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Revisiting energy estimates of the CPR scheme for the

Shallow Water equations

A. Durana,˚

aUniversité Claude Bernard Lyon 1, Institut Camille Jordan, UMR 5208
˚Institut Universitaire de France

The present notes concern some improvements concerning the CPR (Centred Potential
Regularization) schemes proposed in [2] and [1] in the particular case of the Shallow Water
equations. We propose here a totally explicit variant of the scheme introduced in [1], and
clarify the time step condition required to get energy dissipation (in other terms, entropy
stability). This work aslo results in a slight modification of the viscosity terms, that may
help improving numerical results far from low-Froude regimes. This document is organized
as follows: in Section 1 we introduce the main notations as well as elementary technical
lemmas concerning the discrete operators. The numerical scheme is given in Section 2,
together with preliminary results regarding the discrete energy. The main stability results
are discussed in Section 3, and extended in 2D in Section 4.

1 Introduction and general settings

We start here from the 1d Shallow Water system with topography:

$
&
%

Bth ` Bxphuq “ 0 ,

Btphuq ` Bx

ˆ
hu2 ` gh2

2

˙
“ ´ghBxz ,

(1)

where h “ hpx, tq is the water height, u “ upx, tq is the horizontal average velocity and
z “ zpxq accounts for the topography variations. This system admits the following energy
conservation:

Btpheq ` Bx

ˆ
pe ` 1

2
ghqhu

˙
“ 0 , (2)

where

e “ 1

2
u2 ` 1

2
gh ` gz .

In view of the design of the numerical scheme, we now introduce the discrete operators
used in the next sections, as well as elementary estimates and duality formulas. In the
one dimensional case, we consider a uniform grid with space step ∆x, and denote K P Z

the element indices. First, for any sequence of scalar interface quantity pbK`1{2q, we define
the operator:

BKb “ 1

∆x

`
bK`1{2 ´ bK´1{2

˘
, (3)
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with the specific notation Bc
Kb when the interface quantities correspond to the half sum

of the values sharing the interface, that is:

Bc
Kb “ 1

∆x

`
b̄K`1{2 ´ b̄K´1{2

˘
, (4)

where b̄K`1{2 “ 1

2
pbK ` bK`1q. We also introduce the interface jump rbsK`1{2 “ 1

2
pbK`1 ´ bKq,

so that bK “ b̄K`1{2´rbsK`1{2 “ b̄K´1{2`rbsK`1{2 for all K P Z. When no confusion is pos-
sible, these two definitions will extend to multiple variables by considering the difference
of term to term interface products, leading to, in the case of two variables:

BKpa, bq “ 1

∆x

`
aK`1{2bK`1{2 ´ aK´1{2bK´1{2

˘
. (5)

We also define the discrete upwind derivative, for any collocated sequence of scalars paKq

Bup
K pa, bq “ 1

∆x

´
F

up

K`1{2pa, bq ´ F
up

K´1{2pa, bq
¯
, (6)

where F
up

K`1{2pa, bq “ aKb
`
K`1{2 ` aK`1b

´
K`1{2, and w` “ 1

2
pw ` |w|q , w´ “ 1

2
pw ´ |w|q

for any scalar quantity w P R. In what follows we will regularly use the notation:

SKpa, bq “ aK`1{2bK`1{2 ` aK´1{2bK´1{2 , (7)

with its natural generalization to the sum of interface products SKpa1, ¨ ¨ ¨ , anq. When
no confusion is possible, we will use the convention SKpa2q “ SKpa, aq. Remark that
aKSKpbq “ āK`1{2bK`1{2 ` āK´1{2bK´1{2 ´rasK`1{2bK`1{2 `rasK´1{2bK´1{2, which gives the
duality formula:

aKSKpbq “ SKpā, bq ´ ∆xBKpras, bq . (8)

Lemma 1.1 (Centred fluxes duality). We have the following duality formula:

aKBc
Kb ` bKBc

Ka “ ĂBc
Kpa, bq ,

where
ĂBc
Kpa, bq “ Bc

Kpa, bq ´ BK pras, rbsq . (9)

Proof. We have, using aK “ āK`1{2 ´ rasK`1{2 “ āK´1{2 ` rasK´1{2:

aKBc
Kb ` bKBc

Ka “ 1

∆x

“
aK

`
b̄K`1{2 ´ b̄K´1{2

˘
` bK

`
āK`1{2 ´ āK´1{2

˘‰

“ 1

∆x

“
aK

`
b̄K`1{2 ´ b̄K´1{2

˘
` bK

`
rasK`1{2 ` rasK´1{2

˘‰

“ 1

∆x

”
āK`1{2b̄K`1{2 ´ āK´1{2b̄K´1{2

` rasK`1{2

`
bK ´ b̄K`1{2

˘
` rasK´1{2

`
bK ´ b̄K´1{2

˘ ı

“ Bc
Kpa, bq ´ BK pras, rbsq .
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Lemma 1.2 (Upwind fluxes duality). We have the following duality formula:

Bup
K pa, bq “ aKBKb ` pbBaqupK ,

where

pbBaqupK “ b´
K`1{2

´aK`1 ´ aK

∆x

¯
` b`

K´1{2

´aK ´ aK´1

∆x

¯
. (10)

Proof. We have:

∆x rBup
K pa, bq ´ aKBKbs “

”´
aKb

`
K`1{2 ` aK`1b

´
K`1{2

¯
´

´
aK´1b

`
K´1{2 ` aKb

´
K´1{2

¯ı

´
”
aK

´
b`
K`1{2 ` b´

K`1{2

¯
´ aK

´
b`
K´1{2 ` b´

K´1{2

¯ı

“ b´
K`1{2 paK`1 ´ aKq ` b`

K´1{2 paK ´ aK´1q .

Lemma 1.3 (Upwind fluxes duality - Squares). We have the following equality:

2aK pbBaqupK ` paKq2BKb “ Bup
K pa2, bq ` 4

∆x
R`

K

`
ras2, b

˘
,

where
R`

K

`
ras2, b

˘
:“ p´bK`1{2q`ras2K`1{2 ` pbK´1{2q`ras2K´1{2 . (11)

Proof. Using the classical relation

py ´ xqx “ 1

2
y2 ´ 1

2
x2 ´ 1

2
px ´ yq2 , (12)

we have:

∆x
`
2aK pbBaqupK ` paKq2BKb

˘

“ 2aK

´
b´
K`1{2 paK`1 ´ aKq ` b`

K´1{2 paK ´ aK´1q
¯

` paKq2
`
bK`1{2 ´ bK´1{2

˘

“ b´
K`1{2

`
paK`1q2 ´ paKq2 ´ paK`1 ´ aKq2

˘
´ b`

K´1{2

`
paK´1q2 ´ paKq2 ´ paK´1 ´ aKq2

˘

` paKq2pb`
K`1{2 ` b´

K`1{2q ´ paKq2pb`
K´1{2 ` b´

K´1{2q

“
´
b´
K`1{2paK`1q2 ` b`

K`1{2paKq2
¯

´
´
b´
K´1{2paKq2 ` b`

K´1{2paK´1q2
¯

`
´

´b´
K`1{2 paK`1 ´ aKq2 ` b`

K´1{2 paK ´ aK´1q2
¯

Going back to the definition (6) and using ´pw´q “ ´1

2
pw ´ |w|q “ p´wq`, we get the

announced result.

Lemma 1.4 (Square estimate for upwind fluxes). With the notations of the previous
Lemma, we have the following inequality:

rpbBaqupK s2 ď 4

∆x2

´
p´bK`1{2q` ` b`

K´1{2

¯
R`

K

`
ras2, b

˘
.
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Proof. We write:

rpbBaqupK s2 “ 4

∆x2

”
p´bK`1{2q` ˆ ´rasK`1{2 ` b`

K´1{2rasK´1{2

ı
2

,

and use Cauchy-Schwarz inequality with the vectors:

u “
˜a

p´bK`1{2q`b
b`
K´1{2

¸
, v “

˜a
p´bK`1{2q` ˆ ´rasK`1{2b

b`
K´1{2rasK´1{2

¸

to obtain

|u.v|2 ď }u}2}v}2 “
´

p´bK`1{2q` ` b`
K´1{2

¯
.
´

p´bK`1{2q`ras2K`1{2 ` b`
K´1{2ras2K´1{2

¯
.

2 Numerical scheme and preliminary energy estimates

Introducing the scalar potential φ “ gph` zq, we consider the following numerical scheme
for the model (1):

"
hn`1

K “ hn
K ´ ∆tBK phu˚q ,

phuqn`1

K “ phuqnK ´ ∆tBup
K pu, hu˚q ´ ∆thn

KBKφ
˚ .

(13)

Referring to (3) and (6), we only need to define phuq˚
K`1{2 and φ˚

K`1{2 to characterize the

discrete operators. Following [1], we set:

phuq˚
K`1{2 “ huK`1{2 ´ ΠK`1{2 , (14)

and
φ˚
K`1{2 “ φ̄K`1{2 ´ ΛK`1{2 , (15)

where we recall that the superscript “ ” refers to the mean interface value taken at
time n (the scheme being totally explicit, the time indice will be omitted when possible
in the following). The quantities ΠK`1{2 and ΛK`1{2 govern the numerical viscosity of
the scheme, and will be defined in Proposition 3.1 (formulas (37) and (38)) in order to
guarantee energy dissipation. Using the mass equation in (13), we easily get:

phuqn`1

K ´ phuqnK “ hn`1

K

`
un`1

K ´ un
K

˘
´ ∆tun

KBKphu˚q .

Invoking the momentum equation:

hn`1

K

`
un`1

K ´ un
K

˘
“ ´∆t pBup

K pu, hu˚q ´ un
KBK phu˚qq ´ ∆thn

KBKφ
˚ ,

and using Lemma 1.2, we obtain the velocity equation:

un`1

K “ un
K ´ ∆t

1

hn`1

K

phu˚BuqupK ´ ∆t
hn
K

hn`1

K

BKφ
˚ , (16)

the operator phu˚BuqupK being based on (10). In what follows, we will consider an advective
CFL condition of the form:

∆t

∆x

`
|hu˚

K`1{2| ` |hu˚
K´1{2|

˘
ď ρ

1 ` ρ
hn
K , (17)
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where ρ is a strictly positive constant. Let’s remark that the time constraint (17) implies:

hn
K ´ hn`1

K “ ∆t

∆x

`
hu˚

K`1{2 ´ hu˚
K´1{2

˘
ď ∆t

∆x

`
|hu˚

K`1{2| ` |hu˚
K´1{2|

˘
ď ρ

1 ` ρ
hn
K ,

which gives
hn
K ď p1 ` ρqhn`1

K . (18)

In particular, we have, under (17):

∆t

∆x

´`
´hu˚

K`1{2

˘` `
`
hu˚

K`1{2

˘`
¯

ď ρhn`1

K . (19)

The next proposition gives local estimates for the potential energy:

Proposition 2.1. Let En
K “ 1

2
g phn

Kq2 ` ghn
KzK the potential energy at time n at the level

of the cell K. Setting λ “ ∆t

∆x
, we have the following estimate:

En`1

K ´En
K`∆tĂBKpφ, hu˚q´∆tphuqnKBc

Kφ ď 2gλ2SK

`
rhus2

˘
`2gλ2SK

`
Π

2
˘

´λSK pΠ, rφsq ,

(20)

where the operator SK is defined according to (7). The flux term ĂBKpφ, hu˚q is defined by

ĂBKpφ, hu˚q “ BKpφ, hu˚q ´ BK prφs, rhusq ,

where BKpφ, hu˚q and BK prφs, rhusq are defined by (5). The term BK prφs, rhusq is a second
order contribution with respect to the mesh size, seen as a bias on the leading flux term
BKpφ, hu˚q.

Proof. A basic computation give:

En`1

K ´ En
K “

`
hn`1

K ´ hn
K

˘
φn
K ` 1

2
g

`
hn`1

K ´ hn
K

˘
2

. (21)

On a first hand we have:

`
hn`1

K ´ hn
K

˘
φn
K “ ´ ∆t

∆x

`
hu˚

K`1{2 ´ hu˚
K´1{2

˘
φn
K

“ ´ ∆t

∆x

`
hu˚

K`1{2φ̄K`1{2 ´ hu˚
K´1{2φ̄K´1{2

˘

` ∆t

∆x

`
hu˚

K`1{2rφsK`1{2 ` hu˚
K´1{2rφsK´1{2

˘

“ ´∆tBKpφ, hu˚q ` ∆t

∆x

`ĎhuK`1{2rφsK`1{2 ` ĎhuK´1{2rφsK´1{2

˘
´ ∆t

∆x
SKpΠ, rφsq

“ ´∆tBKpφ, hu˚q ` ∆t

∆x
phuqnK

`
rφsK`1{2 ` rφsK´1{2

˘

` ∆tBKprφs, rhusq ´ ∆t

∆x
SKpΠ, rφsq

“ ´∆tĂBKpφ, hu˚q ` ∆tphuqnKBc
Kφ ´ λSKpΠ, rφsq .
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Using standard convexity inequalities, the remaining term of the right hand side in (21)
can be estimated as follows:

g

2

`
hn`1

K ´ hn
K

˘
2 “ g

2
λ2

`ĎhuK`1{2 ´ ĎhuK´1{2 ´
`
ΠK`1{2 ´ ΠK´1{2

˘˘
2

“ g

2
λ2

`
rhusK`1{2 ` rhusK´1{2 ´

`
ΠK`1{2 ´ ΠK´1{2

˘˘
2

ď 2gλ2SK

`
rhus2

˘
` 2gλ2SK

`
Π

2
˘
.

Gathering the two previous contributions, we get the announced result.

We now turn to kinetic energy estimates:

Proposition 2.2. Define Kn
K “ 1

2
hn
Kpun

Kq2 the local kinetic energy at time n. Let pξKq
a real sequence verifying ξK Ps0, 1r for every K P Z, and assume that the local CFL
condition (17) is ensured with ρ “ ξK at the level of the cell K. We have the following
estimation:

Kn`1

K ´ Kn
K ` ∆tĂBup

K

ˆ
1

2
u2, hu˚

˙
` ∆tphuqnKBc

Kφ

ď ´λSK prhus,Λq ` 2λ2
SK

`
rφs2, hν

˘
` 2λ2

SK

`
Λ

2, hν
˘
.

(22)

Having in mind definition (6), the upwind flux is of the form

ĂBup
K

ˆ
1

2
u2, hu˚

˙
“ Bup

K

ˆ
1

2
u2, hu˚

˙
` AK ,

where term AK gathers Op∆t,∆xq antisymmetric terms, corresponding to a consistent
perturbation of the leading flux. The sequence pνKq implied in estimate (22) is defined by:

νK “ 1 ` ξK

1 ´ ξK
. (23)

Proof. We start writing:

hn`1

K

`
un`1

K ´ un
K

˘
un
K “ hn`1

K

ˆ
1

2
pun`1

K q2 ´ 1

2
pun

Kq2 ´ 1

2
pun`1

K ´ un
Kq2

˙

“ Kn`1

K ´ Kn
K ´ 1

2
pun

Kq2
`
hn`1

K ´ hn
K

˘
´ 1

2
hn`1

K pun`1

K ´ un
Kq2

“ K
n`1

K ´ K
n
K ` 1

2
∆tpun

Kq2BKphu˚q ´ 1

2
hn`1

K pun`1

K ´ un
Kq2 .

Hence, with the velocity equation (16):

Kn`1

K ´ Kn
K ` 1

2
∆tpun

Kq2BKphu˚q ´ 1

2
hn`1

K pun`1

K ´ un
Kq2

“ un
K p´∆t phu˚BuqupK ´ ∆thn

KBKφ
˚q ,

or equivalently:

Kn`1

K ´ Kn
K ` ∆t

ˆ
1

2
pun

Kq2BKphu˚q ` un
K phu˚BuqupK

˙
` ∆t phuqnK BKφ

˚

“ 1

2
hn`1

K pun`1

K ´ un
Kq2 .

(24)
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We focus on the terms of the left hand side. With the help of Lemma 1.3, we write:

1

2
pun

Kq2BKphu˚q ` un
K phu˚BuqupK “ 1

2

`
pun

Kq2BKphu˚q ` 2un
K phu˚BuqupK

˘

“ Bup
K

ˆ
1

2
u2, hu˚

˙
` 2

∆x
R

`
K

`
rus2, hu˚

˘
.

(25)

The last term of the left hand side in (24) can be subjet to the following reformulation:

phuqnKBKφ
˚ “ phuqnKBc

Kφ ´ 1

∆x
phuqnK

`
ΛK`1{2 ´ ΛK´1{2

˘

“ phuqnKBc
Kφ ´ 1

∆x

`ĎhuK`1{2ΛK`1{2 ´ ĎhuK´1{2ΛK´1{2

˘

` 1

∆x

`
rhusK`1{2ΛK`1{2 ` rhusK´1{2ΛK´1{2

˘

“ phuqnKBc
Kφ ´ BKpΛ, huq ` 1

∆x
SKprhus,Λq .

(26)

Injecting (25) and (26) in (24), we get:

Kn`1

K ´ Kn
K ` ∆tĂBup

K

ˆ
1

2
u2, hu˚

˙
` ∆tphuqnKBc

Kφ “ ´λSK prhus,Λq ` UK , (27)

where

UK “ ´2
∆t

∆x
R`

K

`
rus2, hu˚

˘
` 1

2
hn`1

K pun`1

K ´ un
Kq2 , (28)

and ĂBup
K

ˆ
1

2
u2, hu˚

˙
“ Bup

K

ˆ
1

2
u2, hu˚

˙
´ BKpΛ, huq. Remark that, as will be established

rigorously later on, the viscous term Λ is scaled as Op∆tq, so that the bias on the flux
BKpΛ, huq is of the expected form, according to the statement of the Proposition.

The following step relies on the estimation of the term
1

2
hn`1

K pun`1

K ´ un
Kq2. Using again

the velocity equation (16), we have:

1

2
hn`1

K pun`1

K ´ un
Kq2 “ 1

2
hn`1

K ∆t2
„

1

hn`1

K

phu˚BuqupK ` hn
K

hn`1

K

BKφ
˚


2

.

Using the equality

BKφ
˚ “ 1

∆x

`
φ˚
K`1{2 ´ φ˚

K´1{2

˘
“ 1

∆x

`
rφsK`1{2 ` rφsK´1{2

˘
´ 1

∆x

`
ΛK`1{2 ´ ΛK´1{2

˘
,

we write
1

2
hn`1

K pun`1

K ´ un
Kq2 “ 1

2
∆t2hn`1

K pC1 ` C2 ` C3q2 ,

with

C1 “ 1

hn`1

K

phu˚BuqupK ,

C2 “ 1

∆x

hn
K

hn`1

K

`
rφsK`1{2 ` rφsK´1{2

˘
,

C3 “ ´ 1

∆x

hn
K

hn`1

K

`
ΛK`1{2 ´ ΛK´1{2

˘
.
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We now use the convexity of the square function with the weights

ˆ
ξK ,

1 ´ ξK

2
,
1 ´ ξK

2

˙
,

so that:
1

2
hn`1

K pun`1

K ´ un
Kq2 ď C1 ` C2 ` C3 ,

where

C1 “ 1

2
∆t2

1

ξKh
n`1

K

rphu˚BuqupK s2 ,

C2 “
ˆ
∆t

∆x

˙
2

hn
K

1 ´ ξK

ˆ
hn
K

hn`1

K

˙ `
rφsK`1{2 ` rφsK´1{2

˘
2

,

C3 “
ˆ
∆t

∆x

˙
2

hn
K

1 ´ ξK

ˆ
hn
K

hn`1

K

˙ `
ΛK`1{2 ´ ΛK´1{2

˘
2

.

Regarding the first term C1, a direct use of Lemma 1.4 give:

C1 ď 2

ˆ
∆t

∆x

˙
2

1

ξKh
n`1

K

`
p´hu˚

K`1{2q` ` phu˚
K´1{2q`

˘
R

`
Kprus2, hu˚q , (29)

so that, considering the first term of (28):

C1´2
∆t

∆x
R`

K

`
rus2, hu˚

˘

ď 2
∆t

∆x
R`

K

`
rus2, hu˚

˘ ˆ
∆t

∆x

`
p´hu˚

K`1{2q` ` phu˚
K´1{2q`

˘
{pξKhn`1

K q ´ 1

˙
.

(30)

The right hand side is negative under the condition (17) with ρ “ ξK in virtue of (19).
Now, considering that (18) holds, the ratio hn

K{hn`1

K can be bounded by 1 ` ξK in C2 and
C3, leading to:

C2 ď 2λ2hn
K

1 ` ξK

1 ´ ξK
SK

`
rφs2

˘
.

Using the notation νK “ 1 ` ξK

1 ´ ξK
and (8), this estimation can be reformulated as:

C2 ď 2λ2SK

`
rφs2, hν

˘
´ 2λ2

∆xBK

`
rφs2, rhνs

˘
. (31)

In a similar way, we obtain:

C3 ď 2λ2SK

`
Λ

2, hν
˘

´ 2λ2
∆xBK

`
Λ

2, rhνs
˘
. (32)

Gathering estimates (30), (31) and (32) we get, going back to (28):

UK ď 2λ2SK

`
rφs2, hν

˘
` 2λ2SK

`
Λ

2, hν
˘

´ 2λ2
∆xBK

`
Λ

2, rhνs
˘

´ 2λ2
∆xBK

`
rφs2, rhνs

˘
.

(33)

Plugging this estimate in (27), we recognize the right hand side of (22) up to antisymmetric

contributions scaled as Op∆t2q, that are incorporated in the fluxes ĂBup
K

ˆ
1

2
u2, hu˚

˙
.
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3 Global stability result

3.1 Choice of the stabilization terms

Denoting En
K “ En

K ` Kn
K the local mechanical energy, the sum of energy estimates (20)

and (22), can be written under the compact form:

En`1

K ´ En
K ` ∆t dK

ˆ
e ` 1

2
gh, hu˚

˙
ď GK ` LK , (34)

where the energy flux is given by (we remark that e ` 1

2
gh “ 1

2
u2 ` φ):

dK

ˆ
e ` 1

2
gh, hu˚

˙
“ ĂBup

K

ˆ
1

2
u2, hu˚

˙
` ĂBKpφ, hu˚q ,

and
GK “ 2gλ2SK

`
Π

2
˘

´ λSK pΠ, rφsq ` 2λ2SK

`
rφs2, hν

˘
, (35)

LK “ 2gλ2SK

`
rqs2

˘
´ λSK prqs,Λq ` 2λ2SK

`
Λ

2, hν
˘
, (36)

We thus recognize at the left hand side a discrete equivalent of the continuous energy
equation (2). We now discuss the conditions ensuring the negativity of the terms appearing
in the right hand side.

Proposition 3.1 (Control of the terms GK and LK). Suppose that the viscous terms
involved in formulas (14), (15) have the following form:

ΠK`1{2 “ 2γ

ˆ
∆t

∆x

˙
pĎhνqK`1{2rφsK`1{2 , (37)

and

ΛK`1{2 “ 2αg

ˆ
∆t

∆x

˙
rhusK`1{2 , (38)

where γ, α are positive constants. Assume that the following time constraint holds:

∆t

∆x

ˆb
gpĎhνqK`1{2

˙
ď 1

4
, (39)

where we recall that νK “ 1 ` ξK

1 ´ ξK
(see (23), Proposition 2.2). Then, if α, γ satisfy the

following bounds:

γ, α P rr´, r`s , with r˘pϑq “ 1 ˘
?
1 ´ ϑ

ϑ{2 , (40)

where ϑ “ 16λ2gpĎhνqK`1{2, the terms GK and LK in (34) are both negative.

Proof. Considering the definition of SK (7), the term GK may be written as the sum of
two interface contributions. More explicitly, we have GK “ gk`1{2 ` gk´1{2 with

gK`1{2 “ 2gλ2
`
ΠK`1{2

˘
2 ´ λΠK`1{2rφsK`1{2 ` 2λ2pĎhνqK`1{2

`
rφsK`1{2

˘
2

,

9



wich leads to identify conditions ensuring gK`1{2 ď 0 at the level of each cell interface. In
what follows, we will focus at a generic interface K ` 1{2 and remove the corresponding
subscripts for the sake of clarity. We thus rewrite Π “ 2γλpĎhνqrφs, to get:

g “ 2λ2pĎhνqrφs2
“
1 ´ γ `

`
4λ2gpĎhνq

˘
γ2

‰
.

We easily verify that the condition to have real roots leads to the CFL condition (39) and
the negativity is ensured with the bounds (40) for the constant γ. In a similar way, we
can write the term (36) as LK “ lK`1{2 ` lK´1{2 (36), where:

lK`1{2 “ 2gλ2
`
rqsK`1{2

˘
2 ´ λrqsK`1{2ΛK`1{2 ` 2λ2phνqK`1{2

`
ΛK`1{2

˘
2

.

This motivates a definition of the form (38), from which we extract exactly the same
conditions, namely (39) and α P rr´, r`s.

Remark 3.2. We have lim
ϑÑ0

r´pϑq “ 1, r˘p1q “ 2 and lim
ϑÑ0

r`pϑq “ `8. The function

ϑ ÞÑ r´pϑq being increasing and ϑ ÞÑ r`pϑq decreasing on the interval r0, 1s, we get that
the value γ “ α “ 2 is always admissible, independently from K. Note also the possiblity
of taking γ, α close to 1 by diminishing ϑ (that is the time step).

3.2 Choice of parameters ξK and global CFL condition

We start by recalling that the negativity of the right hand side of the discrete energy
budget (34) is ensured under the advective time constraint (17) with ρ “ ξK Ps0, 1r, sup-

plemented by the condition (39), implying the local quantity νK “ 1 ` ξK

1 ´ ξK
. A first basic

approach consists in chosing ξK “ ξ as constant over the mesh and consider separately the
associated time constraints (17), (39), as done in [1]. This strategy appears to be relevant
in low Froude regimes, where the time step is mainly governed by (39), which suggests
a low value for ξ (so that ν is close to 1) to minimize diffusive losses. More generally,
it is possible to exploit the local character of ξK to express an explicit balance between
(17) and (39), depending on the flow regime. First remark that the condition (17) can be
written as:

2λuK ď ξK

1 ` ξK
, (41)

where we have set uK “ 1

2

´
|hu˚

K`1{2| ` |hu˚
K´1{2|

¯
{hn

K . The condition (39) is

λ

ˆb
gpĎhνqK`1{2

˙
ď 1

4
.

Using the fact that

c
1

2
pa ` bq ď maxp?

a,
?
bq, this can be expressed through the local

sufficient condition

λcK ď 1

4
?
νK

,
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where cK “
a

ghn
K . Since νK ą 1 we have

1

νK
ă 1?

νK
, so that this condition is ensured

under:

4λcK ď 1 ´ ξK

1 ` ξK
. (42)

Assume now that the following CFL condition holds:

λmax
K

puK ` cKq ď 1{4 . (43)

This condition allows to define ξK according to (41), that is assume the case of equality

2λuK “ ξK

1 ` ξK
. Indeed, this latter equality is equivalent to:

2λuK p1 ` ξKq “ ξK ô ξK p1 ´ 2λuKq “ 2λuK . (44)

Under (43), we have 1 ´ 2λuK ą 0, so that we can define:

ξK “ 2λuK

1 ´ 2λuK
, (45)

with ξK Ps0, 1r. This gives
1 ´ ξK

1 ` ξK
“ 1 ´ 4λuK ,

so that condition (42) is in fact equivalent to (43). We finally remark that under this
condition:

4λuK ď uK

uK ` cK
,

leading to 1{νK “ 1 ´ ξK

1 ` ξK
“ 1 ´ 4λuK ě 1 ´ uK

uK ` cK
“ cK

uK ` cK
. This implies:

νK ď 1 ` pFrqK ,

where pFrqK “ uK

cK
stands for a local Froude number. To summarize, equipped with

definitions (37), (38) and the notations

uK “ 1

2

`
|hu˚

K`1{2| ` |hu˚
K´1{2|

˘
{hn

K , cK “
a

ghn
K ,

the scheme (13) is stable under the CFL condition (43) in the sense of existence of local
energy estimate of the form:

En`1

K ´ En
K ` ∆t dK

ˆ
e ` 1

2
gh, hu˚

˙
ď 0 . (46)

The constants γ, α involved in (37), (38) have to satisfiy the bounds (40), and the quantity

νK is defined by νK “ 1

1 ´ 4λuK
.
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3.3 Addition of passive transport

To complete the picture, we show how the method naturally extends to passive transport
considering the following model:

$
’’&
’’%

Bth ` Bxphuq “ 0 ,

Btphuq ` Bx

ˆ
hu2 ` gh2

2

˙
“ ´ghBxz ,

Btphωq ` Bx phuωq “ 0 ,

(47)

ω referring to any scalar variable. The augmented energy relies on the quantity:

e “ 1

2
u2 ` 1

2
gh ` gb ` κω2 ,

where κ ą 0, and the energy equation remains:

Btpheq ` Bx

ˆ
pe ` 1

2
ghqhu

˙
“ 0 . (48)

The last equation in (47) can be integrated using the upwind fluxes defined in (6):

$
&
%

hn`1

K “ hn
K ´ ∆tBK phu˚q ,

phuqn`1

K “ phuqnK ´ ∆tBup
K pu, hu˚q ´ ∆thn

KBKφ
˚ ,

phωqn`1

K “ phωqnK ´ ∆tBup
K pω, hu˚q .

(49)

More precisely, we have the following result:

Proposition 3.3. Let Wn
K “ κhn

Kpωn
Kq2 the local energy at time n associated with the

variable ω. Under the CFL condition (17) with ρ “ 1, we have:

Wn`1

K ´ Wn
K ` ∆tBup

K

`
κω2, hu˚

˘
ď 0 . (50)

Proof. The proof follows the first steps of the one of Proposition 2.2 for the kinetic energy.
First, by similar arguments as those employed to get (16), we easily get:

ωn`1

K “ ωn
K ´ ∆t

1

hn`1

K

phu˚BωqupK . (51)

Using the mass equation and the relation (12), we get:

2κhn`1

K

`
ωn`1

K ´ ωn
K

˘
ωn
K “ Wn`1

K ´ Wn
K ` κ∆t pωn

Kq2 BKphu˚q ´ κhn`1

K

`
ωn`1

K ´ ωn
K

˘
2

,

and using the scheme (51), together with Lemma 1.3:

W
n`1

K ´ W
n
K “ ´κ∆t

`
2ωn

K phu˚BωqupK ` pωn
Kq2 BKhu

˚
˘

` κhn`1

K

`
ωn`1

K ´ ωn
K

˘
2

“ ´κ∆tBup
K pω2, hu˚q ´ 4κ

∆t

∆x
R`

K

`
rωs2, hu˚

˘
` κhn`1

K

`
ωn`1

K ´ ωn
K

˘
2

.

This previous equality can be reformulated as

Wn`1

K ´ Wn
K ` ∆tBup

K

`
κw2, hu˚

˘
“ κTK , (52)
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with TK “ hn`1

K

`
ωn`1

K ´ ωn
K

˘
2 ´ 4

∆t

∆x
R`

K prωs2, hu˚q. Thus it remains to establish that

TK ď 0 under the CFL condition (17). We have, using (51) and Lemma 1.4 :

hn`1

K

`
ωn`1

K ´ ωn
K

˘
2 “ p∆tq2

hn`1

K

rphu˚BωqupK s2

ď 4

ˆ
∆t

∆x

˙
2

1

hn`1

K

`
p´hu˚

K`1{2q` ` phu˚
K´1{2q`

˘
R

up
K

`
rωs2, hu˚

˘

Hence:

TK ď 4
∆t

∆x

`
R`

K

`
rωs2, hu˚

˘˘ ˆ
∆t

∆x

`
p´hu˚

K`1{2q` ` phu˚
K´1{2q`

˘
{hn`1

K ´ 1

˙
,

which is negative under the CFL (17) in the case ρ “ 1, according to (19).

It directly follows that the scheme stability is ensured under the same conditions
(discussed in Section §3.2), with this time a discrete energy estimate of the form:

En`1

K ´ En
K ` ∆t dK

ˆ
e ` 1

2
gh, hu˚

˙
ď 0 , (53)

where En
K “ En

K ` Kn
K ` Wn

K , and the energy flux is given by:

dK

ˆ
e ` 1

2
gh, hu˚

˙
“ ĂBup

K

ˆ
1

2
u2, hu˚

˙
` ĂBKpφ, hu˚q ` Bup

K

`
κω2, hu˚

˘
.

4 Two dimensional extension

To extend the present approach in the 2d case, we consider a 2d domain meshed with
polygonal cells indexed by K P Z. In what follows, mK and mBK will stand for the area
and perimeter of cell K. For every edge e P BK, we will employ the notations me and
~ne,K respectively for the length and the outward normal of the corresponding boundary
interface (see Fig 1). The set of equations we now consider is the following:
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~ne,K

e

Ke

K

b
b

Figure 1: Geometric settings - focus on the interface e.

$
&
%

Bth ` div.phuq “ 0 ,

Btphuq ` div.

ˆ
hu b u ` gh2

2

˙
“ ´gh∇z ,

(54)

which can be written in the compact form:

BtW ` div.FpW q ` hSpW q “ 0 , (55)

where FpW q “
ˆ

hu

hu b u

˙
and SpW q “

ˆ
0

∇φ

˙
, where we recall that φ “ g ph ` zq.

4.1 Derivation of the scheme

Denoting W n
K the approximate solution on the cell K at time tn, we seek for a two-

dimensional formulation in terms of convex combination of one dimensional schemes,
that is:

W n`1

K “
ÿ

ePBK

αe,KW
n`1

e,K , (56)

where W n`1

e,K results from the application of the one dimensional approach in the normal

direction ~ne,K , and αe,K are positive coefficients such that
ÿ

ePBK

αe,K “ 1. Before going

further, we first remark that the one dimensional scheme with passive transport (49) can
be rewritten in the following form:

W n`1

K “ W n
K ´ ∆t

∆x

`
FpW n

K ,W
n
K`1

q ´ FpW n
K´1

,W n
Kq

˘

´ ∆t

∆x
hn
K

`
SpW n

K ,W
n
K`1

q ´ SpW n
K´1

,W n
Kq

˘
,

(57)
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where, using notation (6):

FpW n
K ,W

n
K`1

q “

¨
˝

phuq˚
K`1{2

F
up

K`1{2pu, phuq˚q
F

up

K`1{2pω, phuq˚q

˛
‚ , SpW n

K ,W
n
K`1

q “

¨
˝

0

φ˚
K`1{2

0

˛
‚ . (58)

Going back to the 2d formalism, let’s now consider a generic interface e at the level of a
cell K and apply this scheme to the states WK ,WK ,WKe

in the reference associated to
the outward normal ~ne,K. The velocity vector is subject to a change of coordinates which
can be operated through the following mapping (we note ~ne,K “ tpnx, nyq):

τ : W “
ˆ

h

hu

˙
ÞÝÑ xW “

ˆ
h

huτ

˙
, (59)

where
uτ “ unx ` vny ,

vτ “ ´uny ` vnx .

It can easily be checked that the return to original px, yq coordinates through τ´1 is
characterized by:

u “ uτnx ´ vτny ,

v “ uτny ` vτnx .

Applying the basis scheme (57) in this reference to the states xWK , xWK , xWKe
, with a space

step ∆K “ mK

mBK
and vτ as passive transport, we get the following auxiliary update:

xW n`1

e,K “ xW n
K ´ ∆t

∆K

´
FpxW n

K ,
xW n

Ke

q ´ FpxW n
K ,

xW n
Kq

¯

´ ∆t

∆K

hn
K

´
SpxW n

K ,
xW n

Ke

q ´ SpxW n
K ,

xW n
Kq

¯
.

(60)

By consistency of the fluxes F with the 1d physical advective fluxes F “ t phu , hu2 , hwq,
we have FpxW n

K ,
xW n

Kq “ F pxW n
Kq, and it can easily be checked that τ´1F pxW n

Kq “ FpW n
Kq.~ne,K .

In a second hand, according to (58) and the definition (14), the computation of FpxW n
K ,

xW n
Ke

q
implies the following interface value:

phuτ q˚
e “ phuτ qe ´ Πe ,

where phuτqe “ 1

2

`
huτ

Ke

` huτ
K

˘
, and, following definition (37):

Πe “ 2γ

ˆ
∆t

∆K

˙
pĎhνqe

ˆ
φKe

´ φK

2

˙
.

Remarking that uτ “ u.~ne,K , we get:

phuτ q˚
e “ phuq˚

e .~ne,K ,

where

phuq˚
e “ phuqe ´ Πe , Πe “ 2γ

ˆ
∆t

∆K

˙
pĎhνqepδeφq , (61)
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with the jump operator δeφ “ 1

2
pφKe

´ φKq~ne,K . As a result, we can write:

FpxW n
K ,

xW n
Ke

q “

¨
˝

phuq˚
e .~ne,K

Fup
e puτ , phuq˚.~ne,Kq

Fup
e pvτ , phuq˚.~ne,Kq

˛
‚ , (62)

so that going back to the px, yq coordinates we get:

FpW n
K ,W

n
Ke

, ~ne,Kq :“ τ´1FpxW n
K ,

xW n
Ke

q “
ˆ

phuq˚
e .~ne,K

Fup
e pu, phuq˚.~ne,Kq

˙
, (63)

where
Fup

e pu, phuq˚.~ne,Kq “ uK pphuq˚
e .~ne,Kq` ` uKe

pphuq˚
e .~ne,Kq´

.

Remains the second component of SpxW n
K ,

xW n
Ke

q, which is, still according to the basis
scheme (57):

φ˚
e “ φe ´ Λe , (64)

with φe “ 1

2
pφKe

´ φKq and the stabilization term (see (38)):

Λe “ 2αg

ˆ
∆t

∆K

˙ ˆ
huτ

Ke

´ huτ
K

2

˙

“ 2αg

ˆ
∆t

∆K

˙
pδehuq ,

(65)

where pδehuq “ 1

2
phuKe

´ huKq .~ne,K . Note finally that we have τ´1SpxW n
K ,

xW n
Kq “

ˆ
0

φK~ne,K

˙
and τ´1SpxW n

K ,
xW n

Ke

q “
ˆ

0

φ˚
e~ne,K

˙
. Putting this all together, we are ready to

use formula (56) with αe,K “ me

mBK
, which gives, with the support of Green formula:

W n`1

K “
ÿ

ePBK

me

mBK

τ´1

´
xW n`1

e,K

¯

“ W n
K ´ ∆t

mK

ÿ

ePBK

FpW n
K,W

n
Ke

, ~ne,Kqme ´ ∆t

mK

hn
K

ÿ

ePBK

ˆ
0

φ˚
e~ne,K

˙
me .

This leads to the scheme proposed in [1]:

$
’’’’’’’&
’’’’’’’%

hn`1

K “ hn
K ´ ∆t

mK

ÿ

ePBK

phuq˚
e .~ne,Kme

phuqn`1

K “ phuqnK ´ ∆t

mK

ÿ

ePBK

`
uK pphuq˚

e .~ne,Kq` ` uKe
pphuq˚

e .~ne,Kq´˘
me

´ ∆t

mK

hn
K

ÿ

ePBK

φ˚
e~ne,Kme ,

(66)

where

phuq˚
e “ phuqe ´ Πe , Πe “ 2γ

ˆ
∆t

∆K

˙
pĎhνqepδeφq , (67)

16



φ˚
e “ φe ´ Λe , Λe “ 2αg

ˆ
∆t

∆K

˙
pδehuq , (68)

with δeφ “ 1

2
pφKe

´ φKq~ne,K and pδehuq “ 1

2
pphuqKe

´ phuKqq .~ne,K . We now discuss

the conditions ensuring fully discrete energy estimates.

4.2 Stability issues

Denoting ηpW q “ hepW q “ 1

2
gh2 ` ghb` 1

2
hu2 ` 1

2
hvn the energy functional, the energy

equation provided by (53) and resulting from (60) can be rewritten as:

η
´

xW n`1

e,K

¯
ď η

´
xW n

K

¯
´ ∆t

∆K

´
GpxW n

K ,
xW n

Ke

q ´ GpxW n
K ,

xW n
Kq

¯
, (69)

with G a numerical entropy flux. These flux are defined according to the discrete operators
involved in (53), which take the following form:

BK

ˆ
e ` 1

2
gh, phuτq˚

˙
“ ĂBup

K

ˆ
1

2
}u}2, phuτ q˚

˙
` ĂBKpφ, phuτq˚q . (70)

we recall here that the main part of these operators are given by (5) and (6), while the
superscripts ” r ” refer to low order corrections (see Proposition 2.1, formula (20) and
proof of Proposition 2.2 for an explicit expression of these terms). Since the quantity enK

is invariant with the change of coordinates (59), we note that η
´

xW n`1

e,K

¯
“ η

`
W n`1

e,K

˘
, and

the consistency with the (1d) continuous entropy flux G allows to write:

GpxW n
K ,

xW n
Kq “ GpxW n

Kq “
ˆ
epW n

Kq ` 1

2
ghn

K

˙
phuqnK .ne,K , (71)

which corresponds to the projection of the 2d entropy flux on the normal vector, namely
GpW n

Kq.~ne,K . On the other hand, returning to the discrete operators involved in (53), we
can define the main part of the entropy fluxes as:

GpW n
K ,W

n
Ke

, ~ne,Kq :“ GpxW n
K ,

xW n
Ke

q “ F
up
K

ˆ
1

2
}u}2, phuq˚

e .~ne,K

˙
` φephuq˚

e .~ne,K ` rAK ,

(72)

where rAK contains the lower order corrections (see (70) and discussion below). The
convexity of η leads to:

η
`
W n`1

K

˘
“ η

˜ ÿ

ePBK

αe,KW
n`1

e,K

¸

ď
ÿ

ePBK

αe,Kη
`
W n`1

e,K

˘

ď
ÿ

ePBK

αe,K

„
η pW n

Kq ´ ∆t

∆K

´
GpxW n

K ,
xW n

Ke

q ´ GpxW n
K ,

xW n
Kq

¯

ď η pW n
Kq ´ ∆t

mK

ÿ

ePBK

GpW n
K ,W

n
Ke

, ~ne,Kqme .

(73)
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Note that this discrete energy estimate is ensured provided that inequality (69) holds,
that is the stability conditions of the 1d-like scheme (60). According to Section 3, this is
ensured by condition (43), which becomes in the present context:

4
∆t

∆K

puK ` cKq ď 1 , (74)

where we recall that ∆K “ mK

mBK
, cK “

a
ghn

K . Recalling that phuτ q˚
e “ phuq˚

K .~ne,K , we

take:

uK “ max
ePBK

ˆ
1

2
p|phuq˚

e .~ne,Kq| ` |phuqnK .~ne,K |q {hn
K

˙
.

This allows to define the parameter ν in (67) as in the 1d case : νK “ 1

1 ´ 4
∆t

∆K

uK

. The

constants α, γ involved in (67) and (68) are still subject to the bound conditions (40) of
Proposition 3.1
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