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Fig. 1. Our micrograin BSDF model provides a physically-plausible solution for laying porous layers onto an arbitrary surfaces. This is here shown for a number
of materials: we use diffuse grains on a plastic watering can to reproduce mud, copper oxide grains on a metallic bucket for rust, diffuse grains on a transparent
glass for dirt, gold grains on diffuse or aluminium vases to mimic spray paint, soot grains on the diffuse broken pots and diffuse grains on wooden shelves.

We introduce a new BSDF model for the rendering of porous layers, as
found on surfaces covered by dust, rust, dirt, or sprayed paint. Our approach
is based on a distribution of elliptical opaque micrograins, extending the
Trowbridge-Reitz (GGX) distribution [Trowbridge and Reitz 1975; Walter
et al. 2007] to handle pores (i.e., spaces betweenmicrograins).We use distance
field statistics to derive the corresponding Normal Distribution Function
(NDF) and Geometric Attenuation Factor (GAF), as well as a view- and light-
dependent filling factor to blend between the porous and base layers. All the
derived terms show excellent agreement when compared against numerical
simulations.

Our approach has several advantages compared to previous work [d’Eon
et al. 2023; Merillou et al. 2000;Wang et al. 2022]. First, it decouples structural
and reflectance parameters, leading to an analytical single-scattering formula
regardless of the choice of micrograin reflectance. Second, we show that the
classical texture maps (albedo, roughness, etc) used for spatially-varying
material parameters are easily retargeted to work with our model. Finally, the
BRDF parameters of our model behave linearly, granting direct multi-scale
rendering using classical mip mapping.

CCS Concepts: • Computing methodologies → Reflectance modeling.
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1 INTRODUCTION
Porosity is common in natural and man-made materials. We distin-
guish two types of structures: granular materials such as sand or
earth where many tiny grains are distributed in a volumetric fashion;
and porous layers such as dust or dirt where grains are distributed
onto another surface. The former type requires complex volumetric
rendering techniques (e.g. [Müller et al. 2016]), or must be restricted
to simpler configurations to yield suitable BRDF approximations
(e.g., [d’Eon 2021; Hapke 2012]). In this paper, we focus instead on
the latter type, which permits the blending of two materials (the
porous layer on the base surface) with varying grazing-angle effects.
Our objective is to derive a physically-based BSDF model for such
material configurations.
The key idea of our approach is to consider a distribution of

micrograins on a surface, from which we derive a BSDF model
according to microfacet theory [Torrance and Sparrow 1967]. The
micrograins are thus considered too small to be visible to the naked
eye. Structures larger than a micrograin (e.g., meso-scale aggregates)
should be modelled explicitly (e.g., through displacement maps). We
restrict ourselves to opaque micrograins, and assume that the effect
of smaller structures on light transport is modelled by the reflectance
of a micrograin.

Our contribution is twofold. First, we define a microfacet Normal
Distribution Function (NDF) from the distribution of micrograins
in Section 4. This new NDF extends the Trowbridge-Reitz (GGX)
distribution to handle porosity (i.e., the spaces between micograins).
Second, we define visibility terms in Section 5: the visible filling
factor (i.e., the complement of porosity) of a porous layer on a base
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surface, as well as the Geometric Attenuation Factor (GAF) required
by microfacet theory.
The main advantage of relying on a micrograin distribution is

that it decouples structural from reflectance parameters. As a result,
our model is analytic for a range of micrograin reflectances (diffuse,
diffuse + specular and conductor). Morover, all material parameters
are easily assigned to material texture maps, which eases the adop-
tion of our model in existing asset creation workflows (see Figure 1).
Finally, our approach works directly with multi-scale rendering
techniques relying on mipmapping. We demonstrate these features
and compare to related work in Section 6.

2 PREVIOUS WORK
Material appearance has been the focus of many computer graphics
works in the last two decades. Numerousmodels have been proposed
in order to best represent the wide variety of real-world materials.
Microfacet models [Cook and Torrance 1982; Torrance and Sparrow
1967; Walter et al. 2007] are nowadays very famous in graphics
production to simulate specular to rough materials. The theory
relies on the statistical organization of microfacets, driven by their
Normal Distribution Function and associated to a visibility term that
accounts for self-occlusion (masking and shadowing). The latter
may be based on v-groove profiles [Torrance and Sparrow 1967]
or Smith’s representation [Ashikhmin et al. 2000; Smith 1967] for
more physically-plausible results. Their elementary reflectance can
be perfectly specular (through a Fresnel term in many cases) [Cook
and Torrance 1982] or Lambertian [Oren and Nayar 1994]. The
initial microfacet models are limited to single scattering but have
been recently completed with multiple scattering effects either with
numerical stochastic simulations for Smith [Bitterli and d’Eon 2022;
Heitz et al. 2016] or analytic models for v-grooves [Lee et al. 2018;
Xie and Hanrahan 2018]. Note that for now, multiple scattering is
not considered in our porous layer and we leave this question to
future work.
On top of microfacet models, many extensions have been pro-

posed to extend the range of appearances they can represent such as
back-scattering properties visible in cloth-like materials (e.g. sheen
BSDF [Estevez and Kulla 2017; Zeltner et al. 2022]). In this paper,
we focus on porous materials, which also exhibit back-scattering
effects. Merillou et al. [Merillou et al. 2000] were the first to propose
an empiric modification to add porosity on already-defined BSDF
models. They consider cylindrical pores by adding a diffuse lobe cor-
responding tomultiples reflection in pores. In contrast, our approach
is built upon physically-based considerations. Compared to other
representations based on microfacets or microflakes (e.g., [Barla
et al. 2018; d’Eon et al. 2023; Dupuy et al. 2016; Wang et al. 2022]),
it explicitly models a distribution of micrograins, which has the
effect of decoupling structural and reflectance properties. This has
a number of advantages, as we will show in the following.

3 OVERVIEW
We assume that a porous material is made of a mono-disperse distri-
bution of microscopic spherical grains of radius 𝑟𝑠 which, depending
on their density 𝜌 , may interpenetrate to form aggregates and/or
leave gaps that open pores in the material. As shown in Figure 2,

rsβ
rs

Fig. 2. A porous layer is modelled as a distribution of opaque half-ellipsoids
(micrograins in blue) on an arbitrary bulk material (hatched region).

the micrograins are distributed on a bulk material, with their upper
parts sticking out of the surface and vertically compressed by an
anfractuosity parameter 𝛽 ∈ [0, 1], yielding half-ellipsoids. The mi-
crograins are considered opaque, and optical interactions with them
are governed by their micro-BRDF, which may be of three types:
diffuse (Lambertian), diffuse + specular dielectric, and specular con-
ductor. As classically done in microfacet models, micro-BRDFs may
be colored either through the diffuse albedo or the specular conduc-
tor reflectance.

Our goal is to characterize the BRDF resulting from the combina-
tion of the porous layer and the bulk surface, which we write:

𝑓𝑟 (i, o) = 𝑤+ (i, o) 𝑓 𝑆𝑟 (i, o) +
(
1 −𝑤+ (i, o)

)
𝑓 𝐵𝑟 (i, o), (1)

where 𝑓 𝑆𝑟 and 𝑓 𝐵𝑟 are surfacic (porous) and bulk BRDF components
respectively, and𝑤+ denotes the proportion of light paths starting
from the ingoing direction i and ending with the outgoing direction
o, that interact only with the micrograins distributed on the surface.

Wemodel the surfacic BRDF component 𝑓 𝑆𝑟 as the sum of a diffuse
Lambertian term and a microfacet-based specular component:

𝑓 𝑆𝑟 (i, o) = 𝐾𝑑

𝜋
𝑇 (i, o) + 𝐷 (h)𝐺 (i, o)𝐹 (i · h)

4|i · n| |o · n| , (2)

with n and h = i+o
∥i+o∥ the geometric normal and the halfway vec-

tor respectively, 𝐾𝑑 the diffuse albedo of grains, 𝑇 an integrated
transmittance used for energy conservation1, 𝐷 the normal distribu-
tion function (NDF) of grain aggregates with 𝐺 the corresponding
geometric attenuation factor (GAF), and 𝐹 the Fresnel reflectance.
In the following, we first derive the NDF 𝐷 in Section 4. We

then compute in Section 5 a visibility term that is both used in the
definition of the weight 𝑤+ and of the GAF 𝐺 . A summary of the
main notations used in the paper is given in Table 1. The BRDF
model defined through Equations 1 and 2 is reciprocal provided𝑤+

is itself reciprocal, which is indeed the case (see Equation 24).

4 NORMAL DISTRIBUTION FUNCTION
Intuitively, the NDF 𝐷 may be determined in two steps: for a given
point x on the surface, we first need to find the closest grain (see
Figure 3); if this grain is at a distance smaller than the grain radius
𝑟𝑠 , then we might project x onto the (spherical or elliptic) grain
surface to retrieve a microfacet normal m (Figure 3).

We describe the distribution of closest grains in Section 4.1, from
which we derive the corresponding NDF in Section 4.2.

4.1 Distribution of closest grains
We assume that grains are uniformly distributed on the surface.
Since they are ellipsoids, their intersection with the surface forms

1We use an approach inspired by Mitsuba[Jakob et al. 2022] as detailed in supplemental
material
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x Geometric surface point
m Micrograin surface normal

X(m) Mapping from micrograin to geometric surface
𝜌 Micrograin distribution density
𝑟𝑠 Micrograin radius
𝛽 Micrograin anfractuosity

p(1) Distribution of distances to the closest grain
P(1) Cumulative distribution of distances to the closest grain
𝐷 (m) Micrograin normal distribution function
𝜏0 Filling factor at normal incidence

𝜏+
𝛽
(\ ) Visible filling factor at incidence \

𝑤+ (\𝑖 , \𝑜 ) Weight of the micrograin layer
Table 1. Summary of main notations

discs. We thus consider here the distribution of 𝑛 discs of center c𝑖
(1 ≤ 𝑖 ≤ 𝑛) in the 2D plane. For a given 2D point x, the distance to
the center of the closest disc is written as:

𝑑★(x) = min
𝑖

∥x − c𝑖 ∥ = ∥x − c★∥ (3)

where c★ is the disc center that is closest to x.
We want to determine the probability density function p(𝑑★(x) =

𝑟 ) that gives the likelihood of c★ to be at a distance 𝑟 of x. This
corresponds to the first order statistic (cf. [David and Nagaraja
2004]), which we write p(1) (𝑟 ) B p(𝑑★(x) = 𝑟 ) in the following.

r

c

R 
x

rs

β
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rs
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c

Fig. 3. Left: A distribution of discs of radius 𝑟𝑠 in a region of radius 𝑅
centered on the point of interest x, with the closest disc centered at c★.
Right: A point on the surface of an elliptic micrograin can be identified by
its normal m and mapped to a point x = X(m) of the plane that lies at a
distance 𝑟 ≤ 𝑟𝑠 to the micrograin center c★.

We first consider the case where the number n of grains is finite,
for which we want to compute the finite first-order statistic p(1)

n (𝑟 ).
In a circular region of radius 𝑅 and center x, there are n = 𝜋𝑅2𝜌
discs, with 𝜌 the grain density (see Figure 3). The proportion of discs
whose centers are at a distance 𝑑 (x) smaller than 𝑟 is given by:

Pn (𝑟 ) B pn (𝑑 (x) ≤ 𝑟 ) =
𝜋𝑟2𝜌

𝜋𝑅2𝜌
=
𝑟2

𝑅2 , (4)

which is a cumulative distribution function (CDF). The proportion
of discs whose centers are at a distance 𝑟 then corresponds to the
following probability distribution function (PDF):

pn (𝑟 ) B pn (𝑑 (x) = 𝑟 ) =
𝜕Pn
𝜕𝑟

(𝑟 ) = 2𝑟
𝑅2 . (5)

The finite first-order statistic is given by (see Supplemental Mate-
rial for mathematical details):

p(1)
n (𝑟 ) = npn (𝑟 ) [1 − Pn (𝑟 )]n−1 . (6)

Using Equations 4 and 5 along with 𝑅2 = n
𝜋𝜌 , we obtain:

p(1)
n (𝑟 ) = 2𝜋𝜌𝑟

(
1 − 𝜋𝜌𝑟2

n

)n−1
. (7)

The first-order statistic p(1) (𝑟 ) for an infinite surface is then
obtained by taking the limit of Equation 7 when 𝑅 tends toward
infinity, or equivalently when 𝑛 tends toward infinity:

p(1) (𝑟 ) = lim
n→∞

p(1)
n (𝑟 ) = 2𝜋𝜌𝑟𝑒−𝜋𝜌𝑟

2
. (8)

The associated CDF P(1) (𝑟 ) is obtained by integration:

P(1) (𝑟 ) =
∫ 𝑟

0
p(1) (𝑟 ′)d𝑟 ′ = 1 − 𝑒−𝜋𝜌𝑟

2
. (9)

Lastly, the probability that the center of the closest disc is at polar
coordinates (𝑟, 𝜙) is computed using the following PDF:

p(1) (𝑟, 𝜙) = p(1) (𝑟 )p(𝜙) = 𝜌𝑒−𝜋𝜌𝑟
2
, (10)

where we have used a uniform angular distribution 𝑝 (𝜙) = 1
2𝜋𝑟 .

In Figure 4(a), we show the distribution of distances to the closest
disc p(1) (𝑟 ) for several densities of micrograins, and compare our
analytic formula to numerical simulations.

r = 0 25 50 75 100 125 150 175

0

0.0067
0.0095

0.0135

0.0191

0.0272
p(1)(r)

n = 2000
n = 4000
n = 8000
n = 16000
n = 32000

r = 0 25 50 75 100 125 150 175

0

0.0272
p(1)(r)

τ0

n = 32000
P(1)(rs)

(a) (b)

Fig. 4. (a) Comparison of the distribution of distances to the closest disc
center p(1) (𝑟 ) (solid lines) to numerical simulations (dots) showing excellent
agreement. The ground truth is obtained by sampling n random disc centers
over a 100002 unit square area and by computing the histogram of distances
to the closest center. (b) The corresponding CDF (blue area) evaluated at a
distance 𝑟 = 𝑟𝑠 yields the filling factor 𝜏0.

4.2 Distribution of normals
Let us now assume that there is at least one disc whose center
is at distance to x that is smaller than 𝑟𝑠 , the grain radius (i.e.,
𝑟 ≤ 𝑟𝑠 ). Such a constraint is met by construction if we use a function
X : Ω → R2 that projects a point on the closest grain onto the
surface, which maps a normal m = (\𝑚, 𝜙𝑚) on the grain surface to
a 2D point of the plane x = (𝑟, 𝜙) (see Figure 3):

p(1) ((𝑟, 𝜙) ∩ 𝑟 < 𝑟𝑠 ) = p(1) (X(m)) . (11)

The likelihood that the point on the closest grain has a normal
m is then given by p(1) (m) = p(1) ((𝑟, 𝜙) | 𝑟 < 𝑟𝑠 ). Using Bayes’
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θ = 0 π/4 π/2

0

0.81
D(θ)

τ0 = 0.2
τ0 = 0.5
τ0 = 0.9

θ = 0 π/4 π/2

0

3.26
D(θ)

τ0 = 0.2
τ0 = 0.5
τ0 = 0.9

θ = 0 π/4 π/2

0

81.44
D(θ)

τ0 = 0.2
τ0 = 0.5
τ0 = 0.9

(a) 𝛽 = 1 (b) 𝛽 = 0.5 (c) 𝛽 = 0.1

Fig. 5. Illustration of our micrograin NDF 𝐷 for several values of 𝛽 and 𝜏0.
Increasing 𝜏0 for a fixed 𝛽 yields a sharper distribution. Numerical simula-
tions are shown with dots.

theorem then Equation 11, we have:

p(1) (m) = p(1) ((𝑟, 𝜙) ∩ 𝑟 < 𝑟𝑠 )
p(1) (𝑟 < 𝑟𝑠 )

=
p(1) (X(m))

P(1) (𝑟𝑠 )
. (12)

The denominator in Equation 12 corresponds to the surfacic filling
factor (see Equation 9), as illustrated in Figure 4(b):

𝜏0 = P(1) (𝑟𝑠 ) = 1 − 𝑒−𝜋𝜌𝑟
2
𝑠 . (13)

We explain in details in Supplemental Material how to derive
the NDF 𝐷 (m) from p(1) (m). We start by normalizing p(1) (𝑟 ) for
𝑟 ∈ [0, 𝑟𝑠 ], which after several simplifications yields:∫

Ω
p(1) (m)𝑟 (\𝑚) 𝐽𝑟 (\𝑚)

sin\𝑚
d𝜔𝑚 = 1, (14)

where we have used X(m) = (𝑟 (\𝑚), 𝜙𝑚) since grains are radially
symmetric, and where 𝐽𝑟 (\𝑚) is a Jacobian associated to 𝑟 (\𝑚).
Then, by analogy with the normalization constraint of NDFs (i.e.,∫
Ω 𝐷 (m) cos\𝑚d𝜔𝑚 = 1), we obtain:

𝐷 (m) = p(1) (m)𝑟 (\𝑚) 𝐽𝑟 (\𝑚)
sin\𝑚 cos\𝑚

. (15)

Lastly, after deriving expressions for p(1) (m), 𝑟 (\𝑚) and 𝐽𝑟 (\𝑚)
in the case of an ellipsoid, we obtain:

𝐷 (m) = 𝛽2𝜌𝑟2
𝑠 𝑒

−𝜋𝜌𝑟 2
𝑠

tan2 \𝑚
𝛽2+tan2 \𝑚

(1 − 𝑒−𝜋𝜌𝑟 2
𝑠 ) (𝛽2 + tan2 \𝑚)2 cos4 \𝑚

, (16)

where 𝛽 ∈ [0, 1] controls the anfractuosity of grains on the surface.
Using the surfacic filling factor 𝜏0, we may rewrite the NDF as a

variant of the GGX NDF:

𝐷 (m) = − ln(1 − 𝜏0) (1 − 𝜏0)
tan2 \𝑚

𝛽2+tan2 \𝑚

𝜏0
𝐷GGX (m), (17)

where 𝛽 is used to control roughness in𝐷GGX.When 𝜏0 tends toward
0, the prefactor in Equation 17 tends toward 1 and 𝐷 tends toward
𝐷GGX. Intuitively, the lower 𝜏0, the more grains get isolated from
each other, making 𝐷 tend toward the NDF of individual ellipsoids.
Hence for 𝜏0 = 0, 𝛽 is identical to the GGX roughness parameter 𝛼 .

Figure 5 shows our NDF for several values of anfractuosity 𝛽 and
filling factor 𝜏0, along with comparisons with numerical simulations.
Increasing the filling factor 𝜏0 increases the inter-penetration of mi-
crograins, in effect decreasing the roughness of the porous layer for
a constant 𝛽 . This might be undesired for artistic control. Therefore,

we introduce an equivalent roughness parameter 𝛼 that is linearly
related to 𝛽 by imposing that 𝐷GGX = 𝐷 for \𝑚 = 0, yielding:

𝛼2

𝜋𝛼4 = − ln(1 − 𝜏0)𝛽2

𝜏0𝜋𝛽4 ,

𝛼 = 𝛽

√︂
− 𝜏0

ln(1 − 𝜏0)
. (18)

The maximum achievable equivalent roughness 𝛼max thus depends
on 𝜏0 and is obtained when 𝛽 = 1 in Equation 18, as shown in
Supplemental Material. In practice, we limit 𝜏0 to 0.98 to ensure that
𝛼max > 0.5, granting sufficient artistic control.

4.3 Importance Sampling
We follow the microfacet framework described in Walter et al. [Wal-
ter et al. 2007] for importance sampling the specular component
of Equation 2. Apart from the sampling of the NDF, the rest of
the sampling procedure, including sample weights formula, remain
unchanged.

As detailed in Supplemental Material, the CDF corresponding to
the PDF 𝐷 (\𝑚) cos\𝑚 is given by:

𝐶 (\𝑚) = 1 − 𝑒−𝜋𝜌𝑟
2 tan2 \𝑚
𝛽2+tan2 \𝑚

1 − 𝑒−𝜋𝜌𝑟 2 =
P(1) (𝑟𝑠 (\𝑚))

𝜏0
, (19)

while the corresponding inverse CDF is given by:

𝐶−1 (b) = arctan

(
𝛽

√︄
− ln(1 − b𝜏0)

ln(1 − b𝜏0) − ln(1 − 𝜏0)

)
. (20)

Therefore, (\𝑚, 𝜙𝑚) = (𝐶−1 (b1), 2𝜋b2)where b1 and b2 are uniformly-
distributed random variables.

5 VISIBILITY TERMS
In this section, we derive visibility terms of both the distribution of
micrograins as a whole, and of the corresponding microfacets.

5.1 Visible Filling factor

θ

Fig. 6. The distribution of spherical micrograins seen from an angle \ is
obtained by a mere projection of the original distribution of micrograins.
This has the effect of increasing the effective density.

The surfacic filling factor 𝜏0 corresponds to the proportion of
grains on the surface visible at normal incidence. We also want
to characterize the visible filling factor 𝜏𝛽 (\ ) from a direction of
elevation \ , which differs from 𝜏0 since grains then tend to mask
each others in a way that depends on the anfractuosity 𝛽 .
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When 𝛽 = 1, the spherical grains may be projected onto the plane
orthogonal to the direction of interest (see Figure 6). This gives rise
to a new distribution of discs with the same radius 𝑟𝑠 , but a higher

density, yielding 𝜏1 (\ ) = 1 − 𝑒−𝜋𝑟
2
𝑠

𝜌

cos\ .

rs

γβ(θ)
cos(θ)rs

rs

rs

(a) \ = 0 (b) \ = 𝜋
4

Fig. 7. (a) At normal incidence, the filling factor 𝜏0 gives the proportion
of grains on the surface. (b) At a different angle, the visible filling factor
increases and is affected by the anfractuosity (here 𝛽 = 0.8). Only the upper
halves of ellipsoids (in blue) must be considered.

In the general case (𝛽 ∈ [0, 1]), we need to consider the projection
of ellipsoids, which gives rise to a distribution of ellipses in the
projection plane (see Figure 7). If we write 𝛾𝛽 (\ ) the compression
factor of these ellipses, we can find an equivalent distribution of
discs using a modified density, as in the following:

𝜏𝛽 (\ ) = 1 − 𝑒−𝜋𝑟
2
𝑠 𝜌

𝛾𝛽 (\ )
cos\ = 1 − (1 − 𝜏0)

𝛾𝛽 (\ )
cos\ . (21)

To compute 𝛾𝛽 (\ ), we assume without loss of generality that
𝑟𝑠 = 1. In the incidence plane (see Figure 8), the slice of an ellipsoid
then yields an ellipse of radii 1 and 𝛽 in horizontal and vertical
directions respectively. The equation of the two lines of slope cos\

sin\
(our direction of interest) and tangent to such an ellipse is given by:

cos\𝑥 − sin\𝑦 ±
√︃

cos2 \ + 𝛽2 sin2 \ = 0.

The compression factor 𝛾𝛽 (\ ) =
√︁

cos2 \ + 𝛽2 sin2 \ then corre-
sponds to the distance of either of these lines to the origin. When
𝛽 = 0 (flattened grains), we have 𝜏0 (\ ) = 𝜏0 for all \ . Moreover, at
normal incidence, we retrieve 𝜏𝛽 (0) = 𝜏0 regardless of 𝛽 .

rs=1

γβ(θ)βθ

Fig. 8. A micrograin seen from a direction of elevation \ (in green) shows as
an ellipse compressed by a factor 𝛾𝛽 in the vertical direction. It corresponds
to the distance of tangent lines of elevation \ (in black) to the origin.

Only the upper part of grains should contribute to the surfacic
BRDF component. The corresponding visible surfacic filling factor

𝜏+
𝛽
(\ ) is given by a formula similar to that of Equation 21, the only

difference being that 𝛾𝛽 (\ ) is replaced by 𝛾+
𝛽
(\ ) = 1

2 (𝛾𝛽 (\ ) + cos\ ).
Indeed, as already observed by Heitz [Heitz 2018] and shown in Fig-
ure 7(b), the projection of the upper parts of ellipsoids corresponds
to the junction of two half ellipses: one being the projection of the
ellipsoid of anfractuosity 𝛽 , the other being the projection of a disc
(i.e., 𝛽 = 0). After some simplifications, this yields:

𝜏+
𝛽
(\ ) = 1 −

√︂(
1 − 𝜏𝛽 (\ )

)
(1 − 𝜏0). (22)

Figure 9 shows the visible filling factor function 𝜏+
𝛽
(\ ) for various

configurations of filling factors 𝜏0 and anfractuosity 𝛽 , along with
comparisons to numerical simulations.

θ = 0 π/4 π/2
0

0.1

1
β = 1.0
β = 0.5
β = 0.1

θ = 0 π/4 π/2
0

0.4

1
β = 1.0
β = 0.5
β = 0.1

θ = 0 π/4 π/2
0

0.8

1

β = 1.0
β = 0.5
β = 0.1

(a) 𝜏0 = 0.1 (b) 𝜏0 = 0.4 (c) 𝜏0 = 0.8

Fig. 9. The visible filling factor 𝜏+
𝛽
is shown for three values of 𝜏0 and 𝛽 .

As expected, all curves start at 𝜏0 for \ = 0 and end up at 1 for \ = 𝜋
2 .

Comparisons with numerical simulations (dots) show excellent agreement.

The weight factor𝑤+ of Equation 1 is then obtained by consider-
ing that the set of light paths that interact with the surface is the
complement of those that reach the pores from both i and o. The
probability of being in a pore is 1 − 𝜏0, and the visibility probability

of a point x knowing that x is in a pore is given by
1−𝜏+

𝛽
(\ )

1−𝜏0
, yielding:

𝑤+ (i, o) = 1 −
(1 − 𝜏+

𝛽
(\𝑖 )) (1 − 𝜏+𝛽 (\𝑜 ))

1 − 𝜏0
. (23)

Using Equation 22, this simplifies to:

𝑤+ (i, o) = 1 −
√︃
(1 − 𝜏𝛽 (\𝑖 )) (1 − 𝜏𝛽 (\𝑜 )) . (24)

Note that we assume that there is no correlation between i and o;
hence we consider the validation of𝑤+ to follow from that of 𝜏+

𝛽
.

5.2 Geometric term
We are now left with the derivation of the geometric term𝐺 , which
may be computed (cf. [Heitz 2014]) from 𝐺1 (\ ) = 1

1+Λ(\ ) .
The computation of Λ(\ ) for our distribution is more complex

than for a GGX distribution. As detailed in Supplemental material,
the exact analytic formula is given by an infinite series of the form:

Λ(\ ) = 𝜋𝜌𝑟2
𝑠

2(𝑒𝜋𝜌𝑟 2
𝑠 − 1) cot\

+∞∑︁
𝑛=0

(𝜋𝜌𝑟2
𝑠 )𝑛𝐹𝑛 (𝛽, cot\ ). (25)

In practice, the five first terms of the series (i.e., 𝑛 = 4) give a
very close approximation. An alternative consists in using the Λ(\ )
term associated with the GGX distribution, using the equivalent
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roughness of Equation 18. We compare both solutions to a refer-
ence obtained with 𝑛 = 20 in Figure 10 for two configurations of
parameters. More comparisons are shown in supplemental material.

θ = 0 π/4 π/2
0

0.5

1

G1(θ) with n=0
G1(θ) with n=2
G1(θ) with n=4
G1(θ) with n=6
GGGX

1 (θ)
G1(θ) with n=20 (reference)

θ = 0 π/4 π/2
0

0.5

1

G1(θ) with n=0
G1(θ) with n=2
G1(θ) with n=4
G1(θ) with n=6
GGGX

1 (θ)
G1(θ) with n=20 (reference)

(a) 𝛽 = 0.1 (b) 𝛽 = 1.0

Fig. 10. The𝐺1 term of the GAF for our NDF is shown in the critical config-
uration where 𝜏0 = 0.98 for two values of 𝛽 . Using the GGX𝐺1 term yields
a conservative approximation, which is often sufficient for lower 𝜏0 values.

6 RESULTS
Relationship to previous work. We start by comparing our method

to other microfacet-based models showcasing grazing-angle effects.
Among existing work, the two closest models are the one of Merillou
et al. [Merillou et al. 2000] and d’Eon et al. [d’Eon et al. 2023]. The
three models (including ours) make different hypothesis concerning
the modeled microstructure. Yet they all boil down to a combina-
tion of a pair of BRDF components based on an angular-dependent
weight function (in our case, 𝑤+). In the case of the model d’Eon
et al., we can match its two parameters to the parameters of our
model by imposing that their weight function and ours be equal
when \𝑖 = 0, yielding:

(1 −𝑤𝐴)
1

𝐺�̃� (0,\𝑜 ) = 1 −𝑤+ (0, \𝑜 ) = 1 − 𝜏+
𝛽
(\𝑜 ), (26)

where𝑤𝐴 denotes the parameter in the model of d’Eon et al. and𝐺�̃�

is the GGX GAF where we set roughness from 𝛽 using Equation 18.
However, note that there is no simple bijection between the two
models, since Equation 26 still depends on \𝑜 . If we further enforce
\𝑜 = 0 in Equation 26, we then get𝑤𝐴 = 𝜏0. As shown in Figure 11
for two values of \𝑜 , the two weighting functions exhibit a similar
profile. In contrast, the model of Merillou cannot be remapped
in the same vein. We can still plot it in Figure 11 since one of its
parameters is the porosity 1 − 𝜏0, showing a more different profile
than the other two weighting functions.
In Figure 12(a), we compare our model to the one of d’Eon et

al. [d’Eon et al. 2023] on renderings, using𝑤𝐴 = 𝜏0 and 𝛼 = 𝛼 . The
differences between the two models are subtle, and mainly show up
for large values of 𝜏0 and small values of 𝛼 . They are not only due to
the different weighting functions, but also to the slightly different
shape of our NDF. We also provide a comparison to the model of
Walter et al. [Walter et al. 2007] (which does not vary with 𝜏0) for
reference in Figure 12(b).
When using our GAF formulation with 𝑛 = 4 as suggested in

Supplemental Material, our model shows a 20% overhead compared
to the (single-scattering) model of d’Eon et al. [d’Eon et al. 2023] or
Walter et al. [Walter et al. 2007]. This overhead vanishes when we
use the approximate GGX GAF.

i = 0 /4 /2
0

0.1

0.5

0.8

1

i = 0 /4 /2
0

0.1

0.5

0.8

1

0 = 0.8
0 = 0.5
0 = 0.1

\𝑜 = 0 \0 = 2𝜋/5

Fig. 11. The weight mixture functions of three models are compared: Mer-
illou[Merillou et al. 2000] (dotted), d’Eon[d’Eon et al. 2023] (dashed) and
ours (solid). The anfractuosity is set to 𝛽 = 0.5, from which an equivalent
roughness parameter �̃� is computed for the first two models. Even though
the three models may be made equal at \𝑖 = \𝑜 = 0 as shown at left, they
differ at other angular configurations. As shown at right, our model is closest
to the one of d’Eon.

Parameter variations. Next, we demonstrate different homoge-
neous material configurations in simple scene settings, all rendered
within Mitsuba 3 [Jakob et al. 2022]. Figure 13 shows a selection
taken from our Supplemental material, where we render spheres
by combining all types of micrograins (diffuse, diffuse+specular
and metallic) on various types of bulk materials. This reveals an
advantage of our approach compared to previous work such as the
method of d’Eon et al. [d’Eon et al. 2023]: we can achieve a wider
range of appearance with our analytical model, since the mixing
of porous layers on bulk surfaces is decoupled from micrograin
reflectance. Even though the diffuse component of our model is a
mere Lambertian term, it already allows for the rendering of diffuse
or diffuse+specular micrograins in an analytical fashion, which does
not seem to be achievable in the model of d’Eon et al. In supple-
mental material, we evaluate the Lambertian approximation using
Monte-Carlo reference simulations, and show that a better approxi-
mation can be achieved by using the stochastic model of Heitz and
Dupuy [Heitz and Dupuy 2015].
In Figure 13, we pick an anfractuosity 𝛽 per type of micrograin

and show renderings for an intermediate filling factor 𝜏0 = 0.5. We
observe a variety of interesting effects: hazy reflections, changes of
color at grazing angles or in front-facing configurations, reduced
reflections or refractions even at grazing-angles (as opposed to non-
porous materials), dirty-looking surfaces.

Surface-varying materials. Figure 1 showcases several material
configurations where we have used textures to control the filling
factor parameter 𝜏0 in our model. Note that the 𝑤𝐴 parameter of
the method of d’Eon et al. [d’Eon et al. 2023] could be used in the
same way, even though the physical interpretation would then differ
from our model. The filling factor may even be correlated to height
or roughness textures, easing the adoption of our model in asset
creation pipelines.

Multi-scale rendering. Since the filling factor characterizes the
relative area of grains on the surface, variations of 𝜏0 may be av-
eraged in surface regions of increasing areas to yield multi-scale
filling factors. We provide proofs of concept of the multi-scale ren-
dering abilities of our model through three ShaderToy programs
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(in GLSL) that we provide in Supplemental Material. We only use
point or directional lights, and rely on mipmapped textures for
multi-scale effects. Screenshots of the three corresponding scenes
are shown in Figure 14. In the Mossy stones scene, we correlate
𝜏0 with a height map that is also used for bump mapping, using
diffuse micrograins of constant greenish reflectance. In the Dusty
wood scene, variations of 𝜏0 are independent of the bulk surface and
vary at two different scales, using diffuse micrograins with slight
color reflectance variations. The Graffiti scene showcases metallic
micrograins mimicking a metallic paint on a rougher metallic sur-
face, with different paint thicknesses reproduced via the 𝜏0 texture,
yielding different appearance under different light directions.

7 DISCUSSION
We have introduced a phyisically-based method for the rendering
of porous layers on arbitrary surfaces. It is based on a distribution
of opaque micrograins, from which we derive the classical NDF
and GAF of microfacet theory, as well as a weight mixture function
for combination with a bulk material. The advantage of working
with micrograins is that their structural properties (filling factor and
anfractuosity) are decoupled from their reflectance properties. As a
result, our model permits the production of a wide range of effects, it
is easily controlled by classical material textures, and readily works
in multi-scale rendering frameworks.

Limitations. A current limitation of our model is that it does not
handle multiple scattering among micrograins. To this end, recent
solutions [Bitterli and d’Eon 2022; Heitz et al. 2016] could be fol-
lowed, but they require the definition of the visible NDF, which we
have not yet derived in our case. Another limitation is anisotropy.
Even though we believe anisotropic grains are not common, they
could consitute an interesting artistic feature. The work of Atasanov
et al. [Atanasov et al. 2022] could provide a relevant approach to
extend our model to anisotropy. Note that both multiple scatter-
ing and anisotropy are possible in the recent model of d’Eon et
al. [d’Eon et al. 2023]. We find the similarity between this model
and ours – in spite of different structural hypotheses – to be in-
teresting, even though more differences might emerge in future
developments. In particular, we could use height-normals correla-
tions implied by micrograins to compute a more accurate GAF. We
provide additional comparisons to Monte-Carlo reference simula-
tions on explicit micrograin distributions in supplemental material
to show the remaining margin of progress that can be expected
from such an improved GAF. Finally, grazing-angle effects created
with our approach emerge from the distribution or micrograins. For
a more direct (yet less physically-plausible) control over grazing-
angle effects, sheen models [Estevez and Kulla 2017; Zeltner et al.
2022] might be better adapted.

Future work. A main assumption of our model is that micrograins
are opaque. A challenging direction of future work would be to ex-
tend our model to transparent micrograins, which will require suit-
able approximations to the potentially complex light paths occuring
in an half-ellipsoid. We would also like to investigate poly-disperse
distributions of micrograins, with variations in either their radii or
even their shapes, and distributions of reflectance properties. An

exciting research direction would be to combine our porous layer
model with existing volumetric BRDF models (e.g., [d’Eon 2021;
Hapke 2012]), which assume that the bulk material is also composed
of a distribution of spherical micrograins. This will not only require
identifying correspondences between our model parameters and
volumetric material parameters (i.e., single scattering albedo, phase
function assymetry, volumetric filling factor); but it will also be
necessary to model interactions between surfacic and volumetric
components.
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(a) Comparison with d’Eon et al. [d’Eon et al. 2023] (b) Comparison with Walter et al. [Walter et al. 2007]

Fig. 12. Compared to (a) the model of d’Eon et al. [d’Eon et al. 2023] (bottom halves), our model produces very similar rendering results (top halves), here
using a directional light. Slight differences may be observed only for high values of 𝜏0 and low values of �̃� . In contrast, our model has several advantages, see
text. Comparisons to (b) the model of Walter et al. [Walter et al. 2007] (bottom halves) show the impact of the filling factor 𝜏0.
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Fig. 13. Different combinations of porous layers (rows) on bulk materials (columns). We use 𝜏0 = 0.5 throughout but pick different 𝛽 values for each type of
porous layer. The top row (resp. first column) shows the bulk material (resp. porous layer) in isolation. A variety of interesting visual effects (indicated by small
symbols) are noteworthy: hazy reflections due to the porous layer ▲ or to the bulk surface ▲; grazing-angle color changes ♦ and front-facing color changes ♦;
dirty surfaces with reduced specular reflection ■; reduced bulk transparency★.
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Fig. 14. Screenshots taken from our ShaderToy programs and demonstrating our model on three scenes. In the Mossy stones scene (left), we add a greenish
diffuse porous layer correlated to stone heights. We compare a linear mixing based on 𝜏0 with our view- and light-dependent mixing 𝑤+. Observe how the
linear mixing fails to capture greenish grazing-angle effects. In the Dusty wood scene (top right), we modulate 𝜏0 with noise functions at two different scales.
Observe how the grayish gradient toward the horizon is preserved at all three scales. The Graffiti scene (bottom right) uses metallic micrograins and several
levels of 𝜏0 to mimick different layers of metallic paint, which drastically change in appearance when the light direction is modified.
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