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ABSTRACT
The overweight and obesity rate is increasing for decades world-
wide. Healthy nutrition is, besides education and physical activity,
one of the various keys to tackle this issue. In an effort to increase
the availability of digital, healthy recommendations, the scientific
area of food recommendation extends its focus from the accuracy of
the recommendations to beyond-accuracy goals like transparency
and healthiness. To address this issue a data basis is required, which
in the ideal case encompasses user-item interactions like ratings
and reviews, food-related information such as recipe details, nutri-
tional data, and in the best case additional data which describes the
food items and their relations semantically. Though several recipe
recommendation data sets exist, to the best of our knowledge, a
holistic large-scale healthiness-aware and connected data sets have
not been made available yet. The lack of such data could partially
explain the poor popularity of the topic of healthy food recommen-
dation when compared to the domain of movie recommendation.
In this paper, we show that taking into account only user-item in-
teractions is not sufficient for a recommendation. To close this gap,
we propose a connected data set called HUMMUS (Health-aware
User-centered recoMMendation and argUment-enabling data Set)
collected from Food.com containing multiple features including rich
nutrient information, text reviews, and ratings, enriched by the
authors with extra features such as Nutri-scores and connections to
semantic data like the FoodKG and the FoodOn ontology. We hope
that these data will contribute to the healthy food recommendation
domain.

CCS CONCEPTS
• Computing methodologies → Learning from implicit feed-
back; • Information systems→ Data cleaning; Recommender
systems; • Applied computing→ Health informatics.
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1 INTRODUCTION
In today’s world, there are 1.9 billion overweight people and 650
million of those suffering from obesity. Unfortunately, the trend
is upward, as global obesity rates nearly tripled between 1975 and
2016. Possible consequences could range from a moderately re-
duced health level up to avoidable premature deaths [60]. Those
high numbers also have an impact on society (for example, health
insurances), and thus the general public has to bear immense costs
as a result [38]. Among other things, this influences the urgency
of how the issue of nutrition is perceived in society, politics and
science. The reason is that healthy nutrition plays, besides physical
activity, a key role in the prevention of overweight and obesity.

We focus in our work on how interactive recommendation sys-
tems can contribute to counteracting the current trend and encour-
age individuals to adopt healthier eating habits. Unfortunately, it
is notable that the field of healthy dietary recommendation sys-
tems does not receive nearly as much attention as other domains of
recommendation systems such as those in the fields of movie and
product recommendation [49].

There are various different tasks in the domain of food recom-
mendation. Image classification tries to analyse a dish or single in-
gredient and connect that with additional information to compute
a meaningful recommendation [54]. Restaurant recommendations
are focused on giving the user a fitting recommendation on where
to eat or order next, usually based on the restaurants’ menus [32].
Ingredient substitution is interested in modifying dishes or recipes
in a healthy manner [47]. Recipe or dish recommendation is focused
on giving the user a whole meal plan or a single recipe or dish
for self-preparation [10, 50]. There are of course various possible
imaginable hybrid approaches like recommending a recipe based
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on image classification of a picture of the users’ fridge. In our work,
we target mainly a healthy recipe recommendation task and we
propose a connected data set that can be used for this purpose.
However, as we provide meaningful mappings via connected exter-
nal data sets (mainly the FoodKG [21]), the scope of the usability is
larger.

Thus, our research question isWhat data can support the ongoing
research in the food recommendation area to improve comparability,
realism, and health awareness?. Initially, we see the greatest need
for action on a common and, above all, public data basis. Related
works [15, 26, 36] suffer from either a lack of features which could
contribute to the health awareness aspect or a lack of meaningful
user-item interactions. Also, most works do not provide linked data
which can be used for generating recipe explanations in order to
increase the users’ trust. Moreover, the data sets/codes are often
not publicly available or contain only small data. For instance, the
recently shared FoodKG [21] knowledge graph does not contain
any user-recipe interaction data.

In the scope of this paper, we refer to health awareness as not
only recommending food items which minimize intake of calories
but considering multiple nutrients and, in the best case, inferring a
personalized nutritional need.

Our contribution is the publication of a linked, healthiness-
aware, and argument-enabling recipe data set called HUMMUS
(Health-aware User-centered recoMMendation and argUment en-
abling data Set). Moreover, we release the used crawler, related
scripts for data cleaning & processing, the assessment of current
related work, and a showcase of interesting use cases. The main
features of the HUMMUS data set can be summarised as follows:

• Linked: We built our linked data set on top of a simplified
version of the FoodKG [21] and additionally collected infor-
mation, namely user and user-item interactions data from
the Food.com website.

• Healthiness-aware: For each of the recipes, the healthiness
scores are calculated according to the official guidelines from
theWHO (theWorldHealth Organisation) [22, 69] or the FSA
(the UK Food Standards Agency) [16, 45] based on nutrition
values. In addition, we implement a simplified version of the
NutriScore [9].

• Argument-enabling: It is possible to reason over the data set
in a semantic manner with e.g. SPARQL [1].

• User-item interactions: It is possible to use the data for collab-
orative recommendation as it introduces user-item interac-
tions like recipe ratings, reviews, comments and authorships.

All resources are available through our GitLab repository1.
The remainder of the paper is structured as follows: In Section

2, we describe related fields with a focus on healthiness-aware,
explainable recommendations, and food-related data sets and on-
tologies. Section 3 introduces in detail the creation and properties
of our linked data set. Section 4 showcases some small-scale experi-
ments and their evaluations on our data, while Section 5 concludes
our paper and gives a brief outlook on future works.

1https://gitlab.com/felix134/connected-recipe-data-set. The README.md file provides
additional technical information regarding the data and steps to follow to reproduce
the shown results, figures, and tables.

2 RELATEDWORK
In this section, we give a brief overview of related works according
to three axes: (1) food, recipe and nutrition data sets, (2) healthiness-
aware food recommenders, and (3) explainable recommendation
approaches. The axes are not mutually exclusive as some works
tackle several aspects.

2.1 Food, Recipe & Nutrition Data Sets
Here, we overview frequently-used or otherwise interesting data
sets and ontologies related to food. We analyse them with respect
to the following requirements/desirable features: (1) being large-
scale, (2) containing user-items interactions for user preference
inference, (3) being connected/linked to enable the reasoning over
it, (4) containing nutrition data allowing to evaluate the healthiness
of a given recipe. Table 1 provides a basic comparison of the existing
data sets that are detailed below.

Recipe1M+ [31] is, to our best knowledge, the largest food-related
data set in the field. It is composed of approximately 1 million
recipes and 13.7 million connected images. The recipes originate
from various different recipe websites. It lacks user-recipe interac-
tions and semantic knowledge.

The FoodOn ontology [13] aims to categorize and group related
food products in terms of their food type, food transformation pro-
cess, consumer group, cultural origin, food packing and more. The
most interesting relations for recipe recommendation are the prod-
uct type relations. As an example, a Fuji apple (whole) is a subclass of
apple (whole), apple (whole or parts), apple food product, pomaceous
fruit food product, plant fruit food product, plant food product, and
finally a subclass of food product. This ontology can be reasoned
over using SPARQL [1, 2]. It consists of over 9 600 food products.
The ontology alone of course does not include recipes or user-item
interactions but could be exploited for additional knowledge.

The FoodData [51] (formerly known as USDA data set) provides
an extensive collection of nutrient-related information (micro- and
macro-nutrients like carbohydrates, vitamins, minerals and more)
for single ingredients. It includes approximately 8 000 natural food
products and 400 000 branded food products with each 46measured
nutrient features and more. It is important to note, especially for
non-pre-processed nature food products, that the data only gives
an average value. For products like an apple, this might lead to
inaccuracies when used for the recommendation process, as nu-
trient values change during the cooking and preparation process,
and products like apples vary in size. For industrial products like
bagged soups, the problem is non-existent. Similar to the previ-
ously mentioned ontology, this data set is not directly usable for
recommendations but might help as an additional data source.

The FoodKG [21] is a knowledge graph that provides connections
between the Recipe1M+ data set, the FoodOn ontology and a subset
(SR Legacy Foods) of the FoodData. They achieved this goal by em-
bedding ingredient names of all recipes and both to-be-connected
data sets using natural language processing (NLP) techniques and
then mapping similar entries. In order to enable the usage of se-
mantic technologies, they transformed all their connected data into
RDF triples [61]. We use the FoodKG as the base of our work as
it provides rich food data. However, one has to keep in mind that
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Table 1: Food data set comparison

Dataset # items # users # user-item linked data nutrition data comments

Recipe1M+ [31] 1M recipes
13M images N/A N/A N/A FSA scores Recipes paired with food im-

ages
FoodOn [13] 9.6K food items N/A N/A yes N/A Food product categories as

hierarchy

FoodData [51]

6K natural
food products
400K branded
products

N/A N/A N/A avg, min, max
amount nutrient
per 100g

Food products with ex-
panded nutrient profiles

FoodKG [21] 62M triples N/A N/A yes N/A KG fusing Recipe1M+,
FoodOn, and FoodData

Majumder et al. [30] 230K recipes 25K 1.1M
reviews N/A N/A Recipes and user reviews

from Food.com

Trattner et al. [49] ∼ 61K recipes 25K 17M
bookmarks N/A WHO, FSA

scores
Recipes and users from All-
recipes.com

MyFitnessPal [58] 23.3K recipes 9.8K 156K diary
records

N/A nutrients Recipes and users from My-
FitnessPal.com

the linkage quality (with a coverage of 92% between recipe ingredi-
ents and FoodOn entries) of the FoodKG is not perfect and might
be improved by more recent NLP approaches. Moreover, falsely
connected entries might lead to inaccuracies when reasoning over
the connected ontology. In total numbers, the data set consists of
over 62 million triples. However, they are lacking user-recipe re-
lations and in addition, did not import the ingredient’s nutrient
information from Recipe1M+.

RECIPTOR [27] proposes a recipe representation learning model
that uses triplet sample mining from FoodKG. It also provides the
food tags from Food.com and its original recipe categorisation (9
categories in total).

MyFitnessPal [58] is a data set collected from MyFitnessPal.com
(2014-2015) including 156 000 food diary entries from approximately
9 000 users and 23 300 recipes. It can be used to get user-item inter-
actions. For instance, in [29] the authors use graph neural networks
to learn joined recipe representations from MyFitnessPal and the
FoodKG. They generate recipe recommendations and then try to
find similar and healthy recipes which can be recommended instead.

Majumder et al. [30] aim at generating new recipes from incom-
plete user inputs. It is based on their collected data from Food.com,
which includes approximately 230 000 recipes and 1.1 million re-
views (2000-2018) serving as user-item interactions. However, it
is not directly connected to semantic data and does not offer the
original recipes’ URLs to connect them with a subset of the FoodKG,
nor nutrients data.

Additional commonly used, but smaller data sets can be found
in the work by Trattner et al. [49], crawled from Allrecipes.com
(2000-2015). As a user-item interaction, the authors consider the
action of bookmarking a recipe.

As it can be seen, there is still room for improvement in terms of
available data that satisfies our aforementioned requirements. Our
HUMMUS data set bridges this gap.

2.2 Health-Aware Food Recommendation
The works on (healthy) food recommendation (e.g. [18, 24, 36, 44])
mainly focus on recommending personalised recipes or diets. As
argued in [10], most existing food recommenders ignore crucial
health factors (e.g., allergies and nutrition needs), and/or do not con-
sider the rich food knowledge for recommending healthy recipes.
But as the awareness of food-related health and sustainability issues
rises, especially bad dietary recommendations can result not only
in a loss of trust towards the system but can also harm the user
triggering physical and/or mental illness [67]. In this subsection,
we discuss existing healthy food recommendation systems from
the following perspectives: (1) their definition of healthiness, (2)
their way of considering the healthiness dimension in the recom-
mendation process, and (3) their response to some of the domain
challenges.

What is a healthy recipe? The notion of healthy food has been
evolving in time. Some works focus on calorie intake (e.g. [19, 43]),
others on a cholesterol factor (e.g. [48]), or multi-criteria based
on nutrients like protein, sodium, cholesterol, and saturated fats
(e.g. [66]). Wang et al. [54] assign one or many nutritional benefit
categories (weight loss, health care, nutritional supplements, and
disease recovery) to each recipe. Moreover, they classify the recipes
as suitable or unsuitable for a particular kind of user health tag
(96 in total) based on their ingredients according to the acquired
healthy diet tips (the source of which is not precise). Nowadays,
we can also refer to the guidelines of national and international
health organisations, like the World Health Organization (WHO)
[39] or the French National Agency of Public Health [9, 11] or the
UK Food Standards Agency (FSA) [3, 16, 45]. The idea of using food
traffic light systems originated from such guidelines and calculating
a single value based on them can be found in several works, e.g.
[15, 49, 50]. However, such scores are not personalized and thus
only express a general classification. In contrast to that, Chen et
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al. [10] introduce nutrient and macronutrient budgets based on the
guidelines from the American Diabetes Association (ADA) [5] that
can be adjusted w.r.t. user’s health condition. Moreover, some efforts
have been done to target a specific audience based on their health
conditions, like thyroid, diabetes, or high blood pressure patients
[12, 37, 52]. However, as we are interested in a broader audience, it
is not that easy to define personal medical requirements.

How to take the healthiness dimension into account? Hy-
brid approaches have shown their effectiveness in recommenders
[26]. Those systems are a mixture of approaches like content-based
filtering (recommendation only over item information and thus
similar items), collaborative filtering (recommendation based on
user-item interactions and thus similar users), knowledge-based
systems (information retrieval via semantic data), and demographic-
based systems (similar users based on demographic information).
Most of the novel recommendationmodels belong to this group. The
existing works differ in the way they incorporate the healthiness di-
mension in line with their definition of the latter. Thus, to consider
numerical constraints w.r.t. the amount of a given nutrient, symbolic
number comparison is applied in [10] resulting in a new sub-graph
fed to a neural network-based system. To incorporate negative con-
straints, the authors use an embedding-based method for query
expansion. To deal with nutrient-based constraints, Toledo et al.
[66] use multi-criteria decision analysis. Reinforcement learning-
based models can be used for single values. Thus, in [43] a reward is
based on the recipes’ calories. Wang et al. [54] propose an attention-
based model. A post-processing procedure can also be applied to
re-rank the results of the prediction based on their health scores
(e.g. [15]).

What are the challenges and the response to them? Based
on the state-of-the-art, we identify the following main challenges
in the field of healthy food recommendation:

Data availability & quality: The lack of public data and/or poor
data quality is one of the biggest issues of healthy food recommen-
dation [36, 67]. Moreover, the data sets are non-standardised [26].
To collect more user context data, Min et al. [36] suggest using
smartwatches to track the users’ physical status or food histories to
track eating habits. Chen et al. [10] randomly generate user dietary
preferences and allergies.Wang et al. [54] assign health tags to users
based on their personal information and their tweets. To simulate
user-item interactions, they assign similar "health-tagged" recipes
and users. The missing food preferences could be considered as one
of the shortcomings of their solution.

Cold-start problem: Like in other recommendation domains, healthy
food recommendation suffers from the cold-start problem [15, 43,
49, 50]. To overcome this issue, Rabbi et al. [43] suggest collect-
ing food diary data for at least 7 days before actually starting the
personalised recommendation process. Chen et al. [10] propose a
knowledge-based question answering (KBQA) recommender allow-
ing to consider explicit requirements from users, for example not
only recommending a breakfast dish but one which includes bread,
which helps to avoid the cold-start issue.

Evaluation: Most of the existing approaches are evaluated w.r.t.
the accuracy of recommendations (e.g. [10, 54]). To account for
the healthiness of the returned results, some healthiness-oriented
metrics have been proposed like health-revised recall at top-𝑘 [28].
Additionally, human evaluation can be performed and is a rather

desirable procedure (e.g. [10]), as well as case studies (e.g. [66]).
Trattner et al. [15, 49, 50] point out that beyond accuracy goals (e.g.
serendipity, diversity, etc.) are lacking in the food recommendation
domain.

Eating behaviour change: Healthy food promotion is not limited
to a recommendation of healthy recipes. It deals with behaviour
change. To assist such a change, recommender systems can be used,
providing a user with personalised content. However, to achieve
the final goal of behaviour change, such a system should go far
beyond a traditional recommender system. Little effort has been
done so far in this direction (e.g. [14, 33, 40]), which is partially
due to the need for long-term user studies in order to evaluate the
effectiveness of a proposed approach.

2.3 Explainable recommendation
In this subsection, we briefly discuss the related work focusing
on the explainability of recommender systems, not necessarily
from the food domain, but keeping in mind our healthy food rec-
ommendation scenario. We argue that explainability is especially
important in the domain of health-aware food recommenders as
recommendations alone might not help the user to change his/her
eating habits. Explaining recommendations might help to increase
the transparency of the system and thus increase the users’ trust.
It is worth noting that other techniques such as persuasion and
behaviour change methods can be used to further increase the ef-
fectiveness of such a recommender. However, those are out of the
scope of this work.

Usually, two kinds of explanation approaches are distinguished.
Post-hoc explanations [4, 7, 8, 41, 55, 63, 65] mean that explana-
tions are generated after recommendations. On contrary, embedded
explanations [53, 56, 57, 62, 64] are automatically inferred by the
recommendation model. The main shortcoming of post-hoc ex-
planations is often considered to be their inability to explain the
models [68]. However, we argue that in the healthy-aware food
domain, the explanation of the model itself is less important than
the one of the recommendation results in a reasonable and action-
able way - even if the explanation does not fit the model. Another
drawback of post-hoc explanations is that they usually require an
additional data structure for the reasoning, which in the case of our
HUMMUS data set is the FoodOn ontology. The advantages of post-
hoc explanations are the possibility to control those independently
from the recommendation process, and thus arguably a potential
quality.

As an example, a user study [25] showed, that a collaborative-
filtering approach for recommendations performs usually best (dis-
carding hybrid recommenders) in terms of accuracy. However, when
users were asked about two types of recommendations (embedded
and post-hoc) they preferred the latter. Their work shows, that an
end user is not interested in user-centric or socio-centric aspects of
the explanation, but more in item-centric ones.

To foster transparency and trust, Padhiar et al. [42] extend the
FoodKG and constructs a Food Explanation Ontology in order to infer
logical explanations from a recommendation. They use a post-hoc
explanation design.

4



HUMMUS data set RecSys ’23, September 18–22, 2023, Singapore, Singapore

Figure 1: Density of nutrient values in the data set after normalization

3 THE HUMMUS DATA SET
As shown in the previous section, there is a need for a data set
which can be used for an explainable and health-aware food rec-
ommendation. In order to support hybrid recommenders, we need
both content-based features of the recipes, but also collaborative
user-item interactions, which cannot be found to that extent in
related work. Moreover, to enable post-hoc explanations, semantic
data which is connected to the data set is provided.

In this paper, we present our HUMMUS (Health-aware User-
centered recoMMendation and argUment enabling data Set) data
set. It is primarily inspired by FoodKG. Our methodology consists
of the following three steps. First, to ensure the HUMMUS con-
nectivity with the FoodKG, we collect all unique recipe URLs from
the FoodKG. For each of those recipes, we crawl additional data.
Second, we engineer additional features like nutrition scores. Third,
the crawled raw data is cleaned and pre-processed. This also in-
cludes the simplification of the FoodKG for further crossing and
the integration of our data with the FoodKG. In the following, we
describe in detail the collection process, the construction of the
whole data set, and give an overview of the final data set.

3.1 Data Collection
The FoodKG consists of approximately 1million recipes from 21 dif-
ferent websites. Half of those recipes are from Food.com. Each other
source from the FoodKG does not exceed 75 000 recipes. Food.com
is one of the biggest recipe sites in English on the web. It currently
consists of over 500 000 recipes including information like nutrients,
preparation steps, ingredients, food-related tags, and metadata like
creation date or average rating. There are currently over 300 000
public user profiles and over 2million user-item interactions includ-
ing ratings (with values from 1 to 5), comments, and authorship.

We collected additional information from all recipe URLs (ap-
proximately 500 000) from the FoodKG which are located on the
domain Food.com. Thus, HUMMUS contains a larger spectre of data
than the original FoodKG, and most importantly, it includes user-
recipe interactions. We also explore new recipes not located in the
FoodKG from each URL to a certain degree. In the end, we result in
507 335 recipes, 302 412 users, and 1 916 424 user-item interactions.

Figure 2: Exemplary traffic light labelling from the FSA2

3.2 Measuring Recipe Healthiness
Figure 1 shows the density of different nutrient values in the data
set. All nutrient values are given in relation to one serving (even if
the recipe might result in multiple servings). As an example, the
WHO [59] recommends no more than 50g of sugar per day for
adults. Additional health benefits can be inferred by limiting the
daily intake to at most 25g of sugar per day. Depending on the
number of meals per day, some recipes are clearly not healthy.

The question "How healthy is a recipe?" depends mainly on the
composition of nutrients and personal medical requirements, and
thus is rather complex. In order to measure the healthiness of the
recipes, we deploy a system consisting of multiple non-personalized
scores. These scores express the coarse healthiness which is focused
on an average person. We do not provide personalized scores, which
are more accurate for a given user, as we do not possess medical
information about the users in the data set.

Similar to Trattner et al. [15, 49, 50], we take the food traffic light
systems from national and international health agencies like the
FSA [16, 45], WHO [22, 69] and use those to compute a single value
expressing the overall healthiness of a recipe. Those traffic light
systems are usually used for front package labelling and can look
like shown in Figure 2. They offer a reference for the most nutrients
and the energy value encoded as colours ranging from green to red.
All colours (depending on the model 3 or 5) get encoded in numbers.
The final score is the sum over all categories of the encoded colours.
To improve the precision of those scores, we extend them by linear
scaling and normalization. The scaling allows a higher precision,
as we do not score a fixed value for each category, but instead scale

2Retrieved from https://www.food.gov.uk/safety-hygiene/check-the-label
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Figure 3: TheWHO score, FSA score, and NutriScore rating the
healthiness of each recipe in the HUMMUS data set. For the
NutriScore, the colour encoding follows its specifications. For
the FSA score, the colour encoding is a similar split between
the colour shades red, orange, and green. TheWHO score is
not evenly coloured but follows the colours of the distribu-
tions of the NutriScore.

Figure 4: Exemplary structure of the simplified FoodKG.
Structure-wise irrelevant relations are discarded.

it dependent on the distance to each bound. The normalization has
the effect that the resulting score is in the closed interval of 0 and 1.

In addition to those two scores, we add the simplified version of
the NutriScore [9]. An advantage of this score is that it does not only
express the healthiness of multiple nutrients but already compresses
this information into one single score. This score was published by
medical researchers and has a more complicated method to add all
single-nutrient-scores together, thus the resulting value might be
more accurate than for both previous scores. On the other side, we
do only offer the simplified score, as the original NutriScore takes
additional information into account. For instance, it is differently
defined for recipes representing dishes or beverages and has special
handling for cheese, fruit and vegetable foods. We plan on adding

the additional calculations in future, as the semantic structure of
our data set allows the querying for those required features.

In order to get an overview of the healthiness of our data set, we
plot the NutriScore,WHO score, and FSA score for each recipe in the
data set, as seen in Figure 3. The scores cannot be compared directly
because of the different intaken arguments and resulting categories.
However, all three scores express a similar tendency - most recipes
are not healthy at all. Depending on which categories we label as
’healthy’, the number of healthy recipes in the data set changes.
TheWHO Score rates the recipes in categories from 0 to 14, while a
higher number means healthier. If we assume that the scores from 0
to 4 are not healthy and remove them, only 23.2% of the total recipes
remain. The FSA Score rates the recipes from 0 to 8, while a higher
number also means healthier. With the assumption of unhealthy
recipes from 0 to 4, we result in 35.4% neutral or healthy recipes.
The NutriScore defines the categories 𝐷 and 𝐸 as unhealthy, thus
we do not need to make any assumption. With that, 24, 5% of all
recipes are neutral or healthy. The scores shown in Figure 3 are
encoded according to those mentioned assumptions.

3.3 FoodKG Simplification and Extension
Next, we simplify the FoodKG. Thus, we discard all uninteresting
triples for our recommendation scenario. As described in Section
2.1, the FoodKG is built upon Recipe1M+, FoodData, and FoodOn.
As the total recipe nutrient value of recipes cannot be calculated
as a simple sum of its ingredients, we discard the connections
to the ingredient-based nutrient set FoodData. In HUMMUS, the
only source of the recipes is Food.com. We map their ingredients
nodes directly to FoodOn food categories. So, we can remove all
provenance nodes present in the original FoodKG. Next, we add all
the additional features we got from our crawler to the graph, as
well as the nutrition scores calculated on the previous step. Finally,
we remove all nodes which are not connected to our data set.
PREFIX foodkg: <http :// idea.rpi.edu/heals/kb/>
PREFIX foodon: <http :// purl.obolibrary.org/obo/

FOODON_ >
SELECT DISTINCT ?title ?recipe
WHERE {? recipe a foodkg:recipe;

rdfs:label ?title.
FILTER NOT EXISTS { #invertebrate animal food

product
?recipe foodkg:uses/owl:equivalentClass/rdfs:

subClassOf* foodon :00001176.}
FILTER NOT EXISTS { #vertebrate animal food

product
?recipe foodkg:uses/owl:equivalentClass/rdfs:

subClassOf* foodon :00001092.}
FILTER NOT EXISTS { #seafood product
?recipe foodkg:uses/owl:equivalentClass/rdfs:

subClassOf* foodon :00001046.}
FILTER NOT EXISTS { #animal
?recipe foodkg:uses/owl:equivalentClass/rdfs:

subClassOf* foodon :00003004.}
} LIMIT 100

Listing 1: SPARQL query to extract 100 vegetarian recipes
from the simplified FoodKG. Omitted standard prefixes rdfs
and owl.

An example of the final simplified FoodKG can be seen in Figure
4. Note, that all relations which are not essential to the graph’s
structure are not shown. Those include the same information as
provided by the data set like nutrition for recipes or the review’s
rating and text. In this example, we only show the connections
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Table 2: Data set size and sparsity after threshold discarding
with different parameters: 𝑘 = (𝑘users, 𝑘recipes)

k #recipes #users #interac. sparsity [%]
(1, 1) 507 335 302 412 1 916 424 99.99875
(2, 2) 270 284 83 881 1 476 615 99.99348
(10, 10) 30 859 18 316 601 887 99.89351
(50, 2) 254 741 4 614 1 015 399 99.91361
(100, 2) 245 499 2 376 880 154 99.84910
(2, 50) 2 987 52 509 294 058 99.81251
(2, 100) 1 091 42 968 187 327 99.60039

Figure 5: Heatmap of a subset of features of the data set. The
data behaves as expected: Carbohydrates, fats and calories
are correlated.

between one ingredient (Fuji apple) and the corresponding FoodOn
node. However, most ingredients have such a connection, which
makes it possible to reason over the graph. Similar holds for users
and recipes. Users might have multiple connected reviews. Recipes
are possibly connected to multiple reviews, tags, and one author.
The resulting knowledge graph can be queried using SPARQL. For
instance, a query as seen in Listing 1 searches for all vegetarian
recipes (recipes whose ingredients are only of class Vegetarian food
product or its sub-classes).

3.4 Final Connected Data Set
Our published data set HUMMUS is similar to the one released by
Majumder et al. [30], but improves the data quality on multiple
occasions. Both are solely collected from Food.com, but ours is
more recent and thus provides more data. Moreover, it includes
more features for recipes, reviews and users. Most importantly, we
provide a direct mapping to a subgraph of the FoodKG and thus
enable semantic reasoning, especially over the FoodOn ontology.

Depending on the use case of the data, there might be a required
density of the data. A high level of sparsity means that for an
average user or recipe, we have a small number of interactions.

To overcome this issue, one can discard recipes or users with a
small count of interactions. However, the more users or items are
discarded, the more unrealistic the experiments get. In a realistic
scenario, we also need to deal with the cold start problem; namely
how new users (or those with a small number of interactions) can
also be served with good recommendations. The usual way is to use
content-based recommendations for those. We implement a thresh-
old discarding technique allowing us to keep the data satisfying the
threshold conditions only and thus reducing the data set sparsity.
Threshold discarding with parameters 𝑘recipes = 2 and 𝑘users = 2
means that we get rid of every user (respectively recipe) which
has less than two interactions. Depending on the required setup,
different parameters can be chosen. Table 2 shows the results on the
data set when modifying the threshold discarding parameters. It is
noticeable that a small proportion of users heavily interacted with
items, while the majority only interacted with one or two recipes.
Depending on the threshold discarding parameters, the composition
of the number of unique recipes and users present in the interac-
tions changes. Thus, the pruning, depending on the use case, might
change the rankings of recommended recipes [6]. As a result, we
grant access to the raw data, a version of the preprocessed data set,
and the data pruning code.

We explore the correlations between a subset of HUMMUS fea-
tures. To get an idea of correlated features refer to Figure 5. It shows
a heatmap composed of the nutrient-based features, the number of
ingredients and instruction steps, cooking duration, and the rating.
The correlations are straightforward, as strong ones, for example,
can be found between calories and protein, saturated fat, and total
carbohydrates. Also, total fat, proteins, cholesterol, and saturated fat
are correlated with each other. Weaker correlations can be found
between sugar and total carbohydrates, and between the number
of ingredients and all nutrient-based features. Protein-containing
recipes in our data set seem to be weakly correlated with the cook-
ing duration. The user ratings are, as expected, not correlated at all
with any other feature.

In comparison to other well-known data sets in the recommen-
dation area, the sparsity is a lot higher. MovieLens100k [20] for
example has a sparsity of 93, 69%. This issue leads to poor perfor-
mance of recommendation methods which focus only on user-item
interactions, demonstrated in the next section.

To sum up, the HUMMUS data set features realistic recipe data
most importantly including user-item interactions and nutrition
information. The set is relatively sparse in comparison to other sets
used in the recommendation area, which indicates the challenge
when using collaborative recommenders. Lastly, we simplified and
extended the FoodKG with our data, in order to support semantic
reasoning for multiple tasks like explanations or search queries.

4 EXPERIMENTS
This section describes a set of experiments conducted on the user-
recipe interactions of our HUMMUS data set only. The goal we set
ourselves was rather to highlight the possibilities and challenges the
data set offers, than scoring the best possible results. Thus, we do not
perform a detailed hyper-parameter tuning for only a few methods
and instead perform the experiments on multiple different models
with standard hyper-parameters. We chose standard models like
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Table 3: Resulting scores for our data set with a sparsity of 99.89351% of the processed models from different python libraries
(implicit [17], irec [23], recommenders [34]).

Model Library MAP nDCG@10 Precision@10 Recall@10
Random irec N/A N/A 0.000410 0.000300
ICTR irec N/A N/A 0.000546 0.000491
𝜖-Greedy irec N/A N/A 0.001392 0.001149
kNNBandit irec N/A N/A 0.005051 0.003750
ThompsonSampling irec N/A N/A 0.009746 0.006947
PTS irec N/A N/A 0.010483 0.008021
LogPopEnt irec N/A N/A 0.014305 0.012201
Entropy irec N/A N/A 0.025334 0.020367
BestRated irec N/A N/A 0.025334 0.020367
MostPopular irec N/A N/A 0.025471 0.020468
ALS implicit 0.010786 0.022453 0.031556 N/A
ALS_nmslib implicit 0.009061 0.018922 0.027670 N/A
ALS_annoy implicit 0.009380 0.019188 0.026773 N/A
Tf-idf implicit 0.005370 0.009654 0.012213 N/A
Cosine implicit 0.004210 0.007412 0.009193 N/A
LFM implicit 0.003492 0.007988 0.011675 N/A
BM25 implicit 0.004422 0.007593 0.009672 N/A
Item-item implicit 0.011759 0.023017 0.030674 N/A
BPR recommenders 0.023879 0.062695 0.043514 0.058164
BiVAE recommenders 0.020657 0.057688 0.042088 0.051492

BPR, ALS, models used in the related work like the reinforcement
learning model kNNBandit, and simple content-based models like
Tf-idf for comparability. Also, we show that the average nutrition
score is very low or unhealthy out-of-the-box.

4.1 Setting
The setting of all experiments is the same. First, we take a subset of
the data utilizing threshold discarding with the parameters 𝑘users =
10 𝑘recipes = 10. Second, in order to compare all results, we only
take the user-recipe interactions (a set of ratings, each described by
a value 𝑣 from a user 𝑢 for a recipe 𝑟 ) as features into consideration.
Last, for each method, we use a 75%/25% train/test split and the top
10 recommendations only. For the healthiness evaluation, we choose
the averageNutriScore of the top 10 recommendations. As a baseline,
we chose a random top 10 list of recipe recommendations. We use
a set of python libraries offering the models’ implementations,
namely implicit [17], irec [23], and recommenders [34]. All models
are processed with their standard or typical hyperparameters.

In order to promote healthy recipes more prominently, we imple-
mented three post-processing methods, namely filter by threshold
(removes recipes below a threshold), filter by percentage (removes
the 𝑥% unhealthiest recipes), and replace unhealthy recipes (finds
similar but healthier recipes based on cosine similarity using a Tf-
Idf embedding). All methods modify the list of recommendations
of a given user and a given nutrition score.

4.2 Results
For the results without post-processing refer to Table 3. The Random
baseline performs as expected the worst with very low precision
and recall scores. ICTR, a bandit-based regression model, did only
result slightly better, and thus cannot be considered as a reasonable

Table 4: The impact of each post-processing method, namely
filter by thresholdwith threshold (T),filter by percentage with
percentage (P), and replace unhealthy recipes with cosine
similarity threshold (CS), in % on the accuracy (nDCG@10)
and the healthiness (average NutriScore) on the baseline with
the BPR model. There are only sample parameters given to
show the trade-off at around 30% reduction of accuracy.

Impact on baseline in % nDCG@10 Avg FSA
BPR 0.062695 2.297
T=0.1 -31.77% +344.45%
P=0.6 -30.40% +317.14%
CS=0.13 -33.42% +296.27%

recommender for our scope. Next, in ascending order regarding the
precision score, the regression-based models [46] using methods
like 𝜖-Greedy, kNNBandit, ThompsonSampling, PTS, and LogPopEnt
perform way better as the baseline, with a precision of approxi-
mately 1%. Those are comparable, in terms of precision, to the near-
est neighbours models like Tf-idf, Cosine, and BM25. Also, Logistic
Matrix Factorization (LFM) yields similar results. Models being in the
precision range around 2% and 3% are the regression models based
on Entropy, BestRated, MostPopular, the Alternating Least Squares
(ALS) model and its approximations ALS_nmslib and ALS_annoy,
and the nearest neighbour model Item-Item recommender. The best-
performing models by far are the Bayesian Personalized Ranking
(BPR) and the Bilateral Variational Autoencoder (BiVAE)models with
scores around 5% respectively 4%. As already mentioned in the pre-
vious section, all results are not fine-tuned and thus only give an
approximate overview of the models’ performances.

8



HUMMUS data set RecSys ’23, September 18–22, 2023, Singapore, Singapore

Figure 6: Trade-off between the accuracy (nDCG@10) and the NutriScore for each post-processing method compared to the BPR
baseline. The size of the data points reflects the combined trade-off impact (accuracy impact plus healthiness impact).

The results after post-processing, using BPR as the baselinemode,
are shown in Table 4 and Figure 6. The table shows exemplary re-
sults focused on the FSA score for one parameter configuration,
whereas the picture is focused on the NutriScore for multiple config-
urations. The trade-off between accuracy and healthiness is present
in all results, no matter which score is focused. In general, the more
the healthiness of the recommendations is promoted, the lower the
accuracy is. However, both filtering methods, threshold and per-
centage, perform very similarly and are better than the replacement
method at an accuracy impact of around 15%. Before this value, the
replacement method delivers faster growth in terms of improved
nutrition scores.

4.3 Discussion
Derived from the results it can be certainly concluded that a simple
recommender, based only on user-item interactions, is not suffi-
cient in the scope of the presented data set and the healthy food
recommendation setting.

The trade-off between accuracy and healthiness was expected.
However, it is unclear how to conduct the right balance as it might
depend on each user’s preferences. For small changes in regard
to the accuracy, the replacement method should be utilized, and
vice-versa for bigger ones the threshold or percentage filtering
method. Moreover, the impact of the methods’ parameters varies
depending on the targeted nutrition score. Especially the NutriScore
with a small average score on the baseline seems to result in better
trade-offs.
What can be done to improve the recommender? First of all,
in order to solve the cold-start problem for potential new users
and also improve the recommenders’ performance, a hybrid rec-
ommender should be deployed. Thus, additional information and
features should be taken into consideration. Those features could in-
clude the recipes’ tags, the food categories derived from the FoodOn
ontology, a review text embedding, the steps to take for cooking
the recipe, and more. This motivates further the additional features
and connected properties of our data set.

Secondly, it might be useful to take, on top of non-personalized
scores, also personalized scores into consideration. However, they can
only be used if medical properties like the Body Mass Index (BMI),
height, weight, age, and sex of individuals are known. One of those
scores is published by Miffil et al. [35] and takes all mentioned
features in addition to an activity factor and smoke factor into
account.

Third and lastly, the connected semantic data from the FoodKG
can be exploited to enable meaningful explanations.

5 CONCLUSION AND FUTUREWORK
Obesity and overweight are enormous problems worldwide. To ad-
dress the sub-problem of healthy nutrition, we set our focus on the
area of food recommendation with the research questionWhat data
can support the ongoing research in the food recommendation area to
improve comparability, realism, and health awareness? The problem
we address is, that high-quality data sets in the domain of healthy
food recommendations are either not publicly available, lack certain
kinds of features, or are of a too-small size. We propose HUMMUS,
a connected data set collected from Food.com, including rich in-
formation for recipes, users, and reviews. Those features include
standard recipe information, nutrient information, ratings and text
reviews, user profile descriptions and more. The contributed data
is connected to the FoodKG [21] including the FoodOn ontology
which can be used to reason over various food categories describ-
ing ingredients of our data set. Moreover, we provided an in-depth
analysis of our data set, which has led us to believe, that one key
challenge in the healthy food recommendation domain is to work
with data sets consisting mainly of unhealthy recipes. In addition,
we extended the idea of nutrition scores and generated those as
features for each recipe, expressing a general healthiness of dishes.
However, for the personalized nutrition scores, we lack medical
data and thus needed to generate user features like the BMI.

We conclude, that, although our experiments did not perform
as well as hoped, they show the necessity of taking additional
features into consideration when dealing with that level of sparse
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data. However, as our data set is so rich in multiple features, we
did not explore all possibilities the data set offers. Thus, we would
like to open this challenge by publishing the data with free access.

For future works, there are multiple directions which are imag-
inable with our data set. First, a Healthiness-aware recipe recom-
mendation might be realised with a hybrid recommender including
multiple features and a re-ranking strategy based on personalized
or un-personalized nutrition scores. Second, path-based recommen-
dations might also be worth a try exploring. The paths could be
a combination of the user-recipe interactions and the connected
FoodOn ontology expressing an ingredient type hierarchy. A possi-
ble advantage of those methods might be the implicit processing of
explanations which might foster the trust of a user in the recom-
mender. Third, Post-hoc Explanations while reasoning over the same
Knowledge Graph might be interesting, especially in comparison to
the path-based approaches. Next, exploring text-based features like
the users’ profile descriptions, recipe descriptions and directions,
or text reviews might be interesting when working in the area of
NLP. Last, including Image Classification in a possible recommender,
might also be possible, as the data set is connected to the FoodKG
which again is connected to the Recipe1M+ data set.
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