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Contemporary Mathematics

Explicit Riemann-Roch spaces in the Hilbert class field

Jean-Marc Couveignes and Jean Gasnier

Abstract. Let K be a finite field, X and Y two curves over K, and Y → X
an unramified abelian cover with Galois group G. Let D be a divisor on X and

E its pullback on Y . Under mild conditions the linear space associated with
E is a free K[G]-module. We study the algorithmic aspects and applications

of these modules.

1. Introduction

Given a curve Y over a field K, and two divisors E and Q on Y , with Q effective
and disjoint from E, the evaluation map e : H0(Y,OY (E))→ H0(Y,OY /OY (−Q))
is a natural K-linear datum of some importance for various algorithmic problems
such as efficient computing in the Picard group of Y (see [28, 29]), constructing
good error correcting codes [16, 18, 49], or bounding the bilinear complexity of
multiplication in finite fields [46, 45, 3, 4, 9, 38]. Assume that G is a finite group of
automorphisms of Y/K, and the divisors E and Q are G-equivariant (they are equal
to their pullback by any element of G). The evaluation map e is then a K[G]-linear
map between two K[G]-modules. In some cases these modules can be shown to be
both free. Their rank as K[G]-modules is then smaller than their dimension as K-
vector spaces, by a factor o, the order of G. This is helpful when G is commutative,
because multiplication in K[G] is achieved in quasi-linear time using a discrete
Fourier transform, and the advantage of lowering dimension is stronger than the
disadvantage of dealing with a larger ring of scalars. We will focus on free K[G]-
modules arising from commutative groups acting freely on a curve. This special
case has a rich mathematical background and produces interesting constructions.
For example Theorem 3 states the existence of excellent algebraic geometry codes
that can be encoded in quasi-linear time and decoded in quasi-quadratic time in
their length.

In Section 2 we review elementary properties of K[G]-modules when K is a
commutative field and G a finite group. We recall in Section 3 how unramified
fibers of Galois covers of curves produce free K[G]-modules and we introduce nat-
ural bases for these modules. We study the abelian unramified case in Section
4. Theorem 1 states that in this case, the Riemann-Roch space associated to a
G-equivariant divisor of large enough degree is a free K[G]-module. Evaluating
at another G-equivariant divisor then produces a K[G]-linear map between two
free K[G]-modules. This makes it possible to treat evaluation and interpolation
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as K[G]-linear problems. We introduce the matrices associated to these problems.
Section 5 is devoted to the definition and computation of Padé approximants in
this context. The complexity of arithmetic operations in K[G] is bounded in Sec-
tion 6 using various classical discrete Fourier transforms. Theorem 2 states that
the complexity of multiplication in K[G] is quasi-linear when G is commutative.
In Section 7 we use effective class field theory and the algorithmics of curves and
jacobian varieties to compute the evaluation and interpolation matrices introduced
in Section 4. Section 8 is concerned with two applications of interpolation with
K[G]-modules: multiplication in finite fields and geometric codes. The asymptotic
properties of the codes constructed in this way are studied in Section 9. We thank
the anonymous referee for their comments and suggestions. The calculation in Sec-
tion 7.2 has been implemented using SageMath (Version 9.4) the Sage Mathematics
Software System [48].

Contents

1. Introduction 1
2. Duality for K[G]-modules 3
2.1. Invariant bilinear forms 3
2.2. Orthogonality 4
2.3. The dual of a K[G]-module 4
2.4. Free submodules of a K[G]-module 5
3. Curves with a group action 5
3.1. The residue ring of a non-ramified fiber 5
3.2. The residue ring of a non-ramified G-equivariant divisor 6
3.3. Duality 7
4. Free commutative actions 7
4.1. Special invariant divisors 7
4.2. Riemann-Roch spaces 8
4.3. The orthogonal submodule 9
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2. Duality for K[G]-modules

In this section K is a commutative field and G is a finite group. We state
elementary properties of K[G]-modules and their duals. In Section 2.1 we describe
the natural correspondence between G-invariant K-bilinear forms and K[G]-bilinear
forms. We see in Section 2.2 that the orthogonal of a K[G]-submodule for either
form is the same. Sections 2.3 is concerned with the canonical bilinear form relat-
ing a K[G]-module and its dual. The ring K[G] has the Frobenius property [13,
Chapter IX]. We recall in Section 2.4 a convenient consequence of it.

2.1. Invariant bilinear forms. Let M be a right K[G]-module. Let N be a
left K[G]-module. Let

< ., . > : M ×N → K

be a K-bilinear form. We assume that this form is invariant by the action of G in
the sense that

< m.σ, n >=< m,σ.n >

for every m in M , n in N , and σ in G. We define a map

(1) (., .) : N ×M // K[G]

n,m � // (n,m) =
∑
σ∈G < m.σ−1, n > σ

Proposition 1. The map (., .) in Equation (1) is K[G]-bilinear.

Proof. Indeed for any τ in G, m in M , and n in N

(τ.n,m) =
∑
σ∈G

< m.σ−1, τ.n > σ

=
∑
σ∈G

< m.σ−1τ−1, τ.n > τσ

=
∑
σ∈G

< m.σ−1, n > τσ

= τ
∑
σ∈G

< m.σ−1, n > σ

= τ(n,m).

And

(n,m.τ) =
∑
σ∈G

< m.τσ−1, n > σ

=
∑
σ∈G

< m.ττ−1σ−1, n > στ

=
∑
σ∈G

< m.σ−1, n > στ

= (n,m)τ.

�
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2.2. Orthogonality. In the situation of Section 2.1 we consider a right sub-
module U of the K[G]-module M . Call

U⊥ = {n ∈ N | < U, n >= 0}

the orthogonal to U in N for the < ., . > form. This is a K-vector space. Since U
is stable by the action of G, its orthogonal U⊥ is a left K[G]-module. And U⊥ is
the orthogonal to U for the (., .) form:

U⊥ = {n ∈ N | (n,U) = 0}.

We consider similarly a left K[G]-submodule V of N and let

V ◦ = {m ∈M | < m,V >= 0}

be the orthogonal to V in M for the < ., . > form. This is a right K[G]-module.
And V ◦ is the orthogonal to V for the (., .) form:

V ◦ = {m ∈M | (V,m) = 0}.

We have U ⊂ (U⊥)◦ and V ⊂ (V ◦)⊥. These inclusions are equalities when M and
N are finite dimensional and < ., . > is perfect.

2.3. The dual of a K[G]-module. Let N be a left K[G]-module. We can

see N as a K-vector space and let N̂ be its dual. This is a right K[G]-module. For

every ϕ in N̂ and σ in G we set ϕ.σ = ϕ ◦ σ. We consider the canonical K-bilinear
form defined by

< ϕ, n >= ϕ(n)

for every n in N and ϕ in N̂ . For every σ in G we have

< ϕ.σ, n >= ϕ(σ.n) =< ϕ, σ.n >

so < ., . > is invariant by G. Following Section 2.1 we define a K[G]-bilinear form

(., .) : N × N̂ → K[G]

by

(2) (n, ϕ) =
∑
σ∈G

ϕ(σ−1.n)σ.

We define a map from N̂ to the dual Ň of N as a K[G]-module, by sending ϕ
to the map

(3) ϕG : n 7→ (n, ϕ).

We prove that this map is a bijection. First ϕ 7→ ϕG is trivially seen to be an
injection. As for surjectivity, let ψ : N → K[G] be a K[G]-linear map. Writing

ψ(n) =
∑
σ∈G

ψσ(n)σ

we define a K-linear coordinate form ψσ on N for every σ in G. We deduce from the
K[G]-linearity of ψ that ψσ(n) = ψ1(σ−1.n) where 1 ∈ G is the identity element.
So ψ(n) = (n, ψ1) for every n in N . So ψ = (ψ1)G.
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2.4. Free submodules of a K[G]-module. The ring K[G] may not be
semisimple. Still free K[G]-submodules of finite rank are direct summands.

Proposition 2. Let G be finite group, K a commutative field, and N a left
K[G]-module. Let V a submodule of N . If V is free of finite rank then it is a direct
summand: there exists a submodule W of N such that N = V ⊕W . Such a W is
called a complementary submodule to V .

Proof. Let r be the rank of V . Let v1, v2, . . . , vr be a basis of V . Let ϕ1, ϕ2,
. . . , ϕr be the dual basis. For every i such that 1 6 i 6 n, the coordinate form ϕi,1
associated to the identity element 1 in G belongs to V̂ . Let ψi be a K-linear form
on N whose restriction to V is ϕi,1. Let ψGi ∈ Ň be the associated K[G]-linear
form according to Equations (2) and (3). The restriction of ψGi to V is ϕGi,1 and
this is ϕi. The map

ψ : N // V

n � //
∑

16i6r ψ
G
i (n).vi

is a K[G]-linear projection onto V . Its kernel is a complementary K[G]-submodule
to V . �

Proposition 2 is a consequence of the Frobenius property which is known to be
satisfied by K[G]. See [13, Chapter IX]. The proof above provides an algorithm to
compute a complementary module.

3. Curves with a group action

Let K be a commutative field. Let p be the characteristic of K. Let X and Y
be two smooth, projective, absolutely integral curves over K. Let gX be the genus
of X and let gY be the genus of Y . Let τ : Y → X be a Galois cover with Galois
group G. Let o be the order of G. There is a natural left action of G on K(Y )
defined by

(4) σ.f = f ◦ σ−1 for f ∈ K(Y ) and σ ∈ G.

There is a natural right action of G on meromorphic differentials defined by

(5) ω.σ = σ?ω for ω ∈ ΩK(Y )/K and σ ∈ G.

These are K(X)-linear actions. And the two actions are compatible in the sense
that

(6) (ω.σ)(σ−1.f) = (ωf).σ

We study some free K[G]-modules that arise naturally in this context.

3.1. The residue ring of a non-ramified fiber. Let P be a prime divisor
(a place) on X. Let tP be a uniformizing parameter at P . Let

a = deg(P ).

This is the degree over K of the residue field

KP = H0(P,OP ) = H0(X,OX/OX(−P )).
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We assume that τ is not ramified above P and let Q1 be a place above P . Let G1

be the decomposition group of Q1. This is the stabilizer of Q1 in G. Places above
P are parametrized by left cosets in G/G1. We write the fiber above P

Q =
∑

σ∈G/G1

Qσ with Qσ = σ(Q1).

Let
b = [G : G1]

be the number of places above P and let

c = o/b = |G1|
be the residual degree, that is the degree of

Kσ = H0(Qσ,OQσ )

over KP for all σ ∈ G/G1. Let

RQ = H0(Q,OQ) = H0(Y,OY /OY (−Q))

be the residue ring at Q. We have

RQ =
⊕

σ∈G/G1

Kσ.

The action of G on RQ makes it a free left K[G]-module of rank a. Indeed it is
a free KP [G]-module of rank 1. A basis for it consists of any normal element θ in
K1/KP .

If m is a positive integer, Taylor expansion provides an isomorphism of modules
over KP [G]

H0(Y,OY /OY (−mQ)) ' RQ[tP ]/tmP
between the residue ring at mQ and the ring of truncated series in tP . So the
former is a free left KP [G]-module of rank m. A basis for it is made of the θtkP for
0 6 k < m.

3.2. The residue ring of a non-ramified G-equivariant divisor. We take
P an effective divisor on X. We assume that τ does not ramify above P and let Q
be the pullback of P by τ . We write

P =
∑

16i6I

miPi.

Let ti be a uniformizing parameter at Pi. Let ai be the degree of the place Pi. Let
bi be the number of places of Y above Pi. Let ci = o/bi. For every 1 6 i 6 I we
choose a place Qi,1 above Pi and let Gi,1 be the decomposition group at Qi,1. Let
Qi be the pullback of Pi by τ and write

(7) Qi =
∑

σ∈G/Gi,1

Qi,σ with Qi,σ = σ(Qi,1)

its decomposition as a sum of bi places. Let Ki,σ be the residue field at Qi,σ.
We denote by A the residue algebra H0(Q,OQ). Taylor expansion induces an
isomorphism of K-algebras

A = H0(Q,OQ) = H0(Y,OY /OY (−Q)) '
I⊕
i=1

⊕
σ∈G/Gi,1

Ki,σ[ti]/t
mi
i
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which is compatible with the left actions of G as defined by Equations (4) and (7).
In the special case when all the places Pi have degree one, a basis for H0(Q,OQ)

as a K[G]-module is made of the θit
ki
i for 1 6 i 6 I and 0 6 ki < mi where θi is a

normal element in the extension Ki,1/K. The proposition below follows from the
discussion in this section and the previous one.

Proposition 3. Assume the hypotheses at the beginning of Section 3. Let P
be an effective divisor on X. Assume that τ is not ramified above P and let Q be
the pullback of P by τ . The residue ring H0(Q,OQ) is a free K[G]-module of rank
the degree of P .

3.3. Duality. We need a dual of A as a K-vector space. We set

Â = H0(Y,ΩY/K(−Q)/ΩY/K) '
I⊕
i=1

⊕
σ∈G/Gi,1

(Ki,σ[ti]/t
mi
i )

dti
tmii

.

For f ∈ A and ω ∈ Â we write < ω, f > for the sum of the residues of ωf at all
the geometric points of Q. This is a K-bilinear form. We deduce from Equation (6)
that this form is invariant by the action of G

< ω.σ, f >=< ω, σ.f >

We define a K[G]-bilinear form using the construction in Section 2.1

(8) (f, ω) =
∑
σ∈G

< ω.σ−1, f > σ ∈ K[G].

These two bilinear forms turn Â into the dual of A as a K-vector space (resp.
as a K[G]-module). In the special case when all the places Pi have degree one, the

dual basis to the basis introduced before Proposition 3 is made of the µit
−ki
i dti/ti

for 1 6 i 6 I and 0 6 ki < mi where µi is the dual to the normal element θi in the
extension Ki,1/K.

4. Free commutative actions

We study the situation at the beginning of Section 3 in the special case when
the Galois cover τ : Y → X is abelian and unramified. We prove that large enough
equivariant Riemann-Roch spaces are free K[G]-modules. To this end we prove
in Section 4.2 that evaluation at some fibers induces an isomorphism with one of
the K[G]-modules studied in Section 3.2. We need a criterion for an equivariant
divisors on Y to be non-special. We recall such a criterion in Section 4.1. We
introduce in Section 4.3 the evaluation, interpolation and checking matrices whose
existence follows from the freeness of the considered modules.

4.1. Special invariant divisors. The pullback by τ of a degree gX−1 divisor
on X is a degree gY − 1 divisor on Y according to the Riemann-Hurwitz formula.
We need a criterion for the latter divisor to be special. We will say that a divisor
class is effective if it contains an effective divisor. When the degree of the class is
the genus of the curve minus one, being effective is equivalent to being special.

Proposition 4. Assume the hypotheses at the beginning of Section 3 with τ
abelian and unramified and K algebraically closed. Write o = op × op′ where op is
the largest power of p dividing o. Let c be a divisor class of degree gX −1 on X and
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let τ?(c) be its pullback on Y . If the class τ?(c) is effective then c is the sum of an
effective class of degree gX − 1 and a class of degree 0 annihilated by τ? and by op′ .

Proof. From [11, §14]. Let D be a divisor in c and let E be the pullback of
D by τ . We assume that τ?(c) is effective. The space H0(Y,OY (E)) is non-zero
and is acted on by G. Recall that a finite set of commuting endomorphisms of
a finite dimensional vector space over an algebraically closed field has a common
eigenvector. Let f be such an eigenvector for the action of G. The divisor of f is
J − E where J is effective and stable under the action of G. So there exists an
effective divisor I on X such that J is the pullback of I by τ . And the class of
I −D is annihilated by τ?. It is also annihilated by op′ because fop′ is invariant by
G. �

4.2. Riemann-Roch spaces. Let E be a divisor on Y defined over K and
invariant by G. The Riemann-Roch space H0(Y,OY (E)) is a K[G]-module. This
module is free provided the degree of E is large enough.

Theorem 1. Assume the hypotheses at the beginning of Section 3 with τ abelian
and unramified. Let D be a divisor on X with degree > 2gX − 1. Let E be the
pullback of D by τ . The K-vector space H0(Y,OY (E)) is a free K[G]-module of
rank deg(D)− gX + 1.

Proof. The statement is empty if gX = 0. We assume that gX > 1. Because
of the Noether-Deuring theorem [8, §2, Section 5], we can assume that K is alge-
braically closed. Let k = deg(D) − gX + 1. We note that k > gX . By dimension
count, there exist k points

P1, P2, . . . , Pk on X

such that the class of D− P1 − P2 − · · · − Pk is not the sum of an effective class of
degree gX − 1 and a class annihilated by

τ? : Pic(X)→ Pic(Y ).

Indeed every divisor class of degree gX − 1 contains a divisor of the form D−P1−
P2−· · ·−Pk because k is greater than or equal to the dimension gX of PicgX−1. On
the other hand the set of effective classes of degree gX−1 has dimension gX−1. And
the kernel of τ∗ is finite. So the set of bad classes has codimension 1 in PicgX−1.

Let P be the divisor sum of all Pi and let Q be its pullback by τ . According
to Proposition 4 the class of E −Q is ineffective. Thus the evaluation map

H0(Y,OY (E))→ H0(Y,OY (E)/OY (E −Q)) ' H0(Q,OQ)

is an isomorphism of K[G]-modules. Proposition 3 then implies that H0(Q,OQ) is
a free K[G]-module of rank k. �

When the degree ofD is smaller than 2gX−1 it is not granted thatH0(Y,OY (E))
is free. We mention two useful partial results.

Proposition 5. Assume the hypotheses at the beginning of Section 3 with τ
abelian and unramified. Assume that p does not divide o. Let D be a divisor on X
with degree > gX . Let E be the pullback of D by τ . Then H0(Y,OY (E)) contains
a free K[G]-module of rank deg(D)− gX + 1.
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Proof. The ring K[G] is semi-simple. Let L(E) = H0(Y,OY (E)). Let m be
the smallest among the multiplicities in L(E) of irreducible representations of G.
This is the smallest among the multiplicities of multiplicative characters of G in
L(E) ⊗ K̄ where K̄ is an algebraic closure of K. It is clear that L(E) contains m
copies of the regular representation of G. On the other hand let χ : G → K̄ be a
multiplicative character. By the normal basis theorem there exists an eigenfunction
r in K̄(Y ) associated with χ. The divisor of r is the pullback by τ of a divisor R
on X. Let L(E)χ be the eigenspace in L(E) associated with χ. The map f 7→ f/r
is a bijection between L(E)χ and H0(X,OX(D+R)). The dimension of the latter
is at least deg(D)− gX + 1. Thus m > deg(D)− gX + 1. �

We can say something also when G is a p-group and K a finite field.

Proposition 6. Assume the hypotheses at the beginning of Section 3 with τ
abelian and unramified. Assume that K is a finite field with at least four elements.
Assume that o is a power of p. Assume that gX > 2. Let d > gX be an integer. Let
r = d−gX +1. Assume that there exists an effective divisor on X with degree r and
defined over K. Then there exists a divisor D on X such that D is defined over K,
D has degree d, and H0(Y,OY (E)) is a free K[G]-module of rank r = d − gX + 1
where E is the pullback of D by τ .

Proof. Set r = d− gX + 1. Let P be an effective divisor on X with degree r
and defined over K. According to [2, Theorem 11] by Ballet and Le Brigand, there
exists a degree gX−1 non-special divisor I defined over K. Set D = I+P . Let E, J ,
and Q be the pullbacks of D, I, and P by τ . The class of the divisor J is ineffective
according to Proposition 4. So the evaluation map H0(Y,OY (E))→ H0(Q,OQ) is
a bijection. And the latter is a free K[G]-module according to Proposition 3. �

Theorem 1 translates into a similar statement for differentials.

Proposition 7. Assume the hypotheses at the beginning of Section 3 with τ
abelian and unramified. Let D be a divisor on X with degD < 0. Let E be the
pullback of D by τ . The K-vector space H0(Y,ΩY/K(E)) is a free K[G]-module of
rank gX − 1− deg(D).

Proof. The statement is trivial if gX = 0. We assume that gX > 1. Let
ω0 be a non-zero holomorphic differential on X. The pullback of ω0 on Y by τ
is denoted by ω0 also. The map ω 7→ ω/ω0 is an isomorphism of K-vector spaces
between H0(Y,ΩY/K(E)) and H0(Y,OY ((ω0)−E)). According to Equation (6) this
isomorphism is compatible with the actions of G on either sides given by Equations
(4) and (5). Since the degree of (ω0)−D is at least 2gX − 1 we can apply Theorem
1 to prove that H0(Y,OY ((ω0) − E)) is free and deduce that H0(Y,ΩY/K(E)) is
free as well. �

4.3. The orthogonal submodule. In the situation of the beginning of Sec-
tion 3 and assuming that τ is abelian and unramified we let D and P be divisors
on X with P effective. We assume that D and P are disjoint. We assume that

(9) 2gX − 1 6 deg(D) 6 deg(P )− 1.

Let E be the pullback of D by τ and let Q be the pullback of P . We write

L(E) = H0(Y,OY (E)) and Ω(−Q+ E) = H0(Y,ΩY/K(−Q+ E)).
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Theorem 1, Proposition 7, and Equation (9) imply that these two K[G]-modules
are free. And the evaluation maps

L(E) −→ A and Ω(−Q+ E) −→ Â are injective.

So L(E) can be seen as a free submodule of A and Ω(−Q+E) as a free submodule of

Â. For dimension reasons and due to the residue theorem, these two K[G]-modules
are orthogonal to each other for the form introduced in Equation (8). Proposition
2 implies that L(E) has a complementary submodule in A that is isomorphic to
the dual of Ω(−Q+ E) and is thus a free submodule. Similarly Ω(−Q+ E) has a

free complementary submodule in Â that is isomorphic to the dual of L(E).
In the special case when all the places Pi have degree one, we have introduced

a natural basis for A before Proposition 3 and its dual basis Â in Section 3.3, using
Taylor expansions at the places above the Pi.

We choose K[G]-bases for L(E) and Ω(−Q+E). We denote by EE the deg(P )×
(deg(D)−gX+1) matrix with coefficients in K[G] of the evaluation map L(E)→ A
in the chosen bases. We denote by CE the deg(P ) × (deg(P ) − deg(D) + gX − 1)

matrix of the map Ω(−Q + E) → Â in the chosen bases. The matrix CE checks
that a vector in A belongs to L(E). Its left kernel is the image of EE . So

CtE × EE = 0,

a zero (deg(P )−deg(D)+gX −1)× (deg(D)−gX +1) matrix with entries in K[G].

We choose a K[G]-linear projection A → L(E) and denote by IE the matrix
of this projection. This is a (deg(D)− gX + 1)× deg(P ) matrix with coefficients in
K[G]. This is an interpolation matrix since it recovers a function in L(E) from its
evaluation at Q. Equivalently

IE × EE = 1

the (deg(D) − gX + 1) × (deg(D) − gX + 1) identity matrix with coefficients in
K[G]. We note that applying either of the matrices EE , CE , IE requires at most a
constant times deg(P )2 operations in K[G].

5. Padé approximants

In the situation of the beginning of Section 3 and assuming that τ is abelian
and unramified we let D0, D1 and P be divisors on X with P effective. We assume
that D0 and D1 are disjoint from P . Let E0, E1, and Q be the pullbacks of D0,
D1, and P by τ . We assume that

(10) 2gX − 1 6 deg(D1) 6 deg(P )− 1,

(11) gX 6 deg(D0) 6 deg(P )− 1.

Equation (10) implies that the K[G]-modules L(E1) and Ω(−Q+E1) are free and

the evaluation maps into A and Â are injective. We assume that L(E0) contains a
free K[G]-module of rank deg(D0)−gX+1 and denote by L(E0)fr such a submodule.

Given r in A, a0 6= 0 in L(E0) and a1 in L(E1) such that

a0r − a1 = 0 ∈ A,

we say that (a0, a1) is a Padé approximant of r and we say that a0 is a denom-
inator for r. Denominators for r are non-zero a0 in L(E0) ⊂ A such that

a0r ∈ L(E1).
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Equivalently

(12) (a0r, ω) = 0 for every ω ∈ Ω(−Q+ E1).

Denominators are thus non-zero solutions of a K-linear system of equations. We
note that this is not a K[G]-linear system in general because multiplication by r
is not K[G]-linear. In Section 5.1 we show that one can be a bit more explicit in
some cases. We consider the problem of computing Padé approximants in Section
5.2.

5.1. The split case. Assume that P = P1 + · · ·+ Pn is a sum of n pairwise
distinct rational points over K. Assume that the fiber of τ above each Pi decom-
poses as a sum of o rational points over K. We choose a point Qi,1 above each Pi
and set

Qi,σ = σ(Qi,1) for every σ ∈ G.
For every 1 6 i 6 n let αi be the function in A that takes value 1 at Qi,1 and zero
everywhere else. We thus form a basis

AG = (αi)16i6n

of A over K[G]. We note ÂG its dual basis. For every 1 6 i 6 n and σ ∈ G let

αi,σ = σ.αi = αi ◦ σ−1

be the function in A that takes value 1 at Qi,σ and zero everywhere else. We thus
form a basis

AK = (αi,σ)16i6n, σ∈G

of A over K. The coordinates of r in the K[G]-basis AG are

rG = (
∑
σ∈G

r(Qi,σ)σ)16i6n

and the coordinates of r ∈ A in the K-basis AK are

rK = (r(Qi,σ))16i6n, σ∈G.

Multiplication by r is a K-linear map from A to A. Let

RK ∈Mo.n,o.n(K)

be the o.n× o.n diagonal matrix of this map in the basis AK.
We choose a K[G]-basis ZG for L(E0)fr and denote by E0

G the deg(P ) ×
(deg(D0)− gX + 1) matrix of the K[G]-linear injective map

(13) L(E0)fr → A

in the bases ZG and AG. We denote by ZK the K-basis of L(E0)fr obtained by
letting G act on ZG. Let E0

K be the matrix of the map (13) in the bases ZK and
AK. The matrix E0

K is obtained from E0
G by replacing each K[G] entry by the

corresponding o× o circulant-like matrix with entries in K.
Let ÂG be the basis of the K[G]-module Â, dual to AG. We choose a K[G]-

basis UG for Ω(−Q+ E1) and denote by C1
G the matrix of the injective map

(14) Ω(−Q+ E1)→ Â

in the bases UG and ÂG. This is a deg(P )× (deg(P )− deg(D1) + gX − 1) matrix
with entries in K[G]. Let UK be the K-basis of Ω(−Q+E1) obtained by letting G
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act on UG. Let ÂK be the basis of the K-vector space Â, dual to AK. The matrix
of the map (14) in the bases UK and ÂK is called C1

K.

Let a0 in L(E0)fr and let xG be the coordinates of a0 in the K[G]-basis ZG.
This is a column of height deg(D0) − gX + 1. We let xK be the coordinates of a0

in the K-basis ZK. This is a column of height o.(deg(D0)− gX + 1) obtained from
xG by replacing each entry by its o coefficients in the canonical basis of K[G]. We
deduce from Equation (12) that a0 is a denominator for r if and only if xK is in
the kernel of the matrix

Dr = (C1
K)t ×RK × E0

K ∈Mo.(degP−degD1+gX−1)×o.(degD0−gX+1)(K).

Proposition 8. Assume that we are in the context of the beginning of Sec-
tion 5. In particular assume Equations (10) and (11), assume that P is a sum
of n pairwise distinct K-rational points, and that the n corresponding fibers of τ
split over K. Assume that we are given the matrices E0

K and C1
K. On input an

r = (r(Qi,σ))16i6n, σ∈G in A and some a0 in L(E0)fr, given by its coordinates xK
in the basis ZK, one can check if a0r ∈ L(E1) at the expense of Q.n2 operations
in K[G] (addition, multiplication) and Q.o.n operations in K (addition, multipli-
cation) where Q is some absolute constant.

Proof. We first multiply xK by E0
K or rather xG by E0

G. This requires less
than 2 deg(P )×(deg(D0)−gX+1) operations in K[G]. We then multiply the result
by RK. This requires less than o.deg(P ) operations in K because RK is diagonal.
We finally multiply the result by (C1

K)t or rather (C1
G)t. This requires less than

2 deg(P )× (deg(P )− deg(D1) + gX − 1) operations in K[G]. �

5.2. Computing Padé approximants. According to Proposition 8 one can
efficiently check a denominator. As a consequence, one can find a random denom-
inator, assuming that there is some in L(E0)fr, using an iterative method as in
[53, 25]. Recall that an `× n black box matrix A with coefficients in a field K is
an oracle that on input an n× 1 vector x returns Ax.

Proposition 9 (Wiedemann, Kaltofen, Saunders). There exists a probabilistic
(Las Vegas) algorithm that takes as input an `×n black box matrix A and an `× 1
vector b with entries in a finite field K and returns a uniformly distributed random
solution x to the system Ax = b, if there is some, with probability of success > 1/2 at
the expense of Q.m. logm calls to the black box for A and Q.m2.(log(m))2 operations
in K (addition, multiplication, inversion, picking a random element) where Q is
some absolute constant and m = max(`, n).

Using Proposition 9 and bounding the cost of a call to the black box with the
help of Proposition 8 we deduce

Proposition 10. Under the hypotheses of Proposition 8 and on input a vector
r = (r(Qi,j)i,j) in A one can find a uniformly distributed random denominator for
r, if there is some in L(E0)fr, with probability of success > 1/2, at the expense of
Q.o.n3. log(o.n) operations in K[G] (addition, multiplication) and Q.(o.n. log(o.n))2

operations in K (addition, multiplication, inversion, picking a random element)
where Q is some absolute constant.

Once we have found a denominator a0 for r we set a1 = ra0 and recover the
coordinates of a1 applying the interpolation matrix associated to E1.
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6. Computing in the group algebra

Given a finite commutative group G and a finite field K we will need efficient
algorithms to multiply in K[G]. This is classically achieved using a discrete Fourier
transform when G is cyclic and K contains enough roots of unity. The complexity
analysis requires some care in general. This is the purpose of this section. We recall
in Section 6.1 the definition of the Fourier transform in the setting of commutative
finite groups. The most classical case of cyclic groups is studied in Section 6.2 from
an algorithmic point of view. The general case follows by induction as explained
in Section 6.3. The complexity of the resulting multiplication algorithm in K[G] is
bounded in Section 6.4.

6.1. Fourier transforms. Let G be a finite commutative group. Let o be
the order of G. Let e be its exponent. Let K be a commutative field containing a
primitive e-th root of unity. In particular e and o are non-zero in K. Let Ĝ be the
dual of G defined as the group of characters χ : G → K∗. We define a map from
the group algebra of G to the algebra of functions on G

> : K[G] // Homset(G,K)∑
σ∈G aσσ

� // σ 7→ aσ

This is an isomorphism of K-vector spaces. We let ⊥ : Homset(G,K) → K[G] be
the reciprocal map. We dually define

>̂ : K[Ĝ] // Homset(Ĝ,K)∑
χ∈Ĝ aχχ

� // χ 7→ aχ

and its reciprocal map ⊥̂. We let

ιG : K[G]→ K[G]

be the K-linear involution that maps σ onto σ−1. We define the Fourier transform

FTG : K[G] // Homset(Ĝ,K)∑
σ∈G aσσ

� // χ 7→
∑
σ aσχ(σ)

The Fourier transform evaluates an element in the group algebra at every character.
The Fourier transform of the dual group

FTĜ : K[Ĝ] // Homset(G,K)∑
χ∈Ĝ aχχ

� // σ 7→
∑
χ aχχ(σ)

provides an inverse for FTG in the sense that

⊥ ◦ FTĜ ◦⊥̂ ◦ FTG = o.ιG

is the K-linear invertible map that sends σ to o.σ−1.
Let M be a finite dimensional K-vector space. We set

M [G] = M ⊗K K[G]

and note that

Homset(Ĝ,M) = M ⊗K Homset(Ĝ,K).
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We define a Fourier transform on M

FTM : M [G] // Homset(Ĝ,M)∑
σ∈Gmσ ⊗ σ � // χ 7→

∑
σ χ(σ)mσ

It turns a free K[G]-module into a free Homset(Ĝ,K)-module.

6.2. Univariate Fourier transforms. We assume in this section that the
group G is cyclic of order o. We choose a primitive o-th root of unity ω in K. We
choose a generator in Ĝ and deduce the following identifications

Homset(Ĝ,K) = Ko and K[G] = K[x]/(xo − 1).

Let M be a finite dimensional K-vector space. Setting

M [x] = M ⊗K K[x] and M [G] = M ⊗K K[x]/(xo − 1).

the Fourier transform is

FTM : M [G] // Mo

m
� // (m(1),m(ω),m(ω2), . . . ,m(ωo−1))

Given m in M [G] = M ⊗K K[x]/(xo − 1) the computation of FTM (m) reduces to
the multiplication of a polynomial of degree 2o− 2 in K[x] and a vector of degree
o− 1 in M [x] using formulae by Rabiner, Schafer, Rader, and Bluestein [37, 6].

Proposition 11. Let K be a commutative field. Let M be a finite dimensional
K-vector space. Let o > 2 be an integer. Assume that K contains a primitive o-th
root of unity ω and a primitive root of unity of order a power of two that is bigger
than 3o− 3. Let

m = m0 ⊗ 1 +m1 ⊗ x+ · · ·+mo−1 ⊗ xo−1 mod xo − 1 ∈M ⊗K K[x]/(xo − 1).

One can compute FTM (m) at the expense of Q.o. log o additions, multiplications
and inversions in K, additions and scalar multiplications in M , where Q is an
absolute constant.

Proof. We adapt the notation from [7, I.5.4, Proposition 5.10]. For every
0 6 i 6 2o− 2 let

ti = i(i− 1)/2 and βi = ωti .

We note that

ti+1 = ti + i and βi+1 = βiω
i.

So one can compute the βi for 0 6 i 6 2o− 2 at the expense of 4o operations in K.
We then compute the inverse of every βi. For every 0 6 i 6 o− 1 let

ni = β−1
i mi.

These can be computed at the expense of o scalar multiplications in M . Let

n(x) = no−1 + no−2 ⊗ x+ · · ·+ n0 ⊗ xo−1 ∈M [x]

and let

b(x) = β0 + β1x+ · · ·+ β2o−2x
2o−2 ∈ K[x].

Let

r(x) = b(x).n(x) =
∑

06i63o−3

ri ⊗ xi ∈M [x].
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From the identity

ti+j = ti + tj + ij

we deduce

ωijβiβj = βi+j for 0 6 i, j 6 o− 1

and
o−1∑
j=0

ωijmj = β−1
i

o−1∑
j=0

βi+jnj .

We deduce that FTM (m) = (β−1
0 ro−1, β

−1
1 ro, β

−1
2 ro+1, . . . , β

−1
o−1r2o−2). Since K

contains a primitive root of unity of order a power of two that is bigger than 3o−3,
the coefficients in the product r(x) = b(x).n(x) can be computed at the expense
of Q.o. log o operations in K, additions in M and products of a vector in M by a
scalar in K. See [7, I.2.4, Algorithme 2.3]. �

6.3. Multivariate Fourier transforms. Let (oi)16i6I be integers such that
2 6 o1|o2| . . . |oI . Let Ci = Z/oiZ and G = Π16i6ICi. For 1 6 i 6 I set

Ai = K[Ci] and Bi = Homset(Ĉi,K).

For 0 6 i 6 I set

Mi =
⊗
j6i

Bj ⊗
⊗
j>i

Aj .

So M0 = K[G] and MI = Homset(Ĝ,K). For 0 6 i 6 I − 1 write

Mi =
⊗
j6i

Bj ⊗K[Ci+1]⊗
⊗
j>i+1

Aj

as a K[Ci+1]-module and let

Fi : Mi →Mi+1

be the corresponding Fourier transform as defined in Section 6.2. We check that

FTG = FI−1 ◦ FI−2 ◦ · · · ◦ F0.

Using Proposition 11 we deduce

Proposition 12. Let (oi)16i6I be integers such that 2 6 o1|o2| . . . |oI . Let
G =

∏
16i6I(Z/oiZ). Let o be the order of G. Let e = oI be the exponent of G.

Let K be a commutative field containing a primitive root of unity of order e and a
primitive root of unity of order a power of two that is bigger than 3e − 3. Given
an element a =

∑
σ∈G aσσ in K[G] one can compute FTG(a) in Homset(Ĝ,K) at

the expense of Q.o. log o additions, multiplications and inversions in K. Here Q is
some absolute constant.

6.4. Fast multiplication in K[G]. Let G, o, e be as in Section 6.3. Let K
be a commutative field. In this section we study the algorithmic complexity of
computing the product of two given elements

(15) a =
∑
σ∈G

aσσ and b =
∑
σ∈G

bσσ in K[G].

It will depend on the field K. We first treat the case when K has enough roots of
unity.
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Proposition 13. In the context of the beginning of Section 6.4 assume that K
contains a primitive root of unity of order e and a primitive root of unity of order
a power of two that is bigger than 3e− 3. One can compute the product ab ∈ K[G]
at the expense of Q.o. log o operations in K where Q is some absolute constant.

Proof. We compute A = FTG(a) and B = FTG(b) as in Section 6.3. We then

compute C = AB in Homset(Ĝ,K
∗) at the expense of o multiplications in K. We

then deduce c = ab applying FT−1
G to C. The cost of this computation is bounded

using Proposition 12. �

We now consider the case when K is Z/pZ where p is a prime integer. We miss
roots of unity in K in general. So we transport the problem into another ring using
non-algebraic maps. We let t be the smallest power of 2 that is bigger than 3e− 3.
Let p′ be the smallest prime integer congruent to 1 modulo o.(p − 1)2.t. We set
K′ = Z/p′Z and note that K′ contains a primitive root of unity of order e and a
primitive root of order a power of two bigger than 3e− 3. Also

p′ > o.(p− 1)2.

By a result of Heath-Brown, the exponent in Linnik’s theorem for primes in arith-
metic progressions can be taken to be 11/2. See [20] and the recent improvement
[54]. We deduce that there exists an absolute constant Q such that

p′ 6 Q(o.p)11.

For c a congruence class in K = Z/pZ we denote by `(c) the lift of c, that is the
unique integer in the intersection of c with the interval [0, p[. We write

(16) ↑(c) = `(c) mod p′.

We thus define maps ` : K → Z and ↑ : K → K′. We similarly define the lifting
map `′ : K′ → Z and ↓ : K′ → K by

(17) ↓(c) = `′(c) mod p for c ∈ K′.

These four maps can be extended to the corresponding group algebras by coeffi-
cientwise application. Given a and b as in Equation (15) we define

A = `(a) =
∑
σ∈G

`(aσ)σ and B = `(b) =
∑
σ∈G

`(bσ)σ in Z[G] and C = AB.

The coefficients in C belong to the interval [0, o.(p− 1)2]. So

C = `′((A mod p′)× (B mod p′)) and ab = ↓(↑(a) ↑(b)).
Using Proposition 13 we deduce

Proposition 14. There exists an absolute constant Q such that the following
is true. Let G, o, e be as in Section 6.3. Let K = Z/pZ be a prime field. There
exists a prime integer p′ 6 Q(o.p)11 and a straight-line program of length smaller
than Q.o. log o that computes the product c =

∑
g cg[g] of two elements a =

∑
g ag[g]

and b =
∑
g bg[g] in K[G] given by their coefficients (ag)g and (bg)g. The opera-

tions in this straight-line program are additions and multiplications in Z/p′Z and
evaluations of the maps ↑ and ↓ defined in Equations (16) and (17).

Now let L be a field extension of degree d of K = Z/pZ. We assume that
elements in L are represented by their coordinates in some K-basis of L. The bi-
linear part of one multiplication in L[G] reduces to µp(d) multiplications in K[G]
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where µp(d) is the K-bilinear complexity of multiplication in L. Work by Chud-
novsky [10], Shparlinski, Tsfasmann, Vladut [46], Shokrollahi [45], Ballet and
Rolland [3, 4], Chaumine [9], Randriambololona [38] and others imply that µp(d)
is bounded by an absolute constant times d. We deduce the following theorem.

Theorem 2. There exists an absolute constant Q such that the following is
true. Let G be a finite commutative group of order o and exponent e. Let K = Z/pZ
and L a field extension of degree d of K. There exists a prime integer p′ 6 Q(o.p)11

and a straight-line program of length 6 Q(d.o. log o+d2.o) that computes the product
c =

∑
g cg[g] of two elements a =

∑
g ag[g] and b =

∑
g bg[g] in L[G] given by

their coefficients (ag)g and (bg)g. The operations in this straight-line program are
additions and multiplications in Z/pZ and in Z/p′Z and evaluations of the maps ↑
and ↓ defined in Equations (16) and (17).

Remark 1. The d2.o summand in the complexity comes from the linear part
in the Chudnovsky algorithm for multiplication in finite field extensions.

7. Constructing functions in the Hilbert class field

We have defined in Section 4 matrices E , C and I for the evaluation and inter-
polation of global sections of a G-equivariant invertible sheaf on a curve Y acted
on freely by a commutative group G. We have seen in Sections 4, 5, and 6 how to
efficiently compute with these matrices. In this section we consider the problem of
computing these matrices.

We recall in Section 7.1 the necessary background from class field theory of
function fields over a finite field. We illustrate the constructive aspects of class
fields on a small example in section 7.2. An important feature of this method is
that we only work with divisors and functions on X, the quotient of Y by G. This
is of some importance since in the applications presented in Sections 8 and 9 the
genus of Y is much larger (e.g. exponentially) than the genus of X.

7.1. Class field theory and the jacobian variety. Let X be a projective,
smooth, absolutely integral curve over a finite field K of characteristic p. Let K̄ be
an algebraic closure of K. We need an abelian unramified cover τ : Y → X over
K, with Y absolutely integral. We will require that Y has a K-rational point Q1.
This implies that τ is completely split above P1 = τ(Q1).

According to class field theory [43, 39] there is a maximal abelian unramified
cover of X over K that splits totally above P1. We briefly recall its geometric
construction. Let JX be the jacobian variety of X and let

jX : X → JX

be the Jacobi map with origin P1. Let

FK : JX → JX

be the Frobenius endomorphism of degree |K|, the cardinality of K. The endomor-
phism

℘ = FK − 1 : JX → JX

is an unramified Galois cover between K-varieties with Galois group JX(K). We
denote by

τmax : Ymax → X
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the pullback of ℘ along jX . This is the maximal abelian unramified cover of X
that splits totally above P1. Any such cover τ : Y → X is thus a quotient of τmax

by some subgroup H of JX(K). We set G = JX(K)/H and notice that G is at the
same time the fiber of τ above P1 and its Galois group, acting by translations in
JX/H.

JX(K) Ymax JX

G = JX(K)/H Y JX/H

0 = P1 X JX

H

℘

τ G

Let P be a K-rational point on X and let Qmax be any point on Ymax(K̄) such that

τmax(Qmax) = ℘(Qmax) = P.

We have FK(Qmax) = Qmax + P . So the Artin map and the Jacobi map coincide,
and the decomposition group of any place on Y above P is the subgroup of G
generated by P itself. In particular the fiber of τ above P splits over K if and only
if P is sent into H by the Jacobi map. Equivalently the class of P − P1 belongs to
H.

7.2. An example. In this section K is the field with three elements and X
is the plane projective curve with homogeneous equation

Y 2Z3 = X(X − Z)(X3 +X2Z + 2Z3).

This is a smooth absolutely integral curve of genus 2. The characteristic polynomial
of the Frobenius of X/K is

(18) χK(t) = t4 + t3 + 2t2 + 3t+ 9.

The characteristic polynomial of the Frobenius of a curve over a finite field (given
by a reasonable model) can be computed in time polynomial in p.g.n where p is the
characteristic of the field, n its degree over the prime field, and g the genus of the
curve, using p-adic methods introduced by Kato-Lubkin [26], Satoh [40], Mestre
[33], Kedlaya [27], Lauder and Wan [31] and widely extended since then.

When the genus of the curve is fixed, the characteristic polynomial of the
Frobenius can be computed in time polynomial in the logarithm of the cardinality
of K, using `-adic methods introduced by Schoof [41] and generalized by Pila [35].

We deduce from Equation (18) that the jacobian variety JX of X has

χK(1) = 16

rational points. There are 5 places of degree 1 on X. We let P1 be the unique place
at (0, 1, 0) and let

P2 = (0, 0, 1), P3 = (1, 0, 1), P4 = (2, 2, 1), P5 = (2, 1, 1).

The Picard group JX(K) is the direct sum of a subgroup of order 8 generated
by the class of P4 − P1 and a subgroup of order 2 generated by P2 − P1. The class
of 4(P4 − P1) is the class of P3 − P1. The classes of P2 − P1 and P3 − P1 generate
a subgroup H of Pic0(X) isomorphic to (Z/2Z)2. The quotient group

G = JX(K)/H = Pic0(X)/H
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is cyclic of order 4 generated by P4 − P1. So the subcover τ : Y → X of Ymax

associated with H is cyclic of order 4. And the fibers above P1, P2, and P3 in this
cover all split over K. We will work with this cover.

According to Kummer theory, there is a duality (as group schemes) between
the prime to p part of Pic0(X) and the étale part of the kernel of FK−p. Associated
to the quotient G = Pic0(X)/H there must be a subgroup scheme isomorphic to

lµ.. 4 inside the latter kernel.

We let ζ be a primitive fourth root of unity in K̄ and denote by L the degree
two extension of K generated by ζ. In order to find the group of order 4 we are
interested in, we use algorithms to compute the kernels of FK − 1 and FK − p
described in [14, Chapter 13]. The idea is to pick random elements in JX(L) and
project them onto the relevant characteristic subspaces for the action of FK, using
our knowledge of the characteristic polynomial χK. We set

P6 = (2ζ, 2) and Γ = 2(P6 − P4)

and find that the class γ of Γ is of order 4 and satisfies

FK(γ) = 3γ.

Thus γ generates the group we were looking for. There is a unique function R in
L(X) with divisor 4Γ and taking value 1 at P1. The cover τ : Y → X we are
interested in is obtained by adding a 4-th root r of R to L(X). To be quite precise
this construction produces the base change to L of the cover we are interested in.
This will be fine for our purpose. So we let

r = R1/4

be the 4-th root of R taking value 1 at Q1. Equivalently we define Q1 to be the
point over P1 where r takes the value 1. With the notation of Section 4.3 we take

D = 2P5 and P = P1 + P2 + P3.

We let E be the pullback of D by τ and Q the pullback of P . We expect

L(E) = H0(Y,OY (E))

to be a free K[G]-module of rank

deg(D)− gX + 1 = 1.

This will be confirmed by our computations. Because the fibers above P1, P2 and
P3 all split over K, the evaluation map L(E) → A is described by a 3 × 1 matrix
with coefficients in K[G].

For every 2 6 i 6 3 we choose a 4-th root of R(Pi) in L. This amounts to
choosing a point Qi,1 in the fiber of τ above Pi. We let σ be the unique element in
G that sends r to ζ.r so

G 3 σ : r 7→ ζ.r.

The K-vector space L(E) decomposes over L as a sum of four eigenspaces
associated to the four eigenvalues 1, ζ, ζ2 = −1, ζ3 = −ζ of σ. Let 0 6 j 6 3
and let f be an eigenfunction in L(E) associated with the eigenvalue ζj . Then the
quotient f/rj is invariant by G and its divisor satisfies

(f/rj) > −E − j.(r) = −E − j.τ∗(Γ).
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So f/rj can be seen as a function on X with divisor bigger than or equal to −D−jΓ.
The eigenspace L(E)j associated to ζj is thus obtained as the image of the map

H0(X,OX(D + jΓ)) // L(E)j

F � // f = Frj

Evaluating f at Qi,1 for 1 6 i 6 3 then reduces to evaluating F = f/rj at Pi
and multiplying the result by the chosen 4-th root of R(Pi), raised to the power j.

This remark enables us to compute a K-basis of L(E) consisting of eigenfunc-
tions of σ and to evaluate the functions in this basis at the (Qi,1)16i63 without
ever writing equations for Y . We only need to compute the Riemann-Roch spaces
associated to the divisors D + jΓ on X for 0 6 j 6 3. The Riemann-Roch space
of a divisor D = D+ − D− on a curve X is computed in time polynomial in the
genus of X and the degrees of the positive and negative parts D+ and D− of D,
using Brill-Noether algorithm and its many variants. See [22, 52, 21] and the most
efficient general algorithm due to Makdisi [28, 29]. In case the exponent of G is
large, we may have to compute linear spaces like H0(X,OX(D + jΓ)) for large j.
In that case, one should use the method introduced by Menezes, Okamoto, and
Vanstone [32] in the context of pairing computation, in order to replace j by its
logarithm in the complexity.

Passing from the values of the eigenfunctions to the evaluation matrix E reduces
to applying an inverse Fourier transform. We find

E =

 1
e1,2

e1,3

 with e1,1 = 1, e1,2 = 1 + 2σ + 2σ2 + 2σ3, e1,3 = 2 + 2σ + 2σ2 + σ3.

Having a unit for e1,1 is quite convenient. In general one says that E is systematic
when the top square submatrix is the identity. This is possible when the first points
Qi,1 form a basis for the dual of L(E). This situation is generic in some sense but
not granted. From a systematic matrix E it is trivial to deduce the associated
checking and interpolation matrices

C =

e1,2 e1,3

−1 0
0 −1

 and I =
(
1 0 0

)
.

Remark 2. We may wonder how general is the method presented above. The
approach via Kummer theory applies as long as the order o of G is prime to p. In
case the order of G is a power of p, one may try to use Hasse-Witt theory instead,
following the rather effective presentation in Serre [42]. When o is neither prime
to p nor a power of p we do not know any better method than the general purpose
algorithm in [21].

8. Interpolation on algebraic curves

In this section we recall two classical applications of interpolation on algebraic
curves over finite fields and illustrate the benefit of K[G]-module structures in this
context. Section 8.1 is concerned with the multiplication tensor in finite fields.
In Sections 8.2 and 8.3 we see that geometric codes associated to G-equivariant
divisors can be encoded in quasi-linear time and decoded in quasi-quadratic time
if G is commutative, acts freely, and the code is long enough.
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8.1. The complexity of multiplication in finite fields. The idea of using
Lagrange interpolation over an algebraic curve to multiply two elements in a finite
field is due to Chudnovsky [10] and has been developed by Shparlinski, Tsfasmann
and Vladut [46], Ballet and Rolland [3], Chaumine [9], Randriambololona [38] and
others.

Let K be a finite field and let o > 2 be an integer. Let Y be a smooth,
projective, absolutely integral curve over K and B a place of degree o on Y . Let
L = H0(B,OB) be the residue field at B. We choose a divisor E disjoint from B
and assume that the evaluation map

eB : H0(Y,OY (E))→ L

is surjective so that elements in L can be represented by functions in H0(Y,OY (E)).
The latter functions will be characterized by their values at a collection (Qi)16i6N

of K-rational points on Y . We denote by

eQ : H0(Y,OY (2E))→ KN

the evaluation map at these points which we assume to be injective. The multipli-
cation of two elements eB(f1) and eB(f2) in L can be achieved by evaluating f1

and f2 at the Qi, then multiplying each f1(Qi) by the corresponding f2(Qi), then
finding the unique function f3 in H0(Y,OY (2E)) taking value f1(Qi)f2(Qi) at Qi,
then computing eB(f3). The number of bilinear multiplications in K in the whole
process is equal to N .

This method uses curves over K with arbitrarily large genus having a number
of K-points bigger than some positive constant times their genus. It bounds the
bilinear complexity of multiplication in L/K by an absolute constant times the
degree o of L over K, but it says little abound the linear part of the algorithm,
that is evaluation of the maps eB and eQ and their right (resp. left) inverses.

Now assume that the group of K-automorphisms of Y contains a cyclic sub-
group G of order o acting freely on Y . Let τ : Y → X be the quotient by G map.
Assume that B is the fiber of τ above some rational point a on X. Assume that E
(resp. Q) is the pullback by τ of a divisor D (resp. P ) on X. Under mild conditions,
all the linear spaces above become free K[G]-modules and the evaluation maps are
G-equivariant. A computational consequence is that the linear part in the Chud-
novsky algorithm becomes quasi-linear in the degree o of the extension L/K. This
remark has been exploited in [12, 11] to bound the complexity of multiplication
of two elements in a finite field given by their coordinates in a normal basis. The
decompositions of the multiplication tensor that are proven to exist in [11] can be
actually computed using the techniques presented in Section 7.

8.2. Geometric codes. The construction of error correcting codes by evalu-
ating functions on algebraic curves of higher genus is due to Goppa [16, 17]. Let
Y be a smooth, projective, absolutely integral curve over a finite field K of char-
acteristic p. Let d be the degree of K over the prime field Z/pZ. Let gY be the
genus of Y . Let Q1, . . . , QN be pairwise distinct K-rational points on Y . Let
ti be a uniformizing parameter at Qi. Let E be a divisor that is disjoint from
Q = Q1 + · · ·+QN . Assume that

(19) 2gY − 1 6 deg(E) 6 deg(Q)− 1.

Let
A = H0(Q,OQ) = H0(Y,OY /OY (−Q)) ' KN
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be the residue algebra at Q. Let

Â = H0(Y,ΩY/K(−Q)/ΩY/K) '
N⊕
i=1

K
dti
ti
' KN

be the dual of A. Evaluation at the Qi defines an injective linear map

L(E) = H0(Y,OY (E))→ A.

We similarly define an injective linear map

Ω(−Q+ E) = H0(Y,ΩY/K(−Q+ E))→ Â.

The two vector subspaces L(E) and Ω(−Q + E) are orthogonal to each other for
the canonical duality pairing. They can be considered as linear codes over K and
denoted by CL and CΩ respectively. The code CL has length N , dimension

K = deg(E)− gY + 1

and minimum distance greater than or equal to N −deg(E). Given a basis of L(E)
one defines the generating matrix EE of the code CL to be the N × K-matrix of
the injection L(E) → A = KN . One similarly defines the parity-check matrix CE
to be the N × (N −K)-matrix of Ω(−Q + E) → Â. We finally denote by IE the
K×N -matrix of some projection of A onto CL. A message of length K is encoded
by multiplying the corresponding column on the left by EE . The received word
is checked by multiplying it on the left by the transpose of CE . And the initial
message is recovered from a correct codeword applying the interpolation matrix
IE . In full generality, coding, testing and interpolating respectively require 2NK,
2N(N −K) and 2KN operations in K.

Assume now that the group of K-automorphisms of Y contains a finite com-
mutative subgroup G of order o acting freely on Y . Let τ : Y → X be the quotient
by G map. Assume that o divides N and let

n = N/o.

Assume that Q is the pullback by τ of a divisor

P = P1 + · · ·+ Pn

on X. Assume that E is the pullback of some divisor D on X. We are thus in the
situation of Section 4. The code CL is a free K[G]-submodule of A of rank

k = K/o

and CΩ is its orthogonal module for the K[G]-bilinear form defined in Section 3.3.
The matrices EE , CE , and IE can be seen as matrices with coefficients in

K[G] of respective sizes n × k, n × (n − k), and k × n. Coding now requires 2nk
operations in K[G] rather than 2NK operations in K. According to Theorem 2,
each such operation requires less than Q.d2.o. log o operations in Z/pZ and Z/p′Z
where p′ 6 Q.(o.p)11 for some absolute constant Q. The total cost of coding is thus
bounded by an absolute constant times

NK

o2
.d2.o. log(o).(log p+ log o)2 = N.d2. log(o).k.(log p+ log o)2

elementary operations.
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Remark 3. Assuming that log o is bigger than k times a positive constant,
the cost of coding is quasi-linear in the length N of the code. The same holds for
parity-checking and interpolating. Indeed the action of a large commutative group
G provides a significant computational advantage. We shall see in Section 9 that
geometric class field theory produces examples of free commutative group actions
meeting this condition.

8.3. Basic decoding. Assume that we are in the situation of the beginning
of Section 8.2, and that we have received a message r in A = KN . Let c be the
closest codeword to r in CL for the Hamming distance in KN . Write

r = c+ ε

and ε the error vector. Let f be the unique function in L(E) such that f = c mod Q.
The support of the error vector ε is the effective divisor Supp(ε) consisting of all
points Qi where ε is not-zero. The degree of Supp(ε) is the number of errors in r.

The principle of the basic decoding algorithm [24, 47] is: if a0 is a small degree
function vanishing at every point in the support Supp(ε) then a0r = a0c mod Q
is the residue modulo Q of an algebraic function a0f of not too large degree. This
function can be recovered from its values at Q if N is large enough. More concretely
we let E0 be some auxiliary divisor on Y with degree at least gY and set

E1 = E + E0.

Let P be the subspace of L(E0) consisting of all a0 such that there exists a1 in
L(E1) with a0r = a1 mod Q. Non-zero elements in P are denominators for r in the
sense of Section 5. We just saw that every function in L(E0) vanishing at every
point in the support of ε belongs to P.

Conversely if a0 is in P then a0r belongs to L(E1) modulo Q. But a0c belongs
to L(E1) modulo Q also because a0 is in L(E0) modulo Q and c is in L(E) modulo
Q. So a0(r − c) = a0ε belongs to L(E1) modulo Q. There is a function in L(E1)
that is a0ε modulo Q. This function has N − deg(Supp(ε)) zeros and degree at
most deg(E1) = deg(E) + deg(E0). If we assume that

(20) deg(Supp(ε)) 6 N − 1− deg(E)− deg(E0)

then the latter function must be zero. So a0 vanishes at Supp(ε). Assuming Equa-
tion (20) we thus have P = L(E0 − Supp(ε)). Assuming further that

(21) deg(Supp(ε)) 6 deg(E0)− g

this space is non-zero. Computing it is a matter of linear algebra and requires
a constant times N3 operations in K. Given any non-zero element a0 in P we
denote by A0 the divisor consisting of all Qi where a0 vanishes. The degree of A0

is bounded by degE0. The error ε is an element in A with support contained in
A0 and such that r − ε belongs to CL. Finding ε is a linear problem in 6 degE0

unknows and N − deg(E) + gY − 1 equations. The solution is unique because the
difference of two solutions is in CL and has at least N − deg(E0) zeros. And this is
strictly greater than deg(E) by Equation (20).

Combining Equations (20) and (21) we see that the basic decoding algorithm
corrects up to dbasic errors where

(22) dbasic =
N − deg(E)− 1− gY

2
.
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Assume now that the group of K-automorphisms of Y contains a finite commu-
tative subgroup G of order o acting freely on Y . Let τ : Y → X be the quotient by
G map. Assume that o divides N and let n = N/o. Assume that Q is the pullback
by τ of a divisor

P = P1 + · · ·+ Pn

on X. Assume that E is the pullback of some divisor D on X. Assume that E0 is
the pullback of some divisor D0 on X. Assume that L(E0) contains a free module
of rank deg(D0)− gX + 1 over K[G]. According to Proposition 5, such an E0 exists
if the order o of G is prime to p. According to Proposition 6, such an E0 exists if the
order o of G is a power of p, and the cardinality q of K is at least 4, and the genus of
X is at least 2. Another sufficient condition if that deg(D0) > 2gX − 1. According
to Proposition 10 we can find a denominator a0 at the expense of Q.(o.n. log(o.n))2

operations in K and Q.o.n3 log(o.n) operations in K[G]. According to Theorem 2,
each operation in K[G] requires less than

Q.d2.o. log(o).(log p+ log o)2

elementary operations. The total cost of finding a denominator is thus bounded by
an absolute constant times

N2.n.d2. log4(o.n.p)

elementary operation.

Remark 4. Assuming that log o is bigger than n times a positive constant, the
cost of finding a denominator is quasi-quadratic in the length N of the code. Once
found a denominator, the error can be found at the same cost.

9. Good geometric codes with quasi-linear encoding

In this section we specialize the constructions presented in Sections 8.2 and 8.3
using curves with many points and their Hilbert class fields. We quickly review
in Section 9.1 some standard useful results and observations which we apply in
Section 9.2 to the construction of families of good geometric codes having quasi-
linear encoding and a quasi-quadratic decoder. Recall that a family of codes over
a fixed alphabet is said to be good when the length tends to infinity while both the
rate and the minimum distance have a strictly positive lim inf.

9.1. Controlling the class group and the Artin map. We keep the no-
tation from Section 7.1. In particular P1 is a K-rational point on X and

jX : X → JX

is the Jacobi map with origin P1. For the applications we have in mind we need some
control on the K-rational points on X, on the group Pic0(X) and most importantly
on the image of X(K) in Pic0(X) by the Jacobi map. A typical advantageous
situation would be:

(1) X has enough K-rational points, that is a fixed positive constant times
its genus gX ,

(2) a fixed positive proportion of these points are mapped by jX into a sub-
group H,

(3) H is not too large i.e. the quotient log |H|/ log |Pic0(X)| is smaller than
a fixed constant smaller than 1.
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A range of geometric techniques relevant to that problem is presented in Serre’s
course [44] with the related motivation of constructing curves with many points.
One says that (a family of) curves over a fixed finite field of cardinality q have
many points when the ratio of the number of rational points by the genus tends to√
q−1. Modular curves X0(N) have many points over finite fields with p2 elements,

corresponding to supersingular moduli, as was noticed by Ihara [23] and by Tzfas-
man, Vladut, and Zink [50]. These authors also found families of Shimura curves
having many points over fields with cardinality a square. Garcia and Stichtenoth
[15] constructed for every square q an infinite tower of algebraic curves over Fq such
that the quotient of the number of Fq-points by the genus converges to

√
q−1, and

the quotient of the genera of two consecutive curves converges to q.
As for conditions (2) and (3) above, it is noted in [44, 5.12.4] that the images

by jX of P2, . . . , Pn generate a subgroup H with at most n−1 invariant factors. If
the class group JX(K) has I > n− 1 invariant factors then the size of the quotient
G is bigger than or equal to the product of the I− (n−1) smallest invariant factors
of JX(K).

Another favourable situation exploited in [36, 34, 51, 19] is when K has a
strict subfield k and X is defined over k and P1 is k-rational. Then the Jacobi
map sends the points in X(k) into the subgroup JX(k) of JX(K). We will use this
remark in the next section.

9.2. A construction. Let k be a finite field with characteristic p. Let q be
the cardinality of k. We assume that q is a square. We consider a family of curves
(Xk)k>1 over k having many points over k. For example we may take Xk to be
the k-th curve in the Garcia-Stichtenoth tower associated with q. We denote by
gX the genus of Xk. We omit the index k in the sequel because there is no risk of
confusion. We denote by n the number of k-rational points on X. We denote these
points by P1, . . . , Pn and let P be the effective divisor sum of all these points. We
let K be a non-trivial extension of k. We will assume that the degree of K over k
is 2 because higher values seem to bring nothing but disadvantages. We denote by
T the quotient

T = JX(K)/JX(k).

We denote by Tp the p-Sylow subgroup of T . We denote by Tp′ the complement
subgroup of Tp in T . Let G be the bigger among Tp and Tp′ . This is a quotient of
T . Let H be the kernel of the composite map JX(K)→ T = JX(K)/JX(k)→ G.
Let o be the order of G. We note that

#JX(K)/JX(k) > (q − 1)
2gX / (

√
q + 1)

2gX = (
√
q − 1)

2gX

so

(23) o >
√
]T > (

√
q − 1)

gX

grows exponentially in gX provided q > 9. Also G is a p-group or a p′-group. We
find ourselves in the situation of Section 7.1. Let Ymax be the maximal unramified
cover of X over K which is totally decomposed over K above P1. Let Y be the
quotient of Ymax by H. The fibers of

τ : Y → X

above the points P1, . . . , Pn all split over K. Let Q be the pullback of P by τ .
This is a divisor on Y of degree

N = o.n.



26 JEAN-MARC COUVEIGNES AND JEAN GASNIER

We choose a real number % such that

(24) 0 < % <

√
q

2
− 2.

Our goal is to correct up to %.o.gX errors. Let D be a divisor on X that is disjoint
from P and such that

deg(D) = d(√q − 2− 2%)gXc
the closest integer to (

√
q−2−2%)gX . Let E be the pullback of D by τ . We deduce

from Equation (24) that condition (19) is met at least asymptotically. From X, Y ,
E, and Q the construction in Section 8.2 produces a code CL over the field K with
q2 elements, having length

N = o.n ' (
√
q − 1).o.gX

and dimension

K = o.(deg(D)− gX + 1) ' (
√
q − 3− 2%).o.gX .

We set k = K/o and deduce from Equation (23) that the lim inf of (log o)/n and
(log o)/k are strictily positive. As explained in Remark 3, this implies that the
code CL can be encoded and parity-checked in quasi-linear deterministic time in its
length N , and decoded with the same complexity when there are no errors. Using
the basic decoding algorithm as in Section 8.3 one can decode in the presence of
errors in quasi-quadratic probabilistic (Las Vegas) time up to the distance

dbasic =
N − deg(E)− 1− gY

2
' %.o.gX

defined by Equation (22) as explained in Remark 4. We denote by δbasic the relative
distance dbasic/N . The existence of a divisor D0 with all the properties required in
Section 8.3 is granted because G is either a p-group or a p′-group. So we can apply
Proposition 5 or Proposition 6 depending on the case. This finishes the proof of
the theorem below.

Theorem 3. Let p be a prime integer and let q be a power of p. Assume that
q is a square and

(25) q > 25.

Let % be a real such that

(26) 0 < % <

√
q

2
− 2.

There exists a family of linear error correcting codes over the field with q2 elements
having length N tending to infinity and such that

(1) the rate R satisfies

limR =

√
q − 3− 2%
√
q − 1

(2) for each code there exists a straight-line program that encodes in quasi-
linear time in the length N ,

(3) for each code there exists a computation tree that decodes in quasi-quadratic
probabilistic (Las Vegas) time in the length N up to the relative distance
δbasic and

lim δbasic =
%

√
q − 1

.
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Remark 5. The complexity statements in the theorem above are non-uniform
in the sense that they bound the complexity of coding and decoding assuming
that the code is given by its generating, parity-check and interpolation matrices
having coefficients in the group algebra K[G]. The theorem claims nothing about
the complexity of finding these matrices. The example detailed in section 7.2 and
remark 2 suggest that this complexity could be quasi-quadratic in the length N of
the code. Proving such a complexity result would probably be quite heavy due to
the relative sophistication of the methods used to find e.g. the interesting torsion
points in the Picard group.

Remark 6. A calculation similar to the one in [30, §7.3] shows that for any
q > 472, some among the codes constructed above are excellent in the sense that
the accumulation point (2δbasic, R) stands above the Varshamov-Gilbert limit for
codes over the field with q2 elements. To our knowledge these are the first excellent
codes that can be encoded in quasi-linear time and decoded in quasi-quadratic time.
Recall that Reed–Solomon codes can be encoded and decoded in quasi-linear time
but cannot be said to be asymptotically good because the length of the code is
bounded by the size of the alphabet.

Remark 7. We compare fast basic decoding of the codes in Theorem 3 as
explained in Section 8.3 with the general purpose algorithm of Beelen, Rosenkilde,
Solomatov [5]. Using the latter, one can decode up to half the Goppa designed
minimum distance. Inequalities (25) and (26) are then replaced by

q > 16 and 0 < % <

√
q − 3

2
,

and the limit of the rate becomes

limR =

√
q − 2− 2%
√
q − 1

.

However the complexity of decoding is then of order µω−1(N + gY ) where N is the
length of the code, µ is the gonality of Y , and ω is the exponent in the complexity of
matrix multiplication. Curves with many points have large gonality. In particular
µ > N/(q2 + 1) in our situation, so that for fixed q, the complexity of this decoder
is of order greater than Nω. It is known [1] that 2 6 ω < 2.37286 but it is not
granted that ω = 2.
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