma B.1 with the upper bound κl ≥ |⟨Aδs1 , Azl⟩|
defined in (81). Using Lemma A.3, with (214) and (215), we obtain,

|⟨Aδs1 , AX⟩| ≥ (1 + γ)⟨δs1 , δti0 ⟩h − 2γ − 2γ(k − 1)− κl (216)

= (1 + γ)e−
∥s1−ti0

∥22
2σ2 − 2γk − κl. (217)

Now that we have a lower bound for |⟨Aδs1 , AX⟩|, let us get an upper bound for
|⟨Aδs2 , AX⟩|,

|⟨Aδs2 , AX⟩| =

∣∣∣∣∣
k∑

i=1

⟨Aδs2 , Aδti⟩+ ⟨Aδs2 , Az⟩

∣∣∣∣∣ ≤
k∑

i=1

|⟨Aδs2 , Aδti⟩|+ |⟨Aδs2 , Az⟩| . (218)

There is j0 such that ξ ≤ ∥tj0 − s∗∥2 < ϵ
3
. With Lemma B.1, we get an upper bound for

|⟨Aδs2 , Az⟩|,

|⟨Aδs2 , AX⟩| ≤ |⟨Aδs2 , Aδtj0 ⟩|+
k∑

i=1;i ̸=j0

⟨Aδs2 , Aδti⟩|+ κl. (219)
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We use the upper bound given in Lemma A.3 to get,

|⟨Aδs2 , AX⟩| ≤(1− γ)⟨δs2 , δtj0 ⟩h + 2γ + (1− γ)
k∑

i=1;i ̸=j0

⟨δs2 , δti⟩h

+ 2γ
k∑

i=1;i ̸=j0

1 + κl

≤(1− γ)e−
∥s2−tj0

∥22
2σ2 + 2γ + (1− γ)

k∑
i=1;i ̸=j0

e−
∥s2−ti∥

2
2

2σ2

+ 2γ(k − 1) + κl.

(220)

Since ∥tj0 − s2∥2 ≤ ϵ
3
, with the triangle inequality, we get, for i ̸= j0,

∥tj0−s2∥2+∥s2−ti∥2 ≥ ∥tj0−ti∥2 i.e.
ϵ

3
+∥s2−ti∥2 > ϵ so that ∥s2−ti∥2 >

2ϵ

3
>

ϵ

3
.

(221)
By using this property in (220) and by the fact that, as in (14), ∀i ̸= j0, e

−∥s2−ti∥22/(2σ2) ≤
µ, we obtain

|⟨Aδs2 , AX⟩| ≤ (1− γ)e−
ξ2

2σ2 + (1− γ)µk + 2γk + κl. (222)

A sufficient condition to prove |⟨Aδs1 , AX⟩| > |⟨Aδs2 , AX⟩| is

|⟨Aδs1 , AX⟩| ≥ (1 + γ)e−
∥s1−ti0

∥22
2σ2 − 2γk − κl >

(1− γ)e−
ξ2

2σ2 + (1− γ)µk + 2γk + κl ≥ |⟨Aδs2 , AX⟩| .
(223)

Consider any s1 ∈ E1, if for all s2 ∈ E2, the previous inequality (223) is verified, then
s∗ /∈ E2. Now we take s1 = t1 = ti0 ∈ E1 with i0 = 1, we rewrite the middle inequality
in (223) as

(1− γ)e−
ξ2

2σ2 < (1 + γ)− (1− γ)µk − 4γk − 2κl. (224)

By dividing both sides by 1− γ and rearranging some terms, we get

e−
ξ2

2σ2 <
1

1− γ

(
1− (1− γ)µk − (4k − 1)γ − 2κl

)
. (225)

With α ≥ 1, we deduce that the above inequality is verified if

e−
ξ2

2σ2 <
1− ((2k − 1)α− 1)(1− γ)µ− (4kα− 1)γ − 2κlα

1− γ
. (226)

With Lemma B.2, since (203) is verified and we have shown with (210) that D < 1,
we get that (226) is verified and in turn |⟨Aδs1 , AX⟩| > |⟨Aδs2 , AX⟩|. We deduce that
|⟨Aδs∗ , AX⟩| ≥ |⟨Aδs1 , AX⟩| > |⟨Aδs2 , AX⟩|.
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c) Comparison between s1 ∈ E1 and s3 ∈ E3 For this case, we use the same lower
bound (217) for |⟨Aδs1 , AX⟩|. Let s3 ∈ E3,

|⟨Aδs3 , AX⟩| =

∣∣∣∣∣
k∑

i=1

⟨Aδs3 , Aδti⟩+ ⟨Aδs3 , Azl⟩

∣∣∣∣∣ ≤
k∑

i=1

|⟨Aδs3 , Aδti⟩|+|⟨Aδs3 , Azl⟩| . (227)

We use Lemma B.1 and the upper bound κl defined in (81) to get

|⟨Aδs3 , AX⟩| ≤
k∑

i=1

⟨Aδs3 , Aδti⟩|+ κl. (228)

Using Lemma A.3,

|⟨Aδs3 , AX⟩| ≤ (1−γ)
k∑

i=1

⟨δs3 , δti⟩h+
k∑

i=1

2γ+κl = (1−γ)
k∑

i=1

e−
∥s3−ti∥

2
2

2σ2 +2γk+κl. (229)

Since s3 ∈ E3, we have that ∀i ∈ {1, . . . , K}, ∥s3 − ti∥2 ≥ ϵ
3

and with the mutual
coherence in Assumption 1, we obtain

|⟨Aδs3 , AX⟩| ≤ (1− γ)µk + 2γk + κl. (230)

A sufficient condition to prove |⟨Aδs1 , AX⟩| > |⟨Aδs3 , AX⟩| is

(1 + γ)e−
∥s1−ti0

∥22
2σ2 − 2γk − κl > (1− γ)µk + 2γk + κl. (231)

Consider any s1 ∈ E1. If for all s3 ∈ E3, the previous inequality (231) is verified, then
s∗ /∈ E3. Now take i0 = 1 and s1 = ti0 ∈ E1, we rewrite (231) as

(1 + γ) > (1− γ)µk + 4γk + 2κl. (232)

With α ≥ 1, this is verified if

µ <
1− (4kα− 1)γ − 2κlα

(2kα− 1)(1− γ)
. (233)

As shown in Lemma B.3 thanks to (211) and the fact that D < 1 (from (210)), we
get that (233) is true. We deduce that |⟨Aδs1 , AX⟩| > |⟨Aδs3 , AX⟩| and |⟨Aδs∗ , AX⟩| ≥
|⟨Aδs1 , AX⟩| > |⟨Aδs3 , AX⟩|.

d) Conclusion We have shown that for all s ∈ E2 ∪ E3, there is s1 ∈ E1 such that
|⟨Aδs1 , AX⟩| > |⟨Aδs, AX⟩|. This shows that s∗ is necessarily in E1 as E1∩(E2∪E3) = ∅
i.e. there exists an i0 such that ∥s∗ − ti0∥2 < ξ.
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D. Appendix: Towards improved precision in SMLM, recovering signals
with a large number of spikes

We compare all three OP-COMP + PGD, COMP + GD and Sliding COMP algorithms
on a batch with K = 50 spikes. Since our method scales well with a larger number of
spikes, our goal is to reduce the number of batches by increasing the number of spikes
K in each batch. However, in the classical setting, we note that recovering spikes from
their observation is limited by the quality of said observation.

The idea is to decrease the width of the observation kernel. For the MA-TIRF
model, this can be achieved by decreasing the excitation wavelength λl. We choose to
change λl = 660nm in the classical setting to λl = 110nm, the adapted grid is finer with
192× 192 points on the same domain.

Even though these settings (low variance and fine grid) are uncommon and very
hard to set up in a practical sense, we anticipate such advancements in acquisition
methods and the potential improvements given by OP-COMP + PGD algorithm over
Sliding COMP.

When comparing the estimated signal from OP-COMP + PGD, COMP + GD and
Sliding COMP, we plot both ground truth and estimated signal, see Figure 18. We
observe that the estimated signals are close to the ground truth with all three methods.

Figure 18: 3D Plots of a signal of size K = 50 and its estimation by
OP-COMP (in green) and then PGD (in blue) (left), its estimation by
COMP (in green) and then GD (in blue) (center) and its estimation by

Sliding COMP (in blue) (right).

To compare these estimations, we use the same metrics we introduced previously
and the norm of the residue of each estimation. We get the following table,
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OP-COMP + PGD COMP + GD Sliding COMP

Computation time 333 minutes 327 minutes 537 minutes

Norm of residue

of estimation
3.58× 10−4 1.09× 10−3 2.46× 10−2

Jaccard Index 0.839 0.776 0.741

Recall 0.940 0.882 0.860

Precision 0.887 0.843 0.865

RMSE (x1, x2, x3)

in nm
(3.07, 2.70, 1.50) (3.17, 2.65, 2.47) (4.36, 2.80, 2.07)

Table 3: Table of comparison between OP-COMP + PGD, COMP + GD
and Sliding COMP on computation time, norm of residue, Jaccard, Recall

and Precision metrics and on RMSE of each dimensions.

We observe in Table 3 that all metrics of OP-COMP + PGD are better compared
to Sliding COMP with a 40% improvement in computation time. We obtain faster a
result closer to the ground truth in both RMSE and index terms. When comparing OP-
COMP + PGD with COMP + GD, the over-parametrization with projection is more
efficient as we have significant gains in all three metrics (Jaccard, Recall and Precision).
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