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Motivations

▶ Sheared E×B flows: key players in turbulence regulation and confinement bifurcations.
▶ Tokamak plasmas generally exhibit an edge E×B shear layer,

or radial electric field (Er) “well”.

“Favorable” vs. “unfavorable” magnetic topology

Direction of ion ∇B drift (or B×∇B) direction relative to X-point
matters:
▶ Impact on L→H power threshold (lower when B×∇B

towards X-point ⇒ “favorable”)
▶ Strong influence on edge Er profile on WEST[1], AUG[2, 3]

▶ Underlying mechanism for this asymmetry unclear

B, Ip

Another parameter drawing attention: plasma current Ip

▶ Strong impact on the Er well depth on WEST[1] (Fig. 1)
▶ Sensitivity is more pronounced in USN (unfavorable B×∇B) configuration
▶ Previously: similar observation on TORE SUPRA[4], (Fig. 2)
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Figure 1: Current scan on WEST in LSN vs. USN.
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Figure 2: Current scan on TORE SUPRA using
bottom vs. top limiter position.

Questions:
▶ What is the origin of the Ip sensitivity?
▶ Why is it different in the two configurations?

▶ How robust are the
observations?

Experimental Setup

WEST tokamak (formerly TORE SUPRA)

circular, limited → shaped, diverted

▶ WEST [5]: B0 = 3.7T, Ip ≤ 1MA,
R0 = 2.5m, a = 0.5m

▶ Specifities:
▷ high aspect ratio (A ≈ 5)
▷ strong ripple (δ ≲ 2%)
▷ up-down symmetric divertors
▷ long pulse operation
▷ full tungsten

Access to Er profile using Doppler backscattering (DBS)

▶ DBS: microwave scattering technique
▶ Detects wave scattered back by density

fluctuations (ñ) close to radial cutoff
▶ ñ’s propagation velocity v⊥ determined

from Doppler shift
▶ v⊥ dominated by global flow v⊥ ≈ Er/B cutoff
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DBS system on WEST [6]

▶ 2 independent channels (V- and W-band) polarized in
O- and X-mode, resp.

▶ W-band covers edge to SOL region: 0.8 ≲ ρψ ≲ 1.1
▶ Selected wave number range is 5 ≲ k⊥[cm−1]≲ 10
▶ Continuous acquisition throughout discharge (∼ 10s)
▶ Typical time resolution for a v⊥ profile: ∼ 0.2s 2 3 4
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Robustness of Er Sensitivity to Ip in LSN/USN

−5.0

−2.5

0.0

2.5

v ⊥
[k

m
/s

]

#56707 #56710

(a)I
[kA]
p , 〈n〉[1019m−3]

vol

LSN

400, 2.7

480, 2.9

#56766 #56763

(b)

USN

400, 2.8

480, 3.0

0.8 0.9 1.0 1.1

ρψ

−5.0

−2.5

0.0

2.5

v ⊥
[k

m
/s

]

#56715 #56714

(c)

580, 3.7

700, 3.5

0.8 0.9 1.0 1.1

ρψ

#56765 #56764

(d)

Ip, n

580, 3.8

700, 3.9

Matched Ohmic LSN/USN series
Stationary plasmas at different Ip

Table 1: Discharge paramaters
X config. Ip [kA] ⟨n⟩vol[1019m−3] B0 [T] q95 τIPB98y2 [s]

LSN 400-700 2.7-3.7 3.76 5.8-3.3 0.29-0.33
USN 400-700 2.8-3.9 3.68 4.7-2.8 0.26-0.31

Depth of the well sensitive to Ip,
and more pronounced in USN.
(Consistent with earlier Ip scans)

Heated L-mode series (USN only)

▶ Trend not blurred by moderate heating: Ip-sensitivity in USN appears robust.
▶ But observations are preliminary: missing comparison with LSN, so no firm

conclusion on LSN/USN asymmetry towards higher Paux.

Further observations

▶ Parallel SOL flows at the top are co-current in both configurations (smaller |v∥| in USN),
but preliminary comparison does not reveal significant trend with Ip.

Discussion

I. LSN / USN asymmetry – possible mechanisms:

1. Topology-dependent SOL v|| flows affecting core rotation

▷ Motivated by asymmetric flow patterns observed on Alcator
C-Mod[7]

▷ Asymmetry in SOL flows on TORE SUPRA[4] using top/bottom
contact point

▷ But: no asymmetry in edge vϕ on AUG[3], at odds with this
hypothesis

B, Ipv|| > 0

v|| < 0

2. Shear-induced Reynolds stress caused by tilted eddies[8]

▷ Based on that argument, promising models were applied to: TORE SUPRA[9],
WEST[10] and AUG[11]

3. Ion orbit losses (IOL)[12, 13].
▷ Thermal IOL appear subdominant according to preliminary evaluation for WEST

USN Ohmic plasmas[15]

But recent modelling also suggests:
▷ Measurable impact of IOL on Er and toroidal momentum in L-mode[17]

▷ IOL sensitive to X-point topology (and shaping[18]), but mechanism and
magnitude unclear yet[16, 17]

II. Er sensitivity to Ip

▶ Observed in circular, limited (TORE SUPRA) and shaped, diverted (WEST)
geometry: X-point not an essential ingredient

▶ Safety factor q ∝ I−1
p role: involved in various transport processes (neoclassical &

turbulent, flow damping, . . . )
▶ Gyrokinetic study on the impact of q in circular geometry[19, 20, 21]:

▷ Er deeper at low q in GYSELA, consistent with experiment but weaker.
▷ Turbulence (and GAM) intensity grow with q, while larger and more stationary

Zonal Flows at lower q. Possible explanation from collisional flow damping.

Conclusions and Outlook

1. Experiments on WEST confirm a strong influence of Ip on edge E×B flows and
highlight the asymmetric response to Ip depending on X-point configuration.

2. Strong Ip sensitivity in USN appears robust to moderate auxiliary heating.

Next, to address why magnetic topology affects Ip sensitivity:
▶ SOLEDGE2D-EIRENE fluid boundary simulations[22] in LSN/USN
▶ Extend multi-machine comparison: WEST, AUG, TCV
▶ On TCV: study effect of triangularity on Er asymmetry
▶ On WEST: explore LSN/USN asymmetry in higher power scenarios
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