
HAL Id: hal-04220146
https://hal.science/hal-04220146

Submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A data flow model with frequency arithmetic
Paul Dubrulle, Christophe Gaston, Nikolai Kosmatov, Arnault Lapitre,

Stéphane Louise

To cite this version:
Paul Dubrulle, Christophe Gaston, Nikolai Kosmatov, Arnault Lapitre, Stéphane Louise. A data
flow model with frequency arithmetic. Lecture Notes in Computer Science, 2019, 11424, pp.369-385.
�10.1007/978-3-030-16722-6_22�. �hal-04220146�

https://hal.science/hal-04220146
https://hal.archives-ouvertes.fr

A Data Flow Model with Frequency Arithmetic

Paul Dubrullep0000´0002´1158´6348q, Christophe Gastonp0000´0001´6865´5108q,
Nikolai Kosmatovp0000´0003´1557´2813q, Arnault Lapitrep0000´0002´2185´4051q,

and Stéphane Louisep0000´0003´4604´6453q

CEA, List, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

Abstract. Data flow formalisms are commonly used to model systems
in order to solve problems of buffer sizing and task scheduling. A pre-
requisite for static analysis of a modeled system is the existence of a
periodic schedule in which the sizes of communication channels can be
bounded for an unbounded execution (consistency), and that communi-
cation dependencies do not introduce a deadlock in such an execution
(liveness). In the context of Cyber-Physical Systems, components are of-
ten interfaced with the physical world and have frequency constraints.
The existing data flow formalisms lack expressiveness to fully cover the
expected behavior of these components. We propose an extension to Syn-
chronous Data Flow (SDF) formalism, called Polygraph, that includes
frequency constraints and adjustable communication rates. We show that
with these extensions, the conditions for a model to be consistent and live
are no longer sufficient, and we extend the corresponding theorems with
necessary and sufficient conditions to preserve these properties. We also
introduce a framework to check the liveness of a Polygraph model, im-
plemented in the tool DIVERSITY, along with preliminary experiments
to validate this approach.

1 Introduction

Context. Cyber-Physical Systems (CPS) are increasingly present in everyday
life. In these systems, the components require a certain amount of input data
to produce a known amount of output data, and some of them must do so
in synchrony with a reference time scale. For example, the next generation of
autonomous vehicles will heavily rely on sensor fusion systems to operate the
car. Sensors and actuators have specified frequencies. To produce its output, the
fusion kernel requires a certain number of samples from several sources, with a
temporal correlation between them.

Often, when implementing this kind of system, the prediction of its perfor-
mance is important to the system designer. The performance prediction covers
different characteristics of the system, including its throughput, memory foot-
print, and latency. In distributed implementations of such systems, an analysis of
the communications between the components is necessary to configure a network
capable to respect the application’s real-time requirements.

Data flow formalisms [14, 3] can be used to perform this kind of performance
analysis [4, 5, 10–12]. A prerequisite to analyze a model is the existence of a

2 P. Dubrulle et al.

periodic schedule with two properties. The first property, consistency, requires
that the sizes of the communication buffers remain bounded for an unbounded
execution of the periodic schedule. In practice, if a model is not consistent, it
is not possible to implement the communications without losing data samples.
The second property, liveness, requires the absence of deadlocks in the schedule.

Motivation and Goals. The limitation of the existing data flow formalisms to
model the considered systems is the lack of expressiveness regarding the syn-
chronization on a common time scale for different components. Overcoming this
limitation is the subject of recent research work [6]. Our goal is to extend an
existing data flow formalism for which the consistency and liveness properties of
a given model are decidable. In doing so, we want to ensure that the expressive-
ness extension does not impact the decidability of these properties. With this
extension, all applicative constraints are taken into account when checking the
prerequisites for a performance analysis. The verification can be performed in
abstraction of a particular implementation’s characteristics (like execution times
or mapping), and the results are the same for different implementations. More-
over, the performance analysis can benefit from the additional information on
the system provided by the extension.

Approach and Main Results. This paper introduces Polygraph, an extension to
Synchronous Data Flow (SDF) [14] for specification of frequency constraints on
the components. We use an arithmetic based on rational numbers to reason on
data exchanges between components. We show that the theorems that provide
a theoretical foundation for practical verification of consistency and liveness for
an SDF model can be generalized to this new formalism. Finally, we propose
a symbolic execution framework to decide the liveness of models expressed in
Polygraph, in a way similar to [14, 11].

The contributions of this work include:

– a data flow formalism, called Polygraph, extending the well-known SDF [14]
formalism, to support the synchronization of data production and consump-
tion on a reference time scale;

– a demonstration that the decidability of two classical properties of dataflow
models, namely consistency and liveness, is preserved for this new formalism;

– an adaptation to the new formalism of an existing symbolic execution tech-
nique for evaluation of liveness in the DIVERSITY tool and initial experi-
ments to validate this approach.

Outline. The remainder of this paper is organized as follows. Section 2 gives an
informal introduction to the proposed modeling approach, with a step-by-step
explanation relying on an illustrative system. In Section 3, we formalize Poly-
graph and provide extended statements and a sketch of proof for the consistency
and liveness theorems. Section 4 presents a framework to check the liveness prop-
erty for Polygraph and a preliminary evaluation. In Section 5, we discuss related
work, while Section 6 presents conclusion and perspectives.

A Data Flow Model with Frequency Arithmetic 3

Fusion

Camera
30Hz

Radar
120Hz

Lidar
10Hz

Display
40Hz

c1

b1

d1

a1

c[0,0,0,1]

b1

d1/4

a1

c1

b4

d1

a1

c1

b1

d1

a1

c1

b3

d1

a1

c[1,0,0]

b1

d1/3

a1

c[1,1,2]

b4

d4/3

a1

c1

b3

d1

a1

0

2

(i)

(ii)

dPhase
0(i)

(ii)

dMarking

3/4

Fig. 1. Motivating example: a data fusion system modeled as a data flow graph. The
upper indexes “a” to “d” denote an amount of data exchanged by the components in
different variants of the model. The rates denoted by upper index “d” are those of
Polygraph, and initial conditions for this configuration are denoted by (i) and (ii).

2 Motivation and Running Example

Running Example. To introduce the modeling approach behind Polygraph, we
use a toy example of a data fusion system that could be integrated into the
cockpit display of a car, depicted in Figure 1. The system is composed of three
sensors producing data samples to be used by a data fusion component, and a
display component. The function of the sensor components is to read the data
from their sensors, while the function of the data fusion component is to compute
a result based on this data. The function of the display component is to render
the fusion result on a screen. To do so, the sensor components send the data to
the fusion component, and the fusion component sends the result to the display
component. The first sensor component is a video camera producing frames. The
other two sensor components analyze radar and lidar based samples to produce
a descriptor of the closest detected obstacles. The fusion component uses this
information to draw the obstacle descriptors on the corresponding frame.

The first step to model this system is to build a graph capturing data depen-
dencies between the components. Each vertex of this graph models an actor, an
abstract entity representing the function of a component. Each directed edge of
the graph models a communication channel, the source actor being the producer
of data consumed by the destination actor. The structure of the graph in Fig-
ure 1 illustrates the dependencies in our example. The communication policy on
the channels is First-In First-Out (FIFO), the write operation is non-blocking,
and the read operation is blocking. On each channel, the atomic amount of data

4 P. Dubrulle et al.

exchanged by the connected actors is called a token, and all write and read op-
erations are measured in tokens. An actor produces (resp. consumes) a certain
number of tokens on a channel when it writes (resp. reads) the corresponding
amount of data. With this policy, the graph can be assimilated to a Kahn Pro-
cess Network (KPN) [13]. In a KPN, the communications are determinate, but
in general it is not possible to decide if the sizes of the channels can be bounded
for an unbounded execution of the system.

Synchronous and Asynchronous Constraints. In practice, sensors and actuators
have a fixed sampling rate, and the production of each data sample occurs at
that specified frequency. To model these constraints, we propose to label some
actors with frequencies, corresponding to the real-life constraint. An actor with a
frequency label must fire at that frequency. We further detail this notion of firing
below, but for now it is sufficient to say that the firing of an actor is an atomic
process, during which it performs the actions and communications expected from
the modeled component. A global clock provides ticks to synchronize the firing
of frequency labeled actors. For our example, we consider the frequency labeling
illustrated by Figure 1.

Generally, in real-life systems, computation kernels compute when input data
is available and do not have frequency constraints. In our frequency labeling, the
actors modeling such components can be left without a frequency label. In our
example, this is the case for the fusion actor.

The possibility to have unlabeled actors is an important part of our approach,
as further discussed in Section 5. It allows to mix a synchronous firing policy
for labeled actors, and an asynchronous firing policy for unlabeled actors. This
means that the scheduling of firings has periodic constraints only where needed,
which offers more options for optimization algorithms.

Static Rates. Another characteristic of real-life software components in our con-
text is that they require a fixed number of input samples from each different
source. Also, there must be a correlation between the production time of the
samples consumed from different sources. In our example, the fusion component
requires one token from each sensor, and these samples must have a close-enough
production time. This constraint can be captured by KPN restrictions, such as
Synchronous Data Flow (SDF) [14]. In SDF, both ends of each channel are as-
signed a communication rate, denoting the fixed number of tokens produced
or consumed by the connected actors’ firings. This characteristic allows to de-
cide whether the sizes of the channels are bounded for an unbounded execution.
Graphs respecting this property are said to be consistent.

Without taking frequencies into account, the communication rates denoted
by an upper index “a” in Figure 1 match the description of the system. Indeed,
the sensor actors produce one token each, the fusion actor consumes these tokens,
and in turn produces one token to be consumed by the display actor. With these
rates, considering a marking of the graph with any number of tokens stored in
the channels, if firing all the actors once, the same number of tokens remains in
the channels. Hence, the SDF graph is consistent. But when taking frequencies

A Data Flow Model with Frequency Arithmetic 5

into account, the graph is no longer consistent. In this example, the camera
produces 30 tokens per second, the radar produces 120 tokens per second, and
the lidar produces 10 tokens per second. This means that per second, because
of the production rate and frequency of the lidar, the fusion actor will be able
to fire only 10 times. It will consume only 10 tokens from the camera and radar
actors, leaving 20 and 110 unconsumed tokens per second on their respective
channels. Hence, it is no longer possible to bound the size of these channels for
an unbounded execution of the graph. This shows that to achieve consistency, for
any frequency labeled actor, the number of asynchronous firings of its unlabeled
predecessors and successors should be limited.

A possible adaptation of communication rates, denoted by upper index “b” in
Figure 1, takes frequency inheritance into account and restores the consistency
property. With the production and consumption rates both set to 1 on the
channel connecting the camera and the fusion actors, the fusion actor basically
inherits a frequency constraint of 30Hz. It inherits the same frequency constraint
from the radar and lidar actors since it now consumes 4 ˆ 30 “ 1 ˆ 120 tokens
per second from the radar, and 1 ˆ 30 “ 3 ˆ 10 tokens per second from the
lidar. The rates on the channel connecting the fusion and display actors are also
balanced. But with these rates, the number of tokens does not reflect accurately
the expected behavior of the modeled components. For example, the fusion actor
would consume 4 tokens per activation from the radar actor, while in reality the
component only requires 1.

Cyclo-Static Rates. It is possible to use Cyclo-Static Data Flow (CSDF) [3]
to get closer to the real communication requirements. In CSDF, the rates of
the actors are fixed as in SDF, but the successive firings of an actor cyclically
consume and produce a different number of tokens on every connected channel.
The successive rates on each channel are expressed as a sequence of natural
numbers. For example, an actor with a cyclo-static sequence of output rates
r1, 2s produces 1 token for its first firing, 2 tokens for the second, 1 for the third
and so on. A zero rate may occur in the sequence, meaning that the actor does
not push or pull tokens on the channel for the corresponding firing.

A cyclo-static sequence is necessary on a channel if the connected actors have
frequency constraints conflicting with the expected communication behavior.
In this case, we propose that one of the actors must be chosen as having the
reference frequency for the communication, and the other actor must adapt its
communication rate to a cyclo-static sequence accordingly. Back to our example
(see variant “c” in Figure 1), the fusion actor requires one token from each sensor
every firing. Since the component is synchronized on camera frames, we decide
that the actor’s reference frequency should be 30Hz. In this case, the frequency
constraints do not conflict with the expected communication behavior, and we
assign production and consumption rates of 1 on the channel connecting the
fusion and camera actors. Now, considering the radar actor, the fusion actor
only requires 30 tokens per second out of 120. Considering this ratio, we assign
the sequence r0, 0, 0, 1s as production rates for the radar actor, and the rate 1
for the fusion actor. The same logic applies for the lidar actor, the fusion actor

6 P. Dubrulle et al.

L
(1
)

R
(1
)

R
(2
)

R
(3
)

R
(4
)

R
(5
)

R
(6
)

R
(7
)

R
(8
)

R
(9
)

R
(1
0
)

R
(1
1
)

R
(1
2
)

C
(1
)

C
(2
)

C
(3
)

F
(1
)

F
(2
)

F
(3
)

D
(1
)

D
(2
)

D
(3
)

D
(4
)

(a) Initial conditions (i).

L
(1
)

R
(1
)

R
(2
)

R
(3
)

R
(4
)

R
(5
)

R
(6
)

R
(7
)

R
(8
)

R
(9
)

R
(1
0
)

R
(1
1
)

R
(1
2
)

C
(1
)

C
(2
)

C
(3
)

F
(1
)

F
(2
)

F
(3
)

D
(1
)

D
(2
)

D
(3
)

D
(4
)

(b) Initial conditions (ii).

Fig. 2. Firings of actors of the motivating example: the firings are identified by the
initial letter of the corresponding actor and the rank of the firing, arrows show data
dependencies between firings, and a reference time scale constrains the firing of timed
actors. The data dependencies marked by a cross in (a) introduce a causality issue.

requires 30 tokens per second, but only 10 tokens per second are produced. We
then assign the cyclo-static sequence r1, 0, 0s as consumption rates for the fusion
actor, and the rate 1 for the lidar actor. A similar logic is applied for the display
actor. The consequence on the stream of actual data values highly depends on
the implemented function, and is therefore out of the scope of the data flow
modeling. In the particular case of the radar actor in our example, the software
implementation could perform a downsampling of the sensed data, or just send
the latest sample.

The corresponding communication rates, denoted by upper index “c” in Fig-
ure 1, give a graph where only the required tokens are exchanged on the channels,
and the consistency property is preserved. But in all generality, choosing the ap-
propriate cyclic rate sequences for all the channels in a graph is time consuming
and error prone.

Rational Rates. We propose instead to extend the SDF model with rational com-
munication rates. A rational communication rate r “ p{q specifies that the actor
produces or consumes p tokens every q firings, and the natural number of tokens
produced or consumed by any firing is r rounded either up or down, denoted rrs

and tru respectively. With the semantic formalized in the next section, there is
a unique default cyclo-static sequence that corresponds to a given rational rate.
The default sequences for the rates denoted by an upper index “d” in Figure 1
are those denoted by upper index “c”. As explained earlier when assigning cyclo-
static sequences, in this extension, only one rate on a given channel can be a
rational number with denominator greater than one. The methodology remains
the same, for any channel, one actor’s frequency is considered as a reference, and
the other one adapts its rates according to that reference.

Initial Conditions. With the frequency labeling and rational communication
rates, we obtain a model that describes as closely as possible the communication
and timing requirements of our illustrative example. But there are causality
issues in this model. Figure 2(a) illustrates the timing of actor firings in our
example, and the data dependencies between them, according to the semantic

A Data Flow Model with Frequency Arithmetic 7

defined in the next section. It is obvious that the data dependencies marked by
a cross are not satisfied in time.

This kind of causality issue can also appear in SDF: in the case of cyclic
graphs, the firings of the actors in a cycle all depend on each other. To prevent
this, it is possible to mark the channels with an initial number of tokens, allowing
sufficient initial firings to complete the firing of all actors in the cycle. The
liveness property of an SDF graph is verified when all the cycles in the graph are
marked with enough tokens to prevent a deadlock [14]. With the SDF extensions
we propose, this condition is no longer sufficient. We need to be able to shift the
production or consumption of tokens in order to make sure that when a firing
requires input tokens, they are produced at an earlier tick of the global clock.

One way to achieve this is to rotate the default sequences defined by the
rational rates. For this, we propose a rational initial marking of the graph. Each
channel with natural rates at both ends can be marked with an initial number
of tokens as in SDF. Each other channel with rational rate r “ p{q on either
end can be initially marked with a rational number n ` k{q with k ă q, which
denotes that the channel initially holds n tokens (as in SDF), and the default
sequence is rotated by k. If the rational rate is on the producer, the default
sequence is rotated left, otherwise it is rotated right. In Figure 1, considering the
default sequences denoted by “c”, the corresponding rational rates denoted by
upper index “d”, and the initial marking (ii), the marking of 3{4 on the channel
connecting the radar and fusion actors rotates the default sequence r0, 0, 0, 1s by
3 elements to the right, yielding the sequence r1, 0, 0, 0s.

Another way to prevent unsatisfied data dependencies is to shift the first
tick on which a frequency labeled actor must fire. We propose to add a phase to
each of these actors, giving the offset from the first tick at which it must fire.
With the semantic formalized in the next section, that phase is constrained in
order to have a periodic global clock. Figure 2(b) takes into account the marking
and phase denoted (ii) in Figure 1. With the rational marking, the dependencies
between the radar and fusion firings are now satisfied, and with the phase on
the display actor, the dependencies between the camera and display firings are
also satisfied.

3 Formalization of the Polygraph Model

We denote by B the set t0, 1u, by Z the set of integers, by N “ tn P Z |n ě 0u

the set of natural integers, and by Q the set of rational numbers. For any set S,
the free semigroup on S is denoted S`.

System graph. A system graph is a structure used to represent the topology of
the communications. Formally, it is a connected finite directed graph G “ pV,Eq

with set of vertices V and set of edges E Ď V ˆV such that V is the set of actors
and E is the set of channels. We use an index notation to identify elements with
respect to a given actor or channel, considering that E and V are sets indexed
respectively in t1, ¨ ¨ ¨ , |E|u and t1, ¨ ¨ ¨ , |V |u. We denote vi (resp. ej) the actor

8 P. Dubrulle et al.

(resp. channel) of index i (resp. j). For an actor v P V , let inpvq “ t⟨v1, v⟩ P

E | v1 P V u denote the set of input channels of v and outpvq “ t⟨v, v1⟩ P E | v1 P

V u the set of output channels of v.

Topology matrix and channel states. As for SDF and its derivations [14, 3], the
communication rates are defined by a topology matrix with one row per channel
and one column per actor. The only difference in this definition is that we rely
on rational numbers. The absolute value of a rate in the matrix defines how
many tokens are produced or consumed per firing of the corresponding actor
on the corresponding channel, and the sign of that rate indicates if the tokens
are produced (positive rate) or consumed (negative rate). For a given actor and
channel, the rate must be 0 if the actor is not connected to the channel, or if the
actor is connected to both ends of the channel.

Definition 1 (Topology matrix). A matrix Γ “ pγijq P Q|E|ˆ|V | is a topol-
ogy matrix of a system graph G if for every channel ei “ ⟨vj , vk⟩ P E we have:

– γil “ 0 for all l ‰ j, k;
– if j ‰ k, then γij ą 0 and γik ă 0 are irreducible fractions, and at most one

of them has a denominator greater than 1;
– if j “ k, then γij “ 0.

We also use a rational number per channel to track the communication state
of the system during an execution. A channel state is a vector with one row per
channel. Each coordinate in the vector tracks the respective number of firings
of the connected actors, by addition of their rates when they fire, and that
coordinate rounded down is the number of tokens in the channel.

Definition 2 (Channel state). A vector c P Q|E|ˆ1 is a channel state of a
system graph G with topology matrix Γ if for every channel ei “ ⟨vj , vk⟩ P E,
the denominator of ci is the maximum between the denominators of γij and γik,
and tciu is the number of tokens in the channel. We denote C Ď Q|E|ˆ1 the set
of all these possible states.

Timed actors and global clock. A subset VF Ď V of timed actors are constrained
by a frequency, expressed as a strictly positive natural number. We use a fre-
quency mapping ω : VF ÝÑ Ną0 in order to map the timed actors to their
frequency. There is an implicit system time unit, and each timed actor vi P VF is
supposed to be fired exactly ωi :“ ωpviq times per system time unit. In order to
have a minimal system time unit, we consider that the greatest common divisor
of all the frequencies is gcdpωrVF sq “ 1. This is not limiting, since any set of
frequencies and system time unit can be adjusted to fit this constraint.

In addition, the timed actors must fire synchronously with respect to a global
clock. The resolution of that global clock is a sufficient number of ticks per system
time unit to associate to each tick the set of timed actors that must fire at the
corresponding date. For this, we consider the ticks 0, 1, . . . , π ´ 1 per system
time unit, where π is the least common multiple of all the actor frequencies

A Data Flow Model with Frequency Arithmetic 9

π “ lcmptωi|vi P VF uq. Note that if VF is empty, π “ 1, and the global clock
does not constrain the firing of any actor.

Given a timed actor vi P VF , there should be ωi out of π ticks associated with
that actor’s firings. To reflect the periodic nature of the firing of timed actors,
for a timed actor vi of period pi “ π{ωi, it fires every pi-th tick.

As mentioned in Section 2, all the timed actors have a phase. We use a
phase mapping φ : VF ÝÑ N to map the timed actors to their phase. The first
firing of each timed actor vi P VF occurs at the tick φi :“ φpviq. The only
constraint to respect the expected frequency of the firings is that @vi P VF we
have 0 ď φi ă π{ωi.

Definition 3 (Global clock, firing ticks). For a system graph G with fre-
quency mapping ω, resolution π, and phase mapping φ, the global clock is a set
T “ t0, 1, . . . , π ´ 1u and for each timed actor vi P VF there is a subset of firing
ticks Ti “ tτ P T | τ ” φi pmod π{ωiqu.

Polygraphs. We now define the notion of polygraph which introduces a basic
communication topology, a topology matrix, a frequency and phase mapping for
all timed actors, and an initial marking of the graph.

Definition 4 (Polygraph, initial marking). A polygraph is a tuple P “

xG,Γ, ω, φ,my where G is a system graph, Γ is a topology matrix, ω is a fre-
quency mapping, φ is a phase mapping and m P C is an initial marking such
that @ei P E we have mi ě 0.

In the following, we consider that a polygraph P “ xG,Γ, ω, φ,my is given,
with its global clock T and sets of firing ticks Ti for all the timed actors vi P VF .

States and transitions. The state of a polygraph is composed of a channel state,
the current tick of the global clock, and a vector with one row per actor used
to track the number of firings of the timed actors since the last change in the
current tick. This tracking vector is used to check that the timed actors respect
their synchronous firing constraints.

Definition 5 (State). A state of a polygraph P is a tuple s “ xc, τ,ay where
c P C is a channel state, τ P T is a tick, and a P N|V |ˆ1 is a tracking vector. We
denote S Ď C ˆ T ˆ N|V |ˆ1 the set of all possible states for P.

The effect of the firing of an actor on the channel state is to add its rates to
the respective coordinate of all the channels. For an actor vi, the i-th column
of Γ gives all the rates per channel. Therefore, to extract that column from the
matrix for each actor vi P V , we use a unitary firing vector u P B|V |ˆ1, such that
ui “ 1, and for all j ‰ i we have uj “ 0. We denote U Ă B|V |ˆ1 the set of these
vectors, and for convenience we denote the unitary activation vector of actor vi
by ui. With the unitary firing vector of any actor vi, the product Γui gives a
vector holding for each channel ej the rate of vi on ej . For any channel state c,
the channel state after the atomic firing of vi is then c ` Γui. Also, the firing
of a timed actor is tracked by adding its unitary firing vector to the tracking
vector. The firing of an actor has no effect on the current tick.

10 P. Dubrulle et al.

Definition 6 (Fire). For a polygraph P, the mapping fire : U ˆ S ÝÑ S maps
a unitary activation vector ui and a state s “ xc, τ,ay to the state s1 “ xc1, τ 1,a1y

such that we have c1 “ c`Γui, τ
1 “ τ , and if vi P VF then a1 “ a`ui, otherwise

a1 “ a.

Remark 1. For two consecutive firings of any actors vi and vj from a state s “

xc, τ,ay, the resulting state s2 “ xc2, τ2,a2y does not depend on the order of the
firings, and c2 “ c ` Γpui ` ujq. This property can be generalized to any finite
number of consecutive firings.

The other possible transition between two states occurs when the global clock
ticks. When the global clock ticks, the channel state is not changed, the current
tick is adjusted, and the tracking vector is reset.

Definition 7 (Tick). For a polygraph P, the mapping tick : S ÝÑ S maps
a state s “ xc, τ,ay to the state s1 “ xc1, τ 1,a1y such that we have c1 “ c,
τ 1 “ pτ ` 1q mod π, and a1 “ 0.

Executions. The state of P can evolve by successive application of either fire or
tick. An execution of P is a sequence of such applications starting from a state
s1 P S and leading to states e “ s1 ¨ ¨ ¨ sn P S`. However, with the frequency
constraints, there are some conditions for the applications.

Consider the firing firepui, sq of a timed actor vi in a state s “ xc, τ,ay. In
this case, vi may fire only if the current tick τ is one of its firing ticks, i.e. τ P Ti.
Since it must fire exactly once on such a tick, an additional constraint to fire a
timed actor vi is that it has not fired yet, i.e. its coordinate in the tracking vector
a is ai “ 0. To capture this constraint, we define a tick firing vector tτ P B|V |ˆ1

for each tick τ P T, in which a coordinate is set to one if the corresponding
actor is expected to fire at tick τ . More formally, for any vi P V zVF we have
tτi “ 0, and for any vj P VF we have tτj “ 1 if τ P Tj , and tτj “ 0 otherwise. The
constraint to fire vi P VF in a state with current tick τ and tracking vector a is
then ai ă tτi .

The clock update tickpsq in a state s “ xc, τ,ay is also subject to a constraint:
the timed actors that were supposed to fire synchronously with the current tick
have done so exactly once, i.e. a “ tτ .

Definition 8 (Synchronous execution). An execution e “ s1 ¨ ¨ ¨ sn P S` of
a polygraph P is synchronous if @1 ď k ă n, we have sk “ xc, τ,ay such that:

– either sk`1 “ firepui, skq for some vi P V , and in addition, if vi P VF , then
ai ă tτi ,

– or sk`1 “ tickpskq, and in addition, a “ tτ .

Until now, we considered executions of a polygraph where the order of the
firings is constrained only by the frequencies. However, for an actor to fire, there
must be enough tokens on its input channels, or its rational communication rate
must allow firings consuming 0 tokens. In order to fire an actor vi in a state

A Data Flow Model with Frequency Arithmetic 11

s “ xc, τ,ay, we require that for each input channel ej of vi, since the rate γji is
negative, the channel state cj must be large enough to avoid reaching a negative
state, i.e. cj ` γji ě 0, or equivalently cj ě |γji|. This constraint requires an
ordering of the actor firings such that a producer is fired a sufficient number of
times for a consumer to be able to fire in turn.

Definition 9 (Non-blocking execution). An execution e “ s1 ¨ ¨ ¨ sn P S` of
a polygraph P is non-blocking if @1 ď k ă n, we have sk “ xc, τ,ay such that:

– either sk`1 “ firepui, skq for some vi P V , and in addition, @ej P inpviq,
cj ě |γji|,

– or sk`1 “ tickpskq.

Consistency property. If verified, the consistency property of P guarantees that
it is possible to build a synchronous execution e “ s1 ¨ ¨ ¨ sn P S` such that
s1 “ xm, 0,0y and s1 “ sn. Such an execution is called a consistent execution
of P, and can obviously be repeated an indefinite number of times to build a
consistent execution of arbitrary length. [14, Theorem 1] states that a necessary
and sufficient condition for a given SDF graph to be consistent is that there is a
non-trivial solution x to Γx “ 0.

To extend this result to polygraphs, as explained in the previous section, we
need to take into account the frequencies of the timed actors. In other words, we
need to make sure that it is possible to have a synchronous execution with xi

firings per actor vi. The additional constraint due to the frequencies is that the
number of firings xi of all the timed actors vi corresponds to a number r P N of
repetitions of the global clock period.

To state the conditions for a polygraph to be consistent, we thus want to
separate the number of firings of the timed actors from the others. We define the
vector t “

ř

@τPT tτ giving for each timed actor vi the number ti of expected
firings per period of the global clock. We then define the set Y Ă N|V |ˆ1 of
vectors y such that we have a number of firings yi ‰ 0 only for vi P V zVF .

Theorem 1. A polygraph P has a consistent execution if and only if there exists
a non-trivial solution x P N|V |ˆ1 to Γx “ 0 such that x “ y`rt for some y P Y
and r P N. Any such solution is called a repetition vector of P. Moreover, there
exists a minimal repetition vector x such that for any other repetition vector x1

we have x1 “ kx for some k P N.

Sketch of proof. First, we prove that the condition is sufficient, and suppose that
there exists such a solution x. Then we can decompose:

x “ y ` pt0 ` . . . ` tπ´1q
looooooooomooooooooon

“t

` . . . ` pt0 ` . . . ` tπ´1q
looooooooomooooooooon

“t
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“rt

The required consistent execution can be obtained by constructing sub-executions
corresponding to this decomposition, relying on Def. 8 and Remark 1.

12 P. Dubrulle et al.

Claim (1). There exists a synchronous execution e1 P S` with starting state
s “ xm, 0,0y and ending state s1 “ xm ` Γy, 0,0y.

The execution e1 is constructed by applying yi firings of each actor vi P V zVF

(in any order). Since the fired actors are not timed actors, any such sequence is
synchronous. The resulting channel state is m ` Γy as per Remark 1.

Claim (2). For any starting state s “ xc, τ,0y, there exists a synchronous execu-
tion e2 P S` starting from s with ending state s1 “ xc ` Γtτ , pτ ` 1q mod π,0y.

The execution e2 for τ is constructed by firing exactly once each timed actor
supposed to do so at tick τ , and then applying the tick mapping.

Claim (3). For any starting state s “ xc, 0,0y, there exists a synchronous exe-
cution e3 P S` starting from s with ending state s1 “ xc ` Γt, 0,0y.

The execution e3 is obtained by successively executing e2 for τ “ 0, . . . , π ´ 1.

Claim (4). There exists a synchronous execution e4 P S` with starting state
s “ xm, 0,0y and ending state s1 “ xm ` Γpy ` rtq, 0,0y.

The sequence e4 is constructed by executing e1, followed by e3 repeated r times.
Hence, given that Γx “ 0 and x “ y`rt, it can be easily checked that the ending
state of e4 is the same as its starting state, and e4 is consistent. The fact that
the condition is also necessary follows from the definitions. Since the current tick
must return to 0 after a consistent execution, such an execution must perform
a number r of periods of the global clock for some r P N, in other words it must
contain rπ applications of the tick mapping and rti firings of each timed actor
vi. The existence of a minimal solution immediately follows from the fact that
in this case rankpΓq “ |V | ´ 1 according to [14, Corollary of Lemma 2].

Due to lack of space, a detailed proof is left to the reader. [\

Liveness property. If verified, the liveness property of P guarantees that it is
possible to build a consistent execution e “ s1 ¨ ¨ ¨ sn P S` such that e is also a
non-blocking execution. Such an execution e is called a live execution.

In a way similar to [14, Theorem 3], we define the notion of a scheduler
building only synchronous and non-blocking executions. Our goal is to show that
P has a live execution if and only if any such scheduler can build a consistent
execution.

From now on, we consider that P is consistent with minimal repetition vector
x. We define the mapping count : V ˆ S` ÝÑ N that given an actor vi and an
execution e “ s1 ¨ ¨ ¨ sn P S` returns the number of firings of vi in e, i.e. the
number of k such that 1 ď k ă n and sk`1 “ firepui, skq. Notice that since a live
execution e of P is also consistent, by definition we have @vi P V, countpvi, eq “

xi. Also, we say that an actor vi P V is runnable after an execution e P S`

with ending state s if countpvi, eq ă xi and the one-step execution ss1 P S` with
s1 “ firepui, sq is synchronous and non-blocking.

Definition 10 (Scheduler). A scheduler of P is a mapping σ : S` ÝÑ S`

that maps an execution e “ s1 ¨ ¨ ¨ sn P S` to an execution e1 P S` such that if
we denote sn “ xc, τ,ay we have:

A Data Flow Model with Frequency Arithmetic 13

– either e1 “ s1 ¨ ¨ ¨ sns
1 P S` with s1 “ firepui, snq for some actor vi runnable

after e;
– or e1 “ s1 ¨ ¨ ¨ sns

1 P S` with s1 “ tickpsnq and a “ tτ ;
– or e1 “ e if there is no runnable actor after e and a ‰ tτ .

An execution defined by a scheduler σ is the fixed point constructed by
recursive application1 of σ starting from an initial execution e “ pxm, 0,0yq.

Theorem 2. Let P be a consistent polygraph with minimal repetition vector x,
σ a scheduler of P, and e the execution defined by σ. Then P has a live execution
if and only if @vi P V, countpvi, eq “ xi.

Sketch of proof. The condition is obviously sufficient. The proof that it is also
necessary can be easily made by induction. If e is a live execution and e1 is a
synchronous and non-blocking execution constructed by σ so far, with |e1| ă |e|,
we can show that e1 can be extended by one more step (e.g. by taking the first
step present in e but not in e1, since its preconditions are necessarily satisfied).

[\

4 Tool Support for Liveness Checking

DIVERSITY is a customizable model analysis tool based on symbolic execution,
available in the Eclipse Formal Modeling Project [17]. DIVERSITY provides a
pivot language called xLIA (eXecutable Language for Interaction and Archi-
tecture) introducing a set of communication and execution primitives allowing
one to encode a wide class of dynamic model semantics [9, 2], Communicating
STS [1], and abstractions of hybrid systems [15]. In this work, we use it to an-
alyze Polygraph models, to check their liveness in a similar way to that defined
by a scheduler as per Def. 10.

The root entity in an xLIA model is a so-called system. A system is an
executable entity that can be atomic (state-machine) or compositional or hier-
archical. A Polygraph model translated to xLIA is a system where the actors are
state-machines with input/output ports associated with the ends of the channels.
They communicate asynchronously over FIFO queues, bounded or not, using
xLIA connectors. Variables are used to store received tokens on input instruc-
tions in transitions, with guards conditioning their firing, and output statements
to model their token productions.

Figure 3 represents such a state machine for any actor of the polygraph in
Fig. 1. Each transition is labeled with xLIA macros representing the actions per-
formed. The init macro moves the initial marking from the input queues to the
counter of available input tokens, canFire() tests if enough tokens are present
for a non-blocking firing, consumption decrements the counter of available input
tokens, production sends the production rate on the successor’s queue, and re-
ception reads that rate and adds it to the number of available tokens. Regarding
state machine semantics, all the states are pseudo-states, except idle which is
stable. This means that any fired transition must be completed until returning

1 Hence, a scheduler can be also defined as a partial mapping on σ˚pxm, 0,0yq.

14 P. Dubrulle et al.

activationreceivingidleinit

reception()

else reception()

guard canFire()

guard
canFire()init()

production()
consumption()

Fig. 3. xLIA statemachine pattern for an actor of a polygraph

to the idle state. The else transition will be evaluated if there is no possible
reception.

The xLIA language allows a fine-grained definition of an execution model for
the actors of a polygraph. Some instructions associate a sequence of actors to
fire with each tick of a clock. When attempting to fire a timed actor, only one
firing is triggered if possible, and when attempting the same for other actors, as
many firings as possible are triggered. Hence, the timed actors are only fired at
the expected tick, and cause a deadlock result if it’s not possible. For the other
actors, a counter limits their number of firings to their coordinate in the minimal
repetition vector, as required by Theorem 2. With this setup, for a polygraph P
with minimal repetition vector x “ y ` rt, the length of a live execution path
is rπ, plus one for the initialization step handling the initial marking. Any path
with less steps leads to a deadlock.

We tested this technique using DIVERSITY on an Intel core i7. For the
polygraph of Figure 1 with initial marking (ii), the tool finds that the liveness
property is verified. We also tested the initial marking (i), and the tool correctly
identified a deadlock in less than 200ms. This example is extracted from a more
complex polygraph modeling an Advanced Driver-Assistance System (ADAS),
that we also used to evaluate the liveness checking tool. The considered poly-
graph has 18 actors (5 of which are timed actors), 32 channels (6 of which have
an initial marking), where 10 actors have rational communication rates. For a
correctly marked model, we find a live execution sequence in 4s.

5 Discussion and Related Work

In [16], an extension to SDF is proposed to add a single throughput constraint on
a channel of a consistent graph. From this constraint, a firing frequency is derived
for the actors by transitivity. This approach, while preserving the consistency
property by construction, does not allow the expression of a frequency constraint
per actor, based on a real-life constraint on the modeled component, nor the
explicit synchronization of the firings on a reference time scale.

The programming model PTIDES [18] combines a real-time semantic for
sensors and actuators, and a discrete event semantic for other components like
computation kernels. These other components have an awareness of the real time
through a logical time abstraction. The resulting execution semantic has simi-
larities with Polygraph, since some components are constrained by real-time and

A Data Flow Model with Frequency Arithmetic 15

others only react to their stimuli. The semantic of PTIDES is much more flex-
ible than Polygraph, since it does not require fixed production or consumption
rates. On the other hand, and as opposed to Polygraph, there is no way to derive
a consistent and live periodic schedule in PTIDES, which makes static perfor-
mance prediction more difficult. Nevertheless, since the semantics are similar,
we believe that the notion of logical time as defined in PTIDES is applicable to
practical distributed implementations of polygraphs.

Synchronous programming languages [7, 8] can be used to express a data flow
between synchronous periodic nodes, in order to generate correct-by-construction
programs. In these approaches, all the nodes are synchronous, while in Poly-
graph, some actors fire asynchronously when enabled. Also, the goal of our ap-
proach is to be able to reason formally on the modeled systems, and automate as
many tasks as possible in its design, implementation and validation. Such a task
could be the association of the asynchronous firings to ticks of the global clock,
and the generation of a synchronous program for automatic code generation.

Recently published research [6] follows a similar approach to ours. By mixing
elements from two existing formalisms, one allowing the specification of time-
triggered tasks and the other the specification of data flow actors, the expressive-
ness of the resulting modeling framework is comparable to that of Polygraph. The
main difference is that Polygraph is a single formalism with decidable properties
and algorithms to check them in practice. In [6], the impact of the combination
of constraints from two different formalisms on their respective properties is not
discussed, as the proposed approach is more focused on the performance evalua-
tion. The experimental results the authors obtained are in favor of the modeling
approach we have in common.

6 Conclusion

We have introduced Polygraph, a data flow formalism extending SDF with syn-
chronous firing semantics for the actors. We have shown that with this extension,
the existing conditions to decide of a given SDF graph’s consistency and liveness
were no longer sufficient. We have extended the corresponding theorems and
shown that the expressiveness extensions we proposed do not impact the decid-
ability of these properties. Finally, as a first step towards tool assisted modeling
of polygraphs, we have introduced a framework relying on DIVERSITY to verify
their liveness.

Our next step is to further extend Polygraph to add flexibility in the exe-
cution semantic, with the same objective to preserve the capability to perform
accurate static analysis of a system’s performance. Still, with this first extension,
there are already interesting research perspectives regarding the applicability of
existing static performance analysis techniques, and their potential extensions
to take into account the specifics of a polygraph’s scheduling.

Acknowledgement. Part of this work has been realized in the FACE project,
involving CEA List and Renault. The Polygraph formalism has been used as a
theoretical foundation for the software methodology in the project.

16 P. Dubrulle et al.

References

1. Arnaud, M., Bannour, B., Lapitre, A.: An illustrative use case of the DIVERSITY
platform based on UML interaction scenarios. Electr. Notes Theor. Comput. Sci.
(2016)

2. Bannour, B., Escobedo, J., Gaston, C., Le Gall, P.: Off-line test case generation
for timed symbolic model-based conformance testing. In: Testing Software and
Systems (ICTSS). Springer (2012)

3. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static data flow.
In: Proc. of the 1995 International Conference on Acoustics, Speech, and Signal
Processing. vol. 5, pp. 3255–3258 (1995)

4. Bodin, B., Munier-Kordon, A., de Dinechin, B.D.: K-periodic schedules for evalu-
ating the maximum throughput of a synchronous dataflow graph. In: Proc. of the
2012 International Conference on Embedded Computer Systems (SAMOS). pp.
152–159 (2012)

5. Bouakaz, A., Fradet, P., Girault, A.: Symbolic Buffer Sizing for Throughput-
Optimal Scheduling of Dataflow Graphs. In: Proc. of the 22nd IEEE Real-Time
Embedded Technology & Applications Symposium (RTAS 2016) (2016)

6. Breaban, G., Stuijk, S., Goossens, K.: Efficient synchronization methods for LET-
based applications on a multi-processor system on chip. In: Design, Automation
Test in Europe Conference Exhibition (DATE), 2017. pp. 1721–1726 (2017)

7. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-
synchronous Kahn networks: A relaxed model of synchrony for real-time systems.
SIGPLAN Not. 41(1), 180–193 (2006)

8. Forget, J., Boniol, F., Lesens, D., Pagetti, C.: A multi-periodic synchronous data-
flow language. In: 2008 11th IEEE High Assurance Systems Engineering Sympo-
sium. pp. 251–260 (2008)

9. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for test
purpose definition. In: Testing of Communicating Systems (TestCom). Springer
(2006)

10. Geilen, M., Basten, T., Stuijk, S.: Minimising buffer requirements of synchronous
dataflow graphs with model checking. In: Proc. of the 42nd Design Automation
Conference. pp. 819–824. IEEE (2005)

11. Ghamarian, A.H., Geilen, M.C.W., Stuijk, S., Basten, T., Theelen, B.D., Mousavi,
M.R., Moonen, A.J.M., Bekooij, M.J.G.: Throughput analysis of synchronous data
flow graphs. In: Proc. of the Sixth International Conference on Application of
Concurrency to System Design (ACSD 2006). pp. 25–36 (2006)

12. Ghamarian, A.H., Stuijk, S., Basten, T., Geilen, M.C.W., Theelen, B.D.: Latency
minimization for synchronous data flow graphs. In: Proc. of the 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools (DSD
2007). pp. 189–196 (2007)

13. Kahn, G., MacQueen, D., Laboria, I.: Coroutines and Networks of Parallel Pro-
cesses. IRIA Research Report, IRIA laboria (1976)

14. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Transactions on Computers C-36(1),
24–35 (1987)

15. Medimegh, S., Pierron, J.Y., Gallois, J., Boulanger, F.: A new approach of qual-
itative simulation for the validation of hybrid systems. In: Proc. of the workshop
on Model Driven Engineering Languages and Systems (MODELS). ACM (2016)

A Data Flow Model with Frequency Arithmetic 17

16. Selva, M.: Performance monitoring of throughput constrained dataflow programs
executed on shared-memory multi-core architectures. Theses, INSA de Lyon (2015)

17. The List Institute, CEA Tech: The DIVERSITY tool, http://projects.eclipse.
org/proposals/eclipse-formal-modeling-project/

18. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized dis-
tributed real-time systems. In: Proc. of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS 2007). pp. 259–268. IEEE (2007)

