Toward Semitransparent PIN-type Perovskite Solar Cells with Sputtered ITO Electrode: Architecture and Process Optimizations - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue ACS Applied Energy Materials Année : 2023

Toward Semitransparent PIN-type Perovskite Solar Cells with Sputtered ITO Electrode: Architecture and Process Optimizations

Résumé

Perovskite materials are particularly appropriate for single-junction and tandem solar cells, for which prospects for very high efficiencies >30% are today realized. A suitable integration of an efficient transparent electrode into the front of the perovskite solar subcell is required to do so. Here, the compatibility of two sputtering recipes allowing the integration of a transparent ITO top electrode is evaluated. In the literature, the PIN-type architecture appears to be more promising experimentally for tandem applications. Our study was thus focused on a PIN-type semitransparent device. According to an initial stage of optimization of transporting layers P and N, the following architecture “Glass/ITO/TFB/FAxCs1–xPb(IyBr1–y)3/PC60BM/SnO2/ITO” was selected. In the present paper, it was shown that a spontaneous recovery of semitransparent perovskite cells’ performances can occur even after a possible damage during the sputtered ITO integration. This leads to semitransparent perovskite cells with around 11% power conversion efficiency, which has the potential of exceeding 25% in tandem association. In addition, with the help of a photoluminescence tool, the origin of initial flaws and the proof of recovery after 450 h of dark storage were demonstrate

Domaines

Matériaux
Fichier non déposé

Dates et versions

hal-04220016 , version 1 (27-09-2023)

Identifiants

Citer

Thibault Lemercier, Emilie Planès, Lionel Flandin, Solenn Berson, Lara Perrin. Toward Semitransparent PIN-type Perovskite Solar Cells with Sputtered ITO Electrode: Architecture and Process Optimizations. ACS Applied Energy Materials, 2023, 6 (19), pp.9938-9950. ⟨10.1021/acsaem.3c01478⟩. ⟨hal-04220016⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More