Paul Dubrulle

Christophe Gaston

Nikolai Kosmatov

Arnault Lapitre

Dynamic Reconfigurations in Frequency Constrained Data Flow

In Cyber-Physical Systems, the software components are often distributed over several computing nodes, connected by a communication network. Depending on several factors, the behavior of these components may dynamically change during its execution. The existing data flow formalisms for the performance prediction of dynamic systems do not cover the real-time constraints of these systems, and suffer from complexity issues in the verification of mandatory model properties. To overcome these limitations, we propose a dynamic extension to Polygraph, a static data flow formalism covering the real-time behavior of the CPS components. We also propose a verification algorithm to determine if the transitions between different modes are well-defined for a given model. Initial experiments show that this algorithm can be efficiently applied in practice.

Introduction

Context. Cyber-Physical Systems (CPS) are increasingly present in everyday life. These systems are often distributed over several computing nodes, connected by a communication network. For example, the next generation of autonomous vehicles will heavily rely on sensor fusion systems to operate the car. Sensors and actuators are distributed over the car, in places where their measure or action makes sense, while fusion kernels operate on high-performance computation platforms. A network connects these elements together, and in some cases the computation kernels can even be off-loaded to remote servers over wireless connections.

Depending on several factors, the behavior of the software components of a CPS may change during its execution. The algorithms used to process data may change depending on the nature of the input data, and a component may even be deactivated due to an external factor. In an autonomous car for example, the components implementing a parking assistance functionality relying on a rearview camera may operate at a lower resolution while driving on a highway, or even be deactivated completely.

When network communication is involved, an analysis of the communications between the components is necessary to determine the bandwidth and memory necessary to respect the application's real-time requirements. Dynamic variations in execution time and bandwidth usage due to changes in the behavior of the components must be taken into account in the performance prediction.

Several extensions to static data flow formalisms [START_REF] Lee | Static scheduling of SDF programs for digital signal processing[END_REF][START_REF] Bilsen | Cyclo-static data flow[END_REF] can be used to perform this kind of performance analysis, taking dynamic reconfigurations into account [START_REF] Geilen | Performance analysis of weakly-consistent scenario-aware dataflow graphs[END_REF][START_REF] Geilen | Worst-case performance analysis of synchronous dataflow scenarios[END_REF][START_REF] Plishker | Functional DIF for rapid prototyping[END_REF][START_REF] Theelen | A scenario-aware data flow model for combined long-run average and worst-case performance analysis[END_REF][START_REF] Wiggers | Buffer capacity computation for throughput constrained streaming applications with data-dependent inter-task communication[END_REF]. In general for data flow formalisms, a prerequisite to analyze a model is the existence of a periodic schedule in bounded memory without deadlock, sometimes called an admissible schedule.

Motivation and Goals. Dynamic data flow models are adapted to capture reconfigurations in a CPS, but they lack expressiveness regarding the real-time synchronization of the components interfaced with the physical world. Recent research introduced Polygraph, a new static data flow formalism that covers such synchronous behavior [5], while allowing asynchronous behavior for computation kernels. Our goal is to extend Polygraph to support the expression of dynamic reconfigurations, describing more precisely the behavior of distributed CPS, thus allowing a refinement of the static performance analysis of the resulting models.

Approach and Main Results. This paper proposes to extend Polygraph models with the specification of different operational modes, in a way inspired by the well-known Scenario-Aware Data Flow (SADF) [START_REF] Theelen | A scenario-aware data flow model for combined long-run average and worst-case performance analysis[END_REF]. We rely on additional type information on the communication data to dynamically change the execution mode of the components that receive it, allowing for a distributed control of the current operational modes in the system. With our approach, if there is an admissible schedule for a polygraph model without any mode extension, this schedule is admissible for any of its extended versions. For a given model, this property allows to specify as many modes as required by the real-life system, without impacting the cost of the verification of the existence of such a schedule. In addition, we propose an algorithm to check that the dynamic changes in the modes of the components never lead to incoherent states where a component is supposed to execute in two different modes.

The contributions of this work include:

an extension to the Polygraph data flow formalism, to support dynamic changes between static configurations of the modeled system; a proof of additional properties on the executions of non-extended polygraphs, and properties on their extended executions; these properties are proved in all generality, for an arbitrary reconfiguration strategy; an algorithm that, given an extended polygraph with an admissible schedule, checks that the current mode of the polygraph is always defined; an implementation of that algorithm in the DIVERSITY tool, and initial experiments to validate this approach.

Outline. The remainder of this paper is organized as follows. Section 2 gives an informal introduction to the proposed modeling approach. In Section 3, we remind the formalization of Polygraph, prove additional execution properties, and formalize the extension. Section 4 presents the verification algorithm and an initial evaluation of its implementation. In Section 5, we discuss related work, while Section 6 presents conclusion and perspectives.

Motivation

To introduce the dynamic extension to Polygraph, we use a toy example of a data fusion system that could be integrated into the cockpit display of a car, depicted in Fig. 1. The system is composed of three sensors producing data samples to be used by a data fusion component, and a display component. The first sensor component is a video camera producing frames. The other two sensor components analyze radar and lidar based samples to produce a descriptor of the closest detected obstacles. The fusion component uses this information to draw the obstacle descriptors on the corresponding frame. The display component is a touch screen, and the driver can choose to activate or deactivate the rendering of the enhanced camera feed through an interface on the screen. The driver can also choose to deactivate only the lidar. This leads to three different configurations for the fusion sub-system: all the components are active (denoted all), all the components are active except the lidar (denoted no lidar), and the three sensor components are inactive (denoted none).

Existing semantic. The Polygraph language is a data flow formalism enabling static performance analysis of systems mixing real-time and compute intensive components. Compared to existing static data flow formalisms [START_REF] Lee | Static scheduling of SDF programs for digital signal processing[END_REF][START_REF] Bilsen | Cyclo-static data flow[END_REF][START_REF] Oh | Fractional rate dataflow model for efficient code synthesis[END_REF], Polygraph mixes synchronous and asynchronous constraints for the execution of a model, and is well-suited to capture the real-life constraints of the CPS. The core element of Polygraph is a system graph, capturing data dependencies between the components. Each vertex of this graph models an actor, an abstract entity representing the function of a component. Each directed edge of the graph models a communication channel, the source actor being the producer of data consumed by the destination actor. The communication policy on the channels is First-In First-Out (FIFO), the write operation is non-blocking, and the read operation is blocking. The actors communicate by firing, an atomic process during which they consume and produce a certain number of data tokens on the connected channels. The number of tokens produced or consumed per firing of an actor on a channel is specified by a rational rate, which is adapted to capture resampling of data streams. Fig. 1a gives an example of a system graph with rational rates (shown near the ends of the edges) for our example.

Considering only the modeling elements mentioned so far, the model of Fig. 1a is equivalent to a Fractional Rate Data Flow graph [START_REF] Oh | Fractional rate dataflow model for efficient code synthesis[END_REF]. In addition to these elements, Polygraph introduces a specific semantic for rational rates, whose goal is to approximate a non-linear behavior with integer rates by a linear behavior with rational rates, and thus to gain the good properties of a linear behavior. It allows rational initial conditions on the channels. The detailed semantic is recalled in Section 3.1.

The main advantage of Polygraph is the capability to label a subset of actors with frequencies, corresponding to the real-life constraints imposed for example by the sampling rates of the sensors (see the frequency labels on v 1 , v 2 v 3 , and v 4 in Fig. 1a). The actors that do not have a specified frequency correspond to computation kernels, which in real-life systems often compute as soon as enough input data is available (notice the absence of a frequency label on v 5 in Fig. 1a). A global clock provides ticks to synchronize the firings of frequency labeled actors, introducing global synchronous behavior in the data flow graph.

A prerequisite to analyze the performance of a Polygraph model is the existence of a periodic schedule with two properties. The first property, consistency, requires that the sizes of communication buffers remain bounded for an unbounded execution of the periodic schedule. In practice, if a model is not consistent, it is not possible to implement the communications without losing data samples. The second property, liveness, requires the absence of deadlocks in the schedule. The semantic of Polygraph is detailed in [5], including a proof that the existence of an admissible schedule with both consistency and liveness properties is decidable and can be checked in practice.

Dynamic extension.

The different configurations of our fusion example could be captured by the scenario concept introduced in Scenario Aware Data Flow (SADF) [START_REF] Theelen | A scenario-aware data flow model for combined long-run average and worst-case performance analysis[END_REF], which encompasses the semantic of many other dynamic data flow formalisms (see Sec. 5). In SADF, some actors receive the role of detector, and are in charge of broadcasting the current scenario to other actors. Each actor impacted by the decisions of a detector has a different rate specification and execution time per possible scenario. Before firing, such an actor reads the scenario information received from the detector and then fires with the appropriate rates and execution time. Special care is required from the designer when specifying the alternative rates, to avoid situations where an actor consumes tokens produced in two different scenarios, that we call an indecision. An SADF model with no indecision is said to be strongly consistent (see [START_REF] Theelen | A scenario-aware data flow model for combined long-run average and worst-case performance analysis[END_REF] for more detail).

In our context, there are several issues that do not allow for a direct reuse of this concept. First of all, unlike Polygraph, SADF does not capture synchronous constraints for a subset of actors. Second, since the rates are the main parameter influencing the existence of an admissible schedule, a separate check is required for each possible combination of scenarios, which does not scale up well for reallife systems with many configurations. Finally, the broadcasting of the detected scenario has several disadvantages. Additional channels impede the model's readability, and increase the modeling complexity, since the designer needs to know the number of firings of each scenario-dependent actor in a schedule to spec-ify appropriate output rates on the control channels. In addition, the idea of a centralized orchestrator implies additional synchronizations, with a negative impact on the overall performance for distributed architectures. Our proposal extends Polygraph with similar concepts, preserving the support of synchronous constraints, and trying to overcome these limitations.

Modes. We introduce the notion of modes for a polygraph. A mode is decided for each firing of an actor, and it is similar to a scenario. The main difference is that the rates do not change in different modes. Instead, a mode change implies a change in the contents of produced data tokens. For example, for the three aforementioned configurations in Fig. 1, the firing of each actor can have one of three user-defined modes λ 1 (all), λ 2 (no lidar), λ 3 (none), which can be used to enable a non-trivial behavior. For one firing of the lidar actor, it will produce 1 token regardless of the decided mode of that firing. The produced token will hold an obstacle descriptor if the firing has mode λ 1 . For the other modes λ 2 and λ 3 , since the lidar is disabled in the corresponding configurations, the produced token will hold an empty descriptor. With scenarios, a similar behavior would require rate 1 in scenario all and 0 in the other scenarios.

The fact that the rates are fixed, regardless of the mode of a firing, brings an important benefit. The existence of an admissible schedule for an extended polygraph can be verified once and for all, by considering the polygraph without modes. We show that by construction of the extension in Section 3.3.

Modes allow for a rich set of options: when the firing of an actor can have two or more different modes, configuration parameters (produced data type, execution time, placement, code version, etc.) may change depending on the mode, enabling static analysis of the modeled system with many different objectives. Our goal here being to provide a formal presentation of the modeling language, its mechanism for changing modes dynamically in an execution, and its properties, we do not detail how such parameters are associated to modes.

Mode propagation. Like in SADF, in our proposal, some actors, called selectors, are in charge of identifying reconfigurations and notifying the impacted actors, called followers. But unlike SADF, we do not require that selectors broadcast the selection information to all their followers. Instead, we define the propagation of modes transitively from a selector to its followers. In Fig. 1a, the double-circled display actor is a good candidate to be the selector responsible for the three user-defined modes λ 1 , λ 2 , and λ 3 , since it reads the user input that will decide of the configuration. It does not require a specific channel connected to the fusion actor, the mode information will reach it through the channels represented with dashed arrows.

The advantage of this approach is that we do not need channels between a selector and its followers which are not its direct successors. This overcomes the issues caused by these channels. The propagation by transitivity also provides means to automatically check the absence of indecision in a model.

The Polygraph Modeling Language

We denote by Z the set of integers, by N " tn P Z | n ě 0u the set of natural integers, and by Q the set of rational numbers. A number r P Q rounded down (resp., up) to a closest integer is denoted by tru (resp., rrs), and the fractional part of r is denoted trs " r ´tru.

For a set A, we denote by A ˚the set of all finite words over A (i.e. sequences of elements of A), and by A `the set of non-empty words. 1 The length of a word w " a 1 ¨¨¨a n P A ˚is denoted |w| " n, and the i th element of w is denoted wris " a i . For any a P A and for any n P N we denote n ˚a the word composed of n occurrences of a. For any word w P A ˚and 0 ď l ď |w|, the suffix of w of length l is denoted suffixpw, lq. For any two words w and w 1 , the concatenation of w and w 1 is denoted by w ¨w1 or ww 1 .

Background

A system graph is a connected finite directed graph G " pV, Eq with set of vertices (or actors) V and set of edges (or channels) E Ď V ˆV . We consider that V and E are indexed respectively by t1, ¨¨¨, |V |u and t1, ¨¨¨, |E|u, and denote by v j the actor of index j and by e i the channel of index i. For an actor v j , let inpv j q " txv k , v

j y P E | v k P V u denote the set of input channels of v j ; outpv j q " txv j , v k y P E | v k P V u the set of output channels of v j .
For any pair of a channel e i and an actor v j , we associate a rate γ ij which is a rational number whose absolute value defines the partial production or consumption effect on e i of each firing of v j , and whose sign indicates if the effect is a partial production (γ ij ą 0) or consumption (γ ij ă 0). By convention, the rate γ ij must be 0 if v j is not connected to e i , or connected to both ends of e i . Indeed, for a self-loop e i " xv j , v j y connecting v j to itself, the global production/consumption effect of v j on the channel must be 0 for the model to be consistent. Therefore the associated production and consumption rates must be equal. Their exact value does not matter and can be any integer. The rates are given by a matrix with one row per channel and one column per actor, as illustrated in Fig. 1b for P 1 . Definition 1 (Topology matrix). A matrix Γ " pγ ij q P Q |E|ˆ|V | is a topology matrix of a system graph G if for every channel e i " xv k , v l y P E, we have:

the rate γ ij " 0 for all j ‰ k, l; if k ‰ l, then the rates γ ik ą 0 and γ il ă 0 are irreducible fractions, and at least one of them has a denominator equal to 1 (i.e. is an integer); let q i ě 1 be the greatest of their denominators , we define r i " 1{q i the smallest fraction portable by e i ; if k " l, then γ ik " 0{1 " 0, and we define q i " r i " 1.

A channel state is a vector of rational numbers giving for each channel its state, tracking the partial production or consumption effect of the successive firings, which must thus be a multiple of its smallest portable fraction (c.f. Fig. 1b). The number of tokens in a channel is defined as the integer part of its rational state, and a token is actually produced (resp. consumed) by a firing when this integer part increases (resp. decreases) at this firing.

Definition 2 (Channel state). A vector c " pc i q P Q |E|ˆ1 is a channel state of a system graph G with topology matrix Γ if for every channel e i " xv j , v k y P E, we have c i " zr i for some z P Z. We say that tc i u is the number of tokens occupying channel e i .

A polygraph is composed2 of a system graph, a topology matrix, and a subset of timed actors V F Ď V with certain synchronous constraints Θ. These constraints require that each timed actor fires at a given frequency, synchronously with respect to the ticks of a global clock. It is possible to choose a suitable time unit and a global clock with a suitable frequency, such that each v j P V F has to fire the same number of times t j P N during this time unit. In P 1 , with a time unit of 100ms and a global clock at 120Hz, the vector t " pt j q gives that value t j for each v j P V F . The current tick of the global clock and the information about the timed actors which have already fired at this tick are represented3 by a synchronous state θ. The detailed semantic of these synchronous constraints [5] is not essential for the comprehension of the extension we propose, as further discussed in Remark 5. For lack of space, we only recall basic notation and definitions that are mandatory to present the contributions of this paper.

Definition 3 (Polygraph, state).

A polygraph is a tuple P " xG, Γ, Θy containing a system graph G, a topology matrix Γ, and synchronous constraints Θ. A state of a polygraph P is a tuple s " xc , θy containing a channel state c, and a synchronous state θ. We denote by S the set of all possible states of P.

The only possible transitions from one state to another are the firing of an actor or a tick of the global clock. Starting from an initial state, a sequence of states resulting from such successive transitions is called an execution. Definition 4 (Fire, Tick). For a polygraph P, the mapping fire : V ˆSÝÑS maps an actor v j and a state s " xc, θy to the state s 1 " xc 1 , θ 1 y such that for each e i P E we have c 1 i " c i `γij , and θ 1 is the resulting synchronous state. The mapping tick : SÝÑS maps a state s " xc, θy to the state s 1 " xc 1 , θ 1 y such that we have c 1 " c, and θ 1 is the resulting synchronous state (see [5] for detail). Remark 1. Let δ ì psq P N denote the amount of tokens produced on a channel e i " xv j , v k y by a firing of v j in state s " xc, θy. By Def. 2 and 4, we have δ ì psq " tc i `γij u ´tc i u. Similarly, for the number of tokens consumed on e i by a firing of v k in state s, denoted δ í psq P N, we have δ í psq " tc i u ´tc i `γik u. Not all transitions from a state s " xc, θy to a state s 1 " xc 1 , θ 1 y are valid. First, the synchronous constraints impose an order on some firing and tick transitions. We write θ $ θ 1 when these synchronous constraints (formally defined in [5]) are satisfied for the transition from s to s 1 . In addition, the policy to read from a channel e i is read-blocking. Thus, the transition from s to s 1 is called valid, and denoted s $ s 1 , if θ $ θ 1 and @e i P E, c i ě 0 ^c1 i ě 0.

Definition 5 (Execution). An execution of a polygraph P is a sequence of states σ " s 1 ¨¨¨s n P S `, such that s 1 is the initial state of σ, and for each 1 ď l ă n, we have either s l`1 " firepv j , s l q for some v j P V , or s l`1 " tickps l q.

An execution σ is said to be valid if s l $ s l`1 for all 1 ď l ă n.

Remark 2. The number of firings of actors in an execution σ " s 1 ¨¨¨s n can be represented by a tracking vector x σ " px σ j q P N |V |ˆ1 , such that for each v j , the component x σ j gives the number of l such that 1 ď l ď n and s l`1 " firepv j , s l q. We say that the f th such firing is of rank f .

To perform a static performance analysis of a polygraph, there should be a valid periodic behavior of the system. In other words, only the valid executions σ " s 1 ¨¨¨s n P S `returning to their initial state s 1 " s n are relevant. From [5, Th. 1,2], the existence of such executions can be decided in general. In Fig. 2, a small example polygraph P 2 and an execution σ 2 are represented.

Example 1. Fig. 2a presents a polygraph P 2 with 3 actors and 3 channels. For simplicity, it has no synchronous constraints. Fig. 2b illustrates, step-by-step, the states of an execution σ 2 with consecutive firings of v 3 , v 2 , v 1 , v 2 . The first five columns give the firing actor, the number of its firings so far, and the states of the channels. The latter show the states c i of channels e i and illustrate by circles the tokens occupying each channel. The last four columns will be explained later. The first row provides the initial state. For instance, the first firing of v 2 consumes one token from e 2 (since its state changes from 2{2 " 1 to 1{2) and produces one token on e 3 . Note that σ 2 is valid and returns to its initial state after the first 4 steps, and can thus be repeated infinitely.

Definition 6 (Live execution). For a polygraph P, a valid execution σ " s 1 ¨¨¨s n P S `is called live if s 1 " s n . In this case, polygraph P is said to be live from s 1 . Remark 3. We say that two valid executions σ, σ 1 P S `of a polygraph P are equivalent, denoted by σ » σ 1 , if their tracking vectors and initial states are equal, that is, x σ " x σ 1 and σr1s " σ 1 r1s, and the number of ticks is the same. If P is live from a state s 1 , by Th. 2 in [5,[START_REF] Dubrulle | Polygraph: A data flow model with frequency arithmetic[END_REF] there is a minimal live execution σ, such that σr1s " s 1 . Moreover, any other live execution σ 1 with σ 1 r1s " s 1 is equivalent to l repetitions of σ (for some l ě 1), that is, x σ 1 " l ¨xσ [4, Cor. 2]. Futhermore, any valid execution σ 2 with σ 2 r1s " s 1 can be extended to a live execution σ 1 [4, Th. 2], thus, equivalent to a certain number of repetitions of a minimal live execution σ. This property will be used to justify the algorithm in Sec. 4.

Additional Properties of Polygraph Executions

For a given valid execution σ " xc 1 , θ 1 y ¨¨¨xc n , θ n y and a channel e i " xv j , v k y with j ‰ k, we can consider the total number of tokens produced (resp. consumed) on e i by the firings of v j (resp. v k) along σ, denoted δ ì pσq (resp. δ í pσq). Formally, by Def. 2, 4 and 5, we have: δ ì pσq "

ÿ l : vj fires on xc l , θ l y in σ ptc l`1 i u ´tc l i uq, δ í pσq " ´ÿ l : v k fires on xc l , θ l y in σ ptc l`1 i u ´tc l i uq. (1)
The number of tokens occupying e i along σ is modified only by productions (by v j) and consumptions (by v k), thus using (1) we have:

tc n i u ´tc 1 i u " ÿ 1ďlăn ptc l`1 i u ´tc l i uq " δ ì pσq ´δí pσq.
It follows that tc 1 i u `δì pσq " δ í pσq `tc n i u. These two expressions compute the total number of tokens transiting through channel e i along σ, that we denote by η σ i P N. We call these tokens the footprint of σ on channel e i , and each of these tokens is identified by a rank 1 ď l ď η σ i . They can be seen as the tokens initially occupying e i and the δ ì pσq tokens produced along σ. On the other hand, the same tokens can be seen as the δ í pσq tokens consumed along σ and the tokens occupying e i after σ. In execution σ 2 of Fig. 2, four tokens transit through e 3 along σ 2 , thus the footprint has η σ 1 " 4 tokens, and each token is shown as

1 O-4
O for the states when they are occupying e 3 .

The next result shows that η σ i , δ ì pσq, δ í pσq depend only on the number of firings of v j and v k in σ and the initial state of e i , and not on the order of transitions in σ.

Proposition 1. Let P be a polygraph, and σ " xc 1 , θ 1 y ¨¨¨xc n , θ n y P S `be a valid execution of P with tracking vector x σ . Let e i " xv j , v k y P E be a channel with j ‰ k, and denote r " tc i s. Then we have:

η σ i " tc 1 i u`δ ì pσq " δ í pσq`tc n i u, δ ì pσq " tx σ j γ ij `ru, δ í pσq " rx σ k |γ ik | ´rs.
Proof. The first fact was shown above. We claim that the sums of δ ì pσq, δ í pσq in (1) can be rewritten as follows: δ ì pσq "

ř x σ j f "1 ptc 1 i `f γ ij u ´tc 1 i `pf ´1qγ ij uq and δ í pσq " ´řx σ k f 1 "1 ptc 1 i `f 1 γ ik u ´tc 1 i `pf 1 ´1qγ ik uq.
Indeed, at each step, c l`1 i " c 1 i `f γ ij `f 1 γ ik where f and f 1 are the number of firings, resp., of v j and v k in the prefix of length l `1 in σ. At most one of γ ij and γ ik is not an integer 4 ; by symmetry, we can assume γ ik P Z. Then in the first sum we have tc l`1 i u " tc 1 i `f γ ij u for all l, that implies the proposed rewriting. In the second sum, the rewriting follows from the fact: @p, p 1 P Q, @m, m 1 P Z, tp `mu ´tp `m1 u " tp 1 `mu ´tp 1 `m1 u.

We simplify the first sum δ ì pσq " tc 1 i `xσ j γ ij u´tc 1 i u " tx σ j γ ij `ru as required since r " tc i s " tc 1 i u ´c1 i , and the second sum δ í pσq "

tc 1 i u ´tc 1 i `xσ k γ ik u " ´tx σ k γ ik `ru.
The third formula follows from the fact: @p P Q, ´tpu " r´ps. [\ For the footprint of σ on e i , we can consider a mapping o σ i : t1, . . . , η σ i u Ñ t0, . . . , δ ì pσqu (resp. ι σ i : t1, . . . , η σ i u Ñ t0, . . . , δ í pσqu) associating to each token in the footprint the rank of the firing of v j (resp. v k) that produced (resp. consumed) that token in σ. We call that rank the production (resp. consumption) rank of the token. By convention, a rank 0 is assigned to a token that was not produced (resp. consumed) by a firing in σ. In Fig. 2, since the 1st firing of v 2 consumes 1

O on e 2 and produces 3 O on e 3 , we have ι σ 2 p1q " 1 and o σ 2 p3q " 1.

Proposition 2. In the assumptions of Prop. 1, we have:

1. @1 ď l ď tc 1 i u, o σ i plq " 0; @tc 1 i u ă l ď η σ i , o σ i plq " r pl ´c1 i q { γ ij s; 2. @1 ď l ď δ í pσq, ι σ i plq " 1`t pl´1`rq { |γ ik | u; @δ í pσq ă l ď η σ i , ι σ i plq " 0.
Proof. The formulas with rank 0 follow from the definition. Given an index l with tc 1 i u ă l ď η σ i , let us compute the rank f of firing of v j producing the l th token of the footprint. Considering the prefixes σ 1 of σ with f " x σ 1 j P t1, 2 . . . , x σ j u firings of v j we have to find the shortest prefix σ 1 producing that token. In other words, by Prop. 1, we have to find the smallest f such that l ď δ ì pσ 1 q " tc 1 i `f γ ij u. Since l P Z, we look for the smallest f such that l ď c 1 i `f γ ij , or equivalently, f ě pl ´c1 i q{γ ij . Thus, o σ i plq " r pl ´c1 i q { γ ij s. Following the same logic, for 1 ď l ď δ í pσq, we look for the shortest prefix σ 1 of σ consuming the l th token of the footprint. By Prop. 1, we have to find the smallest f such that l ď δ í pσ 1 q " rf |γ ik | ´rs. Equivalently, we look for the smallest f such that l ´1 ă f |γ ik | ´r, i.e. f ą pl ´1 `rq{|γ ik |. In other words, we look for the biggest f such that f ´1 ď pl ´1 `rq{|γ ik |. Thus, f ´1 " tpl ´1 `rq{|γ ik |u. It follows that ι σ i plq " 1 `t pl ´1 `rq { |γ ik |u.

[\ Remark 4. For two valid executions σ, σ 1 P S `that are equivalent (i.e. σ » σ 1 , cf. Remark 3), by Prop. 1, for all channels5 e i " xv j , v k y P E with j ‰ k, we have η σ i " η σ 1 i , o σ i " o σ 1 i , and ι σ i " ι σ 1 i . For example in Fig. 2, we have σ 1 2 » σ 2 , and the footprints and production/consumption ranks are the same in these executions.

Mode Extension of the Polygraph Modeling Language

In the rest of the paper, when there is no risk of confusion, we will use the term polygraph for an extended polygraph for short.

Extended polygraph. A mode identifies a reconfiguration of a polygraph's behavior. When firing, an actor has a mode for that firing, called decided mode. In the channels, the tokens are labeled with modes. An extended polygraph has a nominal mode denoted α, an undefined mode denoted υ, and a set of user modes denoted Λ M with Λ M X tα, υu " H. The mode set is the set Λ " Λ M Y tα, υu.

Every actor v j is associated with a subset of user modes Λ j Ď Λ M . The set Λ j contains the modes selectable by actor v j , and is called its selection set. An actor v j with Λ j ‰ H is called a selector, and the subset of such actors is denoted by V M Ď V . When firing, a selector v j chooses a selected mode λ P Λ j with which it labels the tokens it produces. A non-selector labels the tokens it produces with its decided mode. We assume that the Λ j form a partition of Λ M (cf. (i) in Def. 7). Hence a given user mode can be selected by one and only one selector. In addition, a selection makes sense only if there are at least two elements to select from (cf. (i)).

Every actor v k is associated with a non-empty subset of enabling modes M k Ď Λ. The decided mode for a firing of v k should always belong to M k , unless it is undefined. We assume (cf. (ii) in Def. 7) that either M k " tαu, or there exists a unique selector v j P V M with M k " Λ j . In the latter case, v j is said to be the selector of v k , and v k is said to be a follower of v j , denoted v j v k , and the decided mode of v k can only be a mode selectable by v j . The only exception is the undefined mode υ, which becomes the decided mode of v k when its mode cannot be decided. Note that a selector can be a follower of another selector.

The decided mode of a firing of actor v k is determined based on the labels of the tokens consumed by this firing from a subset of its input channels, denoted Ψ k Ď inpv k q, called the deciding set of v k , and whose elements are called deciding channels of v k . If M k " tαu, we require (cf. (ii) in Def. 7) that Ψ k " H, since v k does not need information to decide its mode. If v j v k , to determine its decided mode, v k must have at least one deciding channel. If all the tokens it consumes from its deciding channels are labeled with the same user mode, this mode becomes its decided mode. If conflicting modes are read, the decided mode of v k is undefined. In order to obtain user modes in its enabling set M k " Λ j , v k 's deciding channels come either from v j or another follower v l of v j (cf. (ii)).

To ensure a follower receives tokens labeled with a mode selected by its selector, there must be a directed path from that selector to that follower, composed exclusively of deciding channels (cf. (iii) in Def. 7). Moreover, if there is a cycle of followers composed of deciding channels, some follower can receive conflicting modes from (the shortest path from) its selector and from its predecessor in the cycle. We exclude such a backward propagation of mode selections (cf. (iv)).

Definition 7 (Extended polygraph

). An extended polygraph is a tuple P " xP, Λ, txΛ j , M j , Ψ j yu j y where P is a polygraph, Λ " Λ M Y tα, υu is a mode set, and the tuples xΛ j , M j , Ψ j y contain respectively the selection set, enabling set, and deciding set of actor v j P V , such that:

(i) Λ M " š vj PV Λ j ; @v j P V, |Λ j | " 0 or |Λ j | ě 2; V M " tv j P V | Λ j ‰ Hu; (ii) for any v k , either M k " tαu ^Ψk " H, or Dv j P V M , M k " Λ j ^H ‰ Ψ k Ď txv l , v k y P E | j " l _ M l " Λ j u; (iii) if M k " Λ j ,
there is a path v j " v l1 , ¨¨¨, v ln " v k of deciding channels; (iv) for any v j P V M , there is no cycle v k1 , ¨¨¨, v kp " v k1 in which M k l " Λ j and all channels are deciding.

In addition to a state of a polygraph (cf. Def. 3), a state of an extended polygraph P contains an actor mode mapping m : V ÝÑΛ, which stores for an actor v j the decided mode of its last firing, denoted m j " mpv j q. To capture the mode labels associated to tokens in the channels, the state of P also has a token labeling b : EÝÑΛ ˚mapping a channel e i to a sequence of modes, denoted b i " bpe i q. In a given state s " xc, θy, in channel e i , there are tc i u tokens (cf. Def. 2), so there is a mode label for each of them in FIFO order (see for example the three rightmost columns for the executions of Fig. 2).

Definition 8 (State).

A state of an extended polygraph P is a tuple s " xs, m, by where s " xc, θy P S is a state of P, m is an actor mode mapping such that @v j P V we have m j P M j Y tυu, and b is a token labeling for s such that @e i P E we have |b i | " tc i u. We denote by S the set of all possible states for P, and by : SÝÑS the forgetful mapping that maps a state s " xs, m, by to psq " s.

Our next goal is to extend the fire and tick transitions between states of P to transitions between states of P. We first define, given a state s " xs, m, by P S, a new state s 1 " xs 1 , m 1 , b 1 y P S resulting from the firing of an actor v j in state s. We assume that s " xc, θy and s " xc 1 , θ 1 y. As mentioned in Sec. 3.1, only valid executions are relevant. For this reason, we only define partial mappings for the transitions in P such that psq $ ps 1 q.

Decided Mode. We first define how the decided mode for a firing of v j in s is determined. Only the mode labels of the δ í psq tokens consumed from each deciding channel e i will influence the decision. The set of the relevant modes is thus defined by L j psq " tb i rks | e i P Ψ j , 1 ď k ď δ í psqu.

If the set L j psq is restricted to a singleton tλu, then λ is the decided mode of v j (Case 2 in the following Def. 9). If L j psq " H, it means that L j psq does not provide information to decide, and v j will keep its last mode m j (Case 1). The last possible case is that |L j psq| ě 2, which means that L j psq provides incoherent information, since several modes are possible. As explained in Sec. 2, this is an indecision, and v j will switch to the undefined mode υ (Case 3).

For a non-follower v j , since Ψ j " H (cf. (ii) in Def. 7), the set L j psq is empty (Case 1 in Def. 9), and the decided mode always remains the same (nominal if the previous mode was nominal). Finally, if a predecessor of v j propagated to v j an undefined mode via one of its deciding channels, the decision for v j is taken either by Case 2 or Case 3, and in both situations v j also enters an undefined mode. Hence, the undefined mode is propagated to successors. Definition 9 (Decided mode). Let P be an extended polygraph, v j P V an actor, and s " xs, m, by P S a state with s " xc, θy P S such that @e i P inpv j q, c i ě |γ ij |. Given the set L j psq, the decided mode d j psq of v j for its firing in state s is defined as follows: 1. if L j psq " H, then d j psq " m j ; 2. if L j psq " tλu for some λ, then d j psq " λ; 3. if |L j psq| ě 2, then d j psq " υ.

Extended transitions. We can now define the resulting state s 1 after the firing of v j in state s as an extension of a firing in P (cf. Case 1 in Def. 10 below). The mode of v j is set to its decided mode m 1 j " d j psq, while for the other actors, their mode is unchanged (cf. Case 2).

By Def. 2 and Remark 1, for every input channel e i of v j , the firing of v j consumes the first δ í psq tokens, so the token labeling b 1 i for the remaining tokens is the suffix of b i of length |b i | ´δí psq (cf. Case 3). Since we only define a partial mapping for states where the firing of an actor does not result in a negative channel state, the resulting token labeling is always well defined.

When firing, v j arbitrarily chooses a mode, and labels all the produced tokens with that mode. If v j is not a selector, then it can only choose its decided mode. Otherwise, v j is a selector, and can select any mode from its selection set (cf. (ii)). In Def. 10, we make the choice to represent the arbitrarily chosen mode λ as an additional parameter of the partial firing mapping, so that different choices can lead to different resulting states. Then for each output channel e i , since the number of tokens produced is δ ì psq, a suffix pδ ì psq ˚λq is added to the token labeling sequence (cf. Case 4).

Definition 10 (Extended firing). For an extended polygraph P, the partial mapping fire : V ˆS ˆΛ Þ ÑS is defined for the tuples xv j , s, λy such that (i) psq $ firepv j , psqq, and (ii) λ " d j psq if v j R V M or λ P Λ j if v j P V M . In this case, if we denote s " xs, m, by and xs 1 , m 1 , b 1 y " firepv j , s, λq, we have: 1. s 1 " firepv j , sq; 2. m 1 j " d j psq, and m 1 k " m k for any k ‰ j; 3. @e i P inpv j q, b 1 i " suffixpb i , |b i | ´δí psqq; 4. @e i P outpv j q, b 1 i " b i ¨pδ ì psq ˚λq.

Definition 11 (Extended tick). For an extended polygraph P, the partial mapping tick : S Þ ÑS is defined for the tuples xv j , s, λy such that psq $ tickp psqq. In this case, if we denote s " xs, m, by and xs 1 , m 1 , b 1 y " tickpsq, we have s 1 " tickpsq, m 1 " m, and b 1 " b.

Remark 5. Def. 9, 10, 11 show that the extended transitions in P impact, or depend on the synchronous constraints θ in the same way as the underlying transitions in P do. There is no additional dependence or impact on synchronous constraints introduced by the mode extension. An extended firing only relies on the channel states c in s " xc, θy P S to determine the mode changes. Therefore, the mode extension is orthogonal to synchronous constraints. We thus chose not to detail them here. In other words, the mode extension is about which tokens are consumed or produced by a firing, not when they are.

Extended execution. An execution of P relies on the extended firing and the extended tick. By construction, the underlying execution in P is valid.

Definition 12 (Extended execution). An execution of an extended polygraph P is a sequence σ " s 1 ¨¨¨s n P S `, such that @1 ď k ă n we have either s k`1 " firepv j , s k , λq for some v j P V and λ P Λ, or s k`1 " tickps k q. The forgetful mapping is extended to any execution σ " s 1 ¨¨¨s n as follows:

pσq " ps 1 q ¨¨¨ ps n q. In addition, if σ " pσq, for all channels e i P E we denote η σ i " η σ i , o σ i " o σ i , and ι σ i " ι σ i .

Coherence. As explained above, the decision of the next mode captures a drift in mode propagation by assigning an undefined mode to actors. We propose in the next section an algorithm to verify that, given a polygraph P with an initial state s 1 , the decided mode is never undefined in any execution starting from s 1 .

To show its soundness, we need to show (cf. Th. 1 below) that the decided modes of all actors are pre-determined by the initial state and the modes selected by the selectors, even if the order of transitions is changed.

To formalize this idea, for an execution σ " s 1 ¨¨¨s n P S `and for each actor v j , we define two mappings µ σ j and χ σ j giving for each l P t1, . . . , x σ j u the decided mode µ σ j plq and the selected mode χ σ j plq for the l th firing of v j in σ. Hence, if the f th firing of v j occurs in state s l such that s l`1 " firepv j , s l , λq, we have µ σ j pf q " d j ps l q and χ σ j pf q " λ. By Def. 10, they are equal for non-selectors.

Theorem 1. Let P be an extended polygraph, and σ P S `, σ 1 P S `be two executions of P such that pσq » pσ 1 q and σr1s " σ 1 r1s. Assume that for any selector v j P V M we have χ σ j " χ σ 1 j . Then for any actor v k P V we have µ σ k " µ σ 1 k .

Sketch of proof. By definition of » (see Remark 3), the tracking vectors of σ and σ 1 are equal, so each actor v j fires the same number of times x σ j " x σ 1 j in σ and σ 1 , while the order of firings can be different. Assume the result does not hold. We can then choose the very first firing of an actor in σ for which the property does not hold. Assume this is the f th firing of actor v k (referred to below as problematic) for which the decided mode is not the same: µ σ k pf q ‰ µ σ 1 k pf q. Hence for all previous firings (of all actors) in σ, the required property holds.

To choose the decided mode of its f th firing, v k considers the tokens either initially present in the channel or produced by a firing of some actor occurring before this firing of v k in σ. By Prop. 2, a given token of the footprint of a channel is produced by the firings of the same rank of the producer, and consumed by the firings of the same rank of the consumer of the channel in both executions pσq and pσ 1 q (and thus in σ and σ 1). Thus, the f th firing of v k in σ and σ 1 consumes the initial tokens of the same rank in the footprint, that is, exactly the same number and on the same position. Since σr1s " σ 1 r1s, there cannot be any difference of modes for these tokens between σ and σ 1 . Regarding the tokens produced by a firing of a selector in σ, since the ranks of such tokens in the footprint are the same in σ and σ 1 and since the selector's choice is the same in σ and σ 1 , there cannot be any difference of token modes either. Regarding the tokens produced by a firing of a non-selector in σ before the problematic firing of v k , there cannot be any difference since each such token is produced by a firing for which the property holds and therefore the token was labeled with the same decided mode in σ and σ 1 . The contradiction finishes the proof.

[\

Method and Tool Support to Check Coherence

In this work, we design and implement in DIVERSITY an algorithm to check whether or not an indecision can occur in a live execution of a polygraph. DI-VERSITY is a customizable model analysis tool based on symbolic execution, available in the Eclipse Formal Modeling Project [START_REF]The DIVERSITY tool[END_REF]. The input of our algorithm is a polygraph P and an initial state s 1 such that P is live from ps 1 q. Assume σ 0 is a minimal live execution of P from ps 1 q. The algorithm performs symbolic execution of all executions σ of P with initial state s 1 such that pσq is a repeated execution of σ 0 (up to a certain number of times). This exploration is based on a straightforward implementation of Def. 10, 11, 12. We call current the state s l resulting from the last such application, with s l " s 1 initially. In order to represent all possible choices modeled by the selected mode arguments of the extended fire transitions, for any firing of rank f of a selector v j in these executions, we use a symbolic parameter a jf representing that mode and on which we compute constraints (the initial constraint being that a jf P Λ j). The produced tokens are labelled with a jf . The resulting symbolic state represents all possible choices of selected modes and resulting constraints (stating that the mode labels of some tokens-having the same a jf -are equal).

Each time an actor fires, we compute the conditions given in Def. 9. By construction at least one of them is satisfiable. If the condition corresponding to Item 3 is satisfiable, it means that there exists a valuation of the formal parameters for which the decided mode is undefined. In this case the computation ends with a verdict no stating that there is at least one live execution with an indecision. Otherwise, the exploration continues.

From Prop. 1, for any actor v j and channel e i P inpv j q, the tc 1 i u tokens initially occupying e i are consumed after a known number of firings of v j . Hence, from Remark 3, it is possible to successively execute σ 0 (with all possible choices of decided modes) a number of times l ą 0 such that all tokens initially occupying input channels are consumed. Assume we reach some state s n ; as σ 0 is live, we have ps n q " ps 1 q, so the number of tokens in the channels is the same as in the initial state. The labels of all tokens present in the channels at that stage are expressed by some a jf . Finally, our algorithm executes σ 0 one last time, overall to a repetition of l `1 minimal live executions σ 0 . This last step, starting from some symbolic state s n , necessarily comes to a symbolic state equivalent to s n (since by Prop. 2 the constraints on the mode labels of tokens-having the same a jf -will be semantically the same, even if the indices j of a jf will be shifted). If no indecision is detected by executing an extension of σ 0 from state s n , and since it leads to an equivalent state, we can stop iterations: any additional step will not detect an indecision. The computation ends with a verdict yes. The proposed technique is sound by construction: if an indecision is detected, it really occurs since the algorithm simulates a possible execution of P. To show its completeness, we should check that if an indecision can occur for some execution of P, the no verdict will be returned.

We claim that it is indeed sufficient to explore extensions of live executions as per our algorithm, and check that no indecision occurs in them. First, from Th. 1, the only parameters influencing the decided modes are the labels of the tokens initially occupying the channels, and the modes selected by the firings of selectors. The labels of the initial tokens are an input of the problem and do not change in the executions to consider. The symbolic parameters used to label the tokens produced by the firing of selectors cover all possible choices. Hence, all possible executions σ such that pσq is a repeated execution of σ 0 (any finite number of times, as argued above) are covered by our exploration. By Remark 3 and Th. 1, we deduce that a possible indecision in any execution of P will be thus detected by our technique on an execution σ such that pσq is equivalent to a repeated execution of σ 0

We have applied our algorithm to different examples and summarized the results in Fig. 3. The three examples introduced in this paper were analyzed, and are referenced by Figure number (for Fig. 2 the tested model received synchronous constraints). The example denoted MP4-SP is a translation to Polygraph of the classical MPEG4-SP SADF decoder (see [START_REF] Theelen | Scenario-aware dataflow[END_REF] for original graph).

For some examples, transformations were applied to the initial model, in order to show how execution time increases linearly with the number of firings, or to voluntarily introduce an indecision. Correctness of verdicts was checked manually. Experiments were run on an Intel core i7-7920HQ@3.10GHz, 32GB RAM.

Discussion and Related Work

In [START_REF] Lee | Static scheduling of SDF programs for digital signal processing[END_REF], the authors introduced Synchronous Data Flow (SDF), a restriction of Kahn Process Networks [START_REF] Kahn | Coroutines and Networks of Parallel Processes[END_REF], overcoming the undecidability of the existence of an admissible schedule (in the general case), and allowing static performance analysis. The key was the introduction of a linear behavior using static integer rates. For a more precise performance prediction, it is useful to allow rates to change dynamically during an execution to find tighter bounds on the evaluated memory footprint, throughput, and latency. The main difficulty to introduce such dynamic behavior resides in the capability to approximate the desired nonlinear behavior while preserving the good properties of a linear equation system.

Our proposition is one of many other approaches attempting to tackle this issue [START_REF] Buck | Static scheduling and code gen. from dynamic dataflow graphs with integer-valued control streams[END_REF][START_REF] Bilsen | Cyclo-static data flow[END_REF][START_REF] Bhattacharya | Parameterized dataflow modeling for DSP systems[END_REF][START_REF] Oh | Fractional rate dataflow model for efficient code synthesis[END_REF]. In Sec. 2, we mentioned SADF [START_REF] Theelen | A scenario-aware data flow model for combined long-run average and worst-case performance analysis[END_REF], and referenced a recent and extensive survey of similar approaches [START_REF] Geilen | Performance analysis of weakly-consistent scenario-aware dataflow graphs[END_REF], showing that SADF is the most expressive while retaining the scheduling properties. Compared to SADF, Polygraph can express global synchronous constraints, simplifies the reconfiguration mechanisms by removing control channels, and offers a different approach to capture the dynamic changes in communication. Since the rational rates are the same in all modes, consistency and liveness can be checked as for static models. By adding configuration information per mode on the tokens, the existing examples with variable rates provided in [START_REF] Theelen | Scenario-aware dataflow[END_REF] can be modeled in Polygraph without loss of behavioral information.

For example, in the translation of the MP3 decoder of Fig. 4, the actor H is a selector and determines the frame type for the left and right channels, and produces 2 granules of 576 components labeled with the determined frame types (e.g. F SL stands for short frame on left channel and long frame on right channel). Actor S is a follower of H, and it is also a selector, determining the amount and type of blocks to distribute to the block processing pipelines starting with actors AR i . For example, if S consumes a granule labeled F SL on its 1 st firing, it will not consume another granule for its next 95 firings (input rates 1{96), and from the 1 st firing to the 96 th , the left channel will receive 96 short blocks each of size 6, and the right channel will receive 32 long blocks each of size 18. In the model, both channels receive 96 tokens, the first 32 are labeled BSL for short block on left and long block on right, and the remaining 64 tokens are labeled BS0 for short block on left and empty block on right. As in SADF, depending on the mode for a firing, the execution time can change and be set to 0 for actors that do not process for the determined frame and block types.

Conclusion

To cover the needs of modeling distributed and reconfigurable CPS, we have introduced dynamic behavior in Polygraph, such that for an extended polygraph, the consistency and liveness properties of the underlying static polygraph are not impacted by the extension. This allows for a single verification of these properties for a static model, and the static performance analysis of many alternative extended versions.

An adaptation of the existing approaches for the static performance analysis of similar languages will be the main part of our future work. In addition, we want to consider hierarchical and composable modeling of polygraphs, allowing the design of large scale complex distributed CPS.

Fig. 1 .

 1 Fig.1. a) A cockpit display system modeled as a polygraph denoted P1, and b) its topology matrix Γ, initial channel state c 1 , and vector of synchronous constraints t.

Fig. 2 .

 2 Fig.2. a) A polygraph P2, with v1 the unique selector of modes Λ1 " tλ1, λ2u and its followers v2 and v3, and b) two step-by-step live executions σ2 and σ 1 2 of P2.

Fig. 4 .

 4 Fig. 4. A MP3 decoder modeled as a polygraph.

 Experiments on examples, where (:) denotes token rate modification preserving consistency, (;) denotes a modified number of initial tokens, and (§) denotes marking an existing channel as deciding. The last three columns show the verdict, the number of firings and the number of full live executions executed by DIVERSITY.

	N o example	7 actors	min live verdict 7 firings	7 min. live time
		(7 timed act.) exec. len.		simulated	execs.	
	1 Fig. 1	5 (4)	22	yes	44	2	95ms
	2 Fig. 1(:)	5 (4)	220	yes	440	2	432ms
	3 Fig. 2	3 (2)	8	yes	16	2	9ms
	4 Fig. 4	15 (0)	1358	yes	2716	2	4s668ms
	5 Fig. 4(:)	15 (0)	2702	yes	5404	2	14s716s
	6 Fig. 4(:)	15 (0)	13580	yes	27160	2	1m41s
	7 Fig. 4(;)	15 (0)	1358	no	8	0	6ms
	8 MP4-SP	5 (2)	299	yes	598	2	557ms
	9 MP4-SP(:) 5 (2)	598	yes	6008	2	7s451ms
	10 MP4-SP(§) 5 (2)	299	no	237	0	189ms
	Fig. 3.						

In other words, A ˚is the free monoid on A, and A `is the free semigroup on A.

Θ corresponds to ω and ϕ in [5, Def. 4], while initial marking m is not integrated into the polygraph definition in this paper.

θ corresponds to τ and a in [5, Def. 5].

We see here the reason for that condition in Def. 1: if both γij, γ ik R Z, this and the following results do not hold, and the order of transitions can be important.

For the case of self-loops, excluded in the proposition, a similar result can be proved by separately considering matrices Γ `, Γ ´with production and consumption rates.

Acknowledgement. Part of this work has been realized in the FACE/OPTEEM projects, involving CEA List and Renault. The Polygraph formalism has been used as a theoretical foundation for the software methodology in the project.