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Revisiting energy estimates of the CPR scheme for the
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*Université Claude Bernard Lyon 1, Institut Camille Jordan, UMR 5208
* Institut Universitaire de France

The present notes concern some improvements concerning the CPR (Centred Potential
Regularization) schemes proposed in [2] and [1] in the particular case of the Shallow Water
equations. We propose here a totally explicit variant of the scheme introduced in [1], and
clarify the time step condition required to get energy dissipation (in other terms, entropy
stability). This work aslo results in a slight modification of the viscosity terms, that may
help improving numerical results far from low-Froude regimes. This document is organized
as follows: in Section 1 we introduce the main notations as well as elementary technical
lemmas concerning the discrete operators. The numerical scheme is given in Section 2,
together with preliminary results regarding the discrete energy. The main stability results
are discussed in Section 3, and extended in 2D in Section 4.

1 Introduction and general settings

We start here from the 1d Shallow Water system with topography:

2
Or(hu) + 0, <hu2 + %) = —gh0,z, (1)

where h = h(x,t) is the water height, u = u(z,t) is the horizontal average velocity and
z = z(x) accounts for the topography variations. This system admits the following energy
conservation:

Or(he) + 0, ((6 + %gh)hu) =0, (2)

where

1 1
e=§u2+§gh+gz.

In view of the design of the numerical scheme, we now introduce the discrete operators
used in the next sections, as well as elementary estimates and duality formulas. In the
one dimensional case, we consider a uniform grid with space step Ax, and denote K € Z
the element indices. First, for any sequence of scalar interface quantity (bx1/2), we define
the operator:

1
Oxb = Ar (bK+1/2 - bK—l/Q) ) (3)



with the specific notation 0% b when the interface quantities correspond to the half sum
of the values sharing the interface, that is:

jal

1 - _
0% = s (bk41/2 — bk—1p2) (4)

1

where BK+1/2 = — (bx + bx+1). Wealso introduce the interface jump [b] k4172 = 3 (bx+1— bk),

1
_ 2 -
so that bx = bk y1/2—[b]k+1/2 = br—1/2+[b] k4172 for all K € Z. When no confusion is pos-
sible, these two definitions will extend to multiple variables by considering the difference

of term to term interface products, leading to, in the case of two variables:

1
dx(a,b) = s (ars1p2brs1jo — ar—1/2bx_1/2) - (5)

We also define the discrete upwind derivative, for any collocated sequence of scalars (ax)

U; 1 U U,
I (a,0) = Ar <~7:Kp+1/2(av b) — ]:qu/z(aa b)) ’ (6)
u - 1 1
where F3” ) o(a,b) = axbje,yp + ax1bg,j, and wt = 3 (w+ |w|) , w™ = 3 (w — |w|)

for any scalar quantity w € R. In what follows we will regularly use the notation:

Sk (a,b) = ag 120412 + ax—1/2bK-1)2, (7)

with its natural generalization to the sum of interface products Sk (as,--- ,a,). When
no confusion is possible, we will use the convention Sk (a?) = Sk(a,a). Remark that

axSk(b) = g 1720112+ ax—1/2bK 172 — [a] K120k +1/2 + [a] K —1/2bK —1/2, Which gives the
duality formula:
G,KSK(b) = SK(d, b) - Axé’K([a], b) . (8)

Lemma 1.1 (Centred fluzes duality). We have the following duality formula:
agOib+ bgdypa = é’%;(a, b),

where
05 (a,b) = 05 (a,b) — ok ([a], [b]) - 9)

Proof. We have, using ax = axy1/2 — [a]xi1/2 = Gx—1/2 + [a] k—1/2:

1 _ _
axOib+ bgdya = Ar [GK (bK+1/2 - bK—l/Q) + bx (aK+1/2 - flK—1/2)]

1 - _
N [aK (bK+1/2 — bK—1/2) + bx ([a]KH/z + [G]KA/Q)]

17 _ _ _
= E [QK+1/25K+1/2 - aK71/2bK71/2

+ a1z (b — bis1y2) + [alk—1/2 (bx — br—1/2) ]
= a;((a“? b) — 0k ([a]v [b]) :



Lemma 1.2 (Upwind fluzes duality). We have the following duality formula:
0y (a,b) = axdkb + (boa)y ,

where " " " u
U, — K+1 — UK K — UWK-1
(b0a)}? = b1y () + by () (10)

Proof. We have:
Az [0y (a,b) — agdxb] = [(aKb;r(Hp + aK+1b;<+1/2> - (aK—lb;r(—uz + aKb;(—uz)]

- [aK (b}r(ﬂ/z + bl_<+1/2) K <b;r(—1/2 T bf_(—l/Q)]

= b[_(+1/2 (ag1 —ag) + b;r(fl/g (ag —akx—1) .

]
Lemma 1.3 (Upwind fluzes duality - Squares). We have the following equality:
4
2ax (b0a)y + (ax)?0Oxb = 03 (a*,b) + ER} ([a]?,0) ,
where
Ri ([al?,b) := (=brcsrp2) alk1jo + (br—1y2) [alF 1) (11)
Proof. Using the classical relation
Ly 1,5 1 2
—a)r = —y? — —a®— —(z — 12
(y—2)z =gy - 5a° — (@ —y)*, (12)

we have:
Az (2axk (bda)y + (ax)?kb)
= 2ax (b;(+1/2 (ag 1 —ag) + 6271/2 (ar — aK,l)) + (ag)? (b[(+1/2 — bK,l/g)
= bl_(+1/2 ((aK+1)2 — (ax)? = (a1 — aK)2) - b}—1/2 ((aK—1)2 — (ak)?* = (ag 1 - aK)2)
+ (k) O + Ope ) = (@) (0o + Uy 0)
= <b;<+1/2(aK+1)2 + b;r<+1/2(aK)2> - (b;(_1/2(aK)2 + 62_1/2@1(71)2)
+ <—b;(+1/2 (ag 1 — aK)2 + 52—1/2 (ax — aK_l)z)

1
Going back to the definition (6) and using —(w™) = ~3 (w— |w]) = (—w)™, we get the

announced result. O

Lemma 1.4 (Square estimate for upwind fluzes). With the notations of the previous
Lemma, we have the following inequality:

[(bda);?]” < é <(_bK+1/2)+ + b}_l/z) Ry ([a]?b) .



Proof. We write:

. 1 2
[(baa);f]Q = A2 [(—bK+1/2)+ X —[a]K+1/2 + b}_l/g[a]K—l/z] )

and use Cauchy-Schwarz inequality with the vectors:
(—bK+1/2)+ (=brq1/2)T % _[a]K+1/2
() e )
to obtain

wvf? < uf2vi? = ((“bra)* + by ) - ((<brern) Ll + by alalie 1) -

O

2 Numerical scheme and preliminary energy estimates

Introducing the scalar potential ¢ = g(h+ z), we consider the following numerical scheme
for the model (1):

{ W = B Aty (hu) |

hu)it = (hu)y — A (u, hu*) — Athy Ok * (13)
K K K K

Referring to (3) and (6), we only need to define (hu)¥,,, and ¢k, to characterize the
discrete operators. Following [1], we set:

(h) 10 = MK+1/2 — g y1)2, (14)

and

¢}k<+1/2 = ¢K+1/2 - AK+1/2> (15)
where we recall that the superscript “ = 7 refers to the mean interface value taken at
time n (the scheme being totally explicit, the time indice will be omitted when possible
in the following). The quantities IIx 1/ and Ag 12 govern the numerical viscosity of
the scheme, and will be defined in Proposition 3.1 (formulas (37) and (38)) in order to
guarantee energy dissipation. Using the mass equation in (13), we easily get:

(hu) = (hu)fe = R (e — ) — Atuf g (hu®).
Invoking the momentum equation:
Rt (uh — ) = A (0 (u, hu*) — ul Ok (hu®)) — Athl 0k o™
and using Lemma 1.2, we obtain the velocity equation:

1 v I
upt = uf - AtW (hu*0u)’ — Ath"IJil
K K

oo™, (16)

the operator (hu*ou)j being based on (10). In what follows, we will consider an advective
CFL condition of the form:

At p

Ax (|hu}+1/2] + |hu}71/2]) < 1+,

h’. 17
+p K> ( )

4



where p is a strictly positive constant. Let’s remark that the time constraint (17) implies:

M — by = Az (hufesrje = hufeyn) < Ar (1Pt sjol + [Pt _1jol) < T4k
which gives
Ry < (1+ p)hitt. (18)
In particular, we have, under (17):
At * + * + n
Ax <(_huK+1/2) + (huK+1/2) ) < ph}(ﬂ- (19)

The next proposition gives local estimates for the potential energy:

Proposition 2.1. Let £} = %g (R3)? + ghlzk the potential energy at time n at the level
of the cell K. Setting \ = 2—;, we have the following estimate:
EPH— 4 AtOg (¢, hu*) — At(hu) 056 < 2972k ([hul?) +297\2Skc (I12) = ASk (11, [4]) |
20
where the operator Sy is defined according to (7). The flux term g((gb, hu*) is deﬁneil b;;
Ok (9, hu*) = 2uc(6, hu) = dxc ([9], [Ta])

where Ok (¢, hu*) and O ([¢], [hu]) are defined by (5). The term 0k ([¢], [hu]) is a second
order contribution with respect to the mesh size, seen as a bias on the leading flux term

Proof. A basic computation give:
Eptt —&p = (W — ) ¢ + 59 (Rt —hi)™ . (21)

On a first hand we have:

At
(hnKH - h%) Pk = T Ar (hu;(+1/2 - hu?{q/z) P

At " 7 * Iy
= _A—x (huK+1/2¢K+1/2 - huK—1/2¢K71/2)

At . .
+ Ar (huK+1/2[¢]K+1/2 + huK—1/2[¢]K—1/2)

At ,— — A

= —Atdk (¢, hu*) + A_at: (huK+1/2[<Z5]K+1/2 + huK71/2[¢]K71/2) - A—;‘SK(H; [¢])
A

= —Atdg (¢, hu™) + A—i(hu)nl( ([@)xr1s2 + [Blc—1y2)

+ Aték([6],[rad) — o8I o)
= —Atdg (¢, hu*) + At(hu)ydsd — ASk (1L, [¢]) .



Using standard convexity inequalities, the remaining term of the right hand side in (21)
can be estimated as follows:

g (h?(ﬂ - h?{)Q = %)\2 (@K+1/2 - @Kq/z - (HK+1/2 - HK71/2))

2
= %)\2 ([Mu)s1jo + [Pu) k-1 — (g s12 — HK71/2))2
< 29N*Sk ([hu]?) + 2gX*Sk (IT%) .

2

Gathering the two previous contributions, we get the announced result. O
We now turn to kinetic energy estimates:

1
Proposition 2.2. Define Kl = §h’}((u?()2 the local kinetic energy at time n. Let ({k)

a real sequence verifying £k €]0,1[ for every K € Z, and assume that the local CFL
condition (17) is ensured with p = & at the level of the cell K. We have the following
estimation:

It — K + Aoy <%u2 hu*) + At(hu)d5¢ )
< =ASk ([hu], A) + 2X°Sk ([¢]7, hv) + 2XSk (A%, hv)

Having in mind definition (6), the upwind fluzx is of the form
’?ﬁo 1 2 * up 1 2 *
Oy U Jhu* | = 0 Ju Jhu ) + Ak,

where term Ay gathers O(At, Ax) antisymmetric terms, corresponding to a consistent
perturbation of the leading flux. The sequence (vk) implied in estimate (22) is defined by:

1+§K

Vg = 1 tx (23)
Proof. We start writing:
n+1 n+1 n n n+1 1 n+1\2 1 n\2 1 n+1 n \2
R (UK _UK) uy = hy 5( K ) — 5(“1{) - 5(“1{ — uk)
= Ky = K - 5(“}()2 (hKH - h’K) - éhKJrl(uKJrl — uf)?
1 1
= Kt — K + éAt(u’}()Q(?K(hu*) - éh’}jl(u?{“ —ul)?.
Hence, with the velocity equation (16):
1 1
O3~ K + 5 AP0 () = S (i — )
= uf (—At (hu*ou)y — Ath Ok o) ,
or equivalently:
1
Kt — K + At <§(u?()2(3;((hu*) + ul (hu*&u)qu) + At (hu)y Ok ¢* 21
24
1
= §h?<+1(u7}<+1 —uk)?.



We focus on the terms of the left hand side. With the help of Lemma 1.3, we write:

1 U 1 n * n * U
§(u"K)2é’K(hu*) + uly (hu*ou)y = 3 ((uf)?Or (hu*) + 2uf (hu*ou)r)

1 9 (25)
= 0} <§u2, hu*> + ER} ([u]?, hu*) .

The last term of the left hand side in (24) can be subjet to the following reformulation:
1
(hu) g0k 9™ = (hu)f Ok d — E(hu)’}( (AK+1/2 - AK—1/2)

= (hu)k 0k ¢ — Ar (%K+1/2AK+1/2 — @K—m/\}(—yz) )
26
1
+ Ar ([hU]K+1/2AK+1/2 + [hU]K71/2AK71/2)
1

= (hu)}%0%® — Ok (A, hu) + AxSK([hu]’ A).

Injecting (25) and (26) in (24), we get:

o (1
Kitt — Kh + Aty (§u2, hu*> + At(hu)% 050 = —ASk ([hu], A) + Uk , (27)

where At 1
Ui = —2A—x7z;< ([u]?, hu*) + éh?jl(u?jl —u)?, (28)

= (1 1
and 077 (§u2, hu*) = 07 (§u2, hu*) — Ok (A, hu). Remark that, as will be established

rigorously later on, the viscous term A is scaled as O(At), so that the bias on the flux
Ok (A, hu) is of the expected form, according to the statement of the Proposition.

1
The following step relies on the estimation of the term éh?jl(u?{“ — u%)?. Using again

the velocity equation (16), we have:

1 1 1 I :
éh;?_l(u}?—l — u?()Q = §h7}(+1At2 |:h?(+1 (hu*au)l;? + Wﬁél(ﬁb*} :

Using the equality

1 1 1
Oxd* = Ar (¢?<+1/2 - ¢}k<_1/2) T Ax ([@1xc+1/2 + [D]K-12) — Ax (Akcsrye = Akpo)

we write

1 1
5%{“(“?{“ - UnK)2 = §At2hn1<+1 (C1+Cy + 03)2 )
with
1 N u
C, = it (hu*ou)y
Co = L (6o + [0k 1)
2 Az h?g_l K+1/2 K-1/2) »
1 A?
Cs = —EW{; (AK+1/2 — AK—1/2) .



1-— 1—
We now use the convexity of the square function with the weights (f K, 2&(, 2£K) ,
so that: ]
§hn1<+1(u?<“ —up)? <C+Cy+Cs,
where . .
2 * up2
At\? B [ 2
Cy = (A—x) 1— & (h}?l) ([¢]ks1/2 + [Dlx-12) ",
At\® hn (b 2
C3 = (A—x) 1—&n (h?{+1) (AK+1/2 - AK71/2) .
Regarding the first term C;, a direct use of Lemma 1.4 give:
At 2 ]_ * + * + + 2 ES
Ci1<2 Ar) Gehtt (=Pl y0)™ + (Pufe_10) ") Ri([u]?, hu™) (29)

so that, considering the first term of (28):

A
Cl—2A—;R;—< ([U]Q, hu*)
At ) At 1 (30)
< QA—SL’R;; ([u]?, hu*) (A—x ((=htfepryo) ™ + (hufe_y ) ) /(Erchi) — 1) :

The right hand side is negative under the condition (17) with p = £k in virtue of (19).
Now, considering that (18) holds, the ratio h% /hx"* can be bounded by 1 + x in Co and
Cs, leading to:

1
0y < 2K s, ([6]?) -
1 =&k
. ) 1+ &k . . )
Using the notation vg = ¢ and (8), this estimation can be reformulated as:
— &K
Co < 2N°Sk ([¢]*, ) — 2X*Azdk ([¢)7, [hv]) - (31)

In a similar way, we obtain:
Cs < 2X7Sk (A* ) — 2X*Awdk (A?, [hv]) . (32)
Gathering estimates (30), (31) and (32) we get, going back to (28):

Ui <2XSk ([¢]% hv) + 2X°Sk (A* h)

—2X*Azdgk (A2, [hv]) — 222 Axdk ([0)7, [hv]) - (33)

Plugging this estimate in (27), we recognize the right hand side of (22) up to antisymmetric

S (1
contributions scaled as O(At?), that are incorporated in the fluxes %" <§u2, hu* ). O



3 Global stability result

3.1 Choice of the stabilization terms

Denoting E = E} + K the local mechanical energy, the sum of energy estimates (20)
and (22), can be written under the compact form:

1
Eptt — B + Atog (e + §gh, hu*) <Ux + Lk, (34)

1 1
where the energy flux is given by (we remark that e + 3 gh = §u2 + ¢):

[ (e + %gh, hu*) = (5\/}‘(’) <%u2, hu*> + 87<(<b, hu*) |
and
Gx = 2gX*Sk (I1%) — ASk (11, [¢]) + 2X°Sk ([¢]* hv) | (35)
Ly =29XNSk ([a]°) — XSk ([q), A) + 2X*Sk (A%, hv) (36)

We thus recognize at the left hand side a discrete equivalent of the continuous energy
equation (2). We now discuss the conditions ensuring the negativity of the terms appearing
in the right hand side.

Proposition 3.1 (Control of the terms Gx and Lk). Suppose that the viscous terms
involved in formulas (14), (15) have the following form:

At —
Hgi1/2 =2y (E) (h) ke y1/2 Pl +1)2 (37)
and
At
Ak 412 = 2ag s [hu]ks1/2, (38)
where v, « are positive constants. Assume that the following time constraint holds:
At — 1
Ar ( g(hV)K+1/2) < 1 (39)
1+ &k . . .
where we recall that v = (see (23), Proposition 2.2). Then, if a,v satisfy the
— 8K
following bounds:
1+4/1-9
voae[r ,rt] , withr*(¥) = ——— (40)

/2 ’
where ¥ = 16A\%g(hv) i 11/2, the terms G and Ly in (34) are both negative.

Proof. Considering the definition of Sk (7), the term Gx may be written as the sum of
two interface contributions. More explicitly, we have G = gii1/2 + gr—1/2 With

Orcs1/2 = 29\° (1_[1r<+1/2)2 — Mg i12[0]ws1/2 + 202 (h) 412 ([¢]K+1/2)2 ,

9



wich leads to identify conditions ensuring gx 12 < 0 at the level of each cell interface. In
what follows, we will focus at a generic interface K + 1/2 and remove the corresponding
subscripts for the sake of clarity. We thus rewrite I = 2yA(hv)[¢], to get:

g =2 ()[¢)" [1 — v+ (4Ng(hw)) ¥*] .

We easily verify that the condition to have real roots leads to the CFL condition (39) and
the negativity is ensured with the bounds (40) for the constant 7. In a similar way, we
can write the term (36) as Lx = [k 4172 + lk—1/2 (36), where:

(k12 = 2907 ([Q]K+1/2)2 — M) r1/20 1172 + 202 (V) k112 (AK+1/2)2 :

This motivates a definition of the form (38), from which we extract exactly the same
conditions, namely (39) and a € [r—,rT]. O

Remark 3.2. We have %il%r*(ﬁ) =1, r*(1) = 2 and 119i1rér+(19) = 4. The function

¥ — r=(¥) being increasing and ¥ — r+(¥) decreasing on the interval [0, 1], we get that
the value v = o = 2 is always admissible, independently from K. Note also the possiblity
of taking v, a close to 1 by diminishing ¥ (that is the time step).

3.2 Choice of parameters ¢ and global CFL condition

We start by recalling that the negativity of the right hand side of the discrete energy
budget (34) is ensured under the advective time constraint (17) with p = &k €]0, 1[, sup-
L+ gK A first basic
=

approach consists in chosing £ = £ as constant over the mesh and consider separately the
associated time constraints (17), (39), as done in [1]. This strategy appears to be relevant
in low Froude regimes, where the time step is mainly governed by (39), which suggests
a low value for ¢ (so that v is close to 1) to minimize diffusive losses. More generally,
it is possible to exploit the local character of {x to express an explicit balance between
(17) and (39), depending on the flow regime. First remark that the condition (17) can be
written as:

plemented by the condition (39), implying the local quantity vg =

2)\14[( §K

(41)

<|huK+1/2| + [hug )y ) . The condition (39) is

1
A ( hV K+1/2) Z .

1
Using the fact that 5(& +b) < max(y/a,v/b), this can be expressed through the local

N | —

where we have set ug =

sufficient condition




1
where ¢x = 4/gh}.. Since vix > 1 we have — < , so that this condition is ensured

Vi 12476
under: ¢
Ahege < T2 42
K 1+ &k ( )

Assume now that the following CFL condition holds:

)\mlz(xx(u;( + o) < 1/4. (43)
This condition allows to define {x according to (41), that is assume the case of equality
2 \ui = SK . Indeed, this latter equality is equivalent to:

1+ &k

2 \ug (1+§K> =¢x o &k (1—2)\11[() = 2 \ug . (44)

Under (43), we have 1 — 2 \ug > 0, so that we can define:

2)\14](
_ AR 45
S s v (45)
with x €]0, 1[. This gives
1 - &k
=1—4\
1+ &k i

so that condition (42) is in fact equivalent to (43). We finally remark that under this
condition:

Uk
g < ———
K Ug + Cx
leading to 1/vg = -k =1—4dug >1- Uk K . This implies:
1+ &k Ug + g Ug + Cx

VK<1+(FT‘)K,

u
where (Fr)g = —X stands for a local Froude number. To summarize, equipped with

CK
definitions (37), (38) and the notations

(|h“}k<+1/2| + |hu}_1/2|) /W, e =A/ghl,

U =

N | —

the scheme (13) is stable under the CFL condition (43) in the sense of existence of local
energy estimate of the form:

1
The constants v, a involved in (37), (38) have to satisfiy the bounds (40), and the quantity
1
is defined b, = —.
vic is defined by vic = -

11



3.3 Addition of passive transport

To complete the picture, we show how the method naturally extends to passive transport
considering the following model:

O+ 0,(hu) = 0,
gh?
Or(hu) + 0, <hu2 + —) = —ghd,z, (47)

2
Oy (hw) + 0, (huw) =0,

w referring to any scalar variable. The augmented energy relies on the quantity:

1 1
g=§u2+§gh+gb+/§w2,

where k > 0, and the energy equation remains:
1
Oi(he) + 0, ((g + agh)hu) =0. (48)

The last equation in (47) can be integrated using the upwind fluxes defined in (6):

P = hn At (hu?)
(hu)tt = (hu)p — At0R? (u, hu*) — Ath0x¢* (49)
(hw)it = (hw)% — AtoR (w, hu*).

More precisely, we have the following result:

Proposition 3.3. Let Wi = rh(w%)? the local energy at time n associated with the
variable w. Under the CFL condition (17) with p = 1, we have:

Wit — Wik + Aty (kw?, hu*) < 0. (50)
Proof. The proof follows the first steps of the one of Proposition 2.2 for the kinetic energy.
First, by similar arguments as those employed to get (16), we easily get:

1

n+tl _  n
Wwrg T = wg Athn+1
K

(hu*ow)} . (51)

Using the mass equation and the relation (12), we get:
2khi (Wit — W) Wi = WY — Wi+ kAL (W) O (hu*) — kR (Wit — wit)?
and using the scheme (51), together with Lemma 1.3:

Wit - Wi = —kAt (2&)1;( (hu*0w)7 + (w’;()Q 5KhU*) + rhyt (W?(H - W%)Q
At

— kAL (W?, hu*) — 4/{A—x7€} ([w]?, hu*) + kR (Wit — w}‘()Q :

This previous equality can be reformulated as
WL — Wi+ Atdy (kw?, hu*) = KTk, (52)

12



At

with T = Wit (Wit — w?()Z — 4A—x7€} ([w]?, hu*). Thus it remains to establish that

Tx < 0 under the CFL condition (17). We have, using (51) and Lemma 1.4 :

hitt (WKH - WK) = Tt [(hu aw)Kp]Z
K

At 2 1 % * U *
<4 <E) 7T ((=hufeyrp) ™ + (hqu/z)Jr) Ry ([w]?, hu”)
K

Hence:
At . At . . "
Tk < 4A—x (R;{ ([W]Qa hu )) (A—x ((_huK+1/2)+ + (hUK—1/2)+) /hK+1 - 1) )
which is negative under the CFL (17) in the case p = 1, according to (19). O

It directly follows that the scheme stability is ensured under the same conditions
(discussed in Section §3.2), with this time a discrete energy estimate of the form:

1
Ert — B} + Atog <§ + égh, hu*) <0, (53)
where B = Ef + K% + Wy, and the energy flux is given by:

1 ~ (1 ~
[ (Q + §gh, hu*) = 0% <§u2, hu*) + Ok (¢, hu*) + 03 (kw?, hu*) .

4 Two dimensional extension

To extend the present approach in the 2d case, we consider a 2d domain meshed with
polygonal cells indexed by K € Z. In what follows, mx and mgyx will stand for the area
and perimeter of cell K. For every edge e € 0K, we will employ the notations m. and
Tie,ic Tespectively for the length and the outward normal of the corresponding boundary
interface (see Fig 1). The set of equations we now consider is the following:
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Figure 1: Geometric settings - focus on the interface e.

Oth + div.(hu) =0,

h2
Or(hu) + div. (hu@u + %) = —ghVz, (54)
which can be written in the compact form:
oW + div.F(W) +hS(W) =0, (55)

hu

where F(W) = (hu@’u,

) and S(W) = (Voqﬁ)’ where we recall that ¢ = g (h + 2).

4.1 Derivation of the scheme

Denoting W} the approximate solution on the cell K at time t", we seek for a two-
dimensional formulation in terms of convex combination of one dimensional schemes,
that is:
Wit = Y e Wi, (56)
ec0K
where Wg;l results from the application of the one dimensional approach in the normal

direction 7. k, and a. i are positive coefficients such that Z a. g = 1. Before going

ec0K
further, we first remark that the one dimensional scheme with passive transport (49) can

be rewritten in the following form:

At

Wit = Wi — s (FOVE, Wi ) = FWg_,, Wg)) 5
At n n n n n
- A—xhK (S(WKv WK+1) - S(WK—17 WK)) )
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where, using notation (6):

(ht) %112 0
F(Wi,Wigiy) = ‘FKp+1/2(uv (hu)*) 5 SWg, Wi = ¢}<<+1/2 . (58)
‘FKp+1/2<w7 (hu)*) 0

Going back to the 2d formalism, let’s now consider a generic interface e at the level of a
cell K and apply this scheme to the states Wy, Wy, Wk, in the reference associated to
the outward normal 77, k. The velocity vector is subject to a change of coordinates which
can be operated through the following mapping (we note 7, x = *(ns,ny)):

T:Wz(h};>»—>W=<hZT) , (59)

T
U = UNg + Uy,

T

V= —UNy Uy, .

where

It can easily be checked that the return to original (z,%y) coordinates through 77! is
characterized by:

U=umng—vn,,

v=uTny +0n,.

Applying the basis scheme (57) in this reference to the states WK, WK, WKe, with a space

step Ag = mK and v” as passive transport, we get the following auxiliary update:
oK
T+l n At T T1n T 11n
We,K = WK - —A <F(WK7 WKE) - f(Wzo WK))
K
— AP (SO W) = (Wi ) )

By consistency of the fluxes F with the 1d physical advective fluxes F' = ! (hu, hu?, hw),
we have .7-"(17[\/}}, W}}) = F(ﬁ\/}}), and it can easily be checked that Tle(ﬁ\/}}) =F(Wg).1e k.
In a second hand, according to (58) and the definition (14), the computation of F (17[\/}}, 17[\/}}6)
implies the following interface value:

(hu"); = (hum)e — 11 ,

(huf, + huj), and, following definition (37):

o (1) (55%)

Remarking that u” = w.7, k, we get:

DO | =

where (huT), =

(hu")} = (hw): .M K ,

where



with the jump operator d.¢ = = (¢px, — @) Mle k. As a result, we can write:

| —

FWE, Wiy = | Fee(ur, (hu)* o) |, (62)
Fue (u7, (hw)* i )

so that going back to the (x,y) coordinates we get:

n n — — Tn T hu :-ﬁe,
F(WK7WKe7n€,K) =T 1F(WK7WK6) = <f'up gu ()h'u,)*KﬁeK)) ) (63)

where
FP(u, (hu)* 1. k) = ug ((hu)z.ﬁe7[()+ + ug, ((hw): M k) .

Remains the second component of S(W}},W}ée), which is, still according to the basis

scheme (57):
(b: = ae - Ae ) (64>

(¢, — &) and the stabilization term (see (38)):

At huy, — hufg
v (5) ()

~ 204 (ﬁ—i) (8uh)

1 ~
where (6.hu) = = (hug, — hug) 7. . Note finally that we have 7 !S(W2, W) =
5 . , KWK

with ¢, =

| —

(65)

(¢ ?_i ) and 7'*15(17[\/}}, W}ée) = ( *9 ) Putting this all together, we are ready to
Klble, K e've,
use formula (56) with o, x = ——, which gives, with the support of Green formula:
MoK
m —~
W = e -1 <Wen;21)
egKmaK ,
At At 0 >
=Wg—— > FWg,Wg  flex)me — —hl . Me .
R S FOR Wm0 S ()
This leads to the scheme proposed in [1]:
( At
Rt =hl} — — (hu)? T ke
T
Lt = g = 20 (e (O)2) + ()20 ) me (66)
ee0K
At .
—m—h?( Z ¢:ne,Kme )
\ K ec0K
where A
" t
(hu): = (hu), —IL, : II, = 2y <A—K) (hv)e(:9) , (67)



K

G=b-h o Ao-2ag(50) G, (63)

1 1
with d.¢p = 3 (0K, — OK) e i and (6.hu) = 3 ((hu)k, — (hug)) .fie k. We now discuss
the conditions ensuring fully discrete energy estimates.

4.2 Stability issues

1 1 1
Denoting n(W) = he(W) = igh2 + ghb + §hu2 + §hv” the energy functional, the energy

equation provided by (53) and resulting from (60) can be rewritten as:
T7n+1 Tn At rn Tn rn 1in
n (W) <0 (Wi) - 5 (90V Wi) — 603 W) (69)

with G a numerical entropy flux. These flux are defined according to the discrete operators
involved in (53), which take the following form:

O (i qoh, () = G (G, ) + o). (0

we recall here that the main part of these operators are given by (5) and (6), while the
superscripts 7~ 7 refer to low order corrections (see Proposition 2.1, formula (20) and
proof of Proposition 2.2 for an explicit expression of these terms). Since the quantity e/

is invariant with the change of coordinates (59), we note that 7 (I//I\/:;gl> =17 (W:}l), and

the consistency with the (1d) continuous entropy flux G allows to write:
—~ —~ == 1
G4, W30 = T3 = (<078) + g ) (o) )

which corresponds to the projection of the 2d entropy flux on the normal vector, namely
G(WE).1ie k. On the other hand, returning to the discrete operators involved in (53), we
can define the main part of the entropy fluxes as:

GWE Wi e i) = GWE, Wit ) = Fi& ( |, (hw)? . K) + go(h)* i, i + A,
(72)

where Ag contains the lower order corrections (see (70) and discussion below). The
convexity of n leads to:

n(Wit) =n ( > oze,KWé??)

ec0K
< Z Qe KT) (Wg};l)
ee0K
< Yok [n WR) - o (9<WK, i) - 63 7)) |
ee0K

ec0K
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Note that this discrete energy estimate is ensured provided that inequality (69) holds,
that is the stability conditions of the 1d-like scheme (60). According to Section 3, this is
ensured by condition (43), which becomes in the present context:

At
4— (ug + cx) <1, (74)
Ak
where we recall that Ag = %, ¢k = A/gh}. Recalling that (hu”)* = (hu)¥ .M, k, We
MoK
take: .
e = e (5 1002710+ [0l /1)
ecdK \ 2
1
This allows to define the parameter v in (67) as in the 1d case : v = — A7 The
1-— 4—LlK
Ay

constants «,y involved in (67) and (68) are still subject to the bound conditions (40) of
Proposition 3.1
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