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NEUROSC I ENCE

Brain-machine interface learning is facilitated by
specific patterning of distributed cortical feedback
Aamir Abbasi†, Henri Lassagne†, Luc Estebanez†, Dorian Goueytes, Daniel E. Shulz‡,
Valerie Ego-Stengel‡*

Neuroprosthetics offer great hope for motor-impaired patients. One obstacle is that fine motor control requires
near-instantaneous, rich somatosensory feedback. Such distributed feedback may be recreated in a brain-
machine interface using distributed artificial stimulation across the cortical surface. Here, we hypothesized
that neuronal stimulation must be contiguous in its spatiotemporal dynamics to be efficiently integrated by
sensorimotor circuits. Using a closed-loop brain-machine interface, we trained head-fixed mice to control a
virtual cursor by modulating the activity of motor cortex neurons. We provided artificial feedback in real time
with distributed optogenetic stimulation patterns in the primary somatosensory cortex. Mice developed a
specific motor strategy and succeeded to learn the task only when the optogenetic feedback pattern was spa-
tially and temporally contiguous while it moved across the topography of the somatosensory cortex. These
results reveal spatiotemporal properties of the sensorimotor cortical integration that set constraints on the
design of neuroprosthetics.
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INTRODUCTION
Accurate limb control requires somatosensory feedback. For in-
stance, local peripheral anesthesia blocking afferent tactile sensation
in humans reduces dexterity and impairs fine motor control of the
hand (1, 2). Similarly, cortical inactivation of somatosensory cortex
in animals has profound effects on motor control (3, 4). The critical
role of somatosensory feedback has also been described in studies of
patients that suffer from severe tactile or proprioceptive deficits.
These patients learn to rely extensively on visual feedback, but
remain unable to manage normal motor control (5–7).

In the context of neuroprosthetics, proprioceptive and touch-
like feedback originating from the prosthesis improves control (8)
and enables texture-like percepts that cannot be obtained through
visual feedback alone (9). Such artificial touch-like information has
been provided through direct activation of the cerebral cortex via
electrical stimulation (8, 10–14) or optogenetics (15, 16). Beyond
the choice of the neuronal stimulation technology, an important
challenge is the design of the geometry and dynamics of the feed-
back patterns used to provide relevant sensory feedback
information.

The design of artificial sensory feedback is particularly critical
for replicating the functionality of a spatially distributed sense
such as touch (17). Temporal modulation of one single stimulation
channel, such as realized by optogenetic stimulation of the primary
somatosensory cortex (S1) in the brain-machine interface experi-
ments of Prsa et al. (16), cannot suffice in this case. Rather, many
independent channels of stimulation will be necessary to convey
tactile information arising from different peripheral locations.
Recent approaches have implemented simultaneous artificial stim-
ulations at multiple locations in the somatosensory cortex (18, 19).
However, it remains unclear whether any arbitrary feedback pattern

can be applied or whether the somatosensory-motor cortical areas
can only integrate efficiently inputs with a specific type of spatio-
temporal structure matched to the classical somatosensory topogra-
phy (20).

Here, we take advantage of the well-known whisker system of the
mouse to explore this question (21, 22). Anatomically, the represen-
tation of the mouse snout in S1 is organized into distinct columns,
called barrels, that each receive dominant inputs from one corre-
sponding whisker. These inputs combine with dense subcortical
and intracortical lateral connectivity (23, 24) and give rise to rich
encoding of complex multiwhisker features, which can be found
at the level of individual neurons as well as in the cortical map [sum-
marized in (25)]. Specifically, given the strong tuning of S1 neurons
to the direction of bar-like multiwhisker deflections on the snout
(26, 27), and their tuning to progressive movement of objects
across the whiskerpad (28), we hypothesized that stimulations that
generate spiking activity in spatiotemporally contiguous barrel
cortex locations may be more efficiently integrated by the mice.

We tested this hypothesis by training mice to control a virtual
cursor using the modulation of the activity of a few neurons,
called Master neurons, recorded in the whisker area of the
primary motor cortex (M1) (29). Mice received online one of five
different spatiotemporal patterns of cortical feedback generating
spiking activity in S1. These patterns ranged from a sweeping,
bar-like feedback where the barrels that were simultaneously or se-
quentially activated were all contiguous, up to a spatiotemporally
fully randomized pattern, also including a condition without feed-
back. The inputs were delivered on the surface of the cortex by pho-
tostimulation of subsets of always 5 barrels among the 22 most
caudal barrels. We focused on the impact of changes in the structure
of patterned stimulation, while the total surface area, intensity, and
temporal frequency of stimulation remained always constant. We
found that learning was largely dependent on the structure of the
feedback and was highest in the bar-like feedback condition,
where the photostimulated barrels are spatially and temporally con-
tiguous. Learning in this specific condition revealed voluntary
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control of the motor cortical activity. In particular, we found that
the neuronal activity that drove the virtual cursor became dominat-
ed by one of the Master neurons.

RESULTS
Patterned optogenetic feedback on S1 enables learning in
a brain-machine interface
We implanted a total of 16 mice with a chronic, closed-loop brain-
machine interface consisting of a head fixation bar, chronic silicon
tetrodes in layer 5 of whisker M1 (Fig. 1, A and B, and figs. S1 and
S2), and a chronic optical window over the S1 area (see Materials
and Methods and fig. S8).

After initial sessions where we habituated the mice to remain
head-fixed and lick for water, we trained the mice to solve a one-
dimensional cursor control task via the brain-machine interface.
To this aim, we sorted three “Master” neurons from the raw M1
neuronal activity (seven Master neurons in two mice, see Materials
and Methods). The activity of these neurons controlled the move-
ments of a virtual cursor during the sessions. Their summed firing
rate was measured every 10 ms and was smoothed with a 100-ms
kernel. It was then normalized by the firing rate distribution mea-
sured during a 3-min baseline at the start of each session. Last, we
discretized the normalized values into eight positions of a virtual
cursor (see Materials and Methods, Fig. 1C, and fig. S3).

Whenever the virtual cursor was in the rewardable position (Fig.
1, C to E, only in position 5, except in our first experiments; see

Materials and Methods), the mice could obtain a water droplet by
licking a port located next to their tongue. Water rewards could be
triggered only by licking on the spout. Therefore, in the absence of
licking while the virtual cursor was in the rewardable position, no
water was made available to the mouse. During the task, the current
position of the virtual cursor was provided online to the mice
through patterned optogenetic stimulation of S1 that triggered
local, low-latency spiking activity (see Materials and Methods).
The mice expressed constitutively channelrhodopsin in pyramidal
neurons (Emx-Cre;Ai27 strain) (30). The photostimulations were
dynamically updated, with an intrinsic hardware latency of 12 ± 5
ms from the firing of the Master neurons to the corresponding pho-
tostimulation update (15).

At each time point, the pattern of cortical illumination consisted
of focused spots that targeted five of the S1 barrels. We arranged
these spots to form a bar-like arrangement of barrel activations,
sweeping on barrels corresponding to caudal whiskers for position
1 of the virtual cursor, up to rostral whiskers for position 8 (Bar
feedback; Fig. 1, D and E).

A 30-min training session per day was delivered during 5 days.
To obtain more rewards, the mice had to increase the amount of
time during which the virtual cursor was in the rewardable position,
and/or improve their ability to lick in those time windows.

When Bar feedback was provided (Fig. 2A, top), the mice were
able to increase their performance within the five consecutive train-
ing sessions (example in Fig. 2B, top). We measured the perfor-
mance in terms of both reward frequency (number of rewards,

Fig. 1. Mice controlled a virtual cursor using whisker M1 neuronal activity while online optogenetic feedback was delivered to whisker S1. (A) General view of
the closed-loop interface. The mice were head-fixed. A chronic silicon probe in M1 readout spiking activity and a chronic optical window over S1 allowed delivery of a
photostimulation feedback. (B) Action potentials from 15 single units obtained during baseline activity in M1. The autocorrelograms (left), the spike shapes on the
tetrodes (middle), and the spiking activity in time (right) are shown for each single unit. Black, Master neurons that are selected to control the virtual cursor; gray, neigh-
boring neurons recorded simultaneously. (C) Example Master neuron activity and corresponding virtual cursor position. Top, time histograms of the three Master neuron
activities; middle, sum of their activity; bottom, position of the virtual cursor computed from the summed activity of the Master neurons. The virtual cursor must be in
position 5 for themouse to obtain a reward by licking. a.u., arbitrary units. Bin size, 10ms. (D) Schematic of the first photostimulation frame of the bar-like photoactivation
on the map of S1 barrels. P, posterior; M, medial. (E) Snapshots of the cortical surface illustrating bar-like photostimulation frames for each virtual cursor position. Only
when the virtual cursor was in position 5, licks were rewarded. Same scale as in (D).
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divided by the duration of the whole 30-min session) and propor-
tion of rewarded licks (measured over the course of the
whole session).

On the first session, the mice licked occasionally but the virtual
cursor was almost never in the rewardable position at the same time,
and the mice obtained almost no water. On the fifth day training
session, the same mice performed licking bouts at times when the
virtual cursor entered the rewardable position, and thus obtained
rewards more frequently. Overall, over the course of five training
sessions, the performance measured as the frequency of rewards
(licks per second) significantly increased more than 10-fold (from
0.014 to 0.19 rewards/s; orange curve of Fig. 2C; Mann-Whitney P =
0.0010, n = 10mice). In contrast, in the absence of optogenetic feed-
back (Fig. 2, A and B, bottom), the mice failed to reliably increase
the frequency of rewards despite the same amount of training (0.025
versus 0.022 rewards/s; gray curve in Fig. 2C; Mann-Whitney P =
0.48, n = 8mice among the 10 tested in the Bar feedback condition).

The increased reward frequency in the Bar feedback condition
was accompanied by an increase in the specificity of licking, mea-
sured by the percentage of licks that were rewarded among all licks
(Fig. 2D; Mann-Whitney P = 2.4 × 10−4). This indicated that the
mice did not simply increase their licking frequency irrespective
of the virtual cursor position to solve the task. We conclude from
these data that the optogenetic feedback to the barrel cortex was re-
quired for learning to control this brain-machine interface within
five training sessions.

Shuffling the spatiotemporal structure of the feedback
disrupts learning
We hypothesized that in these initial experiments, the specific spa-
tiotemporal structure of the Bar feedback helped the mice to control
the virtual cursor, whereas other types of feedback might not result
in similar fast task learning. To explore this question, we selected a
subset of three additional feedback conditions that degraded the
spatiotemporal structure of the original Bar feedback in controlled
ways (Fig. 3A).

In the Barrel shuffle condition, we degraded the spatial arrange-
ment of the Bar feedback by randomly shuffling the identity of the
photostimulated barrels, therefore removing the contiguity and
spatial alignment between simultaneously activated barrels, but pre-
serving temporal overlap of two to three barrels from one frame to
the next (six mice; see all photostimulation frames in fig. S4). In the
Frame shuffle condition, we preserved the spatial organization of
the photoactivated barrels within one frame, while in contrast, the
correspondence of the frames with the virtual cursor position was
shuffled. This rearrangement disrupted the overlap and contiguity
of the displayed frames during evolutions of the virtual cursor (six
mice). Last, in the Full shuffle, both the spatial position of the
barrels and the frame-to-cursor correspondence were randomized
(eight mice).

We trained mice to control the virtual cursor by M1 neuronal
activity while receiving these different feedback patterns. Apart
from the spatial content of the optogenetic frames themselves, train-
ing was identical to that implemented for the Bar feedback and No
feedback conditions. In these experiments, the mice remained

Fig. 2. Sensory feedback to the whisker part of S1 enhances task performance. (A) Schematic of the Bar feedback and No feedback conditions. (B) Position of the
virtual cursor computed from themerged activity of the Master neurons, in the first versus the fifth training session of one mouse, in the Bar feedback condition (top) and
in the No feedback condition (bottom) (100 s displayed). Yellow background, rewardable position; black dots, lick times; yellow dots, rewarded lick times. (C) Performance
quantified by the average frequency of rewards per session across training, comparing the Bar feedback condition (orange, 10 mice) and the No feedback condition (gray,
8 mice). Shaded backgrounds: ±SEM. *P < 0.05 and ***P < 0.001, nonparametric Mann-Whitney tests. (D) Same as (C) for the specificity of licking, quantified as the
proportion of rewarded licks among all licks, across behavioral sessions.
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actively engaged. They licked and obtained rewards throughout all
training sessions (fig. S5A). However, in contrast to the Bar feed-
back condition, we found no significant increase in mice perfor-
mance across sessions (Fig. 3B). In the Barrel shuffle condition,
we noticed a trend toward an increase in the reward frequency
and in the percentage of rewarded licks, but it did not reach signifi-
cance (Fig. 3B; reward frequency: Mann-Whitney P = 0.064; % re-
warded licks, P = 0.132), although four of six mice did show a
significant increase in the percentage of rewarded licks (Fig. 3C).
Note that the increase in performance revealed in the Bar feedback
condition was still significant when the number ofmicewas reduced
to six as in Barrel or Frame shuffle feedback conditions (Mann-
Whitney P < 0.05 for any of the 210 possible combinations), exclud-
ing a mere effect of sample size.

Through these experiments, we consecutively trained mice to
learn the task withmultiple different feedback structures. Therefore,
the order of the training sequence might have had an impact on the
learning performance. We explored this potential effect with two
groups of three mice, which followed consecutively training in the
No feedback, Full shuffle, and Bar feedback conditions, in two dif-
ferent orders (fig. S5B). Irrespective of the protocol training order,
significant learning was observed only in the Bar feedback condi-
tion (Mann-Whitney P = 0.04; see also table S1). In addition, a
two-way analysis of variance (ANOVA) analysis of the impact of
the feedback condition and the order of training revealed that the
selected feedback contributes significantly to the observed perfor-
mance variation (P = 3.2 × 10−5, sum of square = 0.039) but the
order of training does not (P = 0.24, sum of square = 0.0011). We
conclude that the feedback identity dominates over the order of
training. Our data also indicate that the Bar feedback is required
not only for learning but also for postlearning performance (fig.
S5C). Overall, we found that the spatiotemporal structure of the

feedback affected heavily the behavioral performance of the mice
and that the Bar feedback enabled fastest learning. Note that learn-
ing was only visible when looking at several consecutive training
sessions, as we did not find evidence of within-session performance
improvements (fig. S5D).

Mice learn to bring the virtual cursor in the rewardable
position dynamically
Next, we asked whichmechanisms could underlie the ability of mice
to improve their performance over the five training sessions. Mice
could adapt their M1 activity to bring the virtual cursor more often
and/or longer in the rewardable zone, they could adapt their licking
behavior to take advantage of reward opportunities, or they could
adapt both M1 activity and licking behavior synchronously. We
started by investigating possible changes in the dynamics of the
virtual cursor. We analyzed these dynamics at different timescales,
focusing on how it changes from the first to the fifth training
session. First, we measured the average time spent in the rewardable
position across the whole duration of a session (Fig. 4A). We found
that it increased significantly in the Bar feedback condition (Mann-
Whitney P = 0.034), in contrast to all other tested feedback condi-
tions. In addition, in this feedback condition, we computed offline
the virtual cursor positions corresponding to the 3-min baseline
firing rate, and we found that only in session 5, it was significantly
smaller than during the task. These observations confirm that in the
Bar feedback condition, the mice learned to bring the cursor in the
rewardable position more often. When we plotted the average
virtual cursor position in time, first on a long timescale, we
noticed that the curves for sessions 1 and 5 started at the same
level, followed by an upward shift 10 to 15 s after the start of the
photostimulation in session 5 (Fig. 4B; cursor position significantly

Fig. 3. Disrupting the spatiotemporal structure of the Bar feedback impairs learning. (A) Spatial and temporal structure of the feedback across frames in the four
tested conditions. Horizontal arrows, barrel identity permutation to generate the Barrel shuffle from the Bar feedback; vertical arrows, frame identity permutation to
generate the Frame shuffle from the Bar feedback; yellow highlight, rewardable virtual cursor position. (B) Reward frequency (top) and percentage of rewarded licks
(bottom) of the mice over five training sessions. ***P < 0.001, nonparametric Mann-Whitney tests. n.s., not significant. Shaded backgrounds: ±SEM. Bar feedback and No
feedback data are the same as in Fig. 2. (C) Difference between the proportion of rewarded licks of the mice between the first versus fifth training session. Each point
represents a mouse (arbitrary order). Filled point: bootstrap significance test, P < 0.05. Colors refer to the feedback conditions defined in (A).
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higher in 15 to 100 s versus 0 to 10 s; Wilcoxon test P = 0.014, only
for the Bar feedback condition).

These delayed dynamics rule out the hypothesis that photosti-
mulation could have nonspecifically increased the overall activity,
and consequently the virtual cursor position. We then investigated
whether there was a dynamical control of the virtual cursor on a
faster timescale leading to rewards. We observed that in the Bar
feedback condition, and only in this condition, the mean cursor po-
sition was significantly larger after training than on session 1, up to
1.5 s around reward occurrence (Mann-Whitney P = 0.0044 within
0.5 s of the reward, P = 0.016 in the time window 0.5 to 1.5 s around
reward; Fig. 4, C and D). In the same time windows, the virtual

cursor spent a proportion of time in the rewardable position that
was significantly larger after training compared to before (Mann-
Whitney P = 0.0031 within 0.5 s of the reward, and P = 0.045 in
the time window 0.5 to 1.5 s around reward; Fig. 4E). There were
no significant changes in these measures in epochs further away
from rewards (1.5 to 5 s and >5 s from any reward; Mann-
Whitney P > 0.05), indicating that there was not a systematic addi-
tive shift in the virtual cursor position throughout the session.
Rather, the cursor moved by numerous fast explorations, which typ-
ically involved a large range of the eight possible positions. In the
Bar feedback condition after training, the mice spent significantly
more time in virtual cursor positions above the rewardable one (po-
sitions 6 to 8) and visited significantly more virtual cursor positions
around reward times (detailed in fig. S11). Note that with perfectly
accurate control, the mice should not need to visit positions above
the rewardable position 5. Nonetheless, all eight patterns of the Bar
feedback could have contributed to the observed performance.
Overall, these results suggest that during training, the mice
learned to manipulate the virtual cursor and bring it in the reward-
able position more often, thus creating more opportunities for en-
hancing their performance by well-timed licks.

One Master neuron dominates control of the virtual cursor
By design, changes in the dynamics of the virtual cursor are a direct
consequence of changes in the underlying Master neuron activity,
albeit in a nonlinear way tailored to each mouse extracellular re-
cording (see Materials and Methods and fig. S3). We verified the
changes in firing rate underlying the observed changes in virtual
cursor trajectory. In particular, because the activity of several
Master neurons was summed to drive the cursor, we wondered
whether all Master neurons contributed equally, or if instead
motor control of the virtual cursor was dominated by a subset of
the Master neurons. To investigate this question, we sorted the
Master neurons as a function of their contribution to the virtual
cursor position at reward time, and we looked at the evolution of
their spiking activity over training. We termed “dominant” the
Master neuron that on average fired the most at reward time, in a
±100-ms window. Note that in the population analysis of Master
neuron dominance, we focused on the three neurons that contrib-
uted the most to the summedMaster firing rate even if, in two mice,
up to seven Master neurons were involved in the control of the task.

First, we checked the firing rate of Master neurons at the time-
scale of a whole session. Right at photostimulation onset, there was
no detectable change of activity of Master neurons (Fig. 5A and fig.
S9, B and C). This further indicates the absence of an immediate
photostimulation effect, in agreement with what we had observed
on the virtual cursor position (Fig. 4B; see also fig. S9A).

We noticed that in the baseline period before photostimulation
start, the dominant Master neurons showed a markedly larger
average firing rate in session 5 compared to session 1 in the Bar feed-
back condition (Fig. 5A). Note that this persistent elevation of firing
before photostimulation is, by construction, normalized away by the
control algorithm and thus does not contribute to changes in virtual
cursor position (see Materials and Methods). This explains why the
mean position was unchanged right at the beginning of session 5
compared to session 1 (Fig. 4B). After photostimulation, when av-
eraged across the whole duration of session 5, the firing rate of the
dominant Master neuron stayed elevated. It was significantly larger
after training compared to before (Mann-Whitney P = 0.011) and

Fig. 4. Bar feedback enables the mice to actively control the virtual cursor
position so that they spend more time in the rewardable position. (A) Propor-
tion of time spent in the rewardable virtual cursor position (position 5) over the
whole session duration. (B) Average virtual cursor position at the onset of the
session, in the first versus last training session. Vertical line: start of the session,
which is also the start of the photostimulation. (C) Average virtual cursor trajectory,
aligned to the reward times, in the five feedback conditions. Black, first session;
colors, session 5. (D) Average virtual cursor position, in four time windows
around reward: (I) more than 5 s away from any reward, (II) 1.5 to 5 s away, (III)
0.5 to 1.5 s away, and (IV) within 0.5 s of a reward. Mann-Whitney, *P < 0.05 and
**P < 0.01. (E) Average percentage of time spent in the rewardable position, in the
four time windows around reward defined in (D). For all panels: Light background:
SEM across mice. Mann-Whitney, *P < 0.05 and **P < 0.01. Colors refer to the feed-
back conditions defined in Fig. 3.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Abbasi et al., Sci. Adv. 9, eadh1328 (2023) 22 September 2023 5 of 15



larger than the firing rate of nondominant Master neurons (Fig. 5B;
Mann-Whitney P = 0.017; see also fig. S6E). This increase was spe-
cific to the Bar feedback condition. Thus, Bar feedback training re-
sulted in an elevation of firing not only in the baseline period but
also on the long timescale of the session duration. On the contrary,
nondominant Master neurons (Fig. 5, A and B) and neighbor
neurons (fig. S6D) showed little change in activity upon behavioral
training. In parallel, we found a significant increase in the SD of the
firing rate of the dominant Master neurons (detailed in fig. S6F),
confirming the specificity of their modulation compared to non-
dominant neurons. We did not find that Master neurons with a
high firing rate in session 1 were the ones that increased their
firing rate the most in session 5 (fig. S6C, also shown for neighbor
neurons). The same analysis showed that four of the six dominant
Master neurons that we could track across the five training sessions
were not dominant in all five training sessions. We hypothesize that

this is due to the fact that the dominant Master neuron had not yet
fully emerged during the first 3 training sessions.

Next, we asked how the dominant Master neurons modulated
their activity on a shorter timescale around rewards, similar to the
way we looked previously at the virtual cursor position (Fig. 4C).
Figure 5C shows the firing rate of individual Master neurons
around reward times, for sessions 1 and 5 of one mouse trained
in the Bar feedback condition. After training, one of the Master
neurons showed a much higher firing rate with a prominent peak
around the reward time. Population averages across mice confirm
this tendency for the dominant neuron in the pool of Master
neurons, whereas little changes were observed on nondominant
neurons (Fig. 5D). Again, this was specific to the Bar feedback con-
dition, although a more moderate trend was also noted for the
Barrel shuffle condition. We quantified the firing rate in several
time windows around rewards (similar to Fig. 4D for the virtual

Fig. 5. Emergence of a dominant Master neuron in the Bar feedback condition.
(A) Firing rate at the onset of the session, for dominant (top) and nondominant
(bottom) Master neurons in the first (black) versus last training session (colors). (B)
Mean firing rate of the dominant and nondominant Master neurons. In (B) and (C),
color saturation decreases from largest contributor to the firing rate at reward time
(dominant Master neuron, bright color) to the second and third largest contributors
(nondominant Master neurons, dark colors). Shaded backgrounds: ±SEM across mice.
(C) Mouse case study of the time histogram of the activity of Master neurons around
rewards, in the Bar feedback condition, sorted from the weakest (dark brown) to the
dominant neuron (saturated orange) at the time of the reward, in the first (left) versus
the fifth (right) training sessions. (D) Time histogram of the activity of Master neurons
around rewards, in the five tested feedback conditions. Session 1 is shown in black,
and session 5 is shown in saturated colors. Continuous line, dominant Master neuron;
dashed line, average of nondominant neurons. (E) Average firing rate of dominant
(continuous line) and nondominant (dashed line) Master neurons in the first (black)
versus the last training session (colors), measured in the same timewindows as in Fig.
5: (I) more than 5 s away from any reward, (II) 1.5 to 5 s away, (III) 0.5 to 1.5 s away, and
(IV) within 0.5 s of a reward. For all panels: Shaded backgrounds: ±SEM across mice.
Mann-Whitney, *P < 0.05; **P < 0.01. Colors refer to the feedback conditions defined
in Fig. 3.
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cursor position). The firing rate of dominant Master neurons
around reward times in the Bar feedback condition showed a
strong and significant increase after training compared to before
(Fig. 5E). This increase was specific to the dominant Master
neurons and was highest around reward times (Mann-Whitney P
< 0.01). It was less pronounced but still significant more than 5 s
away from any reward (Mann-Whitney P = 0.04), an observation
that we relate to the elevated firing rate in the baseline period
already before the task started (Fig. 5A). We observed a similar
but more limited phenomenon in the Barrel shuffle condition
(Fig. 5E). Overall, we conclude that in the Bar feedback, and to a
lesser extent in the Barrel shuffle, the mice learned to control the
virtual cursor position mostly by increasing the activity of one
Master neuron in bursts of elevated firing around lick times, en-
abling them to obtain rewards.

Mice learn to lick during time windows of reward
availability
Beyond the observed changes inM1 neuronal activity, the mice may
also optimize their licking strategy to obtain more rewards. When
looking at the overall licking statistics in the first 10 min of the ses-
sions, during which the mice were most active, we found that over
the course of training, they increased significantly their licking rate
in the Bar feedback condition (Fig. 6A, top; Wilcoxon P = 0.037), as
well as in the Full shuffle condition (Wilcoxon P = 0.023). In addi-
tion, specifically in the Bar feedback condition, the SD of the licking
rate (measured in consecutive 1-s bins) increased significantly (Fig.
6A, middle; Wilcoxon P = 0.0137), and the mean interval between

consecutive lick bursts decreased significantly (Fig. 6A, bottom;
Wilcoxon P = 0.0097).

These results indicate that the mice learned to lick overall more
and in closely spaced bursts, thus increasing their chances of obtain-
ing rewards. These changes in licking statistics may be accompanied
by an increased coordination of licking with the entries of the
virtual cursor in the rewardable position, as it would further
ensure larger amounts of rewards. To explore this hypothesis,
given the tendency of mice to lick in long rhythmic bursts, we
focused on the onsets of licking bouts (Fig. 6B). We computed
the proportion of lick burst onsets that fell within ±100 ms of the
virtual cursor entry in the rewardable position, which is approxi-
mately the duration of a tongue licking cycle. We found that this
proportion increased significantly only in the Bar feedback condi-
tion (Fig. 6, C and D; Mann-Whitney P = 0.0028) and that a similar,
nonsignificant trend was visible in the Barrel shuffle condition. We
conclude from these data that the mice did learn to modify their
licking patterns and adjust them to the virtual cursor dynamics.

Playback experiments confirm the role of active motor
control for task performance
Last, to further explore the role of motor control on task perfor-
mance, we performed playback experiments on three mice that
had already learnt the full closed-loop task with the Bar feedback
protocol. The mice received the same optogenetic stimulation se-
quence as in their last closed-loop session with Bar feedback, and
they could still receive reward by licking when the virtual cursor
was in the rewardable position. However, the virtual cursor dynam-
ics was now independent from the ongoing activity of motor cortex

Fig. 6. Evolution of licking with learning and emergence of a synchronization between licking and entries of the virtual cursor in the rewardable position. (A)
Evolution of the licking pattern between the first and fifth training session in the first 10 min of the task. On each graph, one point represents one mouse. Top, change in
the licking frequency; middle, change in the SD of the licking frequency measured in 1-s bins; bottom, change in the delay between two bursts. Wilcoxon test, *P < 0.05
and **P < 0.01. (B) Example of the virtual cursor position as a function of time. Gray open circles, licks; black dots, onsets of lick bursts. Gray dots on virtual cursor position 5
indicate entries of the virtual cursor in the rewardable position. To avoid confusion, rewarded licks are not highlighted. (C) Population average time histograms of the
number of entries of the virtual cursor in the rewardable position around all lick burst onsets, for the Bar feedback condition, across the five training sessions. Baseline
levels were shifted upward for clarity. (D) Percentage of lick bursts that are synchronous (within ±100ms) with entry of the virtual cursor in the rewardable position. Mann-
Whitney, **P < 0.01. For all panels: Shaded backgrounds: ±SEM. Colors refer to the feedback conditions defined in Fig. 3.
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neurons. In other words, the animals were relieved of the motor
control aspect of the full task (Fig. 7, A and B). Themedian frequen-
cy of rewards dropped significantly in the playback condition
(Kruskal-Wallis, P = 0.0495; Fig. 7C) even though, by design, the
virtual cursor spent as much time in the rewardable position as
during the Bar feedback last session. Analysis of the synchrony
between licking onsets and the entries of the virtual cursor in the
rewardable position revealed that these events were not coordinated
anymore (Fig. 7D). There was no correlation with whisking either
(fig. S10).

To confirm that active motor control is necessary not only for
task execution but also for learning, we trained three naïve mice
to perform the playback task during five sessions. Consistent with
the previous playback result, we found that the mice failed to in-
crease significantly their performance during this playback training
(fig. S7). Overall, these playback experiments demonstrate that in
the Bar feedback condition, the mice did not only respond to
sensory cortex stimuli by licking, but instead actively coordinated
their licking with timely modulations of the cursor position.

DISCUSSION
In this study, we demonstrate that in the context of improving
motor control of a brain-machine interface, the integration of
direct cortical feedback can be heavily affected by its spatiotemporal
organization. Specifically, we trained mice in a task for which the

brain-machine interface could be used to move a virtual cursor
into a rewardable zone. We found that the performance after train-
ing was highest when feedback provided the position of the cursor
in the form of a bar-like photostimulation across the cortical surface
(Bar feedback condition). In contrast, we found that when we dis-
rupted the spatial contiguity of simultaneously stimulated barrels
(Barrel shuffle), learning was clearly reduced, and when we disrupt-
ed the continuity of the bar in time (Frame shuffle), it went down to
levels observed without feedback.

This difference in performance was associated with a reorgani-
zation of the ongoing neuronal activity that was specific to the Bar
feedback condition. More precisely, one of the M1 Master neurons
driving the cursor became dominant in terms of activity levels and
led the virtual cursor to spendmore time in the rewardable position,
thereby increasing the opportunity for rewards. In parallel, licks
were more synchronized with entries in the rewarded position.

A fast bidirectional brain-machine interface setup for
the mouse
Current research aimed at integrating somatosensory feedback in a
cortical brain-machine interface relies on invasive techniques of re-
cording and stimulation in awake behaving animals. Pioneering
teams are developing prototypes in nonhuman primates as well as
human participants (8, 9). Here, we have developed a brain-
machine interface tailored to the mouse whisker system, a sensori-
motor loop that has been described in a comprehensive way, from

Fig. 7. Lick timing is not accurate in a playback condition. (A) Playback configuration with chronic extracellular recording in M1 and Bar feedback optogenetic stim-
ulation on barrels in S1. Previously acquired sequences of cursor positions are played back, independent fromM1 firing rates. As in closed-loop sessions, reward delivery is
contingent on synchronous (i) licking and (ii) presence of the virtual cursor in the rewardable position. (B) Top: Histogram of Master neuron activity during a playback
session (30 s shown). Bottom: Time course of the virtual cursor position, disconnected from theMaster firing. Below: Licks and rewarded licks during the same interval. Bin
size, 10 ms. (C) Frequency of rewards during the last session with closed-loop Bar feedback (session 6 after the standard five training sessions; table S1) and the session
with open-loop Bar playback that followed on the next day. Kruskal-Wallis, *P < 0.05. Gray background: SEM. n = 3mice. (D) Histogram of lick burst onsets, with respect to
the times of entry of the virtual cursor in the rewardable position around the onset of lick bursts, for the last session with closed-loop Bar feedback (left) versus the session
with open-loop Bar playback (right), averaged for the three tested mice.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Abbasi et al., Sci. Adv. 9, eadh1328 (2023) 22 September 2023 8 of 15



the cellular to the network level (21, 22). This approach has allowed
us to take advantage of recent optogenetic tools available for these
animals. We could activate excitatory neurons in the cortex accord-
ing to spatial light patterns that were adapted, in each individual
mouse, to the topographic map of the whiskers present in S1. Fur-
thermore, we benefited from our low-latency (12 ± 5 ms) closed-
loop design, which enables the delivery of feedback in a dynamic
way so that the ongoing activity of the Master neurons controlled
online the stimulation frames. A low-latency somatosensory feed-
back could be an important parameter in the context of sensorimo-
tor learning (31).

To provide distributed feedback to the mice, we chose to gener-
ate illumination patches above individual S1 barrels, rather than try
to mimic the broad spread of activity that is generated by multiple
whisker stimulation sequences (27). The rationale has been to
mimic activation patterns of multiple lemniscal thalamic inputs,
which are known to project into barrel columns of corresponding
whiskers, and which should then trigger broader activation of the
cortex through intracortical connectivity, both within and across
layers (22). We hypothesize that this recruitment of intracortical
mechanisms is key to the similarity between artificial and physio-
logical stimulation. We certainly acknowledge that substantial dif-
ferences remain between the optogenetic activation and
physiological activation of the barrel cortex. In particular, we did
not attempt to reproduce nonlemniscal thalamic input patterns,
which do not follow a clear topographical mapping at the surface
of the cortex, and which are thus difficult to activate specifically.

Impact of somatosensory feedback on neuroprosthetic
learning
In our experiments, in the absence of optogenetic feedback, the
mice failed to learn the task. In contrast, a few previous studies
have suggested that brain-machine interface learning could take
place without any feedback of the conditioned neuronal activity
to the animal (32, 33). Several differences could explain these seem-
ingly opposite results. First, in those studies, the animals received
the reward automatically once the neuronal activity reached the pre-
defined threshold. In contrast, in our task, the mice have to learn
also to lick to obtain the reward. This combination of firing rate
modulation and required licking probably makes the task much
more challenging. Second, in our study, movements of the virtual
cursor occurred on average every 50 ms so that temporal precision
of licking was important. This must also have been challenging, par-
ticularly in the absence of any feedback. These reasons could explain
the lack of learning that we report in the No feedback condition.

Our study shows that direct cortical feedback can enable the
learning of a sensorimotor task in these conditions, pending that
feedback with an adequate spatiotemporal structure is provided.
This is consistent with recent work exploring cortical somatosen-
sory closed-loop brain-machine interfaces in humans with intra-
cortical electrical stimulations (8), as well as with previous work
emphasizing the prevalent role of ongoing sensory feedback in
motor learning (31, 34).

Our experimental design did not incorporate a physical imple-
mentation of a device to be moved by the animal toward a target.
Instead, we computed the position of a virtual cursor and used it to
select the next frame of the ongoing feedback. This choice ensured
that the optogenetic feedback delivered to S1 was the sole source of
sensory information about the virtual cursor position available to

the animal during the task. This is in contrast to most previous
closed-loop brain-machine interface studies, in which ongoing
visual feedback of the neuroprosthesis was always available for ad-
justing motor control in addition to cortical stimulation (8, 9).

Motor control of the virtual cursor
In this study, direct demonstration of voluntary motor control was
challenging because virtual cursor movements were generated con-
tinuously rather than triggered. Still, we found several indications of
active motor control of the virtual cursor, which were specific to the
Bar feedback condition and, to a lesser extent, to the Barrel shuffle
condition. In particular, only in this feedback condition did the
virtual cursor position shift toward the position of the rewarded
frame, as the mouse prepared to collect rewards in the next
seconds (Fig. 4, C and D, and fig. S11). In addition, analysis of
the neuronal activity of the Master neurons underlying the virtual
cursor position revealed that throughout learning sessions, neuro-
nal activity evolved toward the dominance of a single one of the
Master neurons, in particular during the modulations of activity
toward the rewarded position. This rearrangement took place
only in the Bar feedback condition (Fig. 5). Last, during additional
playback sessions at the end of a sequence of training in the Bar
feedback condition, the mice appeared unable to maintain the per-
formance level they attained during previous closed-loop training
sessions, indicating that active motor control was required for per-
formance (Fig. 7).

Overall, we conclude from our data that in the Bar feedback con-
dition, the mice did rely on the active modulation of the Master
neurons to collect rewards. The lack of such motor control in
other feedback conditions illustrates the impact of the spatiotempo-
ral structure of our distributed feedback, not only for sensory infor-
mation processing but also more generally for sensorimotor
integration of the feedback.

Regarding the playback experiments, we should point out that in
one study, after operant conditioning of motor cortex neurons
based on a single barrel S1 optogenetic feedback, mice were able
to efficiently gather rewards during playback training (16). Similar-
ly, we have previously shown that in our experimental setting, mice
were able to detect a static, single frame of the Bar feedback to obtain
rewards (15) or to track a continuous, slowly rotating bar (35). We
hypothesize that what makes the playback condition here (Fig. 7)
comparatively more challenging than during these previous exper-
iments is that it combined rapidly changing feedback with a distrib-
uted, more complex spatial pattern. In addition, a low-latency
licking was necessary when the cursor entered the rewardable
frame. All these challenges meant that to be successful, the mice
had to anticipate the entrance in the rewardable frame, as the
cursor could escape the rewarded position within milliseconds. In
contrast to the playback condition, we hypothesize that in the
closed-loop Bar feedback condition, the motor control of the
virtual cursor provided the degree of rewarded frame anticipation
that allowed timely licks and an increase in the proportion of re-
warded licks. Overall, it appears that due to the fast-paced nature
of the required behavior, the mice could only achieve accurate
licking by combining motor control of the virtual cursor with
online cursor feedback.
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Pattern contiguity affects learning and performance
So far, the contribution of cortical maps to sensory information
processing in general has remained unclear (36) despite the thor-
ough descriptions of the maps in primary sensory cortices. In the
case of the barrel cortex, several of the functional properties
encoded by its neurons are spatially organized inside the map
beyond spatial topography (37–40), including some multiwhisker
features (27, 38). This topographical organization provides a rich
anatomical substrate for nonlinear spatiotemporal integration in
S1, which results in enhanced or suppressed responses to specific
distributed input patterns (41). However, so far, these feature ex-
traction properties have not been causally linked to behavior,
except recently for the somatotopy itself in the context of a discrim-
ination task (35).

Here, we show that the spatiotemporal organization of distribu-
ted feedback at the surface of a topographical cortex can have a large
impact on motor control. Specifically, we found that the mice were
able to learn to control a virtual cursor using an S1 bar-like feedback
that featured contiguity of the activated barrels both within a given
frame and across consecutive frames.

When across-frames contiguity was removed, in the Frame
shuffle feedback condition and also the Full shuffle condition, we
found no sign of learning, as in the absence of feedback altogether.
We hypothesize that the lack of temporal continuity across consec-
utive feedback frames may have prevented the anticipation of up-
coming cursor movements. Given our fast-paced cursor
positioning task, this translated in an inability to learn the task.
This hypothesis is consistent with the findings in our previous
open-loop discrimination task (35).

However, when only within-frame contiguity was removed
(Barrel shuffle condition), learning was at intermediate levels. The
mice were able to exploit the feedback to some degree but lacked the
accuracy that is required to synchronize virtual cursor and licking
efficiently. These results on the relevance of both the spatial and the
temporal structure of intracortical feedback suggest that the sensor-
imotor task of driving the virtual cursor to the target draws upon
preexisting features of S1-M1 microcircuits, linked to their topo-
graphic organization (42). When the contiguity of the feedback
was disrupted, the functional architecture of the cortex may not
have been adapted anymore to the novel sensorimotor computa-
tions that were required to solve the task. Thus, learning to
extract the relevant virtual cursor information from the different
shuffled conditions may require multiple additional training ses-
sions, if indeed the required functional connections can be recruited
from the existing anatomical scaffold (43). Previous work does
suggest that learning a spatially shuffled cortical stimulation is pos-
sible if training spans multiple training sessions, with the assistance
of visual feedback (19, 44). This seems consistent with the signs of
learning that we did observe in the Barrel shuffle condition (Fig. 3, B
and C).

Neuronal substrate of the selectivity to distributed patterns
In previous studies, we performed control experiments during
which we recorded activity in S1 during bar-like stimulations
[figure S1 in (35)] and single-spot photostimulations [figure 4 in
(15)]. These experiments suggest that there is no artifactual, over-
sized response of S1 neurons to the Bar feedback patterns compared
to single-spot photostimulations.

However, beyond this basic control, it is unclear whether the spe-
cific success of the Bar feedback condition in our sensorimotor task
entirely stems from the inter-area connectivity in the sensorimotor
loop or whether it builds mostly on processing that would take place
in the local microcircuits of S1. Several recent studies have used two-
photon imaging to measure the activity of neurons in primary
sensory areas during detection of a spot-like optogenetic photosti-
mulation. One study showed that over the course of training ses-
sions, an optogenetic spot stimulation in S1 increasingly engaged
the touch-related neuronal assemblies in this area, disproportional-
ly more than the whisking-related neurons (45). In another study
focusing on the primary visual cortex (46), neurons recorded in
the cortical area below the stimulation spot developed a specific
tuning for the single spot compared to other stimulation patterns.

On the basis of these findings, we hypothesize that part of the
selectivity to our Bar feedback patterns could arise from plasticity
internal to the S1 microcircuit, accompanied by other changes in
the S1-to-M1 connectivity. Additional experiments will be required
to tease out these mechanisms more precisely for such complex,
spatially and temporally structured photostimulations across
several training sessions.

Plasticity of sensory and motor cortical circuits
Similar to classical skill learning, brain-machine interface learning
is thought to engage plasticity of neuronal circuits, including
Hebbian plasticity of neuronal connections. In our study, because
of the direct interfacing with the somatosensory cortex on the
input side and the motor cortex on the output side, we expect
changes in connectivity within and between these cortical areas,
in addition to changes in more distant areas (47). In S1, as discussed
above, the optogenetic feedback patterns that were most efficient
were those exhibiting most spatiotemporal contiguity. This brings
to mind the observation that, at the peripheral level, spontaneous
behavior results in multiwhisker patterns with marked contiguity
in spatial and temporal properties. Awake behaving rodents actively
generate deflections predominantly in sequences of several nearest-
neighbor whiskers, with a predominance of rostrocaudal sweeps,
while noncontiguous sequences are much less frequent (48). Result-
ing primary sensory cortical activity patterns are thus more likely to
resemble those evoked by optogenetic Bar feedback patterns than by
shuffled patterns. In turn, naturally coactive cells most likely devel-
oped strong connections between themselves and onto downstream
neurons, shaping the neuronal circuitry within S1 and from S1-to-
M1 to encode behaviorally relevant sensory features (26–28). Such
plasticity mechanisms during the establishment of whisker percep-
tion could explain why in our study, naturalistic feedback such as
the Bar feedback was more efficient for learning the closed-loop
S1-to-M1 task. Because the mice did not adapt to shuffled feedback
patterns on the timescale of the experiments, our study suggests that
plasticity mechanisms within S1 may not have contributed substan-
tially during task learning.

By contrast, on the motor side, we observed that the animals
were able to readily adapt to the constraints that were present, on
the timescale of the experiments. Consistent with previous studies
(16, 29, 49, 50), we found that M1 neurons could be conditioned in
an operant way to learn to control a virtual cursor along one dimen-
sion. At the end of training, only one of the M1 Master neurons ap-
peared to carry the task-related modulations (Fig. 5). This suggests
that because we selected randomly three neurons, those neurons
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were not likely to naturally covary, and therefore learning synchro-
nousmodulation of the three neurons could have been too challeng-
ing, requiring the exploration of activity patterns that were not
normally explored (51). There is evidence that as the number of
neurons controlling motor brain-machine interfaces increases, it
becomes necessary to take into account their initial functional con-
nections in order to learn to control the prosthesis rapidly (51–53).

Overall, our results support previous studies suggesting that
novel skill learning engages adaptive plasticity in cortical circuits,
albeit within existing limits to neuronal adaptability. In particular,
as has been argued before, the primary sensory cortical circuits may
be intrinsically less plastic than motor circuits during motor skill
learning (54). Future experiments will need to address this question,
in particular via recordings of neuronal activity of S1 activity across
successive behavioral sessions.

Outlook
Our results strongly support a functional role of topography of the
somatosensory cortical map in the behaving animal, by testing caus-
ally the impact of different patterns of sensory input. In particular,
our work reveals that within the topographical organization of the
barrel cortex, feedback patterns that are contiguous are best suited
to sensorimotor integration. Such optimal patterning of dynamical
distributed feedback could be combined with other means of trans-
mitting feedback information to the brain, such as temporal and
amplitude modulation of stimulation pulses (14, 16, 55).

Last, current brain-machine interface prototypes require long
training and lack precision and flexibility, probably because they
lack the appropriate somatosensory feedback (56). From our
results, we propose that feedback strategies based on intracortical
stimulation should favor spatial and temporal continuity within
the known topography of the target areas. We hope that unveiling
such fundamental constraints of neuronal circuits will enable the
development of a new generation of brain-machine interfaces, in-
corporating rich proprioceptive and tactile feedback essential to
achieve dexterity and embodiment.

MATERIALS AND METHODS
Mouse preparation
All animal experiments were performed according to European and
French law as well as CNRS guidelines and were approved by the
French ministry for research (Ethical Committee 59, authorization
858-2015060516116339v5 and 25932-2020060813556163v7). The
data were obtained from 16 adult (6 to 10 weeks old) Emx1-
Cre;Ai27 mice (30). The brain-machine interface methodology
has been published previously (15). All surgeries were performed
under isoflurane anesthesia in 100% air. Isoflurane concentration
was adjusted in the range of 1 to 4% depending on mouse state, as-
sessed by breathing rate and response to tail pinch. Each mouse un-
derwent two surgeries. During the first surgery, a 5-mm-diameter
glass optical window was implanted over the left primary somato-
sensory cortex [S1, posterior:−1.5 mm and lateral: 3.3 mm from the
bregma; (57)], and a head-fixation bar was implanted on the con-
tralateral side of the skull (58). Eight days later, the clarity of the
optical window was assessed, and if adequate, intrinsic imaging
was performed to locate the S1 barrels (see below). If this first
step was successful, a second surgery was performed to chronically
implant (59) a 32-channel silicon probe in the shape of eight

tetrodes (A4x2-tet-5mm-150-200-121-CM32, NeuroNexus, USA;
Fig. 1, A and B, and figs. S1 and S2). The electrode was implanted
in the whisker zone of the motor cortex (M1, anterior: 1.5 mm and
lateral: 1.2 mm from bregma; electrode recording sites, 650 to 800
μm deep in the cortex).

Chronic neuronal recordings
Following the second surgery, mice were monitored for 5 days to
allow the extracellular recordings to stabilize (bandpass, 1 to 6000
Hz). We then characterized the shape and amplitude of the units
isolated by the online spike sorting (Blackrock Microsystems,
USA). Clusters corresponding to well-defined single units (consis-
tent spike shape and an adequate autocorrelogram, with a clear re-
fractory period, see Fig. 1B) were manually selected within the
tetrode spike amplitude space. This manual selection was controlled
before each session to ensure that we maintained unit separation
while keeping track of the same units across sessions (fig. S1).
Once the online spike sorting was ready, the training session
begun. At the start of the training sessions, we recorded a median
of 25.5 neurons simultaneously, with an interquartile range (IQR)
of 5.25 neurons (n = 10 mice). After 17 days (average last training
session), we recorded a median of 25 neurons (IQR = 16 neurons, n
= 10 mice).

Brain-machine interfacing
Among the recorded units of each mouse per session, a set of three
putative pyramidal neurons—the Master neurons—were selected
by the operator. In the first two mice, we initially enrolled seven
neurons. However, after the first round of experiments, we found
that securing so many large and high-firing neurons was challeng-
ing in several of the mice, so we settled on a smaller count of three
neurons. We did not find any major difference in the activity or be-
havior of these first two mice. We selected the Master neurons
among all simultaneously recorded units because they displayed
(i) a sufficient baseline frequency (target: 10 Hz), (ii) spikes
clearly separate from the multiunit baseline and with the largest
possible amplitude, and (iii) a spike shape that was visually different
from any other spike shape across the four channels of the tetrode.
The basic statistics of the Master neurons, including their mean
firing rate and the SD over training sessions, are shown in fig. S6.
In these panels, we also show the firing statistics of the neighbor
neurons, defined as non-Master neurons.

The activity of these Master neurons was transformed into a
virtual cursor position (Fig. 1C), which determined the optogenetic
frame to be displayed as well as possible reward delivery. The
spiking activity of the Master neurons was summed, and the corre-
sponding firing rate was measured over 10-ms time bins. To trans-
form this Master firing rate into the position of the virtual cursor, it
was convolved with a 100-ms box kernel and then renormalized
with respect to the distribution of Master activity observed during
a baseline window of 3 min just preceding the start of the session.
Specifically, we computed the 99th percentile of the baseline activity
values, and the activity from 0 Hz up to this value was split in seven
equal positions, with an additional eighth position for activity
values exceeding the 99th percentile threshold (fig. S3). The result-
ing movements of the virtual cursor were smooth. In the Bar feed-
back condition, on average, 95% of the transitions were to a closest
neighbor position, and less than 0.1% of the transitions were jumps
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larger than to a second neighbor position. This was similar in all
other feedback conditions.

For most of the experiments, only the fifth position was reward-
ed, which means that whenever the virtual cursor was inside that
position and the mouse simultaneously licked, it obtained a water
drop of volume 5 μl (±10%). Note that rewards were not delivered
automatically to the mouse whenever the virtual cursor entered the
rewardable position. Instead, only if the mouse licked at the precise
time when the virtual cursor was located in the rewardable position,
the capacitive sensor detected the lick and triggered the delivery of a
drop of water through the lick port, which was immediately swept
away by the ongoing licking action. In the very first three experi-
ments, only the sixth position was rewarded, and in three additional
experiments, the rewardable position also included either the sixth
or the fourth position. We did not find any difference in activity or
behavior that could be related to this difference in rewardable
positions.

The logic of introducing a virtual cursor has been doubled. First,
from a purely analytical point of view, it allows analysis of motor
control in the nonlinear discretized scale that is relevant for feed-
back stimulation and reward obtention, that is, regardless of the ab-
solute values of firing rates, which can be very different from one
mouse and session to the next. Second, it emphasizes that the algo-
rithm is the same in all feedback protocols. Only the final mapping
between the eight different positions of the cursor and the effective
photostimulation patterns changes with the protocol. This concept
of a virtual cursor, in between the firing rate of the neurons and the
photostimulation frames, is useful to describe unambiguously the
protocols, the analyses, and the results.

Optogenetic photostimulation of somatosensory cortex
Each virtual cursor position was associated with a specific feedback
pattern that was projected onto the barrel cortex of the mice using a
Digital Light Processing (DLP) module (Vialux V-7001, Germany).
The DLP contained a 1024 × 768 pixel Texas Instruments micro-
mirror chip, which was illuminated by a high-power 462-nm blue
light-emitting diode. The frame stream generated by the device was
focused onto the cortical optical window using a tandem-lens mac-
roscope (60) and covered the entire barrel cortex. We displayed each
frame for 5 ms, followed by 5 ms without photostimulation. This
50% duty cycle was selected to minimize channelrhodopsin desen-
sitization resulting from permanent photoactivation (61). We sent
homogeneous light spots, 225 μm in diameter, with an intensity of
20 mWmm−2, centered onto the barrel locations (see next section).
We chose this high intensity to trigger without a doubt a strong ac-
tivation of the barrel cortex while still avoiding levels that could
induce epilepsy. In a previous publication, we recorded activity in
S1 in response to the exact same photostimulations, in the same
mouse line, and verified that it triggered neuronal activation
mostly limited to the targeted barrel area (15). In the same study,
we also compared the detection of five aligned spots flashed on
the barrel cortex to the detection of five aligned spots flashed just
outside the cranial window, in a GO/NOGO task. We found that
mice detected the photostimulation only when it was targeted to
the cortical window. This control ensured that the mice are
unable to use any indirect clue, such as light reflection in the
setup, to solve the task.

A set of at least three reference barrels was localized on the
mouse cortical surface via intrinsic signal imaging. These barrels

were used to align a standard barrel map (62) that served later as
the grid to align the photostimulation spots. Figure S8 shows an
example of the intrinsic signals and of the strategy used to position
the photostimulations onto the S1 surface.

We used five different sets of feedback frames: the Bar feedback
(Fig. 1, D and E), three shuffled versions of the Bar feedback that are
described in Fig. 3 and fig. S4, and, finally, a condition where no
photostimulation was displayed (No feedback, all black frames).
The Bar feedback design was based on the known selectivity of S1
neurons to features such as the global direction of bar-like stimula-
tions (26, 27, 63) and, more broadly, tuning to progressive move-
ment of objects across the whiskerpad (28). This choice of
feedback structure was also supported by the observation in
awake behaving rodents that structured sweeping sequences of ros-
trocaudal deflections of whiskers are significantly more prevalent
than expected by chance (48). Note that all photostimulation
frames used the same number of identically shaped photostimula-
tion spots and therefore generated the same amount of photoacti-
vation (15). The total amount of light projected onto the cortex was
thus constant throughout all sessions.

To verify that the selected photostimulation did not bias the M1
activity before training, we exposed three naïve mice to one single
session of Bar feedback playback and one session of Full shuffle
playback. The frame sequence originated from a previous mouse/
training session. During playback, in each mouse, we recorded
three M1 neurons that would qualify as Master neurons. We
found no firing rate modulation triggered by any of the displayed
frames (fig. S9A) and, in particular, none in the Bar feedback.
These experiments, as well as similar analysis carried out for
Master neurons in mice trained in the Bar and Full shuffle feedback
conditions (fig. S9, B and C), confirm that before training, M1
neurons had no discriminative power or specific tuning to the pho-
tostimulation frames that we designed.

Behavioral training
We started the behavioral training by removing free access to the
water in the cage. At the same time, we started habituating the
mice to head fixation. This lasted for 2 days, where the mice were
head-fixed during 30-min sessions and were continuously present-
ed with a spout that delivered a drop of water every time the mice
licked, owing to a capacitive sensor in the spout. To eliminate arti-
factual double detections that sometimes happened with the sensor,
any detection that occurred less than 120ms after a lick was dropped
from further analysis.

After these first habituation sessions, we transitioned to training
the mice in the brain-machine interface task. The sessions took
place once a day and lasted 33 min (including the 3-min baseline
period). During these training sessions, the neuronal activity was
continuously recorded, and one of the five photostimulation dy-
namical patterns was continuously applied to the mouse barrel
cortex: Bar feedback, Barrel shuffle, Frame shuffle, Full shuffle, or
No feedback (Fig. 3A and fig. S4). The displayed frame was updated
every 10ms based on the measured neuronal activity (Fig. 1). At any
time, the mice could move the virtual cursor to the rewardable zone
by modulating the activity of Master neurons. If it licked at the
precise time when the virtual cursor was located in the rewardable
position, a small amount (~5 μl) of water flowed immediately
through the lick port, and the water droplet was swept away by
the ongoing licking action.
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We monitored the weight loss that resulted from the water re-
striction schedule. We ensured that through the whole training,
the weight did not drop below 80% of its initial value, a consensus
weight threshold in this model (58). To do so, mice were checked
daily for weight and extra water/food intake was provided as
needed to stabilize the weight. After these first sessions, we transi-
tioned immediately to training the mice in the brain-machine inter-
face task (1 session per day, 30 min), with one of the
photostimulation feedback protocols, and only one feedback posi-
tion rewarded.

The mice were trained with the same feedback protocol during
five consecutive training sessions. There were no days off during
these 5 days, except in the rare case of an unexpected technical
problem. After the five training sessions, and if sufficient M1 activ-
ity was still present, we performed a new selection of Master
neurons from scratch, and we restarted training the mouse with
another feedback condition. There was generally a 2-day gap
between different feedback protocols, except in three mice for
which there was no pause in the training. We checked that previous
learning did not bias the outcome of the following training
(fig. S5B).

If the recording of one neuron was lost during the training, the
active neighbor neuron with the largest spike shape was enrolled to
replace it. If no additional neighbor neuron was available, the exper-
iment kept going with a reduced count of Master neurons, down to
a minimum of two Master neurons. We assessed the Master neuron
population stability by counting cases where all Master units could
not be reliably identified anymore at the start of one of the training
sessions and had to be replaced with new units. This situation oc-
curred once for two mice for the Bar feedback condition, two mice
for the Full shuffle condition, and three mice for the No feedback
condition. This amounts to 7 cases out of 152 transitions between
sessions, thus about 5%. Note that in most of these cases, although
we were unable to prove it, we suspected that a least one of the
former Master neurons was picked as part of the new Master
neuron pool.

Imaging of body movements
To probe whether there was a relationship between virtual cursor
movements and mouse whisking, we acquired high-speed videogra-
phy recordings of the animal including the contralateral whiskers,
ear, and forepaw at 100 frames per second (camera; Baumer HXc-
20; lens: 6 mm, F/1.4) and analyzed them using DeepLabCut-based
marker-less tracking (64). Note that because of technical limita-
tions, this was only done for a few sessions in the latest animals.
First, we looked at the body movements during a session of sponta-
neous behavior. In these data, we failed to identify correlation of the
body movements with the spiking activity of the Master neurons
(fig. S10, A and B). Next, in three mice, we looked more specifically
at the relationship between the virtual cursor movements and the
whisker position during their first versus last training session in
the Barrel shuffle condition. When doing so, we observed that the
mice generally did not whisk and that instead their whiskerpad re-
mained largely still. In addition, when they did perform whisker
movements, we failed to identify a correlation with the optogenetic
stimulation or the virtual cursor motor control. Consistent with
previous brain-machine interface studies (65), there was, in partic-
ular, no sign of correlation in the fifth training session (for example,
whisking bouts in one mouse in fig. S10C). Last, in the same three

mice, we analyzed one session of Bar playback, during which the
animals received the Bar feedback spatiotemporal patterns
without actively moving the virtual cursor. We tracked one of the
right straddler whiskers (contralateral to the photostimulated S1
cortex) and the right ear. For both whisker and ear, we looked at
the modulation of position following the axis where the movement
amplitude was largest. In this dataset, we failed to identify any rela-
tionship between movements at the periphery and modulations of
the virtual cursor that controls the Bar photostimulation (example
in fig. S10D). Further looking into the relationship between frame
photostimulation and peripheral movements, we also computed the
average movement of the tracked whisker around the time of the
entrance of the virtual cursor in the rewardable position. There,
we also did not find any sign of a modulation of the whisker or
ear (fig. S10E). Overall, these results suggest that performance in
the Bar feedback condition is not solely due to S1 activation trigger-
ing specific body movements like whisking.

Offline spike sorting
Offline extraction of neuronal activity was performed using
SpyKING CIRCUS (66). We confirmed that each online-sorted
Master unit was properly spike-sorted by matching it with a specific
offline-sorted unit through comparison of spike shapes and ampli-
tudes across tetrodes. All additional, non-Master offline-sorted
units were labeled as neighbor units.

Data analysis
All the data analysis was performed using the SciPy (version 1.10.0),
NumPy (version 1.23.5), and matplotlib (version 3.7.0) packages in
Python. We used nonparametric two-sided statistical tests, as indi-
cated in the main text and/or figure legends. We applied Mann-
Whitney tests for comparisons between distributions. We applied
Wilcoxon paired tests when focusing explicitly on changes
between two conditions for the same individuals (e.g., Fig. 6A).
We used one Kruskal-Wallis H test to compare group medians
(Fig. 7C). In addition, we have used an ANOVA for factor analysis
(fig. S5B).

ICMS experiments
To confirm that the electrodes were located in the motor cortical
area, we performed intracortical microstimulation (ICMS) at the
end of the behavior sessions (n = 3 mice; fig. S2). We injected
bipolar current pulses (amplitude 21 μA/channel, duration 1.4 s,
frequency 60 Hz, 50% duty cycle) through the 32-channel Neuro-
Nexus silicon probe implanted in M1, in awake head-fixed animals.
The contralateral whiskers were imaged using high-speed videogra-
phy (camera: Baumer HXc-20; lens: 6 mm, F/1.4) at 300 frames per
second for a duration of 9 s. A single trial consisted of 5 s before
ICMS videography, followed by 1.4 s during ICMS stimulation
and finally 2.6 s after ICMS. This procedure was repeated 14
times during a single session of ICMS experiment, with a 1-s inter-
trial delay. In the ICMS videos, a central whisker was identified
among all the whiskers in the field of view and tracked using the
automated video tracking software DeepLabCut (64). The ampli-
tude of ICMS-evoked whisker movement was defined as the mean
whisker angle during the first 1 s of stimulation versus the 1 s im-
mediately before. Latency of whisker movement was measured at
the first frame with significant whisker movement amplitude (2
SDs above the mean).
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Histology
After the experiment, mice were deeply anaesthetized with isoflur-
ane (4 to 5%) and pentobarbital (150 mg/kg), then exsanguinated
and perfused with 4% paraformaldehyde (PFA). The brains were ex-
tracted and stored overnight in 4% PFA. The brains were then trans-
ferred to a solution of phosphate-buffered saline for at least 24
hours. Fifty-micrometer slices were cut in the coronal plane and
stained for cytochrome c oxidase. The location and depth of the
silicon probe in the brain were traced by DiI depositing on the elec-
trodes before their implantation and by localizing afterward the
fluorescent dye present in the histological slices (fig. S2A).

Supplementary Materials
This PDF file includes:
Figs. S1 to S11
Table S1
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