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Abstract 

Fretting fatigue causes failures in steel wire ropes. A crossed wires set-up was used to 

investigate the influence of displacement amplitude on fretting fatigue damage. The analysis 

confirms previous literature results, showing a beneficial effect of wear in gross slip regime, 

which extends the contact area and thus decreases the contact stresses. The computation of such 

combined cracking and wear processes is very expensive using a classical FEM strategy, 

particularly for 3D contact geometries. To palliate such limitations, a hybrid analytical-

numerical strategy was developped. It consists in estimating pressure and shear stress surface 

fields using analytical formulations, then to transpose these fields to an FEM model. This allows 

to simulate contact geometry modifications in a fast and efficient way.  

 

Nomenclature 

P contact normal force 

Q∗ contact tangential force amplitude  

μGS friction coefficient in gross slip regime for the crossed wires contact 
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μt friction coefficient at the partial to gross slip transition for the crossed wires contact 

p pressure field 

q shear stress field 

aX semi-major axe of the fretting scar ellipse 

aY semi-minor axe of the fretting scar ellipse 

σ fatigue stress 

σa fatigue stress amplitude  

σm mean fatigue stress  

δFA
∗   displacement amplitude of the fretting actuator 

δFA,0
∗   displacement amplitude of the specimen at the contacting point 

δ∗ effective displacement amplitude  

δt
∗ effective displacement amplitude at the partial slip/gross slip transition  

δs
∗  sliding amplitude 

Nc number of cycles 

Nf number of cycles to failure 

σD fatigue limit in pure alternated tension 

σSWT Smith-Watson-Topper equivalent stress 

ℓd critical distance 

σSWT,ℓd
 Smith-Watson-Topper equivalent stress evaluated at the critical distance under the 

hotspot 

 

1. Introduction 

Spiral strand steel wire ropes are composed of steel wires helically wound around a central 

wire in successive layers. Two successive layers are usually laid in opposite directions, 

producing punctual contacts between the wires. Fretting is defined as a cyclic relative movement 

of very small amplitude between two bodies in contact. The resulting high local stresses under 

the contact interface can lead to crack initiation. If only a fretting load is imposed, cracks do not 
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propagate deeply, as the contact stresses decrease rapidly below the surface. When fretting is 

combined with fatigue loads, inducing fretting fatigue, the cracks may propagate, inducing 

failure. This phenomenon is considered one of the main causes of damage in steel ropes [1], and 

has been widely studied [2–5] Raoof et al. have shown in various publications[6–9 ] that fretting 

fatigue damage at the punctual contacts is the main factor controlling the rope fatigue life. 

Understanding and quantifying the phenomena responsible for this degradation is essential to 

design reliable ropes. When the stress fields in the solids are known, multiaxial fatigue criteria 

can be used to predict crack nucleation. These stress fields are often calculated numerically.  

One of the key issues in these simulations is wear modelling, as wear continously modifies 

the geometry of the solids in contact. This induces contact stress field modifications which have 

to be considered for accurate cracking failure predictions. The strategy employed by several 

researchers [10–12] is to continuously adapt the mesh of the FEM model, displacing the nodes. 

Madge et al [13] applied this approach to predict fretting fatigue lifetime: they created a wear 

model based on Archard’s law, combined with a SWT (Smith-Watson-Topper) cumulative 

damage analysis. Arnaud et al [14] modelled the debris layer for improved lifetime predictions. 

However, these methods are very computationally expensive, which considerably restricts their 

application. Another solution is to use semi-analytical models : Gallego and Nélias [15] created a 

semi-analytical wear model, based on the integration of Boussinesq and Cerruti potentials, 

which is fast enough for 3D analyses. This model was extended by Done et al [16] then by Garcin 

et al [17] to take into account the debris layer.  

In this paper, we present another wear modelling strategy : instead of simulating wear using 

a fully coupled FEM analysis, we analytically estimate the pressure and shear fields, taking into 

account the surface wear, then transpose these contact fields to an FEM specimen. This approach 

stemmed from the need to efficiently model fretting fatigue damage of steel wires in crossed 

contact while taking into account contact geometry modification. This approach combines the 

versatily and ease of application of a FEM analysis with the low numerical cost of an analytical 

determination of the pressure and shear fields. This comes at the expense of some precision 

compared to the semi-analytical or full FEM methods. This hybrid method is intended as a 

simpler and faster mean of estimating the crack initiation risk in fretting fatigue. The reliability 

of this hybrid analytical-FEM numerical strategy will be evaluated by comparing the predictions 

of dedicated steel crossed fretting fatigue experiments from partial to gross slip conditions 

taking into the contact geometry modifications induced by surface wear damages. 
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2. Materials and methods 

2.1. Materials 

The tested specimens are high strength steel wires with a 4.85 mm diameter manufactured 

through wire drawing. The wires are initially coated with a 50 μm zinc layer which was 

systematically removed using inhibited hydrochloric acid. This chemical attack leaves the steel 

intact. Static traction and fatigue tests were conducted on specimens machined from the wires. 

The material properties of the steel are listed in Table 1.  

Table 1 : material properties of the steel 

Elasticity modulus E  210 000 MPa 

Yield stress  1800 MPa 

Fatigue limit in pure alternated tension σD 776 MPa 

Steel grade C92D (standard ISO 16120-2) 

 

2.2. Plain fretting test: friction and wear analyses  

To investigate the surface wear phenomenon, plain fretting tests were performed using a 

single actuator MTS hydraulic rig, which is displayed in Figure 1. The loading wire is in contact 

with the specimen wire at an angle β = 30°, and a constant normal force P is applied with a 

spring-screw system connected to normal force arms. The specimen wire is fixed. An actuator 

applies a cyclic sinusoidal displacement δ(t) = δ∗ ⋅ sin (2πft). A load cell measures the tangential 

force Q(t). Note that the measured displacement amplitude is rig-dependant, as it depends on 

the rig stiffness. The wires are cleaned with ethanol before being put in contact.  
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(a) 

Figure 1: (a) plain fretting test rig. 

 

 

 
    

(a)     (b) 

Figure 2: fretting loops extracted from plain fretting ( 𝑃 = 1400 N) (a)  partial slip, (b) gross slip  

Figure 2 displays fretting loops in partial slip and gross slip. A very distinct evolution is 

observed. Partial slip displays a closed fretting loop whereas gross slip is characterized by an 

open hysteresis. The tangential force amplitude Q∗, the displacement amplitude δ∗ and the 

friction energy related to the area of the hysteresis are extracted from these fretting loops. The 

sliding amplitude δs
∗ is estimated by measuring the residual displacement when the tangential 

force is zero: δs
∗ ≃ δ∗(Q = 0) [18]. It is negligible under partial slip but significant under gross 

slip and will be considered to compute Archard’s wear parameter. Note that the sliding 
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amplitude is not equal to the displacement value due to the contact and test system 

accommodations. If the fretting loop analysis is not possible, the sliding amplitude δs
∗ under 

gross slip can also be estimated from δ∗ such that: 

δs
∗ = δ∗ − δt

∗ ⋅
μGS

μt
 ( 1 ) 

 

Figure 3 displays the tangential force amplitude Q∗ as a function of the displacement 

amplitude δ∗. Increasing δ∗ leads first to a quasi linear rising of Q∗ until it reaches a maximum 

value Qt
∗ = μt ⋅ P at the partial slip/gross slip transition, with μt ≃ 0.9 . When the contact shifts 

to gross slip, Q∗ drops, as the friction coefficient in gross slip is μGS ≃ 0.7.   

 

Figure 3: Evolution of  𝑄∗as a function of  𝛿∗ using a variable displacement test method on plain 
fretting test rig (𝑃 = 1400 N). 

 

2.3. Fretting fatigue test rig 

The fretting fatigue tests were conducted on a two-actuator MTS hydraulic rig, displayed in 

Figure 4. Like for plain fretting test, wires were contacted with an angle β = 30°. A polymer pad 

is placed on the opposite side to prevent specimen bending. Its material and shape were chosen 

to minimise friction. A constant normal force is applied using a sliding rail and a spring-screw 

system allowing the application of a constant normal force. The fretting actuator displacement 

δFA(t) = δFA
∗ ⋅ sin (2πft) induces a displacement of the loading wire. Load cells measure forces 

FA(t) and FB(t) on both extremities of the specimen. The total tangential force Qtot(t) involving 

the crossed wires contact plus the polymer contact is given by:  

Qtot(t) = FB(t) − FA(t) ( 2 ) 
The amplitude of the tangential force related to the single crossed wires contact is deduced by:  
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Q∗ = Qtot
∗ − Qpp

∗  ( 3 ) 
  
where Qpp

∗  is the amplitude of the tangential force applied by the polymer pad, which was 

identified doing a test with two polymer pads for equivalent contact conditions.  

 

Figure 4: fretting fatigue test rig 

The “fatigue actuator” applies a cyclic force FA(t) to the specimen. The use of two 

actuators allows to decouple fretting and fatigue loadings. The actuators move in phase, at the 

same frequency f. The setpoint of the fatigue actuator is automatically adapted so that FB
∗  stays 

constant even with changing Qtot
∗ . The fatigue load is therefore given by: 

 σ = σm + σa ⋅ sin(2πft) =
FB

S
          ( 4 ) 

where S is the specimen cross-section area. 

Figure 5 displays the evolution of tangential force amplitude Qtot
∗  as a function of fretting 

actuator displacement amplitude δFA
∗ , obtained with a variable displacement test with constant 

fatigue amplitude. In-phase displacement of the actuators leads to this typical non-monotonic 

Qtot
∗ (δFA

∗ ) curve. When the fretting actuator is not moving (i.e., δFA
∗ = 0), a fretting load is 

generated by the elongation of the specimen due to the fatigue actuator load. Increasing δFA
∗ , the 

relative mismatch between the fatigue elongation of the specimen and the fretting displacement 

decreases, so Qtot
∗  decreases, until the fatigue elongation is fully compensated at δFA

∗ = δFA,0
∗ . 

Further increase of δFA
∗  promotes a reverse mismatch, leading to an increase of Qtot

∗ , until it 

reaches a maximum at the partial slip/gross slip transition.  
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Figure 5: variable displacement test on the fretting fatigue test rig with constant fatigue 

amplitude. 𝑃 = 1400 N, 𝜎𝑚 = 320 MPa, 𝜎𝑎 = 160 MPa 

For better readability of the figures, instead of using the displacement amplitude of the 

fretting actuator δFA
∗ , we will consider an effective displacement amplitude δ∗ defined as: 

δ∗ = δFA
∗ − δFA,0

∗  ( 5 ) 

For the tests, we chose to exclusively use the δFA
∗ ≥ δFA,0

∗  domain.  

Hence, for each δ∗, we measure Qtot
∗ , and applying equation ( 3 ), we can deduce the effective Q∗ 

tangential force amplitude.  

2.4. Contact configuration 

Figure 6 illustrates the contact morphology induced by a β(X1; X2) = 30° crossed wires 

configuration. An elliptical shape is observed with a major angle axis X following the median 

position between X1 and X2 so that γ =
β

2
=  15°. This elliptical contact is characterized by the 

semi-major contact radius aX along X and the semi-minor contact radius aY along the 

perpendicular direction Y. Under partial slip condition, an elliptical inner stick zone is operating 

leading to the corresponding cX and cY stick radius. Note that for the perpendicular crossed 

wires situation β =  90°, an equivalent sphere/plane contact situation is observed so that  

a =  aX = aY   and c =  cX = cY. Finally the contact area is simply estimated by : 

Aw = π × aX × aY             ( 6 ) 

These various length scale variables (i.e.  aX, aY, cX, cY, A) will be measured on the fretting scars 

or computed using the model.  
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Figure 6 : Elliptical fretting scar (partial slip contact) related to the studied 30° crossed wires 
contact configuration. 

 

3. Experimental results and discussion 

3.1. Fretting fatigue tests 

Three series of experiments have been performed. The range of applied loads was chosen to 

be representative of the loads in a wire rope, and were identified through the FEM simulation of 

a wire rope (not developped here). A first series (called A) consists in imposing a constant 

normal load P = 1400 N and a constant fatigue stress (σm = 320 MPa, σa = 160 MPa) but 

varying the contact displacement δ∗ from partial slip to gross slip. These results will be more 

deeply investigated since our objective is to investigate and simulate the effect of wear on 

fretting fatigue. Two other series of experiments, called B and C, running under partial slip 

condition have been also performed to confirm the given fretting fatigue model. Series B consists 

in keeping the same fatigue loading as A but decreasing the normal load to P = 500 N. The 

tangential forces were kept below the gross slip transition. Series C consists in maintaining a 

constant partial fretting loading P = 1400 N and Q∗ ≃ 1000 N, a constant fatigue mean stress 

σm = 320 MPa but varying the fatigue stress amplitude from σa = 36 MPa to σa = 160 MPa. All 

these experiments have been performed at a constant f = 10 Hz  frequency under ambiant room 

temperature.  

Table 2 : Compilation of the experimental results and related loading stress (i. e σSWT,ℓd
  , 

paragraphs 4.1.4 and 4.1.5). 

Table 2 : compilation of the test conditions in fretting fatigue endurance 

Series P (N) δ∗ (μm) Q∗ (N) SC σm (MPa) σa (MPa) Nf σSWT,ℓd
 (MPa) 
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A 1400 9 88 PS 320 160 > 106 615 

A 1400 17 141 PS 320 160 > 106 776 

A 1400 19 147 PS 320 160 500 000 787 

A 1400 27 273 PS 320 160 370 000 1101 

A 1400 48 460 PS 320 160 167 000 1331 

A 1400 81 673 PS 320 160 121 000 1405 

A 1400 106 860 PS 320 160 107 000 1339 

A 1400 145 1090 PS 320 160 74 000 1350 

A 1400 165 1152 GS 320 160 > 106 XX 

A 1400 210 1264 GS 320 160 > 106 XX 

A 1400 260 1330 GS 320 160 > 106 XX 

B 500 19 203 PS 320 160 236 000 874 

B 500 33 290 PS 320 160 311 000 959 

C 1400 140 1004 PS 320 100 223 000 1321 

C 1400 140 953 PS 320 49 610 000 1284 

C 1400 140 1008 PS 320 36 1 190 000 1265 

 

Figure 7.a displays the lifetimes of series A in fretting fatigue as a function of the 

displacement amplitude δ∗. A log scale was used for the lifetime axis. Figure 7.b displays the 

corresponding normalized tangential force amplitudes averaged over the whole duration of the 

tests, noted Q∗/P. The dotted vertical line at δ∗ = 150 μm represents the partial slip/gross slip 

transition.  
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(a) 

 

(b) 

Figure 7: (a) evolution of the fretting fatigue lifetimes as a function of the effective displacement 

amplitude; (b) normalized tangential force amplitudes averaged over the duration of the test as 

a function of the effective displacement amplitude. Fretting fatigue tests with same fatigue loads 

and normal forces (𝜎𝑚 = 320 MPa, 𝜎𝑎 = 160 MPa, 𝑃 = 1400 N) 

Below δ∗ = 20 μm, the fretting loads are too small to induce crack initiation, so the lifetime is 

above 106 cycles. A crack initiation threshold is observed at δ∗ = 20 μm above which the 

endurance sharply decreases. Between δ∗ = 40 μm and δ∗ = 150 μm, the endurance decreases 

as the tangential force increases since cracks initiate faster. Above δ∗ = 150 μm, the contact is 
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running under gross slip regime, and the lifetime rises up above 106 cycles. This can be related 

to the surface wear, which have two beneficial effects: “rubbing out” the cracks before they can 

propagate; and extending the contact area, thus reducing the cyclic shear and pressure stresses. 

The “U” shape of the lifetime curve was abundantly investigated in the literature [13, 19, 20]. The 

lowest endurance is systematically observed at the partial slip/gross slip transition, followed by 

an increase in the lifetime when gross slip and surface wear operate. In our case, this increase is 

very sharp. It is interesting to note that the Q∗/P ratio is still rising under gross slip domain. 

Fouvry et al. [21] observed a similar tendency on  Ti-6Al-4V, which was explained assuming a 

ploughing effect, at the scale of the overall contact. Wear creates a depression in the specimen, 

promoting a tangential force peak at each border of the fretting cycle. This effect is better 

illustrated in Figure 8 where two fretting loops are compared after 20 000 and 100 000 fretting 

cycles respectively. After 20 000 fretting cycle, the depression is not formed and a rather flat 

evolution of the tangential force Q is observed during the sliding plateau. Beside the tangential 

force amplitude at the onset sliding sequence Qfs remains unchanged whatever the test duration 

since at this instant of the fretting cycle,  the counterface did not yet interact with the depression 

border.      

 

Figure 8:  Illustration of the fretting loops evolution and related ploughing effect under gross slip 
condition  (fretting fatigue test at 𝛿∗ = 260 μm) 

 

3.2. Fretting wear analysis 
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Figure 9.a displays the evolution of contact area at the end of the fretting fatigue tests as 

a function of displacement amplitude. A zoom on the partial slip domain is included. Figure 9.b,c 

shows pictures of the fretting scars at the end of the tests in the partial and gross slip domains. 

In the gross slip domain, the contact area increases significantly with the displacement 

amplitude, which was expected since gross slip wear is activated. The partial slip fretting scar is 

more interesting. The contact area also increases with the displacement amplitude. This is 

unexpected since according to the Mindlin’s theory, the contact area should remain constant 

[22]. For very small δ∗ close to zero, the contact area is close to the analytical prediction, given 

by Johnson’s formalism [23]. However, the contact extension under large δ∗ partial slip 

conditions needs to be explained.  

 

Figure 9: a) Evolution of the contact area at the end of the fretting fatigue tests as a function of 

the displacement amplitude,  b) fretting scar for a test at 𝛿∗ = 145 μm (partial slip),  c) fretting 

scar for a test at 𝛿∗ = 210 μm (gross slip) 
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Fretting fatigue tests with specimen failure is not appropriate to investigate the fretting wear 

contact extension, as the failure induces severe fretting scar deformations. To avoid this 

limitation, and also better control the sliding conditions, additional plain fretting tests have been 

performed varying the displacement from partial to gross slip domains for a constant 10 000 

fretting cycles duration. Figure 10 compares the fretting scars obtained. Note that the 

displacement amplitude is rig-dependant, so the comparison with Figure 9 is not direct.  The 2D 

surface profiles of partial slip condition shows very narrow surface modifications. Therefore, to 

quantify the surface damages under partial slip condition, the contact area measurement from 

optical observations will be preferred to the conventional 3D surface wear volume analysis.  

 

 

Figure 10: a) 3D wear profile of a fretting scar from a plain fretting test (10 000 cycles, 
𝛿∗ = 20 μm), b) 2D wear profiles of plain fretting tests (10 000 cycles) 

 

 

3.2.1. Fretting scar morphology under partial slip conditions 
 

Figure 11a displays the corresponding fretting log obtained from a plain fretting test 

imposing a δ∗ = 60 μm plain fretting displacement amplitude.  At the beginning of the test, gross 

slip is prevailing, before stabilizing in partial slip condition. As detailed by Zhou et al [24],  the 

contact is in fact running under mixed fretting regime with a gross slip period at the beginning 

followed by a steady state partial slip condition when the friction coefficient rises up. However, 

for simplicity, we will talk about “partial slip conditions”, which in fact correspond to a mixed 

fretting regime including a very short gross slip period followed by a very long partial slip 

response.  
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(a) 

 

(b) 

Figure 11: (a) fretting log of a plain fretting test at 𝛿∗ = 60 μm, 𝑃 = 1400 N (b) corresponding 

evolution of the 𝑄∗/𝑃 ratio, energy sliding ratio 𝐴, and Archard work 𝑊 dissipated per fretting 

cycle.  

This mixed fretting sliding response is confirmed in Figure 11b where the corresponding  Q∗/P 

and energy sliding ratio A evolutions are compared. The energy sliding ratio A expressed as [25] 

: 

A =
Ed

Et
=

Ed

4 ⋅ Q∗ ⋅ δ∗
 ( 7 ) 
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with Et the total energy of the fretting cycle, allows to quantify if a fretting cycle is running under 

partial slip (i.e. energy sliding ratio is lower than 0.2) or under gross slip condition (i.e. energy 

sliding ratio is higher than 0.2).  It clearly indicates that below N=500 cycles, the contact is 

running under gross slip. However with the rising of the coefficient of friction, the A ratio value 

decreases and after 500 cycles for the given displacement amplitude, the operating friction 

coefficient becomes high enough to shift the contact toward a partial slip contact response 

involving the formation of an inner stick zone. 𝑄∗/P ratio then stabilise at constant value. Note 

that under partial slip, the Q∗/P ratio is no more equal to the friction coefficient as a significant 

part of the tangential force is in fact related to the elastic accommodation of the inner stick zone 

[26]. To complete the analysis the corresponding Archard factor parameter dissipated per 

fretting cycle 𝑊 is plotted [27]: 

W = 4 × δs
∗ × P ( 8 ) 

The Archard factor parameter is significant during the transient gross slip period, indicating that 

surface wear is occurring at the beginning of the test. It decreases to zero when the partial slip 

condition stabilizes, suggesting that no additional surface wear degradation is occurring. This 

tendency is confirmed in Figure 12 where interrupted tests allows the plotting of the measured 

contact area as a function of the applied fretting cycles. The contact area increases from the 

initial unworn Hertzian estimation until the contact shifts to the partial slip condition. It is 

surprising to note that despite the very short period of the gross slip sequence, the contact area 

extension is significant (i.e. above a factor 5 for this δ∗ = 60 μm plain fretting test condition). 

 

Figure 12: contact area evolution as a function of the number of cycles (interrupted plain fretting 
tests)  (𝑃 = 1400 N, 𝛿∗ = 60 μm).  

This investigation confirms that the surface wear observed under partial slip domain is in fact 

induced by the transient gross slip period during which the coefficient of friction rises until 
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satisfying the partial slip condition. When the partial slip condition is stabilised, there is no more 

additional extension of the contact area.  

This investigation was extended for different plain fretting displacement amplitudes, 

keeping constant the test duration at 10 000 fretting cycles. The displacement amplitude is rig 

dependent, therefore the wear analysis was done comparing the measured aX and aY fretting 

scar radius as a function of the mean tangential force amplitude Q∗ (Figure 13). Linear rising 

evolution are observed suggesting that the longer the displacement amplitude, the higher Q∗, the 

longer the transient gross slip period, the larger the Archard work dissipated during this period 

and finally the larger the contact area extension.  Fretting fatigue results are also included in the 

analysis. The very good correlation with plain fretting data confirms the Q∗  tangential force 

amplitude is a pertinent parameter to quantify the contact area extension under partial slip 

condition. It also confirms that plain fretting tests are representative of wear phenomena 

generated under fretting fatigue conditions. Currently, research works are undertaken to explain 

the linear relationships between the contact radius and the steady state partial slip tangential 

force amplitude. They require complex couplings between the evolution of the coefficient during 

the transient gross slip period and the evolution of the fretting loop shape. In the frame of this 

investigation focused on the fretting fatigue cracking process, we will restrict our analysis by 

considering simple linear functions so that: 

aX = kaX
× Q∗ + aX0 

aY = kaY
× Q∗ + aY0 

( 9 ) 

  

with kaX
= 5.4 ⋅ 10−4 mm/N and kaY

= 2.8 ⋅ 10−4 mm/N  the linear coefficients of the worn 

contact radius extension related to X and Y axis respectively (i.e. extracted from the 

experimental data)  and  aX0 and aY0 the corresponding contact radius without gross slip wear 

period which can be approximated using the Hertz approximation so that for 𝑃 =  1400 N,  aX0  

= 0.77 mm and aY0 = 0.14 mm.   
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Figure 13: Evolution of the measured contact radius 𝑎𝑋 and 𝑎𝑌 related to partial slip domain as a 

function of the corresponding mean tangential force amplitude 𝑄∗.  This analysis includes plain 

fretting tests interrupted after 104 cycles and fretting fatigue tests expertised at the end of the 

test (𝑃 = 1400 N).  

A crucial aspect is the pressure profile evolution that can be extrapolated from these contact 

radius fluctuations. When the surface wear is severe, flat contact pressure profiles are usually 

adopted. However, Figure 10 suggests rather small wear volumes for these partial slip 

conditions. Hence an elliptical pressure profile approximation will be assumed in a first 

approach replacing in Hertzian formalism the updated contact radius  aX  and aY derived from 

Eq. ( 9 ). An indirect approach to justify this hypothesis consists in comparing the evolution of 

the corresponding stick radius  cX and cX. Indeed, assuming a non-conformal contact, and 

Hertzian hypotheses, Cattaneo [28] demonstrate that the ratio between the semi-axes of the 

stick zone ellipse and the contact ellipse, is given  

(
cX

aX
)
3

= (
cY

aY
)
3

= (1 −
Q∗

μP
) ( 10 ) 

where 𝜇 is the local friction coefficient in the sliding zone which can be approximated by the 

friction coefficient measured at the sliding transition 𝜇𝑡 [29].  
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Figure 14: Evolution of 𝑐𝑋/𝑎𝑋 measured from fretting scar expertise (plain fretting tests after 
10 000 cycles), and Cattaneo’s [28] theoretical prediction.  

 

A very nice correlation is observed suggesting that the theoretical formalism well depicts the 

experiments. A larger discrepancy is however observed for the highest tangential forces 

conditions. The experimental ratio seems to be higher than the calculated one. This is coherent 

with the pressure and shear profiles flattening due to a larger surface wear generated during the 

transient gross slip period when the contact coating is next to the gross slip domain boundary. 

Besides for stabilized tangential force amplitudes higher than 1000 N, the frontier between stick 

and slip zones is less easily defined, so that confidence regarding cX/aX ratio is lower. To 

conclude it can be stated that Cattaneo’s formalism predicts well the cX/aX contact morphology. 

This indirectly confirms the Hertzian approximation and therefore the elliptical pressure profile 

hypothesis. 

3.2.2.    Fretting scar morphology under gross slip conditions 
As illustrated previously in Figure 10, surface wear under gross slip is significant justifying to 

quantify the contact area evolution as a function of the wear volume extension. Figure 15 plots 

the evolution of the wear volume obtained from various gross slip plain fretting and fretting 

fatigue condition as a function of the corresponding accumulated Archard parameter : 
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∑W = 4 ⋅ P ⋅ δs
∗ ⋅ Nc ( 11 ) 

 

where Nc is the number of loading cycles applied. 

 

Figure 15: wear volume as a function of the accumulated Archard parameter  (∑𝑊) plain 

fretting and fretting fatigue  tests (𝑃 = 1400 N; 𝑁𝑐 ∈ {20 000, 50 000, 100 000}; 𝛿𝑠
∗ ∈

{30 𝜇𝑚, 70 𝜇𝑚, 140 𝜇𝑚}. 

 

A linear evolution is observed suggesting that the wear volume V extension can be approximated 

using the Archard theory: 

V = kw ⋅ ∑W ( 12 ) 

with kw ≃ 1.2 ⋅ 10−8mm3/(N⋅mm) being the so called Archard wear coefficient. Various 

formulations have established to extrapolate the contact area extension of simple Hertzian 

contact configurations as a function of the wear volume. For instance, based on geometrical 

considerations, the sphere/plane contact area extension can be expressed as a ½ power law 

function of the wear volume [30]: 

Aw = AH + kA × V1/2 ( 13 ) 

with AH the Hertzian contact area and kA a geometrical coefficient. 

The contact radius extension is then deduced from the following simple relationship:   

aw = aH + ka × V1/4 ( 14 ) 

with aH the Hertzian contact radius and ka a  geometrical coefficient. 
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The contact configuration of the studied crossed cylinders configuration (i.e. β <90°) is more 

complex to address. To our knowledge there are no explicit formulations linking the wear 

volume to the operating contact area for such kind of contact assembly. Hence a numerical 

strategy is considered. Let us consider two cylinders C1 and C2 of radius R, in contact, inclined at 

an angle β, as illustrated in Figure 16.a. If we decrease the distance between the cylinders so that 

they interpenetrate each other, the intersection volume corresponds to the wear volume of the 

two cylinders. The projection of this intersection volume on the plane perpendicular to the 

contact normal is the contact area. Obtaining an analytical expression of this relationship for 

β = 30° is too complex, we thus decided to use a numerical approximation. Consider a three-

dimensions grid (x, y, z) with step sizes (Δx, Δy, Δz). We evaluate each node: inside/outside C1, 

inside/outside C2. The wear volume is calculated as the number of nodes inside both C1 and C2, 

multiplied by the nodal volume Δv = Δx ⋅ Δy ⋅ Δz. The contact area is calculated similarly as the 

projection on the (O, x, z) plane of the nodes on the wear volume, multiplied by Δx ⋅ Δz. Figure 

16.b displays a 2D description of this process (the displayed step sizes are bigger for clarity).  

 

Figure 16: (a) interpenetration of two crossed cylinders, (b) Cross section Illustration  of the 

numerical approximation method used to determine the relationship between wear volume and 

observed contact area 
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Figure 17: numerical approximation of the relationship between wear volume and contact area. 

 

Figure 17 displays the evolution of contact area Aw as a function of the wear volume V derived 

from this numerical analysis. A power law was fitted on the calculated data points:  

Aw = Aw,∅ ⋅ VβAw  ( 15 ) 

with Aw,∅ = 11.5 and βAw
= 0.47.  

From this contact area analysis, both aX and aY semi-axes parameters can be extrapolated. The 

contact major semi-axis 2aX is calculated as the maximum of the distances between all pairs of 

nodes in the wear volume, and 2aY is calculated with the following formula:  

aY =
contact area

π ⋅ aX
 ( 16 ) 

Again power laws can be considered determined to estimate both aX, aY from the wear volume 

computation : 

aX ≃ aX0 ⋅ VβaX ,    aY ≃ aY0 ⋅ VβaY  ( 17 ) 

with  aX0 = 3.54 , βaX
= 0.248, aY0 = 0.921 and  βaY

= 0.243.  

Therefore by extrapolating the wear volume from the Archard relationships ( 12 ) and coupling 

equations ( 15 ) to ( 17 ), the worn contact area and related ellipse contact radius can be 

approximated under gross slip domain. Note that since solid rigid hypotheses have been 

considered, this approximation cannot detail the presence of a residual elastic “Hertzian”  

component like previously implemented in the sphere/plane analysis [30] (i.e. Eq. ( 13 ) and ( 

14 ). However, for high wear volume conditions, like presently observed, this residual value can 

be neglected and the given power law formulations (i.e. Eq. ( 15 ) and ( 17 )) are representative. 

Besides it is interesting to note that the exponents of these power law functions are very close to 
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the explicit values derived for the sphere/plane analysis since βAw
= 0.47 is nearly equivalent to 

½ and βaX
≈ βaY

≈ 0.24 is comparable to ¼.  This suggests a possible explicit correlation 

between wear volume and contact area parameter for crossed cylinder conditions where in fact 

the sphere/plan contact (i.e. β =90°) is a specific case.  

4. Numerical model 

Our objective is to formalize the fretting fatigue crack nucleation risk under either partial or 

gross slip conditions, taking into account the surface wear extension. Usual FEM fretting analysis 

simulates wear through a continuous remeshing which is quite complex and above all time 

consuming. To palliate such limitations, we propose an alternative hybrid strategy where the 

pressure and shear contact fields are computed analytically. These fields are then imposed to a 

3D FEM model of the wire. Hence , the contact area extension derived from the experiment’s 

analysis can easily be transposed to the FEM fretting fatigue analysis. 

Figure 18 displays the complete algorithm of this approach. First, the regime (partial slip or 

gross slip) is given as an input, as wear behaves differently in these two domains. If the regime is 

partial slip, the dimensions of the contact ellipse are calculated taking into account the surface 

wear induced by the transient gross slip period and transposed in the elliptical Hertzian 

pressure and related Mindlin’s shear field approximations. These pressure and shear contact 

stress fields are then applied to a 3D FEM model and combined with the fatigue load. A post-

processing computes the Smith-Watson-Topper (SWT) equivalent fatigue stress parameter at a 

critical distance below the surface hotspot to capture the stress gradient effect. This value is 

then compared to the threshold fatigue limit value to evaluate  if a crack will initiate or not. If the 

regime is gross slip, the algorithm is similar, however an additional loop is included to simulate 

wear using the Archard’s law (equations ( 12 )  - ( 17 )). A cumulative damage is computed to  

evaluate if the specimen will fail or not.  
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Figure 18: algorithm for crack initiation prediction 
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4.1. Partial slip domain algorithm 

4.1.1. Fretting scar dimensions in the partial slip domain 
If the regime is partial slip, then fretting scar dimensions are calculated using the input 

tangential force amplitude using the empirical relationship equation ( 9 ). The transient gross 

slip wear period is very short, so that it is considered as instantaneous. There is no need to 

simulate continous wear process. 

4.1.2. Pressure and shear stress fields calculation 
The contacting zone in a crossed-cylinders contact configuration (non-conformal 

contact) is an ellipse. A 2D coordinate system can be defined with the contacting point O as the 

origin, and Ox and Oy as the axes, with Oxy being the plane whose normal corresponds to the 

contacting normal and Ox, Oy in the directions of respectively the semi-major and semi-minor 

axes of the ellipse. Johnson [23] explains that the pressure field in the contacting zone is given 

by:    

p(x, y) = p0√1 − (
x

aX
)
2

− (
y

aY
)
2

 ( 18 ) 

where aX, aY are the semiaxes of the contact ellipse, and p0 is:  

p0  =
3P

2πaXaY
 ( 19 ) 

The partial slip shear stress profile is derived for Cattaneo [26] and Deresiewicz [29] formalism: 

𝑞(𝑥, 𝑦) = 𝜇 ⋅ 𝑝0√1 − (
𝑥

𝑎𝑋
)
2
− (

𝑦

𝑎𝑌
)
2

  ( 20 ) 

in the stick zone: 

𝑞(𝑥, 𝑦) = 𝜇 ⋅ 𝑝0√1 − (
𝑥

𝑎𝑋
)
2
− (

𝑦

𝑎𝑌
)
2
 −  (1 −

𝑄

𝜇𝑃
)
1/3

⋅ 𝜇 ⋅ 𝑝0√1 − (
𝑥

𝑐𝑋
)
2
− (

𝑦

𝑐𝑌
)
2

  ( 21 ) 

where cX, cY are the semiaxes of the no-slip ellipse, which can be calculated with: 

(
cX

aX
)
3

= (
cY

aY
)
3

= (1 −
Q

μP
) ( 22 ) 

The coefficient of friction μ operating in the sliding zone can be approximated by the value 

measured at the partial slip transition (μt) [29].  



26 
 

 

Figure 19: analytical a) pressure and b) shear stress fields (for a non-conformal contact)   

This method relies on several assumptions. First, these formulas are valid when the Hertz 

assumptions are satisfied: the contact must be non-conformal and the contact zone very small 

compared the relative radius of curvature. This is not exactly the case here, as wear tends to 

flatten the surfaces and significantly increase the contact zone size. However, the comparison of 

sliding and stick areas in fretting scars done in Figure 14 suggests that the given formalism 

provides a good approximation of both pressure and shear stress fields. The wear generated 

during the transient period is small so the non-conforming hypothesis is justified. Additionaly, 

the fatigue stress amplitude is small comparatively to the constant pressure so the stick zone 

offset detailed by Nowell et al. [30] can be neglected.  

4.1.3. Finite elements model 
Figure 20 illustrates the FEM model of a wire on which cyclic fatigue stress, pressure and 

shear stress fields are imposed. The material is fully elastic steel (E = 210 GPa, ν = 0.3). 

Reduced integration linear brick elements (C3D8R) were used. Mesh close to the contact is made 

of approximatively 20 μm edge length cubes, and is scarcer in the rest of the solid. At the “fixed” 

face, the displacement along z axis is constrained, while displacements along x and y axes are 

not, to allow for radial contraction of the wire. At the “counterbody” face, displacement along y is 

constrained, to prevent bending effects on the wire. The pressure and shear fields are applied 

along respectively y and z directions. There is a 15° tilt between local x, y axes used in equations 

( 18 )( 20 ) and global model x, y axes. Indeed, the 30° angle between the contacting wires will 

induce a a 15° tilt of the contact ellipse as illustrated in Figure 6. The fatigue load is applied as a 

surface traction. Its amplitude is adapted to compensate the contact tangential force effect and 

to be consistent with experimental loading conditions: 

σa,imposed = σa − Q∗/S ( 23 ) 
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where 𝑆 is the radial section of the wire. In the experimental apparatus, this adaptation is done 

automatically through a feedback loop.  

Only the two extreme loading states of the fretting cycle are simulated: in the first one, 

𝜎(𝑡1) = 𝜎𝑚 + 𝜎𝑎 and 𝑞(𝑡1) = +𝑞; in the second one 𝜎(𝑡2) = 𝜎𝑚 − 𝜎𝑎 and 𝑞(𝑡2) = −𝑞. The 

pressure field stays constant. Using these two loading states the fatigue stress analysis can be 

performed.  

 

 

 

Figure 20: hybrid analytical-FEM modelling 

 

Note that in the real contact, the geometry of the wire is modified by wear. The friction interface 

interface moves towards the inside of the wire. The model neglects this effect, and assumes that 

the wire maintains a perfect cylinder geometry. Only the pressure and shear fields are adjusted 

to take into account the wear contact area extension. This may induce a small error in the 

subsurface stress distributions. However this error is assumed negligible since the wear depth is 

about few tens microns whereas the extension of the contact area is of the order of a millimeter.    

 

4.1.4. Multiaxial fatigue analysis 
The Smith-Watson-Topper (SWT) multiaxial fatigue criterion [33] is applied to predict 

the cracking risk.  This criterion is widely used for fretting fatigue (see [34, 35, 36]). SWT is 
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based on a critical plane approach, meaning that for each point in the solid, the parameter is 

calculated for every possible unit normal vector 𝑛⃗ . For each point, for each 𝑛⃗  vector, 𝜎𝑚𝑎𝑥 is 

defined as the temporal maximum value of the normal stress: 

𝜎𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑡∈𝑇

(‖𝜎̿(𝑡) ⋅ 𝑛⃗ ‖) ( 24 ) 

For each point, for each 𝑛⃗  vector, 𝜀𝑎 is defined as the amplitude of deformation: 

𝜀𝑎 =
1

2
⋅ 𝑚𝑎𝑥
𝑡1,𝑡2∈𝑇

(‖𝜖(̿𝑡1) ⋅ 𝑛⃗ ‖ − ‖𝜖(̿𝑡2) ⋅ 𝑛⃗ ‖) ( 25 ) 

For each point, 𝛤𝑆𝑊𝑇 parameter is defined as the maximum value of the product of 𝜎𝑚𝑎𝑥 and 𝜀𝑎 

with varying 𝑛⃗ :  

𝛤𝑆𝑊𝑇 = 𝑚𝑎𝑥
𝑛⃗ 

(𝜎𝑚𝑎𝑥 ⋅ 𝜀𝑎) ( 26 ) 

An equivalent stress can be calculated as:  

𝜎𝑆𝑊𝑇 = √𝐸 ⋅ 𝛤𝑆𝑊𝑇 ( 27 ) 

This equivalent stress in then compared to the fatigue limit 𝜎𝑑. If 𝜎𝑆𝑊𝑇 < 𝜎𝑑, there is no 

crack nucleation. For 𝜎𝑆𝑊𝑇 ≥ 𝜎𝑑, a crack can nucleate. A Python post-processing script was 

applied to calculate 𝜎𝑆𝑊𝑇 at each integration point of the model. Figure 21.a shows the surface 

distribution of 𝜎𝑆𝑊𝑇 equivalent stress obtained from the simulation of the fretting fatigue test at 

𝛿∗ = 145 𝜇𝑚 (corresponding to 𝑄∗ = 1090 𝑁). The black and white ellipses delimitate the slip 

and stick zones. As expected, the maximum value is located near the trailing edge, on the contact 

side were the fatigue stress is higher. This is consistent with the experimental observations: the 

cracks always appear on the upper bound of the fretting scar, as the stress amplitude on the 

upper part of the specimen is higher than on the lower part. This can be seen on Figure 21.b, 

which displays fretting scar for an interrupted fretting fatigue test, broken later with liquid 

nitrogen (this method allows to preserve the fretting scar, which is too damaged during 

rupture). Note that choosing to maintain 𝐹𝐵
∗ constant with changing 𝑄𝑠𝑢𝑚

∗  allows for a constant 

𝜎𝑎, which was our objective for establishing relevant 𝑁𝑓 − 𝛿∗ fretting fatigue charts.  
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Figure 21: a) 𝜎𝑆𝑊𝑇 for the simulation of a fretting fatigue test at (𝜎𝑚 = 320 MPa, 𝜎𝑎 = 160 MPa,
𝑃 = 1400 N,𝑄∗ = 520 N), b) fretting scar for the corresponding test, interrupted before failure 

and broken later with liquid nitrogen 

 

 

4.1.5. Stress gradient effect correction 
In fretting, the contact generates very localized high stresses. As a consequence, the failure 

criteria tend to overestimate the risk. This “stress gradient effect” was deeply investigated in the 

past decades using so-called “non-local” fatigue stress strategies like process volume averaging 

[34], line averaging, stress gradient correction [36] and critical distance method [37, 38]. A 

comparison between these various methods suggests that all of them lead to rather good results 

assuming that the corresponding length scale parameter used to capture the stress gradient 

effect is correctly estimated citation. For simplicity the critical distance method is presently 

adopted. It consists in considering the parameter not at the “hotspot”, where it reaches its 

maximum value, but at a point located at a given distance under the hotspot. This distance seems 

to be load and material dependant, and much work has been done to link it to a physical 

parameter (see [38]), but no clear universal relationship has been found. In this paper, we simply 

identified it using the reverse approach proposed by Said et al [39], simulating the threshold 

cracking condition experimentally observed at δ∗ = 17 μm. Figure 22 plots the evolution of σSWT 

profile at the vertical of the hotspot. The values are calculated at the integration points of the 

elements, and is linearly interpolated between these points. As expected, 𝜎𝑆𝑊𝑇 at the hotspot is 

well over 𝜎𝑑. The critical distance 𝑙𝐷 is defined as the depth under the hotspot at which 
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𝜎𝑆𝑊𝑇 = 𝜎𝑑, and was found to be 𝑙𝐷 ≃ 25 𝜇𝑚. It is now possible to compute the failure criterion, 

and predict if a given fretting fatigue test will initiate cracks or not.  

 

 

Figure 22: 𝜎𝑆𝑊𝑇 under the hotspot for the crack initiation threshold condition (𝜎𝑚 =
320 MPa, 𝜎𝑎 = 160 MPa, 𝑃 = 1400 N,𝑄∗ = 140 N) 

 

4.2. Gross slip domain algorithm 

4.2.1. Fretting scar dimensions in the gross slip domain 
Knowing the sliding amplitude 𝛿𝑠

∗, the normal force P and the number of cycles Nc, the model 

can estimate the wear volume and finally deliver the evolution of the fretting scar dimensions 

during the test.  

4.2.2. Pressure and shear stress fields  
In a first approximation, we still consider the non-conforming elliptical expressions to 

estimate the pressure profile p(x, y) (equation ( 18 )) where a and b evolve with the wear 

extension. Finally, the cyclic shear profile under gross slip  is given by: 

𝑞(𝑥, 𝑦) = 𝜇𝐺𝑆 ⋅ 𝑝(𝑥, 𝑦) ( 28 ) 

Former investigations [40] suggest that a flat pressure distribution is potentially more 

representative, however using elliptical approximations conservative stress fields are estimated. 
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4.2.3. Cumulative damage 

Wear continuously modifies the fretting loads. To accelerate the computation, a jump cycle 

strategy used by McColl [12] and Cruzado et al [10] is implemented: the damage corresponding 

to 𝛥𝑁𝑐  cycles is simulated in a single numerical step. In classical wear modelling, increasing too 

much the increment 𝛥𝑁𝑐  leads to numerical instabilities. In our case this is not an issue, 

however, increasing 𝛥𝑁𝑐  can overestimate the damage, since the highest loadings at the 

beginning (i.e. before the smoothing effect of wear) tends to be over represented.   

A linear Palmgren-Miner rule is used at each integration point, so that increment of damage 

at step 𝑖 is: 

𝛥𝐷𝑖 =
𝛥𝑁𝑐

𝑁𝑓(𝜎𝑆𝑊𝑇(𝑖))
 ( 29 ) 

where 𝑁𝑓(𝜎𝑆𝑊𝑇(𝑖)) is the number of cycles to failure for the corresponding load level 𝜎𝑆𝑊𝑇(𝑖). 

The cumulated damage at step 𝑘 is obtained with a sum of all increments:  

𝐷𝑘 = ∑
𝛥𝑁𝑐

𝑁𝑓(𝑖)

𝑘

𝑖=1

 ( 30 ) 

A key issue to apply such cumulative damage law consists in identifying the material endurance 

relationship 𝑁𝑓 = 𝑔(𝜎𝑆𝑊T,ℓ𝑑
). Arnaud and Fouvry [14] suggested to extract a crack nucleation 

law from plain fretting tests, and added a crack propagation law. Alternatively Said et al [39] 

suggests to calibrate the material endurance law directly from the fretting fatigue endurance 

applying the critical distance method so that plotting the 𝑁𝑓  endurance as a function of the 

𝜎𝑆𝑊𝑇,ℓ𝑑
 value. We adopt this latter strategy focusing on partial slip results. Figure 23 plots the 

(𝑁𝑓; 𝜎𝑆𝑊𝑇,ℓ𝑑
) results for series A under partial slip, series B and series C. It is interesting to note 

that all the test conditions with a fatigue stress amplitude higher than 100 MPa tend to follow a 

master endurance curve. It can be formalized using a Strohmeyer like formulation:  

𝑙𝑜𝑔(𝑁𝑓) = 𝑚 ⋅ (𝑙𝑜𝑔(𝐴) − 𝑙𝑜𝑔(𝜎𝑆𝑊𝑇,ℓ𝑑
− 𝜎𝐷)) ( 31 ) 

where 𝑚 ≃ 0.38, 𝑙𝑜𝑔(𝐴) ≃ 16.2.  

This material law will be considered to simulate the cumulated damage under gross slip.  
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Figure 23: evolution of 𝑁𝑓  versus 𝜎𝑆𝑊𝑇,ℓ𝑑
 for partial slip conditions (Table 2) 

Alternatively, when the fatigue stress amplitude is too low (i.e. 𝜎𝑎 < 100 𝑀𝑃𝑎), the endurance 

doesn’t follow anymore the master curve. In fact, the given endurance law is based on a crack 

nucleation SWT fatigue stress analysis which is reliable only if the propagation stage is short 

comparatively to the crack nucleation period. This is true as long as the fatigue stress amplitude 

is high enough. For very low fatigue stress amplitude, the propagation stage is predominant and 

the given SWT model is no more relevant. 

 

4.3. Validation of the model 

4.3.1. Elastic material hypothesis 
The model has been developed assuming a perfectly elastic material. However, the large 

contact forces could induce plasticity. To verify this assumption, two partial slip fretting fatigue 

tests were simulated: one for the lowest 𝑄∗ value (𝑄∗ = 88 𝑁, corresponding to 𝛿∗ = 9 𝜇𝑚) and 

one for the highest (𝑄∗ = 1090 𝑁, corresponding to 𝛿∗ = 145 𝜇𝑚). Note that these two 

simulations have been performed taking into account the corresponding fretting scar 

dimensions. Figure 24 shows that 𝜎𝑀𝑖𝑠𝑒𝑠 is inferior to 𝜎𝑌 = 1800 𝑁 everywhere for the test at 

𝑄∗ = 1090 𝑁, so there is no plasticity; but for 𝑄∗ = 88 𝑁, 𝜎𝑀𝑖𝑠𝑒𝑠 is superior to 𝜎𝑌 in a large 

domain below the contact. This surprising tendency can be explained by the fact that for the very 

low tangential forces (i.e. 𝑄∗ = 88 𝑁), the transient wear is negligible and the contact area 

remains nearly unchanged. Alternatively, for the highest tangential force amplitudes (i.e. 

𝑄∗ = 1090 𝑁), the transient wear is significant as well as the corresponding contact area 

extension so that field stresses are significantly reduced.  
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Figure 24: simulations of partial slip fretting fatigue tests at a) 𝛿∗ = 9 μm (so 𝑄∗ = 88 N) and b) 
𝛿∗ = 145 μm (so 𝑄∗ = 1090 N), with same fatigue and normal forces (𝜎𝑚 = 320 MPa, 𝜎𝑎 =

160 MPa, 𝑃 = 1400 N) 

To evaluate the potential effect of plasticity on crack initiation prediction, the 𝜎𝑆𝑊𝑇 subsurface 

stress field of the most critical situation (𝑄∗ = 88 N) was computed using a perfectly plastic law 

(i.e. with no strain hardening). This stress field has then been compared to the stresses obtained 

with an elastic formulation. Figure 25 plots the absolute difference of the corresponding σSWT 

stresses: |Δ𝜎𝑆𝑊𝑇| = |𝜎𝑆𝑊𝑇(𝐸) − 𝜎𝑆𝑊𝑇(𝐸𝑃)|. The difference at the SWT hotspot (close to the 

trailing edge) where the crack initiation process takes place and at the critical distance under 

the hotspot is less than 10 MPa. Hence, even if plasticity is occuring, its influence on the crack 

nucleation at the contact border appears negligible so that the elastic assumption can be 

considered as relevant.  

 

Figure 25: comparison between elastic and elasto-plastic models for test at 𝑄∗ = 88 N , absolute 
difference of 𝜎𝑆𝑊𝑇 for elastic and elasto-plastic models 
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4.3.2. Comparison with a “full numerical” model 

The “hybrid” model was developed primarily to easily take into account the worn contact 

geometry evolution. An additional interesting effect is the elimination of FEM contact solving 

problem, which is particularly computationally expensive. In order to quantify the computation 

time reduction, a “full numerical” model of two crossed cylinders in contact was built (see Figure 

26.a), with friction coefficient μ = 0.9. A normal force 𝑃 = 1400 N and a cyclic tangential force of 

amplitude Q∗ = 500 N were applied. Figure 26.b displays the resulting Mises stresses on the 

surface of the lower wire. The corresponding hybrid model was built, with contact ellipse 

dimensions calculated using Hertz theory, applying results from Antoine et al. [41]. Since the full 

numerical model cannot simulate wear, the comparison is done for an undamaged contact. The 

meshes of both models are exactly the same. Figure 26.c displays a superposition of the Von 

Mises stresses for both models, along a path indicated at the surface. The difference between the 

models is negligible, confirming the capacity of the hybrid strategy to simulate 3D fretting 

fatigue problems. Furthermore, there is a dramatic decrease (factor 10) in the computation time, 

from 7010 s for the “full numerical” model to 770 s for the hybrid model, with 32 cpus.  

 

Figure 26: a) “full numerical” model loads b) Von Mises stresses on the “full numerical” model, c) 
comparison of the Von Mises stresses of both models along a path on the surface 

 

5. Prediction of the fretting fatigue endurance as a function of 𝛿∗ 

The model is now applied to predict the fretting fatigue endurance as a function of the 

displacement amplitude from partial to gross slip conditions.  
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Under partial slip conditions, the tangential force amplitude can be extrapolated from the 

applied displacement amplitude: 

𝑄∗ = 𝐾𝐹𝐹 ⋅ 𝛿∗ ( 32 ) 

With 𝐾𝐹𝐹 being the fretting fatigue stiffness of the experiment including the contact but also 

the apparatus stiffness (i.e. 𝐾𝐹𝐹 = 7.5 N/µm).  

Knowing 𝑄∗, the contact geometry is adjusted applying the empirical relationship ( 9 ). The 

surface wear is supposed instantaneous (i.e. short transient period) so no cumulated wear 

contact extension effect needs to be considered. Then, using the hybrid contact simulation, the 

SWT stress field at the critical distance is computed 𝜎𝑆𝑊𝑇,ℓ𝑑
(𝑄∗). Knowing 𝜎𝑆𝑊𝑇,ℓ𝑑

(𝑄∗), the 

corresponding fretting fatigue endurance is finally estimated applying equation ( 31 ).  

Under gross slip condition, the surface wear is continuous and depends on the applied 

sliding amplitude. Hence, for each 𝛿∗, the sliding amplitude 𝛿𝑠
∗ is extrapolated using equation ( 1 

). The Archard work is computed ∑𝑊 for each 𝛿∗ and test duration 𝑁𝑐 . From the Archard work 

the wear volume 𝑉 is estimated  (equation ( 12 )), from which the contact geometry parameters 

𝑎𝑋 and 𝑎𝑌 are derived, and then the pressure and shear stress elliptical approximation profiles.  

For each increment of wear, the SWT equivalent stress at the critical distance is 

computed and the cumulated damage is estimated. Figure 27 displays the evolution of the 

maximum value of 𝜎𝑆𝑊𝑇,ℓ𝑑
(𝛿∗) for a 𝛿∗ = 165 𝜇𝑚 gross slip amplitude as a function of the 

surface wear extension. 𝜎𝑆𝑊𝑇,ℓ𝑑
 drops fast during the first thousands cycles due to the fast rising 

of the contact area. 𝜎𝑆𝑊𝑇,ℓ𝑑
 decreases asymptotically until passing below the fatigue limit, above 

50 000 loading cycles. If the increment of damage becomes null before the cumulated damage 

reaches 100%, then there should be no failure. Note that the increment of damage becomes null 

even before 𝜎𝑆𝑊𝑇 decreases below 𝜎𝐷, as wear shifts the hotspot position. Once stable, the 

maximum damage does not change anymore. Note that the continuous wear not only increases 

the contact area, but also removes the cracked material before the cracks can propagate, which 

should lead to a decrease of the maximum damage value in the specimen. This model does not 

natively take this effect into account. This could be roughly implemented in the model, by 

deactivating the integration points entering the wear volume. But here, even without taking into 

account this beneficial effect, the model accurately predicts no failure (as the final damage is 

inferior to 100%). As no failure is predicted for the lowest gross slip amplitudes, there will be no 

failure for the larger ones.  
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Figure 27: 𝜎𝑆𝑊𝑇,ℓ𝑑
 and cumulated damage as a function of the number of cycles,  simulation of a 

fretting fatigue test in gross slip regime (𝛿∗ = 165 μm, 𝜎𝑚 = 320 MPa, 𝜎𝑎 = 160 MPa, 𝑃 =
1400 N) 

Both fretting fatigue endurance Nf,pred predicted under partial and gross slip conditions are 

computed and compared versus experiments in Figure 28.  
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Figure 28: evolution of fretting fatigue endurance as a function of the effective displacement 
amplitude and correlation with SWT equivalent stress for tests in partial slip. Fatigue load and 

normal force are kept constant (𝜎𝑚 = 320 MPa, 𝜎𝑎 = 160 MPa, 𝑃 = 1400 N)  

A rather nice correlation is observed which confirms the stability of the proposal. The sharp 

decrease of Nf at the beginning of the partial slip domain: 10 μm < δ∗ < 50 μm as well as the 

following smoother decrease until the gross slip transition but also the sharp rising up to the 

“infinite” lifetime under gross slip condition are well depicted. One can explain the coherence of 

such prediction since the material fatigue endurance was extracted from the post processing of 

the fretting fatigue endurance under partial slip. However, it must be noticed that this material 

law endurance is also consistent with endurance values extracted from various fretting fatigue 

loading conditions (i.e. series B and C) as long as the fatigue stress amplitude is sufficient to 

neglect the propagation contribution and could be considered as relevant.  

Another way to illustrate the capacity of the model to capture the fretting fatigue endurance 

consists in comparing the evolution of 𝜎𝑆𝑊𝑇,ℓ𝑑
(𝑄∗) under partial slip condition. Again, a rather 

good correlation is observed. 𝜎𝑆𝑊𝑇,ℓ𝑑
 remains below 𝜎𝐷 below 𝛿∗ = 17 𝜇𝑚, which is consistent 

with the “no-damage conditions” (i.e. infinite lifetime) observed for the very small displacement 

amplitude conditions. Then, a fast rising of 𝜎𝑆𝑊𝑇,ℓ𝑑
 is observed which is also consistent with the 

very fast drop of 𝑁𝑓 . Then, with the rising of partial slip surface wear, 𝜎𝑆𝑊𝑇,ℓ𝑑
 displays a constant 

value, inducing constant predicted lifetimes in the medium partial slip domain up to the gross 

slip transition. In contrast, the experimental results show a continuous decrease in lifetime. 

As detailed previously, an increase of the displacement amplitude under partial slip increases 

the tangential loading which is negative regarding cracking. However in the meantime, this 

extends the contact area during the transient gross slip period which is positive regarding 

cracking. The flat evolution of the predicted endurances suggests that these two effects are 



38 
 

equally balanced in the given model.  The decrease of the experimental endurance infers that the 

model overestimates the benefit induced by the wear contact area extension. This could be 

explained by various hypotheses.  The model considers smooth elliptical pressure distribution 

without considering any discontinuous pic pressure induced for instance by the presence of the 

stick domain and above all the accumulation of debris layer entrapped within the interface [14]. 

Besides the model does not consider explicitly the propagation stage which indirectly decays the 

lifetime prediction.    

This approach has been generalized by plotting the corresponding fretting fatigue chart 

Figure 29. The fretting fatigue chart consists in plotting no damage, cracking and wear domains 

as a function of the applied displacement amplitude ratio δ∗/δt
∗ and the fatigue stress amplitude 

σa. First introduced for plain partial slip conditions in [42], it was extended to gross slip 

conditions by Arnaud et al in [14]. However, all these developments have been performed for 2D 

cylinder plane contact. This approach adresses 3D contact configuration thanks to the given 

hybrid fretting fatigue modelling.  

Using this approach, both cracking boundaries under partial and gross slip conditions can be 

simulated and compared with experiments. As expected, the cracking boundary under gross slip 

corresponds in fact to the gross slip transition δ∗/δt
∗ = 1 since the surface wear induces a very 

fast decrease of the cracking damage (Figure 28). The crack nucleation boundary under partial 

slip reaches δ∗/δt
∗ ≃ 0.2 when σa = 0 which in fact corresponds to the crack nucleation 

threshold under plain fretting loadings on pre-stressed specimen at σm = 320 MPa. Note that 

the given model does not simulate the crack propagation neither the crack arrest situation. 

Therefore, some situations predicted as crack failure could in fact correspond to the unfailing 

crack arrest configuration. Further developments are now required to implement these latter 

crack arrest/crack propagation concepts to update this 3D fretting fatigue mapping analysis. 
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Figure 29: fretting fatigue map. Experimental results and crack initiation boundaries obtained 
with the model. 

 

Conclusion 

In this paper, the effect of contact geometry modifications on fretting fatigue damage was 

investigated, both in partial and gross slip regimes. Fretting fatigue tests were conducted on 

crossed steel wires. A double actuator fretting fatigue test machine was used, allowing to keep 

the fatigue load constant while changing the fretting load. In the partial slip domain, lifetime is 

over 106 cycles for very small fretting loads, and drops to about 105 cycles in most of the partial 

slip domain. In gross slip domain, lifetime is also over 106 cycles. Indeed, wear continuously 

increases the contact interface, thus reducing the contact stresses. In the partial slip domain, 

there is no continuous wear. However, the wear damage during a short gross slip transition 

period generates an initial contact area extension.  

 In order to take into account this partial slip contact area extension, as well as simulate 

wear in gross slip, a hybrid analytical-numerical model was developed. It is based on the direct 

application of analytically obtained pressure and shear fields to a FEM model. This method 

provides a computationally efficient and flexible way to take into account contact geometry 

modifications, both in partial slip and gross slip regimes. While it is less precise than the 

traditional continuous remeshing method, it is simpler to implement and much less 

computationally expensive. Furthermore, the complete decoupling between geometry and 
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fretting loads allows for a flexible way to explore the effects of different loads. A Smith-Watson-

Topper (SWT) approach combined with cumulative damage was implemented on this hybrid 

model to predict experimental fretting fatigue failures.  
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