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Jean-Pierre Delmas and Habti Abeida

Abstract Subspace-based algorithms that exploit the orthogonality between a sam-
ple subspace and a parameter-dependent subspace have proved very useful in many
applications in signal processing. The statistical performance of these subspace-
based algorithms depends on the deterministic and stochastic statistical model of the
noisy linear mixture of the data, the estimate of the projector associated with differ-
ent estimates of the scatter/covariance of the data, and the algorithm that estimates
the parameters from the projector. This chapter presents different complex circular
(C-CES) and non-circular (NC-CES) elliptically symmetric models of the data and
different associated non-robust and robust covariance estimators among which, the
sample covariance matrix (SCM), the maximum likelihood (ML) estimate, robust
M -estimates, Tyler’s M -estimate and the sample sign covariance matrix (SSCM),
whose asymptotic distributions are derived. This allows us to unify the asymptotic
distribution of subspace projectors adapted to the different models of the data and to
prove several invariance properties that have impacts on the parameters to be esti-
mated. Particular attention is paid to the comparison between the projectors derived
from Tyler’s M -estimate and SSCM. Finally, asymptotic distributions of estimates
of parameters characterized by the principal subspace derived from the distributions
of subspace-based parameter estimates are studied. In particular, the efficiency with
respect to the stochastic and semiparametric Cramér-Rao bound is considered.
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1 Introduction

Noisy linear mixtures of signals in which the parameter of interest is characterized
by the range space of the mixing matrix are very common in many applications,
including array processing and linear system identification (see e.g., [1, 29, 38]). To
get rid of the nuisance parameters, subspace-based estimates obtained by exploit-
ing the orthogonality between a sample subspace and a parameter-dependent sub-
space have been exploited since the seminal paper [46] that introduces the multiple
signal classification (MUSIC) algorithm for direction of arrival (DOA) estimation.
These methods are always the object of active research in many applications (see
e.g., [14, 30, 56]), with generally many possible algorithms (see e.g., [24] for spe-
cial structures of the mixing matrix). In these noisy linear mixtures, two statistical
models have been commonly used [49]. If the signals in the mixture are nonran-
dom, but rather unknown deterministic parameters, the model is called determin-
istic or conditional. Otherwise, they are random and the model is a stochastic or
unconditional model. Subspace-based algorithms associated with these two mod-
els have been intensely studied in the circular complex Gaussian framework (see
e.g., [1, 14, 24, 29, 30, 38, 46, 49, 56] and references therein). But this framework is
often insufficient for non-Gaussian heavy-tailed distributed data that are well mod-
eled by circular (C-CES) or non-circular complex (NC-CES) elliptically symmetric
distributions.

The aim of this chapter is to unify and complement different deterministic and
stochastic CES models of the data and asymptotic distributions of the associated
projectors derived from different estimates of the covariance matrix of the paramet-
ric noisy linear mixture data presented in the literature. The asymptotic distribu-
tion (w.r.t. the number of measurements) of the sample covariance matrix (SCM),
maximum likelihood (ML), robust M , Tyler’s M , and sample sign covariance ma-
trix (SSCM) estimate of the covariance are considered. This allows us to derive
the asymptotic distributions of the associated projectors whose covariances have a
unified structure and consequently to prove several invariance properties. Particular
attention is paid to the comparison between the projectors derived from Tyler’s M -
estimate and SSCM, yielding that the performance of Tyler’s M -estimate is much
better than that of SSCM, except for high dimensional data and not too small di-
mension of the principal subspace w.r.t. this data dimension. In that case, they are
close and where the SSCM can be advantageously be used instead of Tyler’s M -
estimate for its lower computational complexity. Finally, asymptotic distributions
of estimates of parameters characterized by the principal subspace derived from the
distributions of projectors are studied, in particular, the efficiency with respect to the
stochastic and semiparametric Cramér-Rao bound.

The rest of this chapter is organized as follows. Section 2 specifies the determin-
istic and stochastic C-CES and NC-CES distributed noisy linear mixture models,
and the different associated parameterized mixing matrices. Subspace-based algo-
rithms are interpreted in Section 3 as compositions of mappings. The asymptotic
distributions of different non-robust and robust covariance estimates adapted to C-
CES and NC-CES distributed data models are presented in Section 4. This allows us
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to derive the asymptotic distribution of the associated projectors and to prove differ-
ent properties in Section 5. Asymptotic distributions of subspace-based parameter
estimates are studied in Section 6. Finally this chapter is concluded in Section 7.

The notations used in this chapter are those presented in chapter 1 to which
some specific notations are used in the following. In particular RESm(µ,R, g), C-
CESm(µ,R, g), NC-CESm(µ,R,C, g), CNm(µ,R) and CNm(µ,R,C) denote
the real elliptically symmetric (RES) distribution, C-CES, NC-CES, circular and
non-circular Gaussian distributions of dimension m with finite second-order mo-
ments, respectively, where µ, R and C are the mean, the covariance and comple-
mentary covariance matrices, respectively, and g the density generator. The matrix J

denotes the 2m×2m exchange matrix
(

0 I
I 0

)
. 2F1(a, b, c, x) is the Gauss hyperge-

ometric functions with 2F1(a, b, c, x) = 1
B(b,c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− tx)−adt

for c > b > 0 and |x| < 1 where B(x, y) is defined in chapter 1. Finally in all this
chapter, the circularity is only defined to the second-order.

2 Noisy linear mixture model

Consider the following general noisy linear mixture model1

xi = Asi + ni ∈ Cm, i = 1, ..., n, (1)

where (xi)
n
i=1 are independent observations, si and ni represent a signal of interest

and an additive measurement noise, respectively, which are assumed to be zero-
mean mutually and uncorrelated. ni is assumed to be complex circular spatially
uncorrelated with E(nin

H
i ) = σ2

nI and E(nin
T
i ) = 0.

Deterministic and stochastic parametric data models have been commonly used
to model the distribution of (si,ni), where ni is complex circular Gaussian dis-
tributed [49]. These two statistical data models are extended here within the frame-
work of CES distributions.

2.1 Deterministic CES data model

In the conditional or deterministic model, the signal sequence (si)i=1,..,n is con-
ditioned from an independent zero-mean Gaussian process. As explained in [49],
the sequence (si)i=1,..,n is the same here in all the realizations of the random
data (xi)i=1,..,n. For complex-valued si with arbitrary circularity, we assume that
limn→∞

1
n

∑n
i=1 sis

H
i = Rs,∞ exists and is also positive definite. This implies

that:

1 xi can represent the sampled complex baseband amplitudes of the data at the output of m pass-
band antennas.
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Rx,∞
def
= lim

n→∞

1

n

n∑
i=1

xix
H
i = ARs,∞AH + σ2

nI. (2)

For strictly non-circular complex (also called rectilinear) valued si, i.e. satisfying
the condition

si,k = ri,ke
iφk , k = 1, .., p where ri,k are real-valued, (3)

and let ri
def
= (ri,1, ..., ri,p)

T where limn→∞
1
n

∑n
i=1 rir

T
i = Rr,∞ exists and is

also positive definite. The phases φk associated with each k-th source are assumed
fixed, but unknown during the observation. To take into account this property (3) of
the signals si,k, we consider the extended observation x̃i

def
= [xTi ,x

H
i ]T = Ãrri +

[nTi ,n
H
i ]T which leads as in (2) to

Rx̃,∞
def
= lim

n→∞

1

n

n∑
i=1

x̃ix̃
H
i = ÃrRr,∞ÃH

r + σ2
nI, (4)

where Ãr
def
=

[
A∆

A∗∆∗

]
with ∆

def
= Diag(eiφ1 , ..., eiφp). In this deterministic

model (si)i=1,..,n or (ri)i=1,..,n and (φ1, ..., φp) are unknown deterministic pa-
rameters. However, the noise ni is assumed C-CES distributed with density gen-
erator gn. Consequently, the distribution of the observed data xi is either C-
CESm(Asi, σ

2
nI, gn) or C-CESm(A∆ri, σ

2
nI, gn) distributed, for complex-valued

si with arbitrary circularity or rectilinear, respectively.

2.2 Stochastic Gaussian data model

In the unconditional or stochastic model, both si and ni are usually assumed Gaus-
sian distributed and independent of each other. si is here either circular, rectilinear
or non-circular and non-rectilinear complex-valued. In the complex circular case, xi
are CNm(0,Rx) distributed, where the covariance Rx is given by

Rx
def
= E(xix

H
i ) = ARsA

H + σ2
nI, (5)

where Rs
def
= E(sis

H
i ) is positive definite.

In the complex rectilinear case, the signals si,k, k = 1, .., p, satisfy constraint (3).
In this case, the distribution of xi is characterized by the covariance of the extended
observation x̃i given by

Rx̃
def
= E(x̃ix̃

H
i ) = ÃrRrÃ

H
r + σ2

nI, (6)

with Rr
def
= E(rir

T
i ), and thus, xi are CNm(0,Rx,Cx) distributed with
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Rx = A∆Rr∆
∗AH + σ2

nI and Cx = A∆Rr∆AT . (7)

For the arbitrary non-circular case, the distribution of xi is also characterized by
the extended covariance matrix Rx̃ given by

Rx̃ = ÃcRs̃Ã
H
c + σ2

nI, (8)

with Rs̃
def
= E(s̃is̃

H
i ) =

(
Rs Cs
C∗s R∗s

)
, where s̃i

def
= [sTi , s

H
i ]T and Ãc

def
=

(
A 0
0 A∗

)
.

Thus xi are CNm(0,Rx,Cx) distributed with

Rx = ARsA
H + σ2

nI and Cx = ACsA
T , (9)

where Cs
def
= E(sis

T
i ) is a symmetric complex matrix.

2.3 Stochastic CES data model

A first extension of the stochastic Gaussian data model consists in modeling the
independent signals si and ni by CES distributions to take into account pos-
sible heavy-tailed (with respect to the Gaussian one) signals. For circular and
non-circular (both rectilinear and non-rectilinear signal si) cases, si is respec-
tively C-CESp(0,Rs, gs) and NC-CESp(0,Rs,Cs, gs) distributed2, and ni is C-
CESm(0, σ2

nI, gn) distributed. It is worth noting here that in this stochastic data
model xi is not CES distributed (except for Gaussian distributions) because this
family of distributions is not closed under summations.

To take advantage of robust covariance matrix estimates available in the context
of CES distributions, the CES distribution has been preferred over the Gaussian
distribution to model the data xi in many DOA finding and beamforming processing
(see e.g., [17,39,40,42]). In this case, the distributions of si and ni are generally not
specified, but only their second-order statistics are imposed by setting the structured
covariance in (5) or extended covariance matrices in (6) and (8). More specifically,
in the case of circular complex and non-circular complex signals si, the observations
xi are C-CESm(0,Rx, gx) and NC-CESm(0,Rx,Cx, gx) distributed, respectively.
Moreover, as a particular case of this modeling, the complex compound Gaussian
distribution which is a subclass of CES distributions that was used to model the
clutter in radar [22] has also been used in robust and sparse M -estimation of DOA
[37, eq. 1] in the form of the model:

xi = Asi + ni
def
=
√
τi(As′i + n′i), (10)

2 Note that for rectilinear si, this modeling is equivalent to ri being RESp(0,Rr, gs) distributed.
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where the so-called texture τi > 0 (with E(τi) = 1) is independent of (s′i,n
′
i)

which are complex Gaussian distributed. In this case si and ni are uncorrelated but
not independent, unlike s′i and n′i which are independent.

2.4 Parameterized mixing matrix

Since the complex-valued signals si, can be either circular, non-circular and non-
rectilinear or rectilinear signals, together with the dependence of (1) onm×pmixing
matrix A and on the parameter of interest θ ∈ Rk, leads us to distinguish the
following two considered parameterized cases:

• For circular, and non-circular and non-rectilinear complex-valued signals si, θ is
characterized by the subspace generated by the columns of the full column rank
matrix A with p < m. We will use the parameterizations

B(θ)
def
= A (11)

in the circular case and

B(θ)
def
= Ãc =

(
A 0
0 A∗

)
(12)

in the non-circular and non-rectilinear case.
• For rectilinear complex-valued signals si, θ is characterized by the subspace gen-

erated by the columns of the full column rank 2m× p extended mixing matrix

B(θ)
def
= Ãr =

[
A∆

A∗∆∗

]
with p < 2m. (13)

This low-rank signal in full-rank noise data model (1) encompasses many far or
near-field, narrow or wide-band DOA models with scalar or vector-sensors for an
arbitrary number of parameters per source si,k (with si

def
= (si,1, ..si,k, .., si,p)

T )
and many other models as the bandlimited SISO, SIMO [38] and MIMO [1] chan-
nel models. For example, parametrization (13) can be applied for DOA estimation
modeling with rectilinear or strictly second-order sources and for SIMO channels
estimation modeling with BPSK or MSK symbols [13] where θ represents both the
localization parameters (azimuth, elevation, range) and the phase of the sources,
and the real and imaginary parts of channel impulse response coefficients, respec-
tively. Whereas, parametrization (12) is used for DOA modeling with generally non-
circular and non-rectilinear complex sources.
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3 Subspace-based estimation approaches

Since the parameter of interest θ is characterized by the subspace generated by the
columns of the full column rank matrices A, Ãc or Ãr, a simple way to get rid of
the nuisance parameters, is to consider subspace-based algorithms as the following
mapping:

(x1, ..,xi, ...,xn) 7−→ R̂
EVD7−→ Π̂ = Π(R̂)

alg7−→ θ̂ = alg(Π̂), (14)

where R̂ can be either any estimate R̂x of Rx
def
= E(xix

H
i ) or any estimate

R̂x̃ of Rx̃
def
= E(x̃ix̃

H
i ), and Π̂ denotes the orthogonal projection matrix Π̂x

[resp., Π̂ x̃] associated with the so-called noise subspace of R̂x [resp., R̂x̃]. I.e., if
R̂x = [V̂s, V̂n]Λ̂[V̂s, V̂n]H denotes the EVD of R̂x where Λ̂ gathers the eigenval-
ues of R̂x in decreasing order, V̂s and V̂n arem×p andm×(m−p) unitary matri-
ces, respectively, Π̂x is given by V̂nV̂H

n . The functional dependence θ̂ = alg(Π̂)
constitutes an extension of the mapping

Π(θ)
def
= I−B(θ)[BH(θ)B(θ)]−1BH(θ)

alg7−→ θ, (15)

in the neighborhood of Π(θ) with B(θ) can either be A, Ãr or Ãc. Each extension
alg(.) specifies a particular subspace-based algorithm. Conventional MUSIC algo-
rithm [46] based on Π̂x and non-circular MUSIC algorithms [2] based on Π̂ x̃ for
parametrization (6) can be seen as examples in DOA estimation. Among these al-
gorithms are the asymptotically minimum variance (AMV) algorithm or the asymp-
totically best consistent estimators (ABC) introduced by Porat and Friedlander [45]
and Stoica et al [48], respectively. This algorithm minimizes the covariance matrix
of the asymptotic distribution of the estimate θ̂ among all the estimates alg(Π̂)
(14) satisfying alg(Π(θ)) = θ and a regularity condition (see (74)). The associated
covariance is a lower bound that plays the role of benchmark against competing
algorithms "alg". According to mapping (14), the statistical properties of the esti-
mate θ̂ depends on both the choice of the covariance estimate R̂ and that of the
subspace-based algorithm "alg".

Note that direct ML approaches have been extensively studied to estimate DOA
parameters from the data. But they generally require non-convex multidimensional
minimizations except for a single source for which the deterministic and stochastic
ML algorithms coincide with the conventional Capon algorithm (see e.g., [12, chap.
16].
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4 Asymptotic distributions of covariance estimates

Analyzing the asymptotic performance of the subspace-based estimation approaches
in (14) first requires determining the asymptotic distribution of different covariance
estimators R̂ adapted to the different data models presented in Section 2.

4.1 Deterministic data model

We only consider in this model the sample covariance matrix (SCM) estimates R̂ =
1
n

∑n
i=1 xix

H
i for complex-valued of arbitrary circularity signals si and extended

SCM estimates R̂ = 1
n

∑n
i=1 x̃ix̃

H
i for complex rectilinear-valued signals si. Under

finite fourth-order moments of ni, we get for complex-valued of arbitrary circularity
signals si:

E(vec(R̂)) = (A∗ ⊗A)[
1

n

n∑
i

s∗i ⊗ si] + σ2
nvec(I), (16)

Cov(vec(R̂)) =
1

n

(
[A∗(

1

n

n∑
i

sis
H
i )AT ]⊗ σ2

nI + σ2
nI⊗ [A(

1

n

n∑
i

sis
H
i )AH ]

)

+
1

n
Cov(n∗i ⊗ ni), (17)

where Cov(n∗i ⊗ ni) = σ4
n[(1 + κn)I + κnvec(I)vecT (I)] with

κn =
E(Q2

n)

m(m+ 1)
− 1 (18)

is the kurtosis parameter3 of ni and Qn is its 2nd-order modular variate. Using the
Liapounov central limit theorem (CLT) for independent non identically distributed
r.v. x∗i ⊗ xi (see e.g. [31, Th. 2.7.1]) and the Slutsky theorem (see e.g. [31, Th.
5.1.6]), we get the following convergence in distribution [3], [5].

√
n(vec(R̂)− vec(R))→d CNm2(0,Rrx ,RrxK), (19)

with R
def
= Rx,∞ defined in (2), K defined in chapter 1 and

Rrx = A∗Rs,∞AT⊗σ2
nI+σ2

nI⊗ARs,∞AH+σ4
n[(1+κn)I+κnvec(I)vecT (I)],

(20)

3 Note that for C and NC-CESm distributions, the kurtosis parameter κc,m is defined by the

kurtosis parameter of the associated RES2m distribution κr,2m =
E(Q2

r,2m
)

2m(2m+2)
−1 =

E(Q2
c,m

)

m(m+1)
−

1 with Qc,m = 1
2
Qr,2m where Qc,m and Qr,2m are the 2nd-order modular variates of the

associated C and NC-CESm, and RES2m distributions (see chapter 1).
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where Rs,∞ is defined in Section 2.1. Similarly, we obtain for complex rectilinear-
valued si that

√
n(vec(R̂)− vec(R))→d CN4m2(0,Rrx̃ ,Rrx̃K) (21)

with R
def
= Rx̃,∞ defined in (4) and

Rrx̃ = [I + K(J⊗ J)][(Ã∗rRr,∞ÃT
r ⊗ σ2

nI) + (σ2
nI⊗ ÃrRr,∞ÃH

r )

+ σ4
n(1 + κn)I] + σ4

nκnvec(I)vecT (I). (22)

4.2 Stochastic data model

We consider here two cases. In the first one, si and ni are both CES distributed for
which only the SCM estimate is considered. In this case, xi is not CES distributed.
In the second one, xi is CES distributed and many robust covariance estimates are
considered.

4.2.1 SCM estimators for both CES distributed si and ni

Let’s start first with the SCM estimates R̂ = 1
n

∑n
i=1 xix

H
i and R̂ = 1

n

∑n
i=1 x̃ix̃

H
i

for respectively circular and complex of arbitrary circularity signals si, where si and
ni are both CES distributed and have finite fourth-order moments. By applying the
classic CLT to the r.v. x∗i ⊗ xi and x̃∗i ⊗ x̃i, we get, respectively, the following
asymptotic distribution of R̂ which did not appear in the literature:

√
n(vec(R̂)− vec(R))→d CNm2(0,Rrx ,RrxK), (23)
√
n(vec(R̂)− vec(R))→d CN4m2(0,Rrx̃ ,Rrx̃K), (24)

with R
def
= Rx defined in (5) and R

def
= Rx̃ defined in (6) and (8), respectively, and

Rrx = (R∗x ⊗Rx) + κs[(A
∗R∗sA

T )⊗ (ARsA
H)

+ vec(ARsA
H)vecH(ARsA

H)] + σ4
nκn[I + vec(I)vecT (I)], (25)

Rrx̃ = [I + K(J⊗ J)][(R∗x̃ ⊗Rx̃) + κs(Ã
∗
cR
∗
s̃Ã

T
c )⊗ (ÃcRs̃Ã

H
c )

+ κsvec(ÃcRs̃Ã
H
c )vecH(ÃcRs̃Ã

H
c ) + σ4

nκnI]

+σ4
nκnvec(I)vecT (I), (26)

where κs is the kurtosis parameter of si given by κs =
E(Q2

s)
p(p+1) − 1 and where

Qs is the 2nd-order modular variate of si. Note that (24) and (26) remain valid for
complex rectilinear signals si if κs is replaced by κr =

E(Q2
r)

p(p+2) − 1 where Qr is the
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2nd-order modular variate of ri which is RESp(0,Rr, gs) distributed. Furthermore,
in this case ÃcRs̃Ã

H
c reduces to ÃrRrÃ

H
r .

4.2.2 Covariance estimates for CES distributed xi

Now consider the cases where the observations xi are C-CESm(0,Rx, gx) and NC-
CESm(0,Rx,Cx, gx) distributed. For these distributions, many covariance estima-
tors have been proposed in the literature. We study here the asymptotic distributions
of the SCM, ML and M estimators, Tyler’s and SSCM estimators.

SCM estimators: Under finite fourth-order moments of xi, applying again the
classic CLT to the r.v. x∗i ⊗ xi and x̃∗i ⊗ x̃i, we get the convergences in distribution

(23) and (24) for the SCM estimate R̂ with also R
def
= Rx defined in (5) and R

def
=

Rx̃ defined in (6) and (8), respectively, and with now Rrx and Rrx̃ are given by [3],
[5]:

Rrx = σ1(R∗x ⊗Rx) + σ2vec(Rx)vecH(Rx), (27)
Rrx̃ = σ1[I + K(J⊗ J)](R∗x̃ ⊗Rx̃) + σ2vec(Rx̃)vecH(Rx̃), (28)

with σ1 = 1 + κx and σ2 = κx, where κx is the kurtosis parameter of xi given by
κx =

E(Q2
x)

m(m+1)−1 whereQx is the 2nd-order modular variate of xi. Note that thanks

to the linear one to one mapping x̄i ←→ x̃i with x̄i
def
= (Re(xi)

T , Im(xi)
T )T ∈

R2m, (27) and (28) can be directly deduced from the convergence in distribution of
the SCM estimate 1

n

∑n
i=1 x̄ix̄

T
i of Rx̄

def
= E(x̄ix̄

T
i ), given by [43, p. 5]

√
n(vec(R̂)− vec(Rx̄))→d RN4m2(0,Rrx̄), (29)

with
Rrx̄ = (1 + κx̄)(I + K)(Rx̄ ⊗Rx̄) + κx̄vec(Rx̄)vecT (Rx̄), (30)

where κx̄ = κx by definition of the kurtosis κx of the complex-valued r.v. xi given
in footnote 4. For heavier tails than Gaussian distributions, we have κx > 0 and can
be very large without any upper bound, and consequently, the SCM estimator can
be a very poor estimator of the covariance matrix.

ML estimators: To take into account the particular CES distribution of xi, the
ML estimator is often considered as the benchmark estimator. From the p.d.f. of
the complex-valued data xi: p(x) = |Rx̃|−1/2gx( 1

2 x̃HR−1
x̃ x̃) which reduces to

p(x) = |Rx|−1gx(xHR−1
x x) in the circular case (see chapter 1), the ML estimate

R̂ of Rx and Rx̃ are respectively solutions of the implicit equations

R̂ =
1

n

n∑
i=1

ϕx(xHi R̂−1xi)xix
H
i and R̂ =

1

n

n∑
i=1

ϕx

(
1

2
x̃Hi R̂−1x̃i

)
x̃ix̃

H
i ,

(31)
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with ϕx(t)
def
= − 1

gx(t)
dgx(t)
dt . Under existence, uniqueness and usual regularity con-

ditions, the ML estimate of Rx and Rx̃ are generally asymptotically efficient with
a speed of convergence in

√
n. Thus, we get the convergences in distribution (23)

and (24), with also R
def
= Rx defined in (5) and R

def
= Rx̃ defined in (6) and (8),

respectively, where Rrx and Rrx̃ can be deduced from the matrix Slepian-Bangs
formula [4, 7, 9, 23] associated with the single parameters Rx and Rx̃ and are still
given by (27) and (28) with

σ1 =
m(m+ 1)

E[Q2
xϕ

2
x(Qx)]

and σ2 = − 2σ1(1− σ1)

1 + 2m(1− σ1)
. (32)

M estimator: Since the ML estimator may be drastically affected by the pres-
ence of outliers or when the data distribution deviates slightly from the CES dis-
tribution of the model, robust estimators of the covariance of the data have been
proposed. Among the different families of robust estimators, we focus our attention
on the class of M -estimators introduced by Maronna [36] for RES distributions.
Applied to RES2m(0,Rx̄, gx̄) distributed data x̄i, with gx̄(t) = 2−mgx( t2 ) (see
Chapter 1), theseM -estimators were defined as solutions R̂ of the implicit equation

R̂ =
1

n

n∑
i=1

ux̄(x̄Ti R̂−1x̄i)x̄ix̄
T
i , (33)

where ux̄(.) is any real-valued weight function on [0,∞) not related to a particular
RES distribution. Under sufficient conditions (called Maronna conditions), it was
proved in [36, Th. 4], the existence and uniqueness of solution R̂ of (33). It has also
been proved in [36, Th. 2] the existence and uniqueness of the solution V of

V = E[ux̄(x̄Ti V−1x̄i)x̄ix̄
T
i ]. (34)

Sufficient conditions are also given in [36, Th. 5] to ensure the strong consistency
of the estimate R̂ solution of (33) to the solution V of (34). V is related to Rx̄

by V = c−1Rx̄ where c is the unique solution of E[cQx̄ux̄(cQx̄)] = 2m. [36,
Appendix 3]. This is equivalent to the solution of

E[cQxux(cQx)] = m, (35)

for CES distributions [42, (rel (46)]. Using a general result on M -estimators given
in [25, Sec. 4], Maronna proved in [36, Th. 6] the asymptotic gaussianity of R̂. Then,
using the affine invariance property of anyM -estimators and the general structure of
the covariance of radial random matrices, the covariance of the asymptotic distribu-
tion (called also asymptotic error covariance) of R̂ was specified in [50, Appendix
2].

Extensions of M -estimators to C-CES distributed data were introduced in [39]
and later studied and used in various signal processing application (see [42] and
references therein). Then, it was extended to NC-CES distributed data [5]. Since
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xi are NC-CESm(0,Rx,Cx, gx) distributed by definition if x̄ = 1√
2
MH x̃i (where

M
def
= 1√

2

(
I iI
I −iI

)
is unitary) are RES2m(0,Rx̄, gx̄) distributed, (33) is equivalent

to (36) where ux(t)
def
= ux̄( t2 ) (see Chapter 1) and where R̂ now denotes the M -

estimate of Rx̃ = 2MRx̄M
H :

R̂ =
1

n

n∑
i=1

ux

(
1

2
x̃Hi R̂−1x̃i

)
x̃ix̃

H
i . (36)

Moreover in the particular complex circular case where Rx̃ =

(
Rx 0
0 R∗x

)
, im-

posing R̂ in (36) to be block diagonal structured as Rx̃, the M -estimate R̂ of Rx

introduced in [39] is derived as solution of:

R̂ =
1

n

n∑
i=1

ux(xHi R̂−1xi)xix
H
i . (37)

Thus, all the properties of the M -estimate R̂ of Rx̄ are transferred to the M -
estimates R̂ of Rx and Rx̃ for C-CES and NC-CES [5] distributions, respectively. In
particular, we get the convergences in distribution (23) and (24) where R

def
= c−1Rx

in the circular case and R
def
= c−1Rx̃ in the complex of arbitrary circularity case,

and where Rrx and Rrx̃ are given by (27) and (28), respectively, with [42], [35]

σ1 =
E[Q2

xu
2
x(cQx)]

m(m+ 1)(1 + [m(m+ 1]−1cu)2
(38)

and

σ2 =
E[(Qxux(cQx)−mcu)2]

(m+ cu)2
− σ1

m
(39)

with cu
def
= E[c2Q2

xu
′

x(cQx)] with u
′

x(t)
def
= dux(t)/dt. Note that for ux(t) =

ϕx(t), the M -estimate gives the ML estimate for which c = 1. Using the identity
E[Q2

xϕ
′

x(Qx)] = E[Q2
xϕ

2
x(Qx)]−m(m+1) proved in [5, Appendix] with ϕ

′

x(t)
def
=

dϕx(t)/dt, (38)and (39) reduce to (32).
Tyler’s M estimator: Tyler’s M estimator was introduced in [51] for RES dis-

tributions as a solution of (33) with the weight function ux̄(t) = 2m
t . It became

very popular in signal processing applications because it enjoys important proper-
ties among which to have a distribution that does not depend on the RES distribution
of the data. Extensions of this estimator to C-CES [42], [44] and to NC-CES dis-
tributions [5] are straightforward using the real x̄i ∈ R2m representation of CES
distributed xi ∈ Cm. They are given by the solution R̂ of the implicit equation

R̂ =
2m

n

n∑
i=1

x̃ix̃
H
i

x̃Hi R̂−1x̃i
(40)
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constrained to Tr(R̂) = 2m for NC-CES distributed xi, which reduces to the solu-
tion R̂ of

R̂ =
m

n

n∑
i=1

xix
H
i

xHi R̂−1xi
(41)

constrained to Tr(R̂) = m for C-CES distributed xi. Here too, all the properties
of the Tyler’s M -estimate of Rx̄ are transferred to the Tyler’s M -estimates of Rx

and Rx̃ for C-CES and NC-CES distributions, respectively. In particular, we get the
convergences in distribution (23) and (24) where R

def
= m

Tr(Rx)Rx in the complex

circular case and R
def
= m

Tr(Rx)Rx̃ in the complex of arbitrary circularity case, and
where Rrx and Rrx̃ are given by (27) and (28), respectively, with [51]:

σ1 =

(
m

Tr(Rx)

)2(
1 +

1

m

)
and σ2 = −

(
m

Tr(Rx)

)2
1

m

(
1 +

1

m

)
. (42)

SSCM estimator: The SSCM estimator is another distribution-free estimator of
Rx and Rx̃ that is easier to compute than Tyler’s M estimator. It was first intro-
duced [10, 32] under various names and then studied [16, 33, 34, 41, 54, 55] in the
context of RES distributions. It was proved in particular that the expectations of
the SSCM and SCM share the same eigenvectors with different eigenvalues with
the same multiplicity and with a monotone one-to-one but rather complicated corre-
spondence [16]. As for the covariance matrices of the SSCM and SCM estimates, it
was proved that they are similarly structured. They also share the same eigenvectors
with different eigenvalues [33, 34]. C-CES [8] and NC-CES [6] extensions of the
definition and properties of the SSCM given in the RES context are also straightfor-
ward. The SSCM estimate R̂ of Rx and Rx̃ are given by

R̂ =
1

n

n∑
i=1

xix
H
i

‖xi‖2
and R̂ =

1

n

n∑
i=1

x̃ix̃
H
i

‖x̃i‖2
, (43)

for C-CES and NC-CES distributed xi, respectively. Under only finite second-order
moments of xi, applying the classic CLT to r.v. x∗i⊗xi

‖xi‖2 and x̃∗i⊗x̃i
‖x̃i‖2 , gives the asymp-

totic distributions of R̂ which is also given by (23) and (24) where now

R
def
=

m∑
k=1

χkvkv
H
k and R

def
=

2m∑
k=1

χ̃kṽkṽ
H
k , (44)

respectively, where
∑m
k=1 λkvkv

H
k and

∑2m
k=1 λ̃kṽkṽ

H
k denote respectively the

EVD of Rx and Rx̃, and where closed-form expressions of the eigenvalues χk and
χ̃k are given by [6, rel. (11), (12)]. The covariances Rrx and Rrx̃ of the asymp-
totic distributions (23) and (24) share, respectively, the same eigenvectors as (27)
and (28), whose expressions of the different eigenvalues γk,`, γk,` − χkχ` and γ̃k`,
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γ̃k,` − χ̃kχ̃` in the EVD [6, rel. (15-16)] of Rrx and Rrx̃ are given by [6, rel. (17-
20)].

5 Asymptotic distributions of subspace projector estimates

The asymptotic distributions of covariance estimates allow us to deduce some prop-
erties of the associated subspace projector estimates.

5.1 Asymptotic inadmissibility of subspace projector estimates

Tyler’s M -estimate is the ML of Rx when the data are real-valued angular central
Gaussian distribution distributed [52]. It is similarly straightforward to prove that
Tyler’s M -estimates R̂Ty

x and R̂Ty
x̃ are also the ML of Rx and Rx̃, for complex

circular [27] and non-circular [6] angular central Gaussian distributed data whose
p.d.f. with respect to the Lebesgue measure on complex unit sphere CSm are given
by

p(x) =
Γ (m)

2πm
|Rx|−1(xHR−1

x x)−m (45)

and

p(x) =
2mΓ (m)

2πm
|Rx̃|−1/2(x̃HR−1

x̃ x̃)−m. (46)

using the linear one to one mapping x̄i ←→ x̃i. Thus, by the invariance property

of the ML estimator, its associated orthogonal projector Π̂
Ty

x = Π(R̂Ty
x ) (resp.,

Π̂
Ty

x̃ = Π(R̂Ty
x̃ )) (14) is the ML of the orthogonal projector Πx (resp., Π x̃). This

implies that for complex angular central Gaussian distributed data, the following
relationship between the covariance of the asymptotic distribution of the projector
based on ML, Tyler’s M , and SSCM estimates

RML
πx = RTy

πx ≤ RSSCM
πx and RML

πx̃ = RTy
πx̃ ≤ RSSCM

πx̃ . (47)

Consequently, thanks to the free distribution property of Tyler’s M -estimate and
SSCM estimate in the C-CES and NC-CES family, where is added the circular and
non-circular complex angular central Gaussian distribution [51], we can extend to
arbitrary C-CES and NC-CES with finite second-order moments distributed data,
the matrix inequalities between covariance of the asymptotic distribution of the pro-
jector based on Tyler’s M and SSCM estimates (47). This gives:

RTy
πx ≤ RSSCM

πx and RTy
πx̃ ≤ RSSCM

πx̃ . (48)

Furthermore it was proved in [6] that when Rx → λI and Rx̃ → λI, inequali-
ties (48) approach equalities. These inequalities (48) show that the estimator Π̂Ty

x
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(resp., Π̂Ty
x̃ ) asymptotically dominates the estimator Π̂SSCM

x (resp., Π̂SSCM
x̃ ) in the

sense of the mean squared error. This property of asymptotic inadmissibility of the
projector associated with the SSCM proved firstly for RES distributed data in [33]
and [34], extends to arbitrary C-CES and NC-CES distributed data. However, since
the SCM is very sensitive to heavy-tailed CES distributions, RSSCM

πx and RSSCM
πx̃ is

often bounded above by RSCM
πx and RSCM

πx̃ , respectively, for such distributions. An
example of such behavior is given in Fig.2 and conditions for which the performance
of Tyler’s M -estimate and SSCM are close are specified in Section 5.3.

5.2 Asymptotic distributions of projector estimates

From the asymptotic distributions (19), (21), (23) and (24) of the different estimates
R̂ adapted to the different models presented in Section 2, we note that R̂ converges
in probability to the matrices R. All these matrices are structured as

R = S + σ2I, (49)

where Span(S) = Span(B(θ)), where B(θ) denotes the mixing matrices A, Ãr

and Ãc for circular, rectilinear, and non-rectilinear and non-circular complex-valued
si, respectively. Then, using the standard perturbation result associated with map-
ping (14)

R̂ = R + δ(R)
EVD7→ Π̂ = Π(θ) + δ(Π) (50)

for orthogonal projectors [26] (see also the operator approach in [28]) applied to
Π(θ) associated with the noise subspace of R,

δ(Π) = −Π(θ)δ(R)S# − S#δ(R)Π(θ) + o(δ(R), (51)

the asymptotic behaviors of Π̂ and R̂ are directly related. A standard theorem of
continuity (see e.g., [47, p. 122]) (called also Delta-method) on regular functions of
asymptotically Gaussian statistics applies and we get

√
n(vec(Π̂)− vec(Π(θ)))→d CNm2(0,Rπx ,RπxK) (52)
√
n(vec(Π̂)− vec(Π(θ)))→d CN4m2(0,Rπx̃ ,Rπx̃K), (53)

for circular and non-circular complex-valued si, respectively, where Π(θ) is given
by (15) with its associated B(θ) and where

Rπx = [(STx
# ⊗Πx) + (ΠT

x ⊗ S#
x )]Rrx [(STx

# ⊗Πx) + (ΠT
x ⊗ S#

x )], (54)

Rπx̃ = [(STx̃
# ⊗Πx̃) + (ΠT

x̃ ⊗ S#
x̃ )]Rrx̃ [(STx̃

# ⊗Πx̃) + (ΠT
x̃ ⊗ S#

x̃ )], (55)

where Rrx and Rrx̃ are given by (20), (25), (27) and by (22), (26), (28), respectively,
and where each of the two matrices (Sx, Πx) and (Sx̃, Πx̃) are the matrices S and
Π(θ) associated with circular and non-circular complex-valued si, respectively.
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Then plugging expressions (20), (25), (27) of Rrx and (22), (26), (28) of Rrx̃

in (54) and (55), and using ΠxSx = 0 and Πx̃Sx̃ = 0, the following theorem
extending [15, Th/IV.1] is proved:

Theorem 1 The covariance matrices Rπx and Rπx̃ of the asymptotic distributions
(52) and (53) of the different projector estimates Π̂ associated with the different
data models presented in Section 2 have an unified structure given by

Rπx = (UT ⊗Π(θ)) + (ΠT (θ)⊗U), (56)
Rπx̃ = [I + K(J⊗ J)][(UT ⊗Π(θ)) + (ΠT (θ)⊗U)]. (57)

Here Π(θ) are the projection matrices
∑m
k=p+1 vkv

H
k ,
∑2m
k=p+1 ṽkṽ

H
k and

∑2m
k=2p+1 ṽkṽ

H
k

on the noise subspace (i.e., on the orthogonal complement of the range of A, Ãr

and Ãc), associated with circular, rectilinear, and non-rectilinear and non-circular
complex-valued si, respectively. On the other hand, the matrices U depend on the
covariance estimates R̂ studied in Section 4.

For the deterministic model and the stochastic model where both si and ni are
CES distributed, U takes the common form

U = σ2
nS#RS# + κnσ

4
n(S#)2 =

p∑
k=1

σ2
n(λk + κnσ

2
n)

(λk − σ2
n)2

vkv
H
k , (58)

with R
def
= Rx,∞ = Rx =

∑m
k=1 λkvkv

H
k and S

def
= ARs,∞AH = ARsA

H

for si deterministic of arbitrary circularity and circular stochastic. Similarly for rec-
tilinear si, (58) also applies where Rx,∞, Rx, ARs,∞AH , ARsA

H , λk and vk
are replaced by Rx̃,∞, Rx̃, ÃrRr,∞ÃH

r , ÃrRrÃ
H
r , λ̃k and ṽk respectively. Fur-

thermore, for non-circular and non-rectilinear stochastic si (58) still applies where
R

def
= Rx̃, S

def
= ÃcRs̃Ã

H
c and p, λk and vk are replaced, respectively, by 2p, λ̃k

and ṽk.
For the stochastic model, where xi is CES distributed, we get for SCM, ML, M

and Tyler’s estimator:

U = ϑ

(
p∑
k=1

λkσ
2
n

(λk − σ2
n)2

vkv
H
k

)
and U = ϑ

(
p∑
k=1

λ̃kσ
2
n

(λ̃k − σ2
n)2

ṽkṽ
H
k

)
, (59)

for circular and rectilinear si, respectively, with:

ϑ
def
= ϑSCM = 1 + κx for the SCM estimate, (60)

ϑ
def
= ϑML = σ1 for the ML estimate given by (32), (61)

ϑ
def
= ϑM = c2σ1 for the M -estimate where σ1 and c

are given by (38) and (35), respectively, (62)

ϑ
def
= ϑTy = 1 +

1

m
for the Tyler’s M -estimate. (63)
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For non-circular and non-rectilinear si, the second relation of (59) also applies by
replacing p by 2p.

For the SSCM estimator, U is given by

U =

p∑
k=1

γk
(χk − χ)2

vkv
H
k and U =

p∑
k=1

γ̃k
(χ̃k − χ̃)2

ṽkṽ
H
k , (64)

for circular si where χ def
= χp+1 = χp+2 = ... = χm (see (44)) and γk

def
= γk,p+1 =

γk,p+2 = ... = γk,m, and rectilinear si where χ̃ def
= χ̃p+1 = χ̃p+2 = ... = χ̃2m

(see (44)) and γ̃k
def
= γ̃k,p+1 = γ̃k,p+2 = ... = γ̃k,2m are given in [6, rel. (17)-(20)].

For non-circular and non-rectilinear si, the second relation of (64) also applies by
replacing p by 2p.

Two remarks are in order from Theorem 1 for the deterministic model and the
stochastic model where both si and ni are CES distributed:

• The projector estimators have the same asymptotic distribution under both deter-
ministic and stochastic CES distributed models for si, with arbitrary circularity
or rectilinear si. This contrasts with the covariances of the asymptotic distribu-
tions of Rx (20), (25) and Rx̃ (22), (26), which are different. This generalizes
classical results on many subspace-based DOA estimators [49] proved under the
complex circular Gaussian noise framework.

• The asymptotic distributions of the projector estimators are invariant to the dis-
tribution of si, whether si is of arbitrary circularity or is rectilinear. This property
also generalizes classical results on subspace-based estimators [11] proved under
the complex circular Gaussian noise framework.

5.3 Relative efficiency

For circular or non-circular CES distributed data xi, the covariance matrices of
the asymptotic distribution of the projector derived from the SCM, ML, M , and
Tyler’s estimators are proportional with a proportionality coefficient ϑ (60)-(63)
which plays a major role as an efficiency index for the estimation of the projec-
tor. As for the projector deduced from the SSCM estimator, this proportionality
relation only occurs in the case λ1 = ... = λp and λ̃1 = ... = λ̃p which implies
χ1 = ... = χp, γ1 = ... = γp and χ̃1 = ... = χ̃p, γ̃1 = ... = γ̃p in (64), which gives

ϑ
def
= ϑSSCM =

γ1

(χ1 − χ)2

(λ1 − σ2
n)2

λ1σ2
n

and ϑ
def
= ϑSSCM =

γ̃1

(χ̃1 − χ̃)2

(λ̃1 − σ2
n)2

λ̃1σ2
n
(65)

in the circular and rectilinear cases, respectively. For non-circular and non-rectilinear
si, the second relation of (65) also applies under the condition λ̃1 = ... = λ̃2p.
To obtain insight into how the asymptotic inadmissibility of the SSCM is affected



18 Jean-Pierre Delmas and Habti Abeida

whenever Rx 6= λI and Rx̃ 6= λI (see discussion after (48)), the following theorem
is proved in [6, th. 5]:

Theorem 2 The asymptotic efficiency of the SSCM estimate relative to Tyler’s M -
estimate defined by the ratio r def

= ϑTy/ϑSSCM, is given by the closed-form expres-
sions in the circular case under the assumption λ1 = ... = λp and rectilinear case
under the assumption λ̃1 = ... = λ̃p, respectively, by:

rc =
[2F1(1,m− p+ 1,m+ 2, 1− ρ)]2

2F1(2,m− p+ 1,m+ 2, 1− ρ)
(66)

and

rr =
[2F1(1,m− p

2 + 1,m+ 2, 1− ρ̃)]2

2F1(2,m− p
2 + 1,m+ 2, 1− ρ̃)

, (67)

where ρ def
=

σ2
n

λ1
and ρ̃ def

=
σ2
n

λ̃1
, and these ratios are monotonic increasing functions

of respectively ρ and ρ̃ from the intervals (0,1) to (0,1). Furthermore in the neigh-
borhood of ρ = 1, ρ̃ = 1 and ρ = 0, ρ̃1 = 0, we have respectively:

rc = 1− (m− p+ 1)(p+ 1)

(m+ 2)2(m+ 3)
(1− ρ)2 + o(1− ρ)2, (68)

rr = 1−
(

(2m− p+ 2)(p+ 2)

4(m+ 2)2(m+ 3)

)
(1− ρ̃)2 + o(1− ρ̃)2, (69)

and

rc =

{
om,1(1) for p = 1

(1 + 1
m )(1− 1

p )(1 + om,p(1)) for p > 1
(70)

rr =

{
õm,p(1) for p = 1, 2

(1 + 1
m )(1− 2

p )(1 + õm,p(1)) for p > 2
, (71)

where first-order expansions of om,p(1) and õm,p(1) satisfying limρ→0 om,p(1) =
limρ̃→0 õm,p(1) = 0 are given by [6, rel. (57-58)]. For non-circular and non-
rectilinear si, relation (67) and the expansions of rr also apply under the condition
λ̃1 = ... = λ̃2p where p is replaced par 2p.

It follows from (68) and (69) that the performance of the subspace estimation
derived from SSCM and Tyler’s M -estimate are very similar for close eigenvalues,
and particularly for large values of m and p. It follows, conversely, from (70) and
(71), that for well-separated eigenvalues, the performance of the SSCM-based sub-
space estimation is largely outperformed by those derived from Tyler’s M estimate
for p = 1 and p = 1, 2 for C-CES and NC-CES distributed data because rc and rr
tend to zero as ρ and ρ̃ tend to zero, respectively. Note, however, that for m and p
large, the performance of the subspace estimation derived from SSCM and Tyler’s
M estimate are very similar because rc and rr are equivalent to (1+ 1

m )(1− 1
p ) < 1

and (1+ 1
m )(1− 2

p ) < 1 as ρ and ρ̃ tend to zero, respectively. Consequently, despite
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the asymptotic inadmissibility of subspace projectors built from the SSCM estimate,
the performance of this estimator and those derived from Tyler’s M -estimator are
close in particular for large values of m and not too small values of p. Therefore,
we can conclude that SSCM estimate is of great interest from the point of view of
its lower computational complexity for large values of m.

6 Asymptotic distributions of subspace-based parameter
estimates

The asymptotic distributions of projector estimates given in Theorem 1 allow us to
derive the asymptotic distribution of subspace-based parameter estimates for any
algorithms "alg" (14) which are assumed to be differentiable4.

6.1 Asymptotic distribution of parameter estimate

Again using a standard theorem of continuity (see e.g., [47, p. 122]) (called also
Delta-method), we get:

√
n(θ̂ − θ)→d RNk(0,Ralg

θ̂
), (72)

where Ralg

θ̂
is given by:

Ralg

θ̂
= DalgRπDH

alg, (73)

with Rπ = Rπx [resp., Rπ = Rπx̃ ] is given by (56) [resp., (57)], for circular [resp.,
non-circular] si, and where Dalg is the differential (or Jacobian) matrix defined by
the relation

θ̂ = alg(Π̂) = alg(Π(θ))︸ ︷︷ ︸
θ

+Dalgvec(Π̂ −Π(θ)) + o(Π̂ −Π(θ)). (74)

Using the unified expressions of Rπx and Rπx̃ of Theorem 1 where U is given by
(58) and (59), we get the following theorem:

Theorem 3 The covariance matrix Ralg

θ̂
of the asymptotic distribution of the pa-

rameter estimate θ̂ given by any subspace-based algorithm "alg" satisfying the pre-
viously aforementioned assumptions, derived from the SCM, ML, M and Tyler’s M
covariance estimate, breaks down as follows

4 Note that sinceΠ(θ) is Hermitian, the mappings "alg" are differentiable w.r.t.Π(θ) i.f.f. they
are differentiable w.r.t. (Re(Π(θ)), Im(Π(θ))). This last hypothesis being verified by most
algorithms "alg".
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Ralg

θ̂
= ϑRG,alg

θ̂
+ κnR

′alg

θ̂
, (75)

where RG,alg

θ̂
is the covariance matrix Ralg

θ̂
derived for Gaussian distributed data

xi and in the second term R
′alg

θ̂
is a positive definite matrix obtained only in the

deterministic and stochastic model where ni is non-Gaussian C-CES distributed.
ϑ = 1 in the deterministic and stochastic model where ni is C-CES distributed, ϑ is
given by (60)-(63) for CES distributed data xi and κn is the kurtosis parameter of
the noise, which is zero for Gaussian distributed noise.

In particular, for CES distributed xi,

Ralg

θ̂
= ϑRG,alg

θ̂
(76)

and all the analytical theorems concerning the asymptotic distributions of subspace-
based parameter estimates derived in the Gaussian framework extend with a simple
multiplicative term ϑ, especially in DOA estimation.

For the SSCM estimate, (76) also applies where ϑ is given by (65) but only in
the case λ1 = ... = λp and λ̃1 = ... = λ̃p. In contrast, for an arbitrary spectrum of
eigenvalues, there is no longer a direct relationship between Ralg

θ̂
and RG,alg

θ̂
.

In the deterministic and stochastic model where ni is non-Gaussian C-CES dis-
tributed, the structure of Ralg

θ̂
is affected due to the additive term R

′,alg

θ̂
. Further-

more, Ralg

θ̂
> RG,alg

θ̂
and Ralg

θ̂
< RG,alg

θ̂
for super-Gaussian (κn > 0) and sub-

Gaussian (κn < 0) distributed noise, respectively.
Besides, the covariance of the asymptotic distribution of the estimate θ̂ given by

the AMV algorithm [45], [48] takes the particular expression [5]:

RAMV
θ̂

= (Π
′H(θ)R#

πΠ
′(θ))−1 (77)

where Π ′(θ)
def
= dvec(Π(θ))

dθ . It has been proved in [5] that the AMV estimates θ̂

derived from the projector estimates Π̂ built on the ML estimate of Rx and Rx̃ for
respectively stochastic C-CES and NC-CES distributed data xi are asymptotically
efficient, i.e., the covariance matrices RML,AMV

θ̂
of their asymptotic distributions

reach the stochastic Cramér-Rao bound (CRB) of the parameter θ when the density
generator g is known. Consequently the following theorem is deduced from (48),
(73) and (77):

Theorem 4 For CES distributed data xi, the covariance of the Gaussian asymptotic
distribution of the estimated parameter θ̂ derived for any subspace-based algorithm
"alg" built on the SSCM is bounded below by those built on Tyler’s M estimate.
These two covariance matrices being themselves bounded below by the CRB.

n× CRB(θ) = (Π
′H(θ)RML

π

#
Π ′(θ))−1

= RML,AMV

θ̂
≤ RML,alg

θ̂
≤ RTy,alg

θ̂
≤ RSSCM,alg

θ̂
, (78)
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where RML
π denotes the covariance of the asymptotic distribution of Π̂ built on the

ML estimate of Rx and Rx̃ for respectively C-CES and NC-CES distributed data
xi, and RML,alg

θ̂
, RTy,alg

θ̂
and RSSCM,alg

θ̂
denote the covariance of the asymptotic

distribution of the parameter θ̂ estimated by the algorithm "alg" built on the ML,
Tyler’s M and SSCM covariance estimate, respectively.

Theorem 4 proves that the AMV subspace-based estimators built on Tyler’s M -
estimator of the covariance matrix are not efficient. To obtain a truly robust effi-
cient subspace-based estimator, one has to find M -estimators with an appropriate
weight function ux(.) such that ϑM be close or equal to ϑML. Note that similarly
to the projector estimate, there is no general order relation between RSSCM,alg

θ̂
and

RSCM,alg

θ̂
. However, since the SCM is very sensitive to heavy-tailed CES distribu-

tions, RSSCM,alg

θ̂
can be bounded above by RSCM,alg

θ̂
for such distributions.

Considering now the stochastic CRB in (78), the following common closed-form
expression has been proved in [5]:

CRB(θ) = σ1
σ2
n

2

[
Re

(
daHθ
dθ

(HT ⊗Π(θ))
daθ
dθ

)]−1

, (79)

where σ1 is given by (32). aθ
def
= vec(A), H

def
= RH

s AHR−1
x ARs and Π(θ)

def
=

Πx(θ) in circular case, aθ
def
= vec(Ãr), H

def
= RrÃ

H
r R̃−1

x̃ ÃrRr and Π(θ)
def
=

Π x̃(θ) in the rectilinear case5 associated with the structured extended covariance

(6) and aθ
def
= vec(A), H

def
=
(
RsA

H ,CsA
T
)
R̃−1
x̃

(
ARs

A∗C∗s

)
and Π(θ)

def
=

Πx(θ) in the non-circular and no-rectilinear case associated with the structured
extended covariance (8).

In general, this stochastic CRB is upper bounded by the semiparametric CRB
introduced by [18] when the density generator g is considered as an infinite-
dimensional unknown nuisance parameter. This semiparametric CRB has been stud-
ied for RES and C-CES distributions in [20] and [19], respectively. In particular, a
closed-form expression of this bound has been derived in [17] for the DOA pa-
rameter of C-CES distributed observations. By slightly modifying and extending
the proof given in the support document of [19] to general C-CES and NC-CES
distributed noisy linear mixture models (1), it has been proved in [5], that this semi-
parametric CRB coincides with the stochastic CRB given by (79). We note that this
property is very specific to the parameter of interest characterized by the column
space of the mixing matrix. This property is explained by the fact that this column
space does not depend on the density generator g. It is important, however, to note
that if the AMV subspace-based estimator derived from the ML estimate of the co-
variance of the data xi is asymptotically efficient w.r.t. the stochastic CRB, it is no
longer asymptotically efficient w.r.t. the semiparametric CRB because this ML M -
estimate requires the knowledge of the density generator g. To obtain asymptotically

5 Note that in this case da
H
θ

dθ
(HT⊗Π(θ))daθ

dθ
is real-valued.
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semiparametric efficient subspace-based estimator of θ, the AMV estimator would
have to be built on an asymptotically semiparametric efficient estimator R̂ of the
covariance of the data in (14) like the one proposed in [21].

6.2 Numerical illustrations

To illustrate the asymptotic distributions of subspace-based parameter estimates,
we focus on the conventional and non-circular MUSIC-based DOA estimation al-
gorithm [2]. We consider that two uncorrelated circular or rectilinear sources of
equal power σ2

s , are impinging on an uniform linear array with m sensors for which
A = [a1,a2] with ak = (1, eiθk , . . . , ei(m−1)θk)T , where θk = π sinαk, with αk
are the DOAs relative to the normal of array broadside. The SNR is defined as SNR
= σ2

s/σ
2
n. The Jacobian Dmusic is given for the conventional MUSIC algorithm by

(see [2] for the non-circular MUSIC algorithm):

Dmusic =

(
dT1
dT2

)
with dTk =

−1

αk,k
(a
′

k

T
⊗ aHk + aTk ⊗ a

′

k

H
) (80)

and αk,k
def
= 2a

′H
k Πxa

′
k where a′k

def
= dak/dθk. In these circular and rectilinear

scenarios, the variances of the asymptotic distribution of the estimates of θ1 and θ2

are equal. Thus, we only consider the accuracy of source 1 in the sequel.
In this illustration, we choose the Student t-distribution that belongs to the sub-

class of the compound Gaussian distributions (See Chapter 1). It is parameterized
by the degree of freedom ν (0 < ν <∞) which controls the tails of the distribution
that are heavier than the Gaussian ones (obtained for ν →∞). This distribution has
first, second and fourth-order moments if, respectively ν > 1, ν > 2 and ν > 4 with
ϑSCM = 1 + κn = ν−2

ν−4 with ν > 4 and ϑML = σ1 = m+1+ν/2
m+ν/2 . We also remind

the reader that ϑTy = 1 + 1/m for Tyler’s M estimate (see (63)).
In the first setup, the sources si,k are circular Gaussian distributed and the noise

ni is circular complex Student t-distributed with m = 6 and the SCM is used.
Fig.1a and 1b show the theoretical ratio r def

= [RG,music

θ̂
]1,1/[R

S,music

θ̂
]1,1 (where

[RS,music

θ̂
] is given by (75)) of the variances of the asymptotic distribution of θ̂1

for Gaussian distributed and Student t-distributed noise for different values of the
parameter ν, respectively w.r.t. the DOA separation ∆θ = |θ2 − θ1|, and w.r.t. to
the SNR. We see that the performance deteriorates strongly for heavy-tailed noise
distributions (i.e., when ν → 4) w.r.t. the Gaussian distribution and that degradation
increases for small DOA separation and small SNR.

In the second setup, we assume that the measurement xi are circular complex
Student t-distributed. We compare now the variances of the asymptotic distribu-
tion of θ̂1 estimated from the SCM, ML and Tyler’s M covariance estimate and
SSCM, respectively denoted by [RSCM,music

θ̂
]1,1, [RML,music

θ̂
]1,1, [RTy,music

θ̂
]1,1

and [RSSCM,music

θ̂
]1,1. The first three variances are proportional to [RG,music

θ̂
]1,1
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Fig. 1 Theoretical ratio r def
= [RG,music

θ̂
]1,1/[R

S,music

θ̂
]1,1 for several values of ν.

given for xi circular Gaussian distributed (76), but [RSSCM,music

θ̂
]1,1 is no longer

proportional because

λ1 = mσ2
s

(
1 +

sin(m∆θ/2)

m sin(∆θ/2)

)
+ σ2

n 6= λ2 = mσ2
s

(
1− sin(m∆θ/2)

m sin(∆θ/2)

)
+ σ2

n.

(81)
Consequently the ratios r1

def
= [RML,music

θ̂
]1,1/[R

SCM,music

θ̂
]1,1 = ϑML/ϑSCM and

r2
def
= [RML,music

θ̂
]1,1/[R

Ty,music

θ̂
]1,1 = ϑML/ϑTy depend only on m and ν, in con-

trast to r3
def
= [RML,music

θ̂
]1,1/[R

SSCM,music

θ̂
]1,1 that also depend on ∆θ and SNR.

Fig.2a and 2b show the theoretical ratio r1, r2 and r3 for ν = 4.1 and two val-
ues of m, respectively w.r.t. the DOA separation ∆θ = |θ2 − θ1| where the array
SNR (ASNR) (defined by mσ2

s/σ
2
n [53, Chap.9]) is fixed at 10dB and w.r.t. to the

ASNR where ∆θ = |θ2 − θ1| = 0.2rd. We clearly see that the performance of the
SCM-based estimate is very poor unlike that of Tyler’s M -based estimate whose
performance is very close to that of the ML-based estimate for heavy-tailed noise
distributions. As for the SSCM-based estimate, its performance is degraded com-
pared to that of Tyler’s M -based estimate, and this degradation increases when the
ASNR increases and ∆θ decreases. This behavior is then explained by an increase
in the differences between eigenvalues λ1, λ2 and σ2

n consistently with the com-
ment following expression (48). But the SSCM-based estimate largely outperforms
the SCM-based estimate.

In the third setup, the measurement xi are complex non-circular Student t-
distributed where Rx̃ is given by (8) with (φ1, φ2) = (π3 ,

2π
3 )rd and m = 6. Fig.3a

and 3b compare the theoretical asymptotic variance 1
n [Rmusic

θ̂
]1,1 and MSEs of non-
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Fig. 2 Theoretical ratios r1
def
= [RML,music

θ̂
]1,1/[R

SCM,music

θ̂
]1,1, r2

def
=

[RML,music

θ̂
]1,1/[R

Ty,music

θ̂
]1,1 and r3

def
= [RML,music

θ̂
]1,1/[R

SSCM,music

θ̂
]1,1 for

two values of m for ν = 4.1.

circular MUSIC algorithms based on SCM, SSCM and Tyler’s M estimate versus
SNR. Note first that for ν ∈ [2, 4], we get ϑTy = 7/6 and ϑML ∈ [8/7, 9/8]. So the
asymptotic variance of Tyler’s M estimator and the CRB are too close to be distin-
guishable in Fig.3. These figures also show that the theoretical asymptotic variances
given by the non-circular MUSIC algorithms based on SSCM and Tyler’s M esti-
mates from (73), are very close to each other and to their MSE for a weak SNR and
for ν > 4. On the other hand, for 2 < ν ≤ 4, for which the fourth-order moments
of the data do not exist, and hence the asymptotic distribution of the non-circular
MUSIC estimates based on the SCM is not available, the associated MSE increases
strongly when ν approaches 2, for which the data are no longer of second-order.

7 Conclusion

The aim of this chapter was to unify the different performance analysis of subspace-
based algorithms in C-CES and NC-CES data models in the same framework. In
particular common closed-form expressions of the covariances of the asymptotic
distribution of different subspace projector estimates and of the associated subspace-
based parameter estimates have been given. This allows us to prove several invari-
ance properties and general inequalities between covariances of subspace-based pa-
rameter estimates including the stochastic and semiparametric CRB. Finally, note
that the presented asymptotic distributions have been obtained w.r.t. the number of
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Fig. 3 Theoretical asymptotic variances 1
n
[RSCM,music

θ̂
]1,1, 1

n
[RTy,music

θ̂
]1,1,

1
n
[RSSCM,music

θ̂
]1,1 and MSEs (with 2000 Monte Carlo runs) of non-circular MUSIC

algorithm , versus SNR where T = 500 and ∆θ = 0.2rd for either ν > 4 or 2 < ν ≤ 4 and
m = 6.

measurements. But the main shortcoming of these asymptotic distributions is that
they provide good approximations of the variances of the estimates only when the
sample size n is sufficiently large w.r.t. the data dimension m. However, when n
is comparable to m, it is necessary to use tools of random matrix theory to derive
new subspace-based algorithms and associated asymptotic distributions in the CES
framework.

References

1. Abed-Meraim, K., Hua, Y.: Blind identification of multi-input multi-output system using min-
imum noise subspace. IIEEE Trans. Signal Process. 45(1), 254–258 (1997)

2. Abeida, H., Delmas, J.P.: MUSIC-like estimation of direction of arrival for noncircular
sources. IEEE Trans. Signal Process. 54(7), 2678–2690 (2006)

3. Abeida, H., Delmas, J.P.: Robustness of subspace-based algorithms with respect to the distri-
bution of the noise: Application to DOA estimations. Signal Processing 164, 313–319 (2019)

4. Abeida, H., Delmas, J.P.: Slepian-Bangs formula and Cramér-Rao bound for circular and non-
circular complex elliptical symmetric distributions. IEEE Signal Processing Letters 26, 1561–
1565 (2019)

5. Abeida, H., Delmas, J.P.: Efficiency of subspace-based estimators for elliptical symmetric
distributions. Signal Processing 174 (2020)

6. Abeida, H., Delmas, J.P.: Performance of subspace-based algorithms associated with the sam-
ple sign covariance matrix. Digital Signal Processing 131 (2022)

7. Abeida, H., Delmas, J.P.: Slepian-Bangs formulas for parameterized density generator of el-
liptically symmetric distributions. Signal Processing 205 (2023)



26 Jean-Pierre Delmas and Habti Abeida

8. Bausson, S., Pascal, F., Forster, P., Ovarlez, J.P., Larzabal, P.: First- and second-order moments
of the normalized sample covariance matrix of spherically invariant random vectors. IEEE
Signal Processing Letters 14(6), 425–428 (2007)

9. Besson, O., Abramovich, Y.I.: On the Fisher information matrix for multivariate elliptically
contoured distributions. IEEE Signal Processing Letters 20(11), 1130–1133 (2013)

10. Conte, E., Lops, M., Ricci, G.: Adaptive radar detection in compound-gaussian clutter. In:
EUSIPCO, pp. 526–529. Edinburgh, Scotland (1994)

11. Delmas, J.P.: Asymptotic performance of second-order algorithms. IEEE Transactions Signal
Process. 50(1), 49–57 (2002)

12. Delmas, J.P.: Performance bounds and statistical analysis of DOA estimation. Academic Press
Library in Signal Processing (2013)

13. Delmas, J.P., Comon, P., Meurisse, Y.: Performance limits of alphabet diversities for FIR SISO
channel identification. IEEE Transactions Signal Process. 57(1), 73–82 (2009)

14. Di Claudio, E.D., Parisi, R., Jacovitti, G.: Space time MUSIC: consistent signal subspace
estimation for wideband sensor arrays. IEEE Trans. Signal Process. 66(10), 2685–2699 (2018)

15. Draskovic, G., Breloy, A., Pascal, F.: On the asymptotics of Maronna’s robust PCA. IEEE
Trans. Signal Process. 67(19), 4964–4975 (2019)

16. Durre, A., Tyler, D.E., Vogel, D.: On the eigenvalues of the spatial sign covariance matrix in
more than two dimensions. Statistics and Probability Letters 111, 80–85 (2016)

17. Fortunati, S., Gini, F., Greco, M.S., Zoubir, A.M.: Semiparametric stochastic CRB for DOA
estimation in elliptical data model. In: EUSIPCO. Coruña, Spain (2019)

18. Fortunati, S., Gini, F., Greco, M.S., Zoubir, A.M., Rangaswamy, M.: A fresh look at the semi-
parametric Cramér-Rao bound. In: EUSIPCO. Rome, Italy (2018)

19. Fortunati, S., Gini, F., Greco, M.S., Zoubir, A.M., Rangaswamy, M.: Semiparametric CRB
and Slepian-Bangs formulas for complex elliptically symmetric distributions. IEEE Trans.
Signal Process. 67(20), 5352–5364 (2019)

20. Fortunati, S., Gini, F., Greco, M.S., Zoubir, A.M., Rangaswamy, M.: Semiparametric inference
and lower bounds for real elliptically symmetric distributions. IEEE Trans. Signal Process.
67(1), 164–177 (2019)

21. Fortunati, S., Renaux, A., Pascal, F.: Robust semiparametric efficient estimators in complex
elliptically symmetric distributions. IEEE Trans. Signal Process. 68, 5001–5015 (2020)

22. Gini, F., Greco, M.V.: Covariance matrix estimation for CFAR detection in correlated heavy
tailed clutter. Signal Processing 82, 1847–1859 (2002)

23. Greco, M., Gini, F.: Cramer-Rao lower bounds on covariance matrix estimation for complex
elliptically symmetric distributions. IEEE Trans. Signal Process. 61, 6401–6409 (2013)

24. Haardt, M., Pesavento, M., Roemer, F., El Korso, M.N.: Subspace methods and exploitation of
special array structures. pp. 651–717. Academic Press Library in Signal Processing, Elsevier
(M. Viberg, ed.) (2014)

25. Huber, P.J.: The behavior of maximum likelihood estimates under nonstandard conditions.
Proc. of the Fifth Berkeley Symposium in Mathematical Statistics and Probability, Berkley:
University of California Press (1967)

26. Kato, T.: Perturbation Theory for Linear Operators. Springer Berlin (1995)
27. Kent, J.T.: Data analysis for shapes and images. J. Statist. Plann. Interference 57(2), 181–197

(1997)
28. Krim, H., Forster, P., Proakis, G.: Operator approach to performance analysis of root-music

and root-min-norm. EEE Trans. Signal Process. 40(7), 1687–1696 (1992)
29. Krim, H., Viberg, M.: Two decades of array signal processing research: The parametric ap-

proach. IEEE Signal Processing Mag. 13, 67–94 (1996)
30. Ladaycia, H., Abed-Meraim, K., Mokraoui, A., Belouchrani, A.: Efficient semi-blind subspace

channel estimation for MIMO-OFDM system. In: EUSIPCO. Rome, Italy (2018)
31. Lehmann, E.L.: Elements of large sample theory. Springer texts in statistics (2004)
32. Locantore, M., et al: Robust principle component analysis for functional data. Test (8), 1–73

(1999)



Title Suppressed Due to Excessive Length 27

33. Magyar, A.F.: The efficiencies of the spatial median and spatial sign covariance matrix for
elliptically symmetric distributions. Ph.D. thesis, New Brunswick, State university of New
Jersey (2012)

34. Magyar, A.F., Tyler, D.E.: The asymptotic inadmissibility of the spatial sign covariance matrix
for the elliptically symmetric distributions. Biometrika 101(3), 3673–688 (2014)

35. Mahot, M., Pascal, F., Forster, P., Ovarlez, J.P.: Asymptotic properties of robust complex co-
variance matrix estimates. IEEE Trans. Signal Process. 61(13), 3348–3356 (2013)

36. Maronna, R.: Robust M-estimators of multivariate location and scatter. The annals of statistics
4(1), 51–67 (1976)

37. Mecklenbräuker, C.F., Gerstoft, P., Ollila, E.: DOAM -estimation using sparse bayesian learn-
ing. In: ICASSP. Singapore (2022)

38. Moulines, E., Duhamel, P., Cardoso, J.F., Mayrargue, S.: Subspace methods for the blind iden-
tification FIR filters. IEEE Trans. Signal Process. 43(2), 516–525 (1995)

39. Ollila, E., Koivunen, V.: Robust antenna array processing using M-estimators of pseudo co-
variance. In: 14th lnternational Symposium on Personal lndoor and Mobile Radio Communi-
cation. Toronto, Canada (2003)

40. Ollila, E., Koivunen, V.: Influence function and asymptotic efficiency of scatter matrix based
array processors: Case MVDR beamformer. IEEE Trans. Signal Process. 57(1), 247–259
(2009)

41. Ollila, E., Oja, H., Croux, C.: The affine equivariant sign covariance matrix: asymptotic be-
havior and efficiencies. Journal of Multivariate Analysis 87, 328–355 (2003)

42. Ollila, E., Tyler, D.E., Koivunen, V., Poor, H.V.: Complex elliptically symmetric distributions:
Survey, new results and applications. IEEE Trans. Signal Process. 60(11), 5597–5625 (2012)

43. Paindaveine, D.: Elliptical symmetry. In book Wiley Statistics Reference Online (2014)
44. Pascal, F., Forster, P., Ovarlez, J.P., Larzabal, P.: Performance analysis of covariance matrix

estimates in impulsive noise. IEEE Trans. on Signal Process. 56(6), 2206–2216 (2008)
45. Porat, B., Friedlander, B.: Asymptotic accuracy of ARMA parameter estimation methods

based on sample covariances. In: 7th IFAC/IFORS Symposium on Identification and Sys-
tem Parameter Estimation, York. York (1985)

46. Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. An-
tennas Propagation 34, 276–280 (1986)

47. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. John Wiley and Sons
(1980)

48. Stoica, P., Friedlander, B., Söderström, T.: An approximate maximum approach to ARMA
spectral estimation. In: 24th IEEE Conference on Decision and Control. Fort Lauderdale
(1985)

49. Stoica, P., Nehorai, A.: Performances study of conditional and unconditional direction of ar-
rival estimation. IEEE Trans. Signal Process. 38(10), 1783–1795 (1990)

50. Tyler, D.E.: Radial estimates and the test for sphericity. Biometrika 69(2), 429 (1982)
51. Tyler, D.E.: A distribution-free M-estimator of multivariate scatter. The Annals of Statistics

15(1), 234–251 (1987)
52. Tyler, D.E.: Statistical analysis for the angular central gaussian distribution on the sphere.

Biometrika 74(3), 579–589 (1987)
53. Van Trees, H.L.: Optimum array processing Part IV of detection, estimation, and modulation

theory. Wiley Interscience, John Wiley and Sons, New York (2002)
54. Visuri, S., Koivunen, V., Oja, H.: Sign and rank covariance matrices. Journal of Statistical

Planning and Inference 91, 557–575 (2000)
55. Visuri, S., Oja, H., Koivunen, V.: Subspace-based direction of arrival estimation using non-

parametric statistics. IEEE Trans. Signal Process. 49(9), 2060–2073 (2001)
56. Zuo, W., Xin, J., Ohmori, H., Zheng, N., Sano, A.: Subspace-based algorithms for localiza-

tion and tracking of multiple near-field sources. IEEE Journal of selected topics in Signal
Processing 13(1) (2019)


