N

N

Dynare: Reference Manual Version 5
Stéphane Adjemian, Houtan Bastani, Michel Juillard, Frédéric Karamé,
Ferhat Mihoubi, Willi Mutschler, Johannes Pfeifer, Marco Ratto, Sébastien

Villemot, Normann Rion

» To cite this version:

Stéphane Adjemian, Houtan Bastani, Michel Juillard, Frédéric Karamé, Ferhat Mihoubi, et al..
Dynare: Reference Manual Version 5. 2023. hal-04219920

HAL Id: hal-04219920
https://hal.science/hal-04219920

Preprint submitted on 29 Sep 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04219920
https://hal.archives-ouvertes.fr

/

Dynare Working Papers Series
https://www.dynare.org/wp/

Dynare: Reference Manual Version 5

Stéphane Adjemian
Houtan Bastani
Michel Juillard
Fréderic Karamé
Ferhat Mihoubi
Willi Mutschler
Johannes Pfeifer
Marco Ratto
Normann Rion
Sébastien Villemot

Working Paper no. 72

Initial revision: January 2022
This revision: March 2023

CEPREMAP

CENTRE POUR LA RECHERCHE ECONOMIQUE ET SES APPLICATIONS

48, boulevard Jourdan — 75014 Paris — France
https://www.cepremap.fr

Dynare Reference Manual
Release 5.4

Dynare team

Mar 22, 2023

CONTENTS

1 Introduction 3
1.1 Whatis Dynare? e 3
1.2 Documentation SOUICES . . . « . v v v v v v v v i e e e e e e e e e e e e 4
1.3 Citing Dynare inyourresearch L e 4

2 Installation and configuration 5
2.1 Software reqUirementso e e e e e e e e e e 5
2.2 Installation of Dynare L e e e e e 5

22,1 OnWIndows L e e e e e 5

222 OnGNU/LINUX ot e e e e e e e e e e e e e e e 6

223 0nmacOS e 6
2231 WithMATLAB e 6

2232 WithOctave o . ot e e e e e e e e e 6

224 OnFreeBSD e 7

225 Forothersystems e 7

2.3 Compilerinstallation e 7
2.3.1 Prerequisiteson Windows 7

2.3.2 Prerequisites on GNU/LInUX e 7

2.3.3 PrerequisitesonmacOS L e 7
23.3.1 WithMATLAB e 7

2332 WithOctave oo e e e e 7

24 Configuration e e e 8
24.1 ForMATLAB o e e e 8

242 ForOCtavVe . . . v v i v i i e e e e e e e e e e e e e e 8

243 Somewords of warning L. e e e e e e e e e 9

3 Running Dynare 11
3.1 Dynare invocation i e e e e e e e e e e e e e 11
3.2 Dynare hookS o L e e e e e 18
3.3 Understanding Preprocessor Error Messages o oo 18

4 The model file 19
4.1 COonventionS . . . v v v v v e 19
4.2 Variable declarations L. e e e 20

4.2.1 On-the-fly Model Variable Declaration 24

43 EXPressions i e e e e e e 25
4.3.1 Parameters and variables L. 25
43.1.1 Insidethemodel 25

43.1.2 Outsidethemodel 26

432 OPErators . . . v v v v e 26

433 Functions 26
43.3.1 Builtsinfunctions L 26

4332 Externalfunctions 28

43.4 A few words of warning in stochasticcontext 29

4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

4.22

4.23
4.24
4.25

4.26
4.27

Parameter initialization e e e e e e e e 29

Model declaration e e e e e 29
Auxiliary variableso e e 34
Initial and terminal conditions L L 35
Shocks on exogenous variables e 48
Other general declarations L e e e 52
Steady State L e e e e e e e e e e e e e 52
4.10.1 Finding the steady state with Dynare nonlinear solver 53
4.10.2 Providing the steady stateto Dynare L oo 56
4.10.3 Replace some equations during steady state computations 58
Getting information about the model o oo oo oL 58
Deterministic simulation e e 60
Stochastic solution and simulation Lo o 64
4.13.1 Computing the stochastic solution 65
4.13.2 Typology and ordering of variables 72
4.13.3 First-order approximation e e e e e e 73
4.13.4 Second-order approximationo o 74
4.13.5 Third-order approximation Lo e 74
4.13.6 Higher-order approximationo 75
Occasionally binding constraints (OCCBIN) 75
Estimation based on likelihood 81
Estimation based on moments L oL 115
Model Comparison o v v i e e e e e e e e e e e e e e 122
Shock Decomposition L e e e e e e e e e 123
Calibrated Smoother e 130
Forecasting 131
Optimal policy e e e e 138
4.21.1 Optimal policy under commitment (Ramsey) 140
4.21.2 Optimal policy under discretion L e 142
4.21.3 Optimal Simple Rules (OSR) 142
Sensitivity and identification analysis L. oL 145
4.22.1 Performing sensitivity analysis L oo 145
4.22.2 1IRF/Moment calibration L e 148
4.22.3 Performing identification analysiso oo L. 149
4224 Typesofanalysisandoutputfiles. 152

42241 Sampling 152

4.22.42 Stability Mappingo 152

4.22.4.3 IRF/Moment restriCtions v v v v v vt e e e e e e e 153

42244 Reduced Form Mapping e 154

42245 RMSE . . . 155

4.22.4.6 Screening Analysis e 156

4.22.47 Identification Analysis 157
Markov-switching SBVAR 157
Epilogue Variables L. e 166
Semi-structural models L. 166
4.25.1 Auxiliarymodels e e e 166
4252 VAR EXpPectations v v it i e e e e e e e e e 169
4253 PACequation it 171
4254 EstimationofaPACequation. e 173
Displaying and saving results L e e 174
Macro processing [anguage L. oL o e e e e e e e e e 175
4.27.1 Macro exXpressionso e e e e e e e e e e e e e e 175
4272 Macrodirectives e e e e e e e 179
4273 Typical Usages e e 182

4.27.3.1 Modularization oL e 182

42732 Indexed sumsof products 183

4.27.3.3 Multi-countrymodels o o 183

4.27.3.4 Endogeneizing parameters i e i i e e e e e 184

4.27.4 MATLAB/Octave loops versus macro processor loops
428 Verbatiminclusion e e e e e
429 MisccommandsS e e e e e e e e e e e e e e

5 The configuration file

5.1 Dynare Configuration e e
5.2 Parallel Configuration e e e e e e e e e e
5.3 Windows Step-by-Step Guide
6 Time Series
6.1 Dates e
6.1.1 Datesinamodfile
6.1.2 Thedatesclass i i e e e e e
6.2 Thedseriesclass e e e e
6.3 X-13 ARIMA-SEATS interface o v i i e e e e e e e e
6.4 Miscellaneous e e e e
6.4.1 Timeaggregationo
6.4.2 Create time series with a univariatemodel

7 Reporting

8 Examples

9 Dynare misc commands
10 Bibliography

Index

249

251

255

259

iv

Dynare Reference Manual, Release 5.4

Currently the development team of Dynare is composed of:
 Stéphane Adjemian (Le Mans Université, Gains)
* Houtan Bastani
¢ Michel Juillard (Banque de France)
¢ Sumudu Kankanamge (Toulouse School of Economics and CEPREMAP)
¢ Frédéric Karamé (Le Mans Université, Gains and CEPREMAP)
* Junior Maih (Norges Bank)
» Ferhat Mihoubi (Université Paris-Est Créteil, Erudite)
» Willi Mutschler (University of Tiibingen)
¢ Johannes Pfeifer (Universitit der Bundeswehr Miinchen)
* Marco Ratto (European Commission, Joint Research Centre - JRC)
* Normann Rion (CY Cergy Paris Universit¢ and CEPREMAP)
¢ Sébastien Villemot (CEPREMAP)
The following people used to be members of the team:
* Abdeljabar Benzougar
* Alejandro Buesa
* Fabrice Collard
* Assia Ezzeroug
* Doéra Kocsis
 Stéphane Lhuissier
* George Perendia
Copyright © 1996-2023, Dynare Team.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license can be found at https://www.gnu.org/licenses/fdl.txt.

CONTENTS 1

Dynare Reference Manual, Release 5.4

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 What is Dynare?

Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic gen-
eral equilibrium (DSGE) and overlapping generations (OLG) models. The models solved by Dynare include those
relying on the rational expectations hypothesis, wherein agents form their expectations about the future in a way
consistent with the model. But Dynare is also able to handle models where expectations are formed differently: on
one extreme, models where agents perfectly anticipate the future; on the other extreme, models where agents have
limited rationality or imperfect knowledge of the state of the economy and, hence, form their expectations through
a learning process. In terms of types of agents, models solved by Dynare can incorporate consumers, productive
firms, governments, monetary authorities, investors and financial intermediaries. Some degree of heterogeneity
can be achieved by including several distinct classes of agents in each of the aforementioned agent categories.

Dynare offers a user-friendly and intuitive way of describing these models. It is able to perform simulations of the
model given a calibration of the model parameters and is also able to estimate these parameters given a dataset. In
practice, the user will write a text file containing the list of model variables, the dynamic equations linking these
variables together, the computing tasks to be performed and the desired graphical or numerical outputs.

A large panel of applied mathematics and computer science techniques are internally employed by Dynare: mul-
tivariate nonlinear solving and optimization, matrix factorizations, local functional approximation, Kalman filters
and smoothers, MCMC techniques for Bayesian estimation, graph algorithms, optimal control, ...

Various public bodies (central banks, ministries of economy and finance, international organisations) and some
private financial institutions use Dynare for performing policy analysis exercises and as a support tool for fore-
casting exercises. In the academic world, Dynare is used for research and teaching purposes in postgraduate
MAacroeconomics Courses.

Dynare is a free software, which means that it can be downloaded free of charge, that its source code is freely
available, and that it can be used for both non-profit and for-profit purposes. Most of the source files are covered by
the GNU General Public Licence (GPL) version 3 or later (there are some exceptions to this, see the file license.txt
in Dynare distribution). It is available for the Windows, macOS, and Linux platforms and is fully documented
through a reference manual. Part of Dynare is programmed in C++, while the rest is written using the MATLAB
programming language. The latter implies that commercially-available MATLAB software is required in order to
run Dynare. However, as an alternative to MATLAB, Dynare is also able to run on top of GNU Octave (basically
a free clone of MATLAB): this possibility is particularly interesting for students or institutions who cannot afford,
or do not want to pay for, MATLAB and are willing to bear the concomitant performance loss.

The development of Dynare is mainly done at CEPREMAP by a core team of researchers who devote part of their
time to software development. Increasingly, the developer base is expanding, as tools developed by researchers
outside of CEPREMAP are integrated into Dynare. Financial support is provided by CEPREMAP, Banque de
France and DSGE-net (an international research network for DSGE modeling).

Interaction between developers and users of Dynare is central to the project. A web forum is available for users
who have questions about the usage of Dynare or who want to report bugs. Current known and fixed bugs are
listed on the Dynare wiki. Issues or whishes can be reported on our Git repository. Training sessions are given
through the Dynare Summer School, which is organized every year and is attended by about 40 people. Finally,
priorities in terms of future developments and features to be added are decided in cooperation with the institutions
providing financial support.

Dynare Reference Manual, Release 5.4

1.2 Documentation sources

The present document is the reference manual for Dynare. It documents all commands and features in a systematic
fashion.

Other useful sources of information include the Dynare wiki and the Dynare forums.

1.3 Citing Dynare in your research

You should cite Dynare if you use it in your research. The recommended way todo this is to cite the present
manual, as:

Stéphane Adjemian, Houtan Bastani, Michel Juillard, Frédéric Karamé, Ferhat Mihoubi, Willi
Mutschler, Johannes Pfeifer, Marco Ratto, Normann Rion and Sébastien Villemot (2022), “Dynare:
Reference Manual, Version 5,” Dynare Working Papers, 72, CEPREMAP

For convenience, you can copy and paste the following into your BibTeX file:

@TechReport {Adjemianetal2022,
author = {Adjemian, St\'ephane and Bastani, Houtan and
Juillard, Michel and Karam\'e, Fr\'ederic and
Mihoubi, Ferhat and Mutschler, Willi
and Pfeifer, Johannes and Ratto, Marco and
Rion, Normann and Villemot, S\'ebastien},

title = {Dynare: Reference Manual Version 5},
year = {2022},

institution = {CEPREMAP},

type = {Dynare Working Papers},

number = {72},

If you want to give a URL, use the address of the Dynare website: https://www.dynare.org.

4 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION AND CONFIGURATION

2.1 Software requirements

Packaged versions of Dynare are available for Windows (8.1, 10 and 11), several GNU/Linux distributions (De-
bian, Ubuntu, Linux Mint, Arch Linux), macOS (12 “Monterey”), and FreeBSD. Dynare should work on other
systems, but some compilation steps are necessary in that case.

In order to run Dynare, you need one of the following:
* MATLAB, any version ranging from 8.3 (R2014a) to 9.14 (R2023a);

¢ GNU Octave, any version ranging from 5.2.0 to 8.1.0, with the statistics package from Octave-Forge. Note
however that the Dynare installer for Windows requires a more specific version of Octave, as indicated on
the download page.

The following optional extensions are also useful to benefit from extra features, but are in no way required:
¢ If under MATLAB: the Optimization Toolbox, the Statistics Toolbox, the Control System Toolbox;

* If under Octave, the following Octave-Forge packages: optim, io, control.

2.2 Installation of Dynare

After installation, Dynare can be used in any directory on your computer. It is best practice to keep your model
files in directories different from the one containing the Dynare toolbox. That way you can upgrade Dynare and
discard the previous version without having to worry about your own files.

2.2.1 On Windows

Execute the automated installer called dynare-x.y-win.exe (where x .y is the version number), and follow
the instructions. The default installation directory is c: \dynare\x.y.

After installation, this directory will contain several sub-directories, among which are mat 1ab, mex and doc.
The installer will also add an entry in your Start Menu with a shortcut to the documentation files and uninstaller.

Note that you can have several versions of Dynare coexisting (for example in c:\dynare), as long as you
correctly adjust your path settings (see see Some words of warning).

Also note that it is possible to do a silent installation, by passing the /S flag to the installer on the command line.
This can be useful when doing an unattended installation of Dynare on a computer pool.

Dynare Reference Manual, Release 5.4

2.2.2 On GNU/Linux

On Debian, Ubuntu and Linux Mint, the Dynare package can be installed with: apt install dynare. This
will give a fully-functional Dynare installation usable with Octave. If you have MATLAB installed, you should
also do: apt install dynare-matlab (under Debian, this package is in the contrib section). Docu-
mentation can be installed with apt install dynare-doc. The status of those packages can be checked at
those pages:

* Package status in Debian
» Package status in Ubuntu
e Package status in Linux Mint

On Arch Linux, the Dynare package is not in the official repositories, but is available in the Arch User Repository.
The needed sources can be downloaded from the package status in Arch Linux.

There is also a Dynare package for openSUSE, see the package status in openSUSE.

Dynare will be installed under /usr/1lib/dynare (or /usr/1lib64/dynare on openSUSE). Documenta-
tion will be under /usr/share/doc/dynare (only on Debian, Ubuntu and Linux Mint).

2.2.3 On macOS

2.2.3.1 With MATLAB

To install Dynare for use with MATLAB, execute the automated installer called dynare-x.y.pkg (where x.y
is the version number), and follow the instructions. The default installation directory is /Applications/
Dynare/x.y. After installation, this directory will contain several sub-directories, among which are mat lab,
mex, and doc.

Note that several versions of Dynare can coexist (by default in /Applications/Dynare), as long as you
correctly adjust your path settings (see Some words of warning).

By default, the installer installs a version of GCC (for use with use_d11) in the installation directory, under the
.brew folder. To do so, it also installs a version of Homebrew in the same folder and Xcode Command Line
Tools (this is an Apple product) in a system folder.

All of this requires a bit of time and hard disk space. The amount of time it takes will depend on your computing
power and internet connection. To reduce the time the Dynare installer takes, you can install Xcode Command
Line Tools yourself (see Prerequisites on macOS). Dynare, Homebrew, and GCC use about 600 MB of disk space
while the Xcode Command Line Tools require about 400 MB.

If you do not use the use_d11 option, you have the choice to forgo the installation of GCC and hence Dynare
will only take about 50 MB of disk space.

2.2.3.2 With Octave

We don’t provide Dynare packages for macOS with Octave support, but there is a Dynare package with Octave
support in Homebrew.

Once Homebrew is installed, run a terminal and install Dynare (and Octave) by typing the following:

brew install dynare

Then open Octave by running the following in the same terminal:

octave —-—gui

Finally, at the Octave prompt, install some add-ons (you only have to do it once):

octave:1> pkg install -forge io statistics control struct optim

6 Chapter 2. Installation and configuration

Dynare Reference Manual, Release 5.4

2.2.4 On FreeBSD

A FreeBSD port for Dynare is available. It can be installed with:

pkg install dynare

2.2.5 For other systems

You need to download Dynare source code from the Dynare website and unpack it somewhere.

Then you will need to recompile the pre-processor and the dynamic loadable libraries. Please refer to
README.md.

2.3 Compiler installation

2.3.1 Prerequisites on Windows

There are no prerequisites on Windows. Dynare now ships a compilation environment that can be used with the
use_dl11 option.

2.3.2 Prerequisites on GNU/Linux

Users of MATLAB under GNU/Linux need a working compilation environment installed. Under Debian, Ubuntu
or Linux Mint, it can be installed via apt install build-essential.

Users of Octave under GNU/Linux should install the package for MEX file compilation (under Debian, Ubuntu
or Linux Mint, it can be done via apt install liboctave-dev).

2.3.3 Prerequisites on macOS

2.3.3.1 With MATLAB

Dynare now ships a compilation environment that can be used with the use_d11 option. To install this environ-
ment correctly, the Dynare installer ensures that the Xcode Command Line Tools (an Apple product) have been
installed on a system folder. To install the Xcode Command Line Tools yourself, simply type xcode-select
-—install into the Terminal (/Applications/Utilities/Terminal.app) prompt.

2.3.3.2 With Octave

The compiler can be installed via Homebrew. In a terminal, run:

brew install gcc-12

2.3. Compiler installation 7

Dynare Reference Manual, Release 5.4

2.4 Configuration

2.4.1 For MATLAB

You need to add the mat 1ab subdirectory of your Dynare installation to MATLAB path. You have two options
for doing that:

¢ Using the addpath command in the MATLAB command window:

Under Windows, assuming that you have installed Dynare in the standard location, and replacing x . y with
the correct version number, type:

>> addpath c:/dynare/x.y/matlab

Under GNU/Linux, type:

>> addpath /usr/lib/dynare/matlab

Under macOS, assuming that you have installed Dynare in the standard location, and replacing x .y with
the correct version number, type:

>> addpath /Applications/Dynare/x.y/matlab

MATLAB will not remember this setting next time you run it, and you will have to do it again.
* Via the menu entries:

Select the “Set Path” entry in the “File” menu, then click on “Add Folder...”, and select the mat1ab
subdirectory of ‘your Dynare installation. Note that you should not use “Add with Subfolders...”. Apply
the settings by clicking on “Save”. Note that MATLAB will remember this setting next time you run it.

2.4.2 For Octave

You need to add the mat 1ab subdirectory of your Dynare installation to Octave path, using the addpath at the
Octave command prompt.

Under Windows, assuming that you have installed Dynare in the standard location, and replacing “x.y” with the
correct version number, type:

octave:1> addpath c:/dynare/x.y/matlab

Under Debian, Ubuntu or Linux Mint, there is no need to use the addpath command; the packaging does it for
you. Under Arch Linux, you need to do:

octave:1> addpath /usr/lib/dynare/matlab

Under macOS, assuming you have installed Dynare via Homebrew:

octave:1> addpath /usr/local/lib/dynare/matlab

If you don’t want to type this command every time you run Octave, you can put it in a file called .octaverc
in your home directory (under Windows this will generally be ¢ : \Users\USERNAME while under macOS it is
/Users/USERNAME/). This file is run by Octave at every startup.

8 Chapter 2. Installation and configuration

Dynare Reference Manual, Release 5.4

2.4.3 Some words of warning

You should be very careful about the content of your MATLAB or Octave path. You can display its content by
simply typing path in the command window.

The path should normally contain system directories of MATLAB or Octave, and some subdirectories of your
Dynare installation. You have to manually add the mat lab subdirectory, and Dynare will automatically add a
few other subdirectories at runtime (depending on your configuration). You must verify that there is no directory
coming from another version of Dynare than the one you are planning to use.

You have to be aware that adding other directories (on top of the dynare folders) to your MATLAB or Octave path
can potentially create problems if any of your M-files have the same name as a Dynare file. Your routine would
then override the Dynare routine, making Dynare unusable.

Warning: Never add all the subdirectories of the mat1ab folder to the MATLAB or Octave path. You must
let Dynare decide which subdirectories have to be added to the MATLAB or Octave path. Otherwise, you may
end up with a non optimal or un-usable installation of Dynare.

2.4. Configuration 9

Dynare Reference Manual, Release 5.4

10 Chapter 2. Installation and configuration

CHAPTER
THREE

RUNNING DYNARE

In order to give instructions to Dynare, the user has to write a model file whose filename extension must be . mod
or .dyn. This file contains the description of the model and the computing tasks required by the user. Its contents
are described in The model file.

3.1 Dynare invocation

Once the model file is written, Dynare is invoked using the dynare command at the MATLAB or Octave prompt
(with the filename of the .mod given as argument).

In practice, the handling of the model file is done in two steps: in the first one, the model and the processing
instructions written by the user in a model file are interpreted and the proper MATLAB or Octave instructions are
generated; in the second step, the program actually runs the computations. Both steps are triggered automatically
by the dynare command.

MATLAB/Octave command: dynare FILENAME[.mod] [OPTIONS...]

This command launches Dynare and executes the instructions included in FILENAME .mod. This
user-supplied file contains the model and the processing instructions, as described in The model file.
The options, listed below, can be passed on the command line, following the name of the .mod file
or in the first line of the .mod file itself (see below).

dynare begins by launching the preprocessor on the .mod file. By default (unless the use di1
option has been given to mode 1), the preprocessor creates three intermediary files:

e +FILENAME/driver.m
Contains variable declarations, and computing tasks.
* +FILENAME/dynamic.m

Contains the dynamic model equations. Note that Dynare might introduce auxiliary
equations and variables (see Auxiliary variables). Outputs are the residuals of the
dynamic model equations in the order the equations were declared and the Jacobian
of the dynamic model equations. For higher order approximations also the Hessian
and the third-order derivatives are provided. When computing the Jacobian of the
dynamic model, the order of the endogenous variables in the columns is stored in M__.
lead_lag_incidence. The rows of this matrix represent time periods: the first
row denotes a lagged (time t-1) variable, the second row a contemporaneous (time t)
variable, and the third row a leaded (time t+1) variable. The columns of the matrix
represent the endogenous variables in their order of declaration. A zero in the matrix
means that this endogenous does not appear in the model in this time period. The
value in the M_ . lead_lag_incidence matrix corresponds to the column of that
variable in the Jacobian of the dynamic model. Example: Let the second declared
variable be c and the (3, 2) entryof M_.lead_lag_incidence be 15. Then the
15th column of the Jacobian is the derivative with respect to c (+1) .

e +FILENAME/static.m

11

Dynare Reference Manual, Release 5.4

Contains the long run static model equations. Note that Dynare might introduce auxil-
iary equations and variables (see Auxiliary variables). Outputs are the residuals of the
static model equations in the order the equations were declared and the Jacobian of the
static equations. Entry (i, j) of the Jacobian represents the derivative of the ith static
model equation with respect to the jth model variable in declaration order.

These files may be looked at to understand errors reported at the simulation stage.

dynare will then run the computing tasks by executing +FILENAME /driver .m. If a user needs
to rerun the computing tasks without calling the preprocessor (or without calling the dynare com-
mand), for instance because he has modified the script, he just have to type the following on the
command line:

>> FILENAME.driver

A few words of warning are warranted here: under Octave the filename of the .mod file should be
chosen in such a way that the generated . m files described above do not conflict with . m files provided
by Octave or by Dynare. Not respecting this rule could cause crashes or unexpected behaviour. In
particular, it means that the . mod file cannot be given the name of an Octave or Dynare command. For
instance, under Octave, it also means that the . mod file cannot be named test .mod or example.
mod.

Note: Note on Quotes

When passing command line options that contains a space (or, under Octave, a double quote), you
must surround the entire option (keyword and argument) with single quotes, as in the following ex-
ample.

Example

Call Dynare with options containing spaces

>> dynare <<modfile.mod>> '-DA=[i in [1,2,3] when i > 1]' 'conffile=C:\
—User\My Documents\config.txt'

Options

noclearall
By default, dynare will issue a clear all command to MATLAB (<R2015b) or Octave,
thereby deleting all workspace variables and functions; this option instructs dynare not to
clear the workspace. Note that starting with MATLAB 2015b dynare only deletes the global
variables and the functions using persistent variables, in order to benefit from the JIT (Just
In Time) compilation. In this case the option instructs dynare not to clear the globals and
functions.

onlyclearglobals
By default, dynare will issue a clear all command to MATLAB versions before
2015b and to Octave, thereby deleting all workspace variables; this option instructs dynare
to clear only the global variables (i.e. M_, options_, oo_, estim_params_,
bayestopt_, and dataset_), leaving the other variables in the workspace.

debug
Instructs the preprocessor to write some debugging information about the scanning and parsing
of the . mod file.

notmpterms
Instructs the preprocessor to omit temporary terms in the static and dynamic files; this generally
decreases performance, but is used for debugging purposes since it makes the static and dynamic
files more readable.

savemacro [=FILENAME]
Instructs dynare to save the intermediary file which is obtained after macro processing (see

12

Chapter 3. Running Dynare

Dynare Reference Manual, Release 5.4

Macro processing language); the saved output will go in the file specified, or if no file is specified
in FILENAME-macroexp.mod. See the note on quotes for info on passing a FILENAME
argument containing spaces.

onlymacro
Instructs the preprocessor to only perform the macro processing step, and stop just after. Useful
for debugging purposes or for using the macro processor independently of the rest of Dynare
toolbox.

linemacro
Instructs the macro preprocessor include @#11ine directives specifying the line on which macro
directives were encountered and expanded from. Only useful in conjunction with savemacro.

onlymodel
Instructs the preprocessor to print only information about the model in the driver file; no Dynare
commands (other than the shocks statement and parameter initializations) are printed and hence
no computational tasks performed. The same ancillary files are created as would otherwise be
created (dynamic, static files, etc.).

nolog
Instructs Dynare to no create a logfile of this run in FILENAME . 1og. The default is to create
the logfile.

output=second|third
Instructs the preprocessor to output derivatives of the dynamic model at least up to the given
order.

language=matlab| julia
Instructs the preprocessor to write output for MATLAB or Julia. Default: MATLAB

params_derivs_order=0]1]2
When identification, dynare_sensitivity (with identification), or estima-
tion_cmd are present, this option is used to limit the order of the derivatives with respect to
the parameters that are calculated by the preprocessor. 0 means no derivatives, 1 means first
derivatives, and 2 means second derivatives. Default: 2

nowarn
Suppresses all warnings.

notime
Do not print the total computing time at the end of the driver, and do not save that total computing
time to oo__.time.

transform unary_ ops
Transform the following operators in the model block into auxiliary variables: exp, log,
logl0, cos, sin, tan, acos, asin, atan, cosh, sinh, tanh, acosh, asinh, atanh,
sgrt, cbrt, abs, sign, erf. Default: no obligatory transformation

json = parse]|check|transform|compute
Causes the preprocessor to output a version of the .mod file in JSON format to <<M_.
fname>>/model/json/. When the JSON output is created depends on the value passed.
These values represent various steps of processing in the preprocessor.

If parse is passed, the output will be written after the parsing of the .mod file to a file called
FILENAME. json but before file has been checked (e.g. if there are unused exogenous in the
model block, the JSON output will be created before the preprocessor exits).

If check is passed, the output will be written to a file called FILENAME . json after the model
has been checked.

If transform is passed, the JSON output of the transformed model (maximum lead
of 1, minimum lag of -1, expectation operators substituted, etc.) will be written to a
file called FILENAME. json and the original, untransformed model will be written in
FILENAME_original. json.

3.1. Dynare invocation 13

Dynare Reference Manual, Release 5.4

And if compute is passed, the output is written after the computing pass. In this
case, the transformed model is written to FILENAME. json, the original model is writ-
ten to FILENAME_original. json, and the dynamic and static files are written to
FILENAME_dynamic. json and FILENAME_static. json.

jsonstdout
Instead of writing output requested by json to files, write to standard out, i.e. to the MAT-
LAB/Octave command window (and the log-file).

onlyjson
Quit processing once the output requested by json has been written.

jsonderivsimple
Print a simplified version (excluding variable name(s) and lag information) of the static and
dynamic files in FILENAME_static. json and FILENAME dynamic..

warn_uninit
Display a warning for each variable or parameter which is not initialized. See Parameter ini-
tialization, or 1oad_params_and_steady_state for initialization of parameters. See
Initial and terminal conditions, or 1oad _params_and_steady_state for initialization
of endogenous and exogenous variables.

console
Activate console mode. In addition to the behavior of nodisplay, Dynare will not use graph-
ical waitbars for long computations.

nograph

Activate the nograph option (see nograph), so that Dynare will not produce any
graph.

nointeractive
Instructs Dynare to not request user input.

nopathchange
By default Dynare will change MATLAB/Octave’s path if dynare/mat 1ab directory is not on
top and if Dynare’s routines are overriden by routines provided in other toolboxes. If one wishes
to override Dynare’s routines, the nopathchange options can be used. Alternatively, the path
can be temporarly modified by the user at the top of the .mod file (using MATLAB/Octave’s
addpath command).

nopreprocessoroutput
Prevent Dynare from printing the output of the steps leading up to the preprocessor as well as
the preprocessor output itself.

mexext=mex |mexw32 |mexw64 |mexmaci64 |mexa64
The mex extension associated with your platform to be used when compiling output associated
with use_d11. Dynare is able to set this automatically, so you should not need to set it yourself.

matlabroot=<<path>>
The path to the MATLAB installation for use with use_d11. Dynare is able to set this auto-
matically, so you should not need to set it yourself. See the note on quotes for info on passing a
<<path>> argument containing spaces.

parallel [=CLUSTER_NAME]
Tells Dynare to perform computations in parallel. If CLUSTER_NAME is passed, Dynare will
use the specified cluster to perform parallel computations. Otherwise, Dynare will use the first
cluster specified in the configuration file. See The configuration file, for more information about
the configuration file.

conffile=FILENAME
Specifies the location of the configuration file if it differs from the default. See The configuration
Jile, for more information about the configuration file and its default location. See the note on
quotes for info on passing a FILENAME argument containing spaces.

14 Chapter 3. Running Dynare

Dynare Reference Manual, Release 5.4

parallel slave_open_mode
Instructs Dynare to leave the connection to the slave node open after computation is complete,
closing this connection only when Dynare finishes processing.

parallel_test
Tests the parallel setup specified in the configuration file without executing the .mod file. See
The configuration file, for more information about the configuration file.

parallel use psexec=true|false
For local execution under Windows operating system, set parallel_use_psexec=false
to use start instead of psexec, to properly allocate affinity when there are more than 32
cores in the local machine. [default=true]

—DMACRO_VARIABLE=MACRO_EXPRESSION
Defines a macro-variable from the command line (the same effect as using the Macro directive
@#define in a model file, see Macro processing language). See the note on quotes for info on
passing a MACRO_EXPRESSION argument containing spaces. Note that an expression passed
on the command line can reference variables Strings assigned to a macro variable need to be
enclosed in double quoted strings. This also allows for passing single quotes within the strings.

Example

Call dynare with command line defines

>> dynare <<modfile.mod>> -DA=true '-DB="A string with space"'
—-DC=[1,2,3] '-DD=[1 in C when i1 > 1]' -Ddatafile_name="'"my_
—data_file.mat'"

—I<<path>>
Defines a path to search for files to be included by the macro processor (using the @#include
command). Multiple - T flags can be passed on the command line. The paths will be searched
in the order that the —T flags are passed and the first matching file will be used. The flags passed
here take priority over those passed to @#includepath. See the note on quotes for info on
passing a <<path>> argument containing spaces.

nostrict
Allows Dynare to issue a warning and continue processing when

1. there are more endogenous variables than equations.
2. an undeclared symbol is assigned in initval or endval.

3. an undeclared symbol is found in the mode1 block in this case, it is automatically declared
exogenous.

4. exogenous variables were declared but not used in the mode1 block.

fast
Only useful with model option use_d11. Don’t recompile the MEX files when running again
the same model file and the lists of variables and the equations haven’t changed. We use a 32
bit checksum, stored in <model filename>/checksum. There is a very small probability
that the preprocessor misses a change in the model. In case of doubt, re-run without the fast
option.

minimal_workspace
Instructs Dynare not to write parameter assignments to parameter names in the .m file produced
by the preprocessor. This is potentially useful when running dynare on a large .mod file that
runs into workspace size limitations imposed by MATLAB.

compute_xrefs
Tells Dynare to compute the equation cross references, writing them to the output . m file.

stochastic
Tells Dynare that the model to be solved is stochastic. If no Dynare commands related to
stochastic models (stoch_simul, estimation, ...) are present in the .mod file, Dynare
understands by default that the model to be solved is deterministic.

3.1.

Dynare invocation

15

Dynare Reference Manual, Release 5.4

exclude_egs=<<equation_ tags_to_exclude>>

Tells Dynare to exclude all equations specified by the argument. As a .mod file must have the
same number of endogenous variables as equations, when exclude_eqs is passed, certain rules
are followed for excluding endogenous variables. If the endogenous tag has been set for the
excluded equation, the variable it specifies is excluded. Otherwise, if the left hand side of the
excluded equation is an expression that contains only one endogenous variable, that variable is
excluded. If neither of these conditions hold, processing stops with an error. If an endogenous
variable has been excluded by the exclude_eqgs option and it exists in an equation that has not
been excluded, it is transformed into an exogenous variable.

To specify which equations to exclude, you must pass the argument
<<equation_tags_to_exclude>>. This argument takes either a list of equation
tags specifying the equations to be excluded or a filename that contains those tags.

If <<equation_tags_to_exclude>> is a list of equation tags, it can take one of the
following forms:

1. Given a single argument, e.g. exclude_eqgs=eql, the equation with the tag
[name="eqgl '] will be excluded. Note that if there is a file called egl in the current
directory, Dynare will instead try to open this and read equations to exclude from it (see
info on filename argument to exclude_egs below). Further note that if the tag value
contains a space, you must use the variant specified in 2 below, i.e. exclude_eqgs=[eq
17.

2. Given two or more arguments, e.g. exclude_eqgs=[eqgl, eqg 2], the equations with
the tags [name="'eqgl'] and [name="'eq 2'] will be excluded.

3. If you'd like to exclude equations based on another tag name (as opposed to the de-
fault name), you can pass the argument as either e.g. exclude_egs=[tagname=a
tag] if a single equation with tag [tagname="a tag'] is to be excluded or as e.g.
exclude_eqgs=[tagname=(a tag, 'a tag with a, comma')] if more than
one equation with tags [tagname='a tag'] and [tagname='a tag with a,
comma '] will be excluded (note the parenthesis, which are required when more than one
equation is specified). Note that if the value of a tag contains a comma, it must be included
inside single quotes.

If <<equation_tags_to_exclude>> is a filename, the file can take one of the following
forms:

1. One equation per line of the file, where every line represents the value passed to the name
tag. e.g., a file such as:

eqgl
eq 2

would exclude equations with tags [name='eql'] and [name='eq 2'].

2. One equation per line of the file, where every line after the first line represents the value
passed to the tag specified by the first line. e.g., a file such as:

tagname=
a tag
a tag with a, comma

would exclude equations with tags [tagname='a tag'] and [tagname='a tag
with a, comma']. Here note that the first line must end in an equal sign.

include_egs=<<equation_tags_to_include>>
Tells Dynare to run with only those equations specified by the argument; in other
words, Dynare will exclude all equations not specified by the argument. The argument
<<equation_tags_to_include>> is specified in the same way as the argument to ex-
clude_eqs. The functionality of include_egs is to find which equations to exclude then take
actions in accord with exclude_egs.

16 Chapter 3. Running Dynare

Dynare Reference Manual, Release 5.4

use_dll
Instructs the preprocessor to create dynamic loadable libraries (DLL) containing the model
equations and derivatives, instead of writing those in M-files. This is equivalent to the use_d11
option of the model block.

nocommutativity
This option tells the preprocessor not to use the commutativity of addition and multiplication
when looking for common subexpressions. As a consequence, when using this option, equations
in various outputs (LaTeX, JSON...) will appear as the user entered them (without terms or fac-
tors swapped). Note that using this option may have a performance impact on the preprocessing
stage, though it is likely to be small.

These options can be passed to the preprocessor by listing them after the name of the . mod file. They
can alternatively be defined in the first line of the . mod file, this avoids typing them on the command
line each time a . mod file is to be run. This line must be a Dynare one-line comment (i.e. must begin
with //) and the options must be whitespace separated between ——+ options: and +--. Note
that any text after the +—— will be discarded. As in the command line, if an option admits a value the
equal symbol must not be surrounded by spaces. For instance json = compute is not correct, and
should be written json=compute. The nopathchange option cannot be specified in this way, it
must be passed on the command-line.

Output

Depending on the computing tasks requested in the . mod file, executing the dynare command will
leave variables containing results in the workspace available for further processing. More details are
given under the relevant computing tasks. The M _," "oo_" ", and options_ structures are saved in a
file called FILENAME_results.mat located in the MODFILENAME /Output folder. If they ex-
ist, estim_params_, bayestopt_, dataset_, oo_recursive_and estimation_info
are saved in the same file. Note that MATLAB by default only allows .mat files up to 2GB. You
can lift this restriction by enabling the save -v7.3optioninPreferences -> General ->
MAT-Files.

MATLAB/Octave variable: M_
Structure containing various information about the model.

MATLAB/Octave variable: options_
Structure contains the values of the various options used by Dynare during the computation.

MATLAB/Octave variable: oo_
Structure containing the various results of the computations.

MATLAB/Octave variable: dataset_
A dseries object containing the data used for estimation.

MATLAB/Octave variable: oo_recursive_
Cell array containing the oo__ structures obtained when estimating the model for the different
samples when performing recursive estimation and forecasting. The oo__ structure obtained for
the sample ranging to the i -th observation is saved in the i -th field. The fields for non-estimated
endpoints are empty.

MATLAB/Octave variable: oo_.time
Total computing time of the Dynare run, in seconds. This field is not set if the not ime option
has been used.

Example
Call dynare from the MATLAB or Octave prompt, without or with options:

>> dynare ramst
>> dynare ramst.mod savemacro

Alternatively the options can be passed in the first line of ramst .mod:

// ——+ options: savemacro, json=compute +—-—

3.1. Dynare invocation 17

Dynare Reference Manual, Release 5.4

and then dynare called without passing options on the command line:

>> dynare ramst

3.2 Dynare hooks

It is possible to call pre and post Dynare preprocessor hooks written as MATLAB scripts. The script
MODFILENAME/hooks/priorprocessing.m is executed before the call to Dynare’s preprocessor, and
can be used to programmatically transform the mod file that will be read by the preprocessor. The script
MODFILENAME/hooks/postprocessing.m is gexecuted just after the call to Dynare’s preprocessor, and
can be used to programmatically transform the files generated by Dynare’s preprocessor before actual computa-
tions start. The pre and/or post dynare preprocessor hooks are executed if and only if the aforementioned scripts
are detected in the same folder as the the model file, F I LENAME . mod.

3.3 Understanding Preprocessor Error Messages

If the preprocessor runs into an error while processing your . mod file, it will issue an error. Due to the way that a
parser works, sometimes these errors can be misleading. Here, we aim to demystify these error messages.

The preprocessor issues error messages of the form:
1. ERROR: <<file.mod>>: line A, col B: <<error message>>
2. ERROR: <<file.mod>>: 1line A, cols B-C: <<error message>>
3. ERROR: <<file.mod>>: line A, col B - line C, col D: <<error message>>

The first two errors occur on a single line, with error two spanning multiple columns. Error three spans multiple
TOWS.

Often, the line and column numbers are precise, leading you directly to the offending syntax. Infrequently how-
ever, because of the way the parser works, this is not the case. The most common example of misleading line and
column numbers (and error message for that matter) is the case of a missing semicolon, as seen in the following
example:

varexo a, b
parameters c, ...;

In this case, the parser doesn’t know a semicolon is missing at the end of the varexo command until it begins
parsing the second line and bumps into the parameters command. This is because we allow commands to span
multiple lines and, hence, the parser cannot know that the second line will not have a semicolon on it until it gets
there. Once the parser begins parsing the second line, it realizes that it has encountered a keyword, parameters,
which it did not expect. Hence, it throws an error of the form: ERROR: <<file.mod>>: line 2, cols
0-9: syntax error, unexpected PARAMETERS. In this case, you would simply place a semicolon
at the end of line one and the parser would continue processing.

It is also helpful to keep in mind that any piece of code that does not violate Dynare syntax, but at the same time
is not recognized by the parser, is interpreted as native MATLAB code. This code will be directly passed to the
driver script. Investigating the driver .m file then helps with debugging. Such problems most often occur when
defined variable or parameter names have been misspelled so that Dynare’s parser is unable to recognize them.

18 Chapter 3. Running Dynare

CHAPTER
FOUR

THE MODEL FILE

4.1 Conventions

A model file contains a list of commands and of blocks. Each command and each element of a block is terminated
by a semicolon (;). Blocks are terminated by end; .

If Dynare encounters an unknown expression at the beginning of a line or after a semicolon, it will parse the rest of
that line as native MATLAB code, even if there are more statements separated by semicolons present. To prevent
cryptic error messages, it is strongly recommended to always only put one statement/command into each line and
start a new line after each semicolon.’

Lines of codes can be commented out line by line or as a block. Single-line comments begin with // and stop at
the end of the line. Multiline comments are introduced by / + and terminated by * /.

Examples

// This is a single line comment
var x; // This is a comment about x
/#* This is another inline comment about alpha +/ alpha = 0.3;

/%

This comment is spanning
two lines.

*/

Note that these comment marks should not be used in native MATLAB code regions where the % should be
preferred instead to introduce a comment. In a verbat im block, see Verbatim inclusion, this would result in a
crash since // is not a valid MATLAB statement).

Most Dynare commands have arguments and several accept options, indicated in parentheses after the command
keyword. Several options are separated by commas.

In the description of Dynare commands, the following conventions are observed:

» Optional arguments or options are indicated between square brackets: ‘[]’;

LL)

* Repeated arguments are indicated by ellipses: “...”;

<|3;

* Mutually exclusive arguments are separated by vertical bars:

INTEGER indicates an integer number;

INTEGER_VECTOR indicates a vector of integer numbers separated by spaces, enclosed by square brack-
ets;

T A .mod file must have lines that end with a line feed character, which is not commonly visible in text editors. Files created on Windows
and Unix-based systems have always conformed to this requirement, as have files created on OS X and macOS. Files created on old, pre-OS
X Macs used carriage returns as end of line characters. If you get a Dynare parsing error of the form ERROR: <<mod file>>: 1line
1, cols 341-347: syntax error, ... and there’s more than one line in your .mod file, know that it uses the carriage return as
an end of line character. To get more helpful error messages, the carriage returns should be changed to line feeds.

19

Dynare Reference Manual, Release 5.4

¢ DOUBLE indicates a double precision number. The following syntaxes are valid: 1.1e3,1.1E3,1.1d3,
1.1D3. In some places, infinite Values Inf and —Inf are also allowed,

* NUMERICAL_VECTOR indicates a vector of numbers separated by spaces, enclosed by square brackets;
* EXPRESSION indicates a mathematical expression valid outside the model description (see Expressions);

¢ MODEL_EXPRESSION (sometimes MODEL_EXP) indicates a mathematical expression valid in the
model description (see Expressions and Model declaration);

* MACRO_EXPRESSION designates an expression of the macro processor (see Macro expressions);

* VARIABLE_NAME (sometimes VAR_NAME) indicates a variable name starting with an alphabetical char-
acter and can’t contain: ‘()+-*/"=!;:@#.” or accentuated characters;

* PARAMETER_NAME (sometimes PARAM_NAME) indicates a parameter name starting with an alpha-
betical character and can’t contain: ‘()+-*/A=!;:@#.” or accentuated characters;

* LATEX_NAME (sometimes TEX_NAME) indicates a valid LaTeX expression in math mode (not including
the dollar signs);

¢ FUNCTION_NAME indicates a valid MATLAB function name;

* FILENAME indicates a filename valid in the underlying operating system; it is necessary to put it between
quotes when specifying the extension or if the filename contains a non-alphanumeric character;

QUOTED_STRING indicates an arbitrary string enclosed between (single) quotes.

4.2 Variable declarations

While Dynare allows the user to choose their own variable names, there are some restrictions to be kept in mind.
First, variables and parameters must not have the same name as Dynare commands or built-in functions. In this
respect, Dynare is not case-sensitive. For example, do not use Ln or Sigma_e to name your variable. Not
conforming to this rule might yield hard-to-debug error messages or crashes. Second, when employing user-
defined steady state files it is recommended to avoid using the name of MATLAB functions as this may cause
conflicts. In particular, when working with user-defined steady state files, do not use correctly-spelled greek
names like alpha, because there are MATLAB functions of the same name. Rather go for alppha or alph.
Lastly, please do not name a variable or parameter i. This may interfere with the imaginary number i and the index
in many loops. Rather, name investment invest. Using inv is also not recommended as it already denotes the
inverse operator. Commands for declaring variables and parameters are described below.

Command: var VAR_NAME [$TEX_NAMES] [(long_name=QUOTED_STRING |NAME=QUOTED_STRING)]...;
Command: var (deflator=MODEL_EXPR) VAR_NAME (... same options apply)
Command: var (log_deflator=MODEL_EXPR) VAR _NAME (... same options apply)
This required command declares the endogenous variables in the model. See Conventions for the syntax
of VAR_NAME and MODEL_EXPR. Optionally it is possible to give a LaTeX name to the variable or, if
it is nonstationary, provide information regarding its deflator. The variables in the list can be separated by
spaces or by commas. var commands can appear several times in the file and Dynare will concatenate
them. Dynare stores the list of declared parameters, in the order of declaration, in a column cell array
M_.endo_names.

Options

If the model is nonstationary and is to be written as such in the model block, Dynare will need the trend
deflator for the appropriate endogenous variables in order to stationarize the model. The trend deflator must
be provided alongside the variables that follow this trend.

deflator = MODEL_EXPR
The expression used to detrend an endogenous variable. All trend variables, endogenous variables
and parameters referenced in MODEL_EXPR must already have been declared by the trend_var,
log_trend_var, var and parameters commands. The deflator is assumed to be multiplica-
tive; for an additive deflator, use 1log_deflator.

20 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

log deflator = MODEL_EXPR
Same as deflator, except that the deflator is assumed to be additive instead of multiplicative (or, to
put it otherwise, the declared variable is equal to the log of a variable with a multiplicative trend).

long_name = QUOTED_STRING
This is the long version of the variable name. Its value is stored in M_.endo_names_long (a
column cell array, in the same order as M_ .endo_names). In case multiple 1ong_name options
are provided, the last one will be used. Default: VAR_NAME.

NAME = QUOTED_STRING
This is used to create a partitioning of variables. It results in the direct output in the . m file analogous
to: M_.endo_partitions.NAME = QUOTED_STRING;.

Example (variable partitioning)

var c gnp cva (country='US', state='VA'")

cca (country='US', state='CA', long_name='Consumption CA'");
var (deflator=A) i b;
var ¢ C (long_name=" Consumption');

Command: varexo VAR _NAME [$TEX_NAMES] [(long_name=QUOTED_STRING|NAME=QUOTED_STRING)...]
This optional command declares the exogenous variables in the model. See Conventions for the syntax of
VAR_NAME. Optionally it is possible to give a LaTeX name to the variable. Exogenous variables are re-
quired if the user wants to be able to apply shocks to her model. The variables in the list can be separated by
spaces or by commas. varexo commands can appear several times in the file and Dynare will concatenate
them.

Options

long_name = QUOTED_STRING
Like long_name but value stored in M__.exo_names_long.

NAME = QUOTED_STRING
Like partitioning but QUOTED_STRING stored in M_ .exo_partitions.NAME.

Example

varexo m gov;

Remarks

An exogenous variable is an innovation, in the sense that this variable cannot be predicted from the knowl-
edge of the current state of the economy. For instance, if logged TFP is a first order autoregressive process:

ar = pai—1 + &¢

then logged TFP a; is an endogenous variable to be declared with var, its best prediction is pa;_1, while
the innovation ¢; is to be declared with varexo.

Command: varexo_det VAR NAME [$TEX _NAMES$] [(long_name=QUOTED_STRING |NAME=QUOTED_STRING)
This optional command declares exogenous deterministic variables in a stochastic model. See Conventions
for the syntax of VARIABLE_NAME. Optionally it is possible to give a LaTeX name to the variable. The
variables in the list can be separated by spaces or by commas. varexo_det commands can appear several
times in the file and Dynare will concatenate them.

It is possible to mix deterministic and stochastic shocks to build models where agents know from the start
of the simulation about future exogenous changes. In that case stoch_simul will compute the ratio-
nal expectation solution adding future information to the state space (nothing is shown in the output of
stoch_simul) and forecast will compute a simulation conditional on initial conditions and future infor-
mation.

Note that exogenous deterministic variables cannot appear with a lead or a lag in the model.

Options

4.2. Variable declarations 21

Dynare Reference Manual, Release 5.4

long _name = QUOTED_STRING
Like long_name but value stored in M__ . exo_det_names_long.

NAME = QUOTED_STRING
Like partitioning but QUOTED_STRING stored in M__.exo_det_partitions.NAME.

Example

varexo m gov;
varexo_det tau;

Command: parameters PARAM NAME [STEX_NAMES] [(long_name=QUOTED_STRING |NAME=QUOTED_STRI!
This command declares parameters used in the model, in variable initialization or in shocks declarations.
See Conventions for the syntax of PARAM_NAME. Optionally it is possible to give a LaTeX name to the
parameter.

The parameters must subsequently be assigned values (see Parameter initialization).

The parameters in the list can be separated by spaces or by commas. parameters commands can appear
several times in the file and Dynare will concatenate them.

Options

long _name = QUOTED_STRING
Like long_name but value stored in M__ . param_names_long.

NAME = QUOTED_STRING
Like partitioning but QUOTED_STRING stored in M_ .param_partitions.NAME.

Example

parameters alpha, bet;

Command: change_type (var|varexo|varexo_det |parameters) VAR_NAME | PARAM_NAME...;
Changes the types of the specified variables/parameters to another type: endogenous, exogenous, exogenous
deterministic or parameter. It is important to understand that this command has a global effect on the . mod
file: the type change is effective after, but also before, the change_type command. This command is
typically used when flipping some variables for steady state calibration: typically a separate model file is
used for calibration, which includes the list of variable declarations with the macro processor, and flips some
variable.

Example

var y, w;
parameters alpha, beta;

change_type (var) alpha, beta;
change_type (parameters) y, w;

Here, in the whole model file, alpha and beta will be endogenous and y and w will be param-
eters.

Command: predetermined variables VAR_NAME...;
In Dynare, the default convention is that the timing of a variable reflects when this variable is decided. The
typical example is for capital stock: since the capital stock used at current period is actually decided at the
previous period, then the capital stock entering the production function is k (-1), and the law of motion of
capital must be written:

k =1 + (l-delta)xk(-1)
Put another way, for stock variables, the default in Dynare is to use a “stock at the end of the period” concept,
instead of a “stock at the beginning of the period” convention.

The predetermined_variables is used to change that convention. The endogenous variables de-
clared as predetermined variables are supposed to be decided one period ahead of all other endogenous

22 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

variables. For stock variables, they are supposed to follow a “stock at the beginning of the period” conven-
tion.

Note that Dynare internally always uses the “stock at the end of the period” concept, even when the model
has been entered using the predetermined_variables command. Thus, when plotting, computing
or simulating variables, Dynare will follow the convention to use variables that are decided in the current
period. For example, when generating impulse response functions for capital, Dynare will plot k, which
is the capital stock decided upon by investment today (and which will be used in tomorrow’s production
function). This is the reason that capital is shown to be moving on impact, because it is k and not the
predetermined k (—1) that is displayed. It is important to remember that this also affects simulated time
series and output from smoother routines for predetermined variables. Compared to non-predetermined
variables they might otherwise appear to be falsely shifted to the future by one period.

Example
The following two program snippets are strictly equivalent.
Using default Dynare timing convention:
var y, k, 1i;
model;
y = k(-1)"alpha;
k =1 + (l-delta)x*k(-1);

end;

Using the alternative timing convention:

var y, k, 1i;
predetermined variables k;

model;

y = k”alpha;
k(+1) = 1 + (l-delta) xk;
end;

Command: trend_var (growth_factor = MODEL_EXPR) VAR_NAME [SLATEX_ NAMES]...;
This optional command declares the trend variables in the model. See Conventions for the syntax of
MODEL_EXPR and VAR_NAME. Optionally it is possible to give a LaTeX name to the variable.

The variable is assumed to have a multiplicative growth trend. For an additive growth trend, use
log_trend_var instead.

Trend variables are required if the user wants to be able to write a nonstationary model in the mode1 block.
The t rend_var command must appear before the var command that references the trend variable.

trend_var commands can appear several times in the file and Dynare will concatenate them.

If the model is nonstationary and is to be written as such in the model block, Dynare will need the growth
factor of every trend variable in order to stationarize the model. The growth factor must be provided within
the declaration of the trend variable, using the growth_factor keyword. All endogenous variables
and parameters referenced in MODEL_EXPR must already have been declared by the var and parameters
commands.

Example

trend var (growth_factor=gA) A;

Command: log_trend_var (log_growth_factor = MODEL_EXPR) VAR_NAME [SLATEX_NAMES]...;
Same as t rend_var, except that the variable is supposed to have an additive trend (or, to put it otherwise,
to be equal to the log of a variable with a multiplicative trend).

4.2. Variable declarations 23

Dynare Reference Manual, Release 5.4

Command: model_ local_variable VARIABLE_NAME [LATEX NAME]... ;
This optional command declares a model local variable. See Conventions for the syntax of VARI-
ABLE_NAME. As you can create model local variables on the fly in the model block (see Model dec-
laration), the interest of this command is primarily to assign a LATEX_NAME to the model local variable.

Example

model_ local_ variable GDP_US $GDPUSS;

4.2.1 On-the-fly Model Variable Declaration

Endogenous variables, exogenous variables, and parameters can also be declared inside the model block. You can
do this in two different ways: either via the equation tag (only for endogenous variables) or directly in an equation
(for endogenous, exogenous or parameters).

To declare an endogenous variable on-the-fly in an equation tag, simply write endogenous followed by an equal
sign and the variable name in single quotes. Hence, to declare a variable c as endogenous in an equation tag, you
cantype [endogenous="'c'].

To perform on-the-fly variable declaration in an equation, simply follow the symbol name with a vertical line (|,
pipe character) and either an e (for endogenous), an x (for exogenous), or a p (for parameter). For example,
to declare a parameter named alphaa in the model block, you could write alphaa | p directly in an equation
where it appears. Similarly, to declare an endogenous variable c in the model block you could write c | e. Note
that in-equation on-the-fly variable declarations must be made on contemporaneous variables.

On-the-fly variable declarations do not have to appear in the first place where this variable is encountered.
Example

The following two snippets are equivalent:

model;
[endogenous="k',name="'law of motion of capital']
k(+1) = ile + (l-deltalp) *k;

vle = k”alphalp;

end;
delta = 0.025;
alpha = 0.36;

var k, i, y;

parameters delta, alpha;
delta = 0.025;

alpha = 0.36;

model;

[name="'law of motion of capital']
k(l) = ile + (l-deltalp) *k;

yle = kle”alphalp;

end;

24 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.3 Expressions

Dynare distinguishes between two types of mathematical expressions: those that are used to describe the model,
and those that are used outside the model block (e.g. for initializing parameters or variables, or as command
options). In this manual, those two types of expressions are respectively denoted by MODEL_EXPRESSION and
EXPRESSION.

Unlike MATLAB or Octave expressions, Dynare expressions are necessarily scalar ones: they cannot contain
matrices or evaluate to matrices.”

Expressions can be constructed using integers (INTEGER), floating point numbers (DOUBLE), parameter names
(PARAMETER_NAME), variable names (VARIABLE_NAME), operators and functions.

The following special constants are also accepted in some contexts:

Constant: inf
Represents infinity.

Constant: nan
“Not a number”: represents an undefined or unrepresentable value.

4.3.1 Parameters and variables

Parameters and variables can be introduced in expressions by simply typing their names. The semantics of param-
eters and variables is quite different whether they are used inside or outside the model block.

4.3.1.1 Inside the model

Parameters used inside the model refer to the value given through parameter initialization (see Parameter initial-
ization) or homot opy_setup when doing a simulation, or are the estimated variables when doing an estimation.

Variables used in a MODEL_EXPRESSION denote current period values when neither a lead or a lag is given.
A lead or a lag can be given by enclosing an integer between parenthesis just after the variable name: a positive
integer means a lead, a negative one means a lag. Leads or lags of more than one period are allowed. For example,
if ¢ is an endogenous variable, then c (+1) is the variable one period ahead, and c (-2) is the variable two
periods before.

When specifying the leads and lags of endogenous variables, it is important to respect the following convention:
in Dynare, the timing of a variable reflects when that variable is decided. A control variable — which by definition
is decided in the current period — must have no lead. A predetermined variable — which by definition has been
decided in a previous period — must have a lag. A consequence of this is that all stock variables must use the
“stock at the end of the period” convention.

Leads and lags are primarily used for endogenous variables, but can be used for exogenous variables. They have
no effect on parameters and are forbidden for local model variables (see Model declaration).

2 Note that arbitrary MATLAB or Octave expressions can be put in a .mod file, but those expressions have to be on separate lines, generally
at the end of the file for post-processing purposes. They are not interpreted by Dynare, and are simply passed on unmodified to MATLAB or
Octave. Those constructions are not addresses in this section.

4.3. Expressions 25

Dynare Reference Manual, Release 5.4

4.3.1.2 Outside the model

When used in an expression outside the model block, a parameter or a variable simply refers to the last value
given to that variable. More precisely, for a parameter it refers to the value given in the corresponding parameter
initialization (see Parameter initialization); for an endogenous or exogenous variable, it refers to the value given
in the most recent initwval or endval block.

4.3.2 Operators

The following operators are allowed in both MODEL_EXPRESSION and EXPRESSION:
* Binary arithmetic operators: +, —, %, /, »
e Unary arithmetic operators: +, —
 Binary comparison operators (which evaluate to either 0 or 1): <, >, <=, >=, ==, | =

Note the binary comparison operators are differentiable everywhere except on a line of the 2-dimensional real
plane. However for facilitating convergence of Newton-type methods, Dynare assumes that, at the points of non-
differentiability, the partial derivatives of these operators with respect to both arguments is equal to O (since this is
the value of the partial derivatives everywhere else).

The following special operators are accepted in MODEL_EXPRESSION (but not in EXPRESSION):

Operator: STEADY STATE (MODEL_EXPRESSION)
This operator is used to take the value of the enclosed expression at the steady state. A typical usage is in
the Taylor rule, where you may want to use the value of GDP at steady state to compute the output gap.

Exogenous and exogenous deterministic variables may not appear in MODEL_EXPRESSION.

Warning: The concept of a steady state is ambiguous in a perfect foresight context with permament and
potentially anticipated shocks occuring. Dynare will use the contents of oo_ . steady_state asits
reference for calls to the STEADY_STATE () operator. In the presence of endval, this implies that the
terminal state provided by the user is used. This may be a steady state computed by Dynare (if endval
is followed by steady) or simply the terminal state provided by the user (if endval is not followed
by steady). Put differently, Dynare will not automatically compute the steady state conditional on the
specificed value of the exogenous variables in the respective periods.

Operator: EXPECTATION (INTEGER) (MODEL_EXPRESSION)
This operator is used to take the expectation of some expression using a different information set than
the information available at current period. For example, EXPECTATION (-1) (x (+1)) is equal to the
expected value of variable x at next period, using the information set available at the previous period. See
Auxiliary variables for an explanation of how this operator is handled internally and how this affects the
output.

4.3.3 Functions
4.3.3.1 Built-in functions

The following standard functions are supported internally for both MODEL_EXPRESSION and EXPRESSION:

Function: exp(x)
Natural exponential.

Function: 1log(x)

Function: 1ln (x)
Natural logarithm.

26 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Function: 1loglO (x)
Base 10 logarithm.

Function: sqrt (x)
Square root.

Function: cbrt (x)
Cube root.

Function: sign(x)
Signum function, defined as:

-1 ifz <0
sign(z) =<0 ifx=0
1 ifz >0

Note that this function is not continuous, hence not differentiable, at x = (. However, for facilitating
convergence of Newton-type methods, Dynare assumes that the derivative at x = 0 is equal to 0. This
assumption comes from the observation that both the right- and left-derivatives at this point exist and are
equal to 0, so we can remove the singularity by postulating that the derivative at x = 0 is 0.

Function: abs (x)
Absolute value.

Note that this continuous function is not differentiable at x = 0. However, for facilitating convergence of
Newton-type methods, Dynare assumes that the derivative at x = 0 is equal to 0 (even if the derivative
does not exist). The rational for this mathematically unfounded definition, rely on the observation that the
derivative of abs(z) is equal to sign(z) for any z # 0 in R and from the convention for the value of sign(x)
atx = 0).

Function: sin(x)
Function: cos(x)
Function: tan (x)
Function: asin(x)
Function: acos(x)

Function: atan (x)
Trigonometric functions.

Function: max(a, b)

Function: min(a, b)
Maximum and minimum of two reals.

Note that these functions are differentiable everywhere except on a line of the 2-dimensional real plane
defined by a = b. However for facilitating convergence of Newton-type methods, Dynare assumes that,
at the points of non-differentiability, the partial derivative of these functions with respect to the first (resp.
the second) argument is equal to 1 (resp. to 0) (i.e. the derivatives at the kink are equal to the derivatives
observed on the half-plane where the function is equal to its first argument).

Function: normcdf (x)

Function: normcdf (x, mu, sigma)
Gaussian cumulative density function, with mean mu and standard deviation sigma. Note that
normcdf (x) is equivalent to normcdf (x,0,1).

Function: normpdf (x)

Function: normpdf (x, mu, sigma)
Gaussian probability density function, with mean mu and standard deviation sigma. Note that
normpdf (x) is equivalent to normpdf (x,0,1).

4.3. Expressions 27

Dynare Reference Manual, Release 5.4

Function: erf (x)

Gauss error function.

4.3.3.2 External functions

Any other user-defined (or built-in) MATLAB or Octave function may be used in both a MODEL_EXPRESSION
and an EXPRESSION, provided that this function has a scalar argument as a return value.

To use an external function in a MODEL_EXPRESSION, one must declare the function using the
external_function statement. This is not required for external functions used in an EXPRESSION out-
side of amodel block or steady_state_model block.

Command: external function (OPTIONS...);

This command declares the external functions used in the model block. It is required for every unique
function used in the model block.

external_function commands can appear several times in the file and must come before the model
block.

Options

name = NAME
The name of the function, which must also be the name of the M-/MEX file implementing it. This
option is mandatory.

nargs = INTEGER
The number of arguments of the function. If this option is not provided, Dynare assumes nargs =
1

first_deriv_provided [= NAME]
If NAME is provided, this tells Dynare that the Jacobian is provided as the only output of the M-
/MEX file given as the option argument. If NAME is not provided, this tells Dynare that the M-/MEX
file specified by the argument passed to NAME returns the Jacobian as its second output argument.
When this option is not provided, Dynare will use finite difference approximations for computing the
derivatives of the function, whenever needed.

second_deriv_provided [= NAME]
If NAME is provided, this tells Dynare that the Hessian is provided as the only output of the M-/MEX
file given as the option argument. If NAME is not provided, this tells Dynare that the M-/MEX
file specified by the argument passed to NAME returns the Hessian as its third output argument.
NB: This option can only be used if the first_deriv_provided option is used in the same
external_function command. When this option is not provided, Dynare will use finite differ-
ence approximations for computing the Hessian derivatives of the function, whenever needed.

Example
external_ function (name = funcname) ;
external function (name = otherfuncname, nargs = 2, first_deriv__
—provided, second_deriv_provided);
external_ function (name = yetotherfuncname, nargs = 3, first_deriv_
—provided = funcname_deriv);

28

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.3.4 A few words of warning in stochastic context
The use of the following functions and operators is strongly discouraged in a stochastic context: max, min, abs,
sign, <, >, <=,>=, ==, |=,

The reason is that the local approximation used by stoch_simul or estimation will by nature ignore the
non-linearities introduced by these functions if the steady state is away from the kink. And, if the steady state is
exactly at the kink, then the approximation will be bogus because the derivative of these functions at the kink is
bogus (as explained in the respective documentations of these functions and operators).

Note that extended_path is not affected by this problem, because it does not rely on a local approximation of
the mode.

4.4 Parameter initialization

When using Dynare for computing simulations, it is necessary to calibrate the parameters of the model. This is
done through parameter initialization.

The syntax is the following:

PARAMETER_NAME = EXPRESSION;

Here is an example of calibration:

parameters alpha, beta;

beta = 0.99;
alpha = 0.36;
A = l-alphaxbeta;

Internally, the parameter values are stored in M_ . params:

MATLAB/Octave variable: M_.params
Contains the values of model parameters. The parameters are in the order that was used in the parameters
command, hence ordered as in M__. param_names.

The parameter names are stored in M_ . param_names:

MATLAB/Octave variable: M_.param names
Cell array containing the names of the model parameters.

MATLAB/Octave command: get_param by_name ('PARAMETER_NAME') ;
Given the name of a parameter, returns its calibrated value as it is stored in M_ . params.

MATLAB/Octave command: set_param value ('PARAMETER_NAME', MATLAB_EXPRESSION) ;
Sets the calibrated value of a parameter to the provided expression. This does essentially the same as the pa-
rameter initialization syntax described above, except that it accepts arbitrary MATLAB/Octave expressions,
and that it works from MATLAB/Octave scripts.

4.5 Model declaration

The model is declared inside a model block:

Block: model ;
Block: model (OPTIONS...);

The equations of the model are written in a block delimited by model and end keywords.

There must be as many equations as there are endogenous variables in the model, except
when computing the unconstrained optimal policy with ramsey_model, ramsey_policy
ordiscretionary_policy.

4.4. Parameter initialization 29

Dynare Reference Manual, Release 5.4

The syntax of equations must follow the conventions for MODEL_EXPRESSION as described
in Expressions. Each equation must be terminated by a semicolon (‘;’). A normal equation looks
like:

MODEL_EXPRESSION = MODEL_EXPRESSION;

When the equations are written in homogenous form, it is possible to omit the ‘=0’ part and write
only the left hand side of the equation. A homogenous equation looks like:

MODEL_EXPRESSION;

Inside the model block, Dynare allows the creation of model-local variables, which constitute a
simple way to share a common expression between several equations. The syntax consists of a
pound sign (#) followed by the name of the new model local variable (which must not be declared
as in Variable declarations, but may have been declared by model_local_ variable), an
equal sign, and the expression for which this new variable will stand. Later on, every time this
variable appears in the model, Dynare will substitute it by the expression assigned to the variable.
Note that the scope of this variable is restricted to the model block; it cannot be used outside.
To assign a LaTeX name to the model local variable, use the declaration syntax outlined by
model_local_ variable. A model local variable declaration looks like:

#VARIABLE_NAME = MODEL_EXPRESSION;

It is possible to tag equations written in the model block. A tag can serve different purposes
by allowing the user to attach arbitrary informations to each equation and to recover them at
runtime. For instance, it is possible to name the equations with a name tag, using a syntax like:

model;

[name = 'Budget constraint'];
c + k = k”“thetaxA;

end;

Here, name is the keyword indicating that the tag names the equation. If an equation of the model
is tagged with a name, the resid command will display the name of the equations (which may
be more informative than the equation numbers) in addition to the equation number. Several tags
for one equation can be separated using a comma:

model;

[name="'Taylor rule',mcp = 'r > —-1.94478"]
r = rho*r(-1) + (l-rho)*(gpi*xInfl+gy*Y¥Gap) + e;

end;

More information on tags is available at https://git.dynare.org/Dynare/dynare/-/wikis/
Equations-Tags.

Options

linear
Declares the model as being linear. It spares oneself from having to declare initial values
for computing the steady state of a stationary linear model. This option can’t be used with
non-linear models, it will NOT trigger linearization of the model.

use_dll
Instructs the preprocessor to create dynamic loadable libraries (DLL) containing the model
equations and derivatives, instead of writing those in M-files. You need a working compila-
tion environment, i.e. a working mex command (see Compiler installation for more details).
Using this option can result in faster simulations or estimations, at the expense of some ini-
tial compilation time. Alternatively, this option can be given to the dynare command (see

30 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Dynare invocation).?

block
Perform the block decomposition of the model, and exploit it in computa-
tions (steady-state, deterministic simulation, stochastic simulation with first or-
der approximation and estimation). See https://archives.dynare.org/DynareWiki/
FastDeterministicSimulationAndSteadyStateComputation for details on the algorithms used
in deterministic simulation and steady-state computation.

bytecode
Instead of M-files, use a bytecode representation of the model, i.e. a binary file containing a
compact representation of all the equations.

cutoff = DOUBLE
Threshold under which a jacobian element is considered as null during the model normal-
ization. Only available with option block. Default: 1e-15

mfs = INTEGER
Controls the handling of minimum feedback set of endogenous variables. Only available
with option block. Possible values:

0
All the endogenous variables are considered as feedback variables (Default).

1
The endogenous variables assigned to equation naturally normalized (i.e. of the
form z = f(Y') where x does not appear in Y) are potentially recursive variables.
All the other variables are forced to belong to the set of feedback variables.

2
In addition of variables with mfs = 1 the endogenous variables related to linear
equations which could be normalized are potential recursive variables. All the other
variables are forced to belong to the set of feedback variables.

3

In addition of variables with mfs = 2 the endogenous variables related to non-
linear equations which could be normalized are potential recursive variables. All
the other variables are forced to belong to the set of feedback variables.

no_static
Don’t create the static model file. This can be useful for models which don’t have a steady
state.

differentiate forward vars

differentiate_forward _vars = (VARIABLE NAME [VARIABLE NAME ...])
Tells Dynare to create a new auxiliary variable for each endogenous variable that ap-
pears with a lead, such that the new variable is the time differentiate of the original
one. More precisely, if the model contains x (+1), then a variable AUX_DIFF_VAR
will be created such that AUX_DIFF_VAR=x-x(-1), and x (+1) will be replaced with
X+AUX_DIFF_VAR (+1).

The transformation is applied to all endogenous variables with a lead if the option is given
without a list of variables. If there is a list, the transformation is restricted to endogenous
with a lead that also appear in the list.

This option can useful for some deterministic simulations where convergence is hard to
obtain. Bad values for terminal conditions in the case of very persistent dynamics or per-
manent shocks can hinder correct solutions or any convergence. The new differentiated
variables have obvious zero terminal conditions (if the terminal condition is a steady state)
and this in many cases helps convergence of simulations.

parallel_local_ files = (FILENAME [, FILENAME]...)
Declares a list of extra files that should be transferred to slave nodes when doing a parallel
computation (see Parallel Configuration).

3 In particular, for big models, the compilation step can be very time-consuming, and use of this option may be counter-productive in those
cases.

4.5. Model declaration 31

Dynare Reference Manual, Release 5.4

balanced growth_ test_tol = DOUBLE
Tolerance used for determining whether cross-derivatives are zero in the test for bal-
anced growth path (the latter is documented on https://archives.dynare.org/DynareWiki/
RemovingTrends). Default: 1e-6

Example (Elementary RBC model)

var c kj;
varexo Xx;
parameters aa alph bet delt gam;

model;

c = - k + aaxxxk(-1)"alph + (l-delt)x*k(-1);

c” (-~gam) = (aaxalph*x(+1)+k”(alph-1) + 1 - delt)x*c(+1)”" (-gam)/
— (1l+bet);

end;

Example (Use of model local variables)

The following program:

model;

gamma = 1 - 1/sigma;
ul = cl”gamma/gamma;
u?2 = c2”gamma/gamma;
end;

...1s formally equivalent to:

model;

ul = cl”(1-1/sigma)/ (1-1/sigma) ;
u2 = c2”(l-1/sigma)/ (1-1/sigma) ;
end;

Example (A linear model)

model (linear) ;

x = a*x(-1)+bxy (+1) +te_x;
y = dry(-1)te_y;

end;

Dynare has the ability to output the original list of model equations to a LaTeX file, us-
ing the write_latex_original_model command, the list of transformed model equations us-
ing the write_latex_dynamic_model command, and the list of static model equations using the
write_latex_static_model command.

Command: write_latex original_model (OPTIONS) ;

This command creates two LaTeX files: one containing the model as defined in the model block and one
containing the LaTeX document header information.

If your .mod file is FILENAME.mod, then Dynare will create a file called FILENAME/latex/
original.tex, which includes a file called FILENAME/latex/original_content.tex (also
created by Dynare) containing the list of all the original model equations.

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be
used; otherwise, the plain text names will be used.

Time subscripts (t, t+1, t—1,...) will be appended to the variable names, as LaTeX subscripts.
Compiling the TeX file requires the following LaTeX packages: geometry, fullpage, breqn.
Options

write_equation_tags
Write the equation tags in the LaTeX output. The equation tags will be interpreted with LaTeX

32

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

markups.

Command: write_latex dynamic _model ;

Command: write_latex dynamic_model (OPTIONS) ;
This command creates two LaTeX files: one containing the dynamic model and one containing the LaTeX
document header information.

If your .mod file is FILENAME.mod, then Dynare will create a file called FILENAME/latex/
dynamic.tex, which includes a file called FILENAME /latex/dynamic_content.tex (also cre-
ated by Dynare) containing the list of all the dynamic model equations.

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be
used; otherwise, the plain text names will be used.

Time subscripts (t, t+1, t—1,...) will be appended to the variable names, as LaTeX subscripts.

Note that the model written in the TeX file will differ from the model declared by the user in the following
dimensions:

» The timing convention of predetermined variables (see predetermined_variables) will have
been changed to the default Dynare timing convention; in other words, variables declared as predeter-
mined will be lagged on period back,

* The EXPECTATION operators will have been removed, replaced by auxiliary variables and new equa-
tions (as explained in the documentation of EXPECTATION),

¢ Endogenous variables with leads or lags greater or equal than two will have been removed, replaced
by new auxiliary variables and equations,

» Exogenous variables with leads or lags will also have been replaced by new auxiliary variables and
equations.

For the required LaTeX packages, see write latex original_model.
Options

write_equation_tags
See write_equation_tags

Command: write_latex static_model (OPTIONS) ;
This command creates two LaTeX files: one containing the static model and one containing the LaTeX
document header information.

If your .mod file is FILENAME . mod, then Dynare will create a file called FILENAME /latex/static.
tex, which includes a file called FILENAME /latex/static_content.tex (also created by Dynare)
containing the list of all the steady state model equations.

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be
used; otherwise, the plain text names will be used.

Note that the model written in the TeX file will differ from the model declared by the user in the some
dimensions (see write latex dynamic_model for details).

Also note that this command will not output the contents of the optional steady_state_model block
(see steady_state_model); it will rather output a static version (i.e. without leads and lags) of the dy-
namic mode1 declared in the model block. To write the LaTeX contents of the steady_state_model
see write_latex_steady_state_model.

For the required LaTeX packages, see write latex original_model.
Options

write_equation_tags
See write equation_tags.

Command: write_latex steady_ state_model ()
This command creates two LaTeX files: one containing the steady state model and one containing the LaTeX
document header information.

4.5. Model declaration 33

Dynare Reference Manual, Release 5.4

If your .mod file is FILENAME.mod, then Dynare will create a file called FILENAME/latex/
steady_state.tex, which includes a file called FILENAME /latex/steady_state_content.
tex (also created by Dynare) containing the list of all the steady state model equations.

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be
used; otherwise, the plain text names will be used.

Note that the model written in the .tex file will differ from the model declared by the user in some
dimensions (see write latex dynamic_model for details).

For the required LaTeX packages, see write latex original_model.

4.6 Auxiliary variables

The model which is solved internally by Dynare is not exactly the model declared by the user. In some cases,
Dynare will introduce auxiliary endogenous variables—along with corresponding auxiliary equations—which
will appear in the final output.

The main transformation concerns leads and lags. Dynare will perform a transformation of the model so that there
is only one lead and one lag on endogenous variables and no leads/lags on exogenous variables.

This transformation is achieved by the creation of auxiliary variables and corresponding equations. For example, if
x (+2) exists in the model, Dynare will create one auxiliary variable AUX_ENDO_LEAD = x (+1),and replace
x (+2) by AUX_ENDO_LEAD (+1).

A similar transformation is done for lags greater than 2 on endogenous (auxiliary variables will have a name
beginning with AUX_ENDO_ LAG), and for exogenous with leads and lags (auxiliary variables will have a name
beginning with AUX_EXO_LEAD or AUX_EXO_ LAG respectively).

Another transformation is done for the EXPECTATION operator. For each occurrence of this operator, Dynare
creates an auxiliary variable defined by a new equation, and replaces the expectation operator by a reference
to the new auxiliary variable. For example, the expression EXPECTATION (-1) (x (+1)) is replaced by
AUX_EXPECT_LAG_1 (-1), and the new auxiliary variable is declared as AUX_EXPECT_LAG_1 = x(+2).

Auxiliary variables are also introduced by the preprocessor for the ramsey_model and ramsey_policy
commands. In this case, they are used to represent the Lagrange multipliers when first order conditions of the
Ramsey problem are computed. The new variables take the form MULT_ i, where i represents the constraint with
which the multiplier is associated (counted from the order of declaration in the model block).

Auxiliary variables are also introduced by the differentiate_forward_vars option of the model block.
The new variables take the form AUX_DIFF_FWRD_ 1, and are equal to x—x (—1) for some endogenous variable
X.

Finally, auxiliary variables will arise in the context of employing the dif £ operator.

Once created, all auxiliary variables are included in the set of endogenous variables. The output of decision rules
(see below) is such that auxiliary variable names are replaced by the original variables they refer to.

The number of endogenous variables before the creation of auxiliary variables is stored inM_ . orig_endo_nbr,
and the number of endogenous variables after the creation of auxiliary variables is stored in M__ . endo_nbr.

See https://git.dynare.org/Dynare/dynare/-/wikis/Auxiliary-variables for more technical details on auxiliary vari-
ables.

34 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.7 Initial and terminal conditions

For most simulation exercises, it is necessary to provide initial (and possibly terminal) conditions. It is also
necessary to provide initial guess values for non-linear solvers. This section describes the statements used for
those purposes.

In many contexts (deterministic or stochastic), it is necessary to compute the steady state of a non-linear model:
initwval then specifies numerical initial values for the non-linear solver. The command resid can be used to
compute the equation residuals for the given initial values.

Used in perfect foresight mode, the types of forward-looking models for which Dynare was designed require
both initial and terminal conditions. Most often these initial and terminal conditions are static equilibria, but not
necessarily.

One typical application is to consider an economy at the equilibrium at time O, trigger a shock in first period, and
study the trajectory of return to the initial equilibrium. To do that, one needs initval and shocks (see Shocks
on exogenous variables).

Another one is to study how an economy, starting from arbitrary initial conditions at time O converges towards
equilibrium. In this case models, the command histval permits to specify different historical initial values for
variables with lags for the periods before the beginning of the simulation. Due to the design of Dynare, in this
case initval is used to specify the terminal conditions.

Block: initval ;

Block: initval (OPTIONS...);
The initval block has two main purposes: providing guess values for non-linear solvers in the con-
text of perfect foresight simulations and providing guess values for steady state computations in both per-
fect foresight and stochastic simulations. Depending on the presence of histval and endval blocks
it is also used for declaring the initial and terminal conditions in a perfect foresight simulation exer-
cise. Because of this interaction of the meaning of an initval block with the presence of histval
and endval blocks in perfect foresight simulations, it is strongly recommended to check that the con-
structed oo_.endo_simul and oo_.exo_simul variables contain the desired values after running
perfect_foresight_setup and before running perfect_foresight_solver. Inthe presence
of leads and lags, these subfields of the results structure will store the historical values for the lags in the
first column/row and the terminal values for the leads in the last column/row.

The initval block is terminated by end; and contains lines of the form:
VARIABLE_NAME = EXPRESSION;
In a deterministic (i.e. perfect foresight) model

First, both the co_.endo_simul and oco_.exo_simul variables storing the endogenous and exoge-
nous variables will be filled with the values provided by this block. If there are no other blocks present, it
will therefore provide the initial and terminal conditions for all the endogenous and exogenous variables,
because it will also fill the last column/row of these matrices. For the intermediate simulation periods it
thereby provides the starting values for the solver. In the presence of a histval block (and therefore
absence of an endval block), this histval block will provide/overwrite the historical values for the
state variables (lags) by setting the first column/row of co_.endo_simul and oo_.exo_simul. This
implies that the initval block in the presence of histval only sets the terminal values for the variables
with leads and provides initial values for the perfect foresight solver.

Because of these various functions of initwval it is often necessary to provide values for all the endoge-
nous variables in an initwval block. Initial and terminal conditions are strictly necessary for lagged/leaded
variables, while feasible starting values are required for the solver. It is important to be aware that if some
variables, endogenous or exogenous, are not mentioned in the initval block, a zero value is assumed. It
is particularly important to keep this in mind when specifying exogenous variables using varexo that are
not allowed to take on the value of zero, like e.g. TFP.

Note that if the initval block is immediately followed by a st eady command, its semantics are slightly
changed. The steady command will compute the steady state of the model for all the endogenous vari-
ables, assuming that exogenous variables are kept constant at the value declared in the initval block.

4.7. Initial and terminal conditions 35

Dynare Reference Manual, Release 5.4

These steady state values conditional on the declared exogenous variables are then written into oo_ .
endo_simul and take up the potential roles as historical and terminal conditions as well as starting values
for the solver. An initval block followed by steady is therefore formally equivalent to an initval
block with the specified values for the exogenous variables, and the endogenous variables set to the associ-
ated steady state values conditional on the exogenous variables.

In a stochastic model

The main purpose of initwval is to provide initial guess values for the non-linear solver in the steady state
computation. Note that if the initval block is not followed by steady, the steady state computation
will still be triggered by subsequent commands (stoch_simul, estimation...).

As such, initval allows specifying the initial instrument value for steady state finding when providing
an analytical conditional steady state file for ramsey_model-computations.

It is not necessary to declare O as initial value for exogenous stochastic variables, since it is the only possible
value.

The subsequently computed steady state (not the initial values, use histval for this) will be used as the initial
condition at all the periods preceeding the first simulation period for the three possible types of simulations
in stochastic mode:

* stoch_simul, if the periods option is specified.

* forecast as the initial point at which the forecasts are computed.

e conditional_forecast as the initial point at which the conditional forecasts are computed.
To start simulations at a particular set of starting values that are not a computed steady state, use histval.
Options

all_values_required
Issues an error and stops processing the .mod file if there is at least one endogenous or exogenous
variable that has not been set in the initval block.

Example
initval;

c =1.2;
k =12;

steady;

Block: endval ;
Block: endval (OPTIONS...);

This block is terminated by end; and contains lines of the form:
VARIABLE NAME = EXPRESSION;

The endval block makes only sense in a deterministic model and cannot be used together with histval.
Similar to the initval command, it will fill both the co_.endo_simul and oo_ .exo_simul vari-
ables storing the endogenous and exogenous variables with the values provided by this block. If no
initval block is present, it will fill the whole matrices, therefore providing the initial and terminal con-
ditions for all the endogenous and exogenous variables, because it will also fill the first and last column/row
of these matrices. Due to also filling the intermediate simulation periods it will provide the starting values
for the solver as well.

If an initwval block is present, initval will provide the historical values for the variables (if there are
states/lags), while endval will fill the remainder of the matrices, thereby still providing i) the terminal
conditions for variables entering the model with a lead and /i) the initial guess values for all endogenous
variables at all the simulation dates for the perfect foresight solver.

36

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Note that if some variables, endogenous or exogenous, are NOT mentioned in the endval block, the
value assumed is that of the last initval block or steady command (if present). Therefore, in contrast
to initwval, omitted variables are not automatically assumed to be O in this case. Again, it is strongly
recommended to check the constructed oo_ .endo_simul and oo_.exo_simul variables after running
perfect_foresight_setup and before running perfect_foresight_solver to see whether
the desired outcome has been achieved.

Like initval, if the endval block is immediately followed by a steady command, its semantics are
slightly changed. The steady command will compute the steady state of the model for all the endoge-
nous variables, assuming that exogenous variables are kept constant to the value declared in the endval
block. These steady state values conditional on the declared exogenous variables are then written into
oo_.endo_simul and therefore take up the potential roles as historical and terminal conditions as well
as starting values for the solver. An endval block followed by steady is therefore formally equivalent
to an endval block with the specified values for the exogenous variables, and the endogenous variables
set to the associated steady state values.

Options

all values_required
See all_values_required

Example

var c k;
varexo X;

model;

c + k — aarxxxk(-1)“alph - (l-delt)*k(-1);

c” (—gam) - (l+bet)” (-1)x* (aaxalph*x(+1)*k” (alph-1) + 1 - delt)x*c(+1)" (-
—gam) ;

end;

initval;
c = 1.2;
k = 12;

steady;

perfect_foresight_setup (periods=200) ;
perfect_foresight_solver;

In this example, the problem is finding the optimal path for consumption and capital for the
periods ¢ = 1 to T' = 200, given the path of the exogenous technology level x. c is a forward-
looking variable and the exogenous variable x appears with a lead in the expected return of
physical capital, while k is a purely backward-looking (state) variable.

The initial equilibrium is computed by steady conditional on x=1, and the terminal one condi-
tional on x=2. The initval block sets the initial condition for k (since it is the only backward-
looking variable), while the endval block sets the terminal condition for c (since it is the only
forward-looking endogenous variable). The starting values for the perfect foresight solver are
given by the endval block. See below for more details.

Example

4.7. Initial and terminal conditions 37

Dynare Reference Manual, Release 5.4

var c k;
varexo X;

model;

c + k — aarxxk(-1)"alph - (l-delt)x*k(-1);

c” (—gam) - (l+bet)” (-1)* (aaxalph*x(+1)*k” (alph-1) + 1 - delt)*c(+1)" (-
—gam) ;

end;

initval;
k = 12;
end;

endval;
c = 2;

x =1.1;
end;

perfect_foresight_ setup (periods=200) ;
perfect_foresight_solver;

In this example, there is no steady command, hence the conditions are exactly those specified in
the initval and endval blocks. We need terminal conditions for ¢ and x, since both appear with a
lead, and an initial condition for k, since it appears with a lag.

Setting x=1.1 in the endval block without a shocks block implies that technology is at 1.1
in t = 1 and stays there forever, because endval is filling all entries of oo_.endo_simul
and oo_.exo_simul except for the very first one, which stores the initial conditions and was
setto 0 by the initval block when not explicitly specifying a value for it.

Because the law of motion for capital is backward-looking, we need an initial condition for k at
time 0. Due to the presence of endval, this cannot be done via a histwval block, but rather
must be specified in the initval block. Similarly, because the Euler equation is forward-
looking, we need a terminal condition for c at ¢ = 201, which is specified in the endval block.

As can be seen, it is not necessary to specify c and x inthe initwval block and k in the endval
block, because they have no impact on the results. Due to the optimization problem in the first
period being to choose c, k at¢ = 1 given the predetermined capital stock k inherited from ¢ = 0
as well as the current and future values for technology x, the values for ¢ and x at time ¢t = 0
play no role. The same applies to the choice of ¢, k at time ¢ = 200, which does not depend on
k att = 201. As the Euler equation shows, that choice only depends on current capital as well as
future consumption ¢ and technology x, but not on future capital k. The intuitive reason is that
those variables are the consequence of optimization problems taking place in at periods ¢ = 0
and ¢ = 201, respectively, which are not modeled here.

Example

initval;
c = 1.2;
k = 12;

In this example, initial conditions for the forward-looking variables x and c are provided, to-
gether with a terminal condition for the backward-looking variable k. As shown in the previous
example, these values will not affect the simulation results. Dynare simply takes them as given

38 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

and basically assumes that there were realizations of exogenous variables and states that make
those choices equilibrium values (basically initial/terminal conditions at the unspecified time
periods ¢t < 0 and ¢ > 201).

The above example suggests another way of looking at the use of steady after initval
and endval. Instead of saying that the implicit unspecified conditions before and after the
simulation range have to fit the initial/terminal conditions of the endogenous variables in those
blocks, steady specifies that those conditions at ¢t < 0 and ¢ > 201 are equal to being at the steady
state given the exogenous variables in the initval and endval blocks. The endogenous
variables at ¢ = 0 and ¢ = 201 are then set to the corresponding steady state equilibrium values.

The fact that c at £ = 0 and k at £ = 201 specified in initval and endval are taken as given
has an important implication for plotting the simulated vector for the endogenous variables, i.e.
the rows of oo_.endo_simul: this vector will also contain the initial and terminal conditions
and thus is 202 periods long in the example. When you specify arbitrary values for the initial
and terminal conditions for forward- and backward-looking variables, respectively, these values
can be very far away from the endogenously determined values at ¢ = 1 and ¢ = 200. While the
values at £ = 0 and ¢ = 201 are unrelated to the dynamics for 0 < ¢ < 201, they may result in
strange-looking large jumps. In the example above, consumption will display a large jump from
t = 0tot = 1 and capital will jump from ¢ = 200 to ¢ = 201 when using rplot or manually
plotting co_.endo_val.

Block: histval ;
Block: histval (OPTIONS...);
In a deterministic perfect foresight context

In models with lags on more than one period, the histwval block permits to specify different historical
initial values for different periods of the state variables. In this case, the initval block takes over the role
of specifying terminal conditions and starting values for the solver. Note that the histval block does not
take non-state variables.

This block is terminated by end; and contains lines of the form:
VARIABLE_NAME(INTEGER) = EXPRESSION;

EXPRESSION is any valid expression returning a numerical value and can contain already initialized vari-
able names.

By convention in Dynare, period 1 is the first period of the simulation. Going backward in time, the first
period before the start of the simulation is period 0, then period -1, and so on.

State variables not initialized in the histwval block are assumed to have a value of zero at period 0 and
before. Note that histval cannot be followed by steady.

Example

model;

x=1.5%x(-1)-0.6%x(-2) +tepsilon;
log(c)=0.5%x+0.5+x1og (c(+1)) ;
end;

histval;

X (0)=-1;
x(-1)=0.2;
end;

initval;

In this example, histval is used to set the historical conditions for the two lags of the en-
dogenous variable x, stored in the first column of co_.endo_simul. The initval block is
used to set the terminal condition for the forward looking variable c, stored in the last column of

4.7. Initial and terminal conditions 39

Dynare Reference Manual, Release 5.4

oo_.endo_simul. Moreover, the initval block defines the starting values for the perfect
foresight solver for both endogenous variables c and x.

In a stochastic simulation context

In the context of stochastic simulations, histwval allows setting the starting point of those simulations in
the state space. As for the case of perfect foresight simulations, all not explicitly specified variables are set
to 0. Moreover, as only states enter the recursive policy functions, all values specified for control variables
will be ignored. This can be used

e In stoch_simul, if the periods option is specified. Note that this only affects the starting point
for the simulation, but not for the impulse response functions. When using the loglinear option, the
histwval block nevertheless takes the unlogged starting values.

* In forecast as the initial point at which the forecasts are computed. When using the loglinear
option, the histwval block nevertheless takes the unlogged starting values.

e In conditional forecast for a calibrated model as the initial point at which the conditional
forecasts are computed. When using the loglinear option, the histval block nevertheless takes the
unlogged starting values.

e In Ramsey policy, where it also specifies the values of the endogenous states (including
lagged exogenous) at which the objective function of the planner is computed. Note that the ini-
tial values of the Lagrange multipliers associated with the planner’s problem cannot be set (see
evaluate_planner._objective).

Options

all_values_required
See all_values_required.

Example

var x y;
varexo e;

model;
x = y(-1)“alpha*y(-2) " (1l-alpha) te;

end;

steady;

histval;
y(0) = 1.1;
y(-1) = 0.9;
end;

stoch_simul (periods=100) ;

Command: resid ;
This command will display the residuals of the static equations of the model, using the values given for the
endogenous in the last initval or endval block (or the steady state file if you provided one, see Steady
state).

Command: initval file (OPTIONS...);
In a deterministic setup, this command is used to specify a path for all endogenous and exogenous variables.
The length of these paths must be equal to the number of simulation periods, plus the number of leads and

40 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

the number of lags of the model (for example, with 50 simulation periods, in a model with 2 lags and 1 lead,
the paths must have a length of 53). Note that these paths cover two different things:

* The constraints of the problem, which are given by the path for exogenous and the initial and terminal
values for endogenous

 The initial guess for the non-linear solver, which is given by the path for endogenous variables for the
simulation periods (excluding initial and terminal conditions)

In perfect foresight and stochastic contexts, st eady uses the first observation loaded by initval file
as guess value to solve for the steady state of the model. This first observation is determined by the
first_obs option when it is used.

Don’tmix initval_ file with initval statements. However, after initval_file, you can modify
the historical initial values with histval or histval_file statement.

There can be several initval_file statements in a model file. Each statement resets oo_ .
initval_series.

Options
datafile = FILENAME
filename = FILENAME (deprecated)

The name of the file containing the data. It must be included in quotes if the filename contains a path
or an extension. The command accepts the following file formats:

¢ M-file (extension .m): for each endogenous and exogenous variable, the file must contain a row
or column vector of the same name.

¢ MAT-file (extension .mat): same as for M-files.

» Excelfile (extension . x1s or . x1sx): for each endogenous and exogenous variable, the file must
contain a column of the same name. NB: Octave only supports the . x1 sx file extension and must
have the io package installed (easily done via octave by typing ‘vkg install -forge 1i0’).
The first column may contain the date of each observation.

* CSV files (extension . csv): for each endogenous and exogenous variable, the file must contain
a column of the same name. The first column may contain the date of each observation.

first_obs = {INTEGER | DATE}
The observation number or the date (see The dates class) of the first observation to be used in the file

first_simulation_period = {INTEGER | DATE}
The observation number in the file or the date (see dates) at which the simulation (or the forecast)
is starting. This option avoids to have to compute the maximum number of lags in the model. The
observation corresponding to the first period of simulation doesn’t need to exist in the file as the only
dates necessary for initialization are before that date.

last_obs = {INTEGER | DATE}
The observaton number or the date (see The dates class) of the last observation to be used in the file.

nobs = INTEGER
The number of observations to be used in the file (starting with first of first_obs observation).

series = DSERIES NAME
The name of a DSERIES containing the data (see The dseries class)

Example 1

var c x;
varexo e;
parameters a b c¢ d;

= 1.5;
= 7016;
= 0.5;
= 0.5;

Q Q0 oo
|

(continues on next page)

4.7. Initial and terminal conditions 41

Dynare Reference Manual, Release 5.4

(continued from previous page)

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

initval file(datafile=mydata.csv);

perfect_foresight_ setup (periods=200) ;
perfect_ foresight_ solver;

The initial and terminal values are taken from file mydata.csv (nothing guarantees that
these vales are the steady state of the model). The guess value for the trajectories are also
taken from the file. The file must contain at least 203 observations of variables c, x and
e. If there are more than 203 observations available in the file, the first 203 are used by
perfect_foresight_setup (periods=200). Note that the values for the auxiliary
variable corresponding to x (-2) are automatically computed by initval_file.

Example 2

var c x;
varexo e;
parameters a b c d;

= 1.5;
=0, 6g
0.5;
= 0.5;

0. 0 O w
Il

model;

x = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

initval_ file(datafile=mydata.csv,
first_obs=10);

perfect_ foresight_ setup (periods=200) ;
perfect_foresight_solver;

The initial and terminal values are taken from file mydata . csv starting with the 10th observa-
tion in the file. There must be at least 212 observations in the file.

Example 3

var c Xx;
varexo e;
parameters a b c d;

= 1.5;
= =0, &
0.5;
= 0.5;

Q Q0 oo
Il

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

ds = dseries (mydata.csv);
lds = log(ds);

(continues on next page)

42

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

(continued from previous page)

initval_ file(series=1ds,
first_obs=2010Q1) ;

perfect_foresight_setup (periods=200) ;
perfect_foresight_solver;

The initial and terminal values are taken from dseries 1ds. All observations are loaded starting
with the 1st quarter of 2010 until the end of the file. There must be data available at least until
2050Q3.

Example 4

var c x;
varexo e;
parameters a b c d;

= 1.5;
=0, 6p
= 0.5;
= 0.5;

0 Q0 O o
Il

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

initval_ file(datafile=mydata.csv,
first_simulation_period=2010Q1);

perfect_foresight_ setup (periods=200) ;
perfect_foresight_solver;

The initial and terminal values are taken from file mydata.csv. The observations in the file
must have dates. All observations are loaded from the 3rd quarter of 2009 until the end of the
file. There must be data available in the file at least until 2050Q1.

Example 5

var c x;
varexo e;
parameters a b c d;

= 1.5;
= -0,6;
0.5;
= 0.5;

Q0 O o

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = cxx + dxlog(c(+1));
end;

initval file(datafile=mydata.csv,
last_obs = 212);

perfect foresight setup (periods=200) ;
perfect_ foresight_ solver;

The initial and terminal values are taken from file mydata.csv. The first
212 observations are loaded and the first 203 observations will be used by
perfect_foresight_setup (periods=200).

4.7. Initial and terminal conditions 43

Dynare Reference Manual, Release 5.4

Example 6

var c Xx;
varexo e;
parameters a b c d;

= 1.5;
= =0, &
= 0.5;
= 0.5;

QO Qoo
|

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

initval file(datafile=mydata.csv,
first_obs = 10,
nobs = 203);

perfect foresight setup (periods=200) ;
perfect_foresight_solver;

The initial and terminal values are taken from file mydata.csv. Observations 10 to 212 are
loaded.

Example 7

var c x;
varexo e;
parameters a b c d;

= 1.5;
= -0,6;
= 0.5;
0.5;

Q Q oo

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

initval file(datafile=mydata.csv,
first_obs = 10);

steady;

The values of the 10th observation of mydata.csv are used as guess value to compute the
steady state. The exogenous variables are set to values found in the file or zero if these variables
aren’t present.

Command: histval file (OPTIONS...);

This command is equivalent to histval, except that it reads its input from a file, and is typically used in
conjunction with smoother2histval.

Options

datafile = FILENAME
filename = FILENAME (deprecated)
The name of the file containing the data. The command accepts the following file formats:

* M-file (extension .m): for each endogenous and exogenous variable, the file must contain a row
or column vector of the same name.

¢ MAT-file (extension .mat): same as for M-files.

44

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

* Excelfile (extension . x1s or . x1sx): for each endogenous and exogenous variable, the file must
contain a column of the same name. NB: Octave only supports the . x1sx file extension and must
have the io package installed (easily done via octave by typing ‘ckg install -forge io’).
The first column may contain the date of each observation.

» CSV files (extension . csv): for each endogenous and exogenous variable, the file must contain
a column of the same name. The first column may contain the date of each observation.

first_obs = {INTEGER | DATE}
The observation number or the date (see The dates class) of the first observation to be used in the file

first_simulation_period = {INTEGER | DATE}
The observation number in the file or the date (see The dates class) at which the simulation (or the
forecast) is starting. This option avoids to have to compute the maximum number of lags in the model.
The observation corresponding to the first period of simulation doesn’t need to exist in the file as the
only dates necessary for initialization are before that date.

last_obs = {INTEGER | DATE}
The observation number or the date (see The dates class) of the last observation to be used in the file.

nobs = INTEGER
The number of observations to be used in the file (starting with first of first_obs observation).

series = DSERIES NAME
The name of a DSERIES containing the data (see The dseries class)

Example 1

var c x;
varexo e;
parameters a b c d;

= 1.5;
-0, 6;
= 0.5;
= 0.5;

Q Q0 o9

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = cxx + dxlog(c(+1l));
end;

steady state_model;

x = 0;
c = exp(cxx/ (1 — d));
end;

histval file(datafile=mydata.csv);

stoch_simul (order=1, periods=100) ;

The initial values for the stochastic simulation are taken from the two first rows of file mydata.
csv.

Example 2

var c x;
varexo e;
parameters a b c d;

= 1.5;
-0,6;
= 0.5;
0.5;

Q Q0 o o
Il

(continues on next page)

4.7. Initial and terminal conditions 45

Dynare Reference Manual, Release 5.4

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

histval file(datafile=mydata.csv,
first_obs=10);

stoch_simul (order=1,periods=100) ;

(continued from previous page)

The initial values for the stochastic simulation are taken from rows 10 and 11 of file mydata.

CSsV.

Example 3

var c x;
varexo e;
parameters a b ¢ d;

= 1.5;
=0, 6p
= 0.5;
= 0.5;

QO Q0 oo
|

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

histval file(datafile=mydata.csv,
first_obs=20100Q1) ;

stoch_simul (order=1,periods=100) ;

The initial values for the stochastic simulation are taken from observations 2010Q1 and 2010Q2

of file mydata.csv.

Example 4

var c Xx;
varexo e;
parameters a b c d;

= 1.5;
= 70/ 6;
= 0.5;
= 0.5;

Q Q o9
|

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

histval file(datafile=mydata.csv,

first_simulation_period=2010Q1)

stoch_simul (order=1, periods=100) ;

The initial values for the stochastic simulation are taken from observations 2009Q3 and 2009Q4

of file mydata.csv.

Example 5

46

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

var c x;
varexo e;
parameters a b c d;

a = 1.5;
b = -0,6;
c = 0.5;
d = 0.5;
model;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));
end;

histval file(datafile=mydata.csv,
last_obs = 4);

stoch_simul (order=1, periods=100) ;

The initial values for the stochastic simulation are taken from the two first rows of file mydata.

CSvV.

Example 6

var c x;
varexo e;
parameters a b c d;

= 1.5;
= -0,6;
0.5;
= 0.5;

Q Q0 O W
|

model;

X = a*x(-1) + b*x(-2) + e;
log(c) = cxx + dxlog(c(+1));
end;

initval file(datafile=mydata.csv,
first_obs = 10,

nobs = 4);

stoch_simul (order=1, periods=100) ;

The initial values for the stochastic simulation are taken from rows 10 and 11 of file mydata.

CSV.

Example 7

var c x;
varexo e;
parameters a b c d;

a = 1.5;
b =0, 6g
c = 0.5;
d = 0.5;

X = a*x(-1) + b*x(-2) + e;
log(c) = c*x + dxlog(c(+1));

(continues on next page)

4.7. Initial and terminal conditions

47

Dynare Reference Manual, Release 5.4

(continued from previous page)

initval_ file(datafile=mydata.csv,
first_obs=10);

histval file(datafile=myotherdata.csv);

perfect foresight setup (periods=200) ;
perfect_foresight_solver;

Historical initial values for the simulation are taken from the two first rows of file
myotherdata.csv.

Terminal values and guess values for the simulation are taken from file mydata . csv starting
with the 12th observation in the file. There must be at least 212 observations in the file.

4.8 Shocks on exogenous variables

In a deterministic context, when one wants to study the transition of one equilibrium position to another, it is
equivalent to analyze the consequences of a permanent shock and this in done in Dynare through the proper use
of initval and endval.

Another typical experiment is to study the effects of a temporary shock after which the system goes back to the
original equilibrium (if the model is stable...). A temporary shock is a temporary change of value of one or
several exogenous variables in the model. Temporary shocks are specified with the command shocks.

In a stochastic framework, the exogenous variables take random values in each period. In Dynare, these random
values follow a normal distribution with zero mean, but it belongs to the user to specify the variability of these
shocks. The non-zero elements of the matrix of variance-covariance of the shocks can be entered with the shocks
command. Or, the entire matrix can be directly entered with Sigma_ e (this use is however deprecated).

If the variance of an exogenous variable is set to zero, this variable will appear in the report on policy and transition
functions, but isn’t used in the computation of moments and of Impulse Response Functions. Setting a variance to
zero is an easy way of removing an exogenous shock.

Note that, by default, if there are several shocks or mshocks blocks in the same .mod file, then they are
cumulative: all the shocks declared in all the blocks are considered; however, if a shocks or mshocks block is
declared with the overwrite option, then it replaces all the previous shocks and mshocks blocks.

Block: shocks ;
Block: shocks (overwrite);
See above for the meaning of the overwrite option.

In deterministic context

For deterministic simulations, the shocks block specifies temporary changes in the value of exogenous
variables. For permanent shocks, use an endval block.

The block should contain one or more occurrences of the following group of three lines:

var VARIABLE_NAME;
periods INTEGER[:INTEGER] [[,] INTEGER[:INTEGER]]...;
values DOUBLE | (EXPRESSION) [[,] DOUBLE | (EXPRESSION)]...;

It is possible to specify shocks which last several periods and which can vary over time. The periods
keyword accepts a list of several dates or date ranges, which must be matched by as many shock values in
the values keyword. Note that a range in the periods keyword can be matched by only one value in the
values keyword. If values represents a scalar, the same value applies to the whole range. If values
represents a vector, it must have as many elements as there are periods in the range.

Note that shock values are not restricted to numerical constants: arbitrary expressions are also allowed, but
you have to enclose them inside parentheses.

48 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

The feasible range of periods is from 0 to the number of periods
perfect_foresight_setup.

specified

in

Warning: Note that the first endogenous simulation period is period 1. Thus, a shock value specified
for the initial period 0 may conflict with (i.e. may overwrite or be overwritten by) values for the initial
period specified with initval or endval (depending on the exact context). Users should always

verify the correct setting of oo__.exo_simul after perfect_foresight_setup.

Example (with scalar values)

shocks;

var e;

periods 1;

values 0.5;

var u;

periods 4:5;
values 0;

var v;

periods 4:5 6 7:9;
values 1 1.1 0.9;
var w;

periods 1 2;
values (l+p) (exp(z));

end;

Example (with vector values)
xx = [1.2; 1.3; 1];

shocks;

var e;
periods 1:3;
values (xx);
end;

In stochastic context

For stochastic simulations, the shocks block specifies the non zero elements of the covariance matrix of

the shocks of exogenous variables.
You can use the following types of entries in the block:

* Specification of the standard error of an exogenous variable.

var VARIABLE_NAME; stderr EXPRESSION;

* Specification of the variance of an exogenous variable.

var VARIABLE_NAME = EXPRESSION;

¢ Specification the covariance of two exogenous variables.

var VARIABLE_NAME, VARIABLE_NAME = EXPRESSION;

¢ Specification of the correlation of two exogenous variables.

corr VARIABLE_NAME, VARIABLE_NAME = EXPRESSION;

4.8. Shocks on exogenous variables

49

Dynare Reference Manual, Release 5.4

In an estimation context, it is also possible to specify variances and covariances on endogenous variables: in
that case, these values are interpreted as the calibration of the measurement errors on these variables. This
requires the varobs command to be specified before the shocks block.

Example

shocks;
var e = 0.000081;
var u; stderr 0.009;

corr e, u = 0.8;
var v, w = 2;
end;

In stochastic optimal policy context

When computing conditional welfare in a ramsey_model or discretionary_policy context, wel-
fare is conditional on the state values inherited by planner when making choices in the first period. The
information set of the first period includes the respective exogenous shock realizations. Thus, their known
value can be specified using the perfect foresight syntax. Note that i) all other values specified for periods
than period 1 will be ignored and ii) the value of lagged shocks (e.g. in the case of news shocks) is specified
with histval.

Example

shocks;

var u; stderr 0.008;
var u;

periods 1;

values 1;

end;

Mixing deterministic and stochastic shocks

It is possible to mix deterministic and stochastic shocks to build models where agents know from the start
of the simulation about future exogenous changes. In that case stoch_simul will compute the ratio-
nal expectation solution adding future information to the state space (nothing is shown in the output of
stoch_simul) and forecast will compute a simulation conditional on initial conditions and future
information.

Example

varexo_det tau;
varexo e;

shocks;

var e; stderr 0.01;
var tau;

periods 1:9;

values -0.15;

end;

stoch_simul (irf=0) ;

forecast;

Block: mshocks ;
Block: mshocks (overwrite);

The purpose of this block is similar to that of the shocks block for deterministic shocks, except that the
numeric values given will be interpreted in a multiplicative way. For example, if a value of 1. 05 is given
as shock value for some exogenous at some date, it means 5% above its steady state value (as given by the
last initval or endval block).

The syntax is the same as shocks in a deterministic context.

50

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

This command is only meaningful in two situations:

* on exogenous variables with a non-zero steady state, in a deterministic setup,

* on deterministic exogenous variables with a non-zero steady state, in a stochastic setup.
See above for the meaning of the overwrite option.

Block: heteroskedastic_shocks ;

Block: heteroskedastic_shocks (overwrite);
In estimation context, it implements heteroskedastic filters, where the standard error of shocks may un-
expectedly change in every period. The standard deviation of shocks may be either provided directly or
set/modified in each observed period by a scale factor. If std0 is the usual standard error for shockl,
then:

* using a scale factor in period t implies: std (shockl|t)=std0 (shockl) xscale (t)
* using a provided value in period t implies: std (shockl|t)=value (t).

The block has a similar syntax as the shocks block in a perfect foresight context. It should contain one or
more occurrences of the following group of three lines (for setting values):

var VARIABLE_NAME;
periods INTEGER[:INTEGER] [[,] INTEGER[:INTEGER]]...;
values DOUBLE | (EXPRESSION) [[,] DOUBLE | (EXPRESSION)]...;

OR (for setting scale factors):

var VARIABLE_NAME;
periods INTEGER[:INTEGER] [[,] INTEGER[:INTEGER]]...;
scales DOUBLE | (EXPRESSION) [[,] DOUBLE | (EXPRESSION)]...;

NOTE: scales and values cannot be simultaneously set for the same shock in the same period, but it is
possible to set values for some periods and scales for other periods for the same shock. There can be
only one scales and values directive each for a given shock, so all affected periods must be set in one
statement.

Example
heteroskedastic_shocks;

var el;
periods 86:87, 89:97;
scales 0.5, 0;

var el;
periods 88;
values 0.1;

var e2;
periods 86:87 88:97;
values 0.04 0.01;

end;

Special variable: Sigma_e
This special variable specifies directly the covariance matrix of the stochastic shocks, as an upper (or lower)
triangular matrix. Dynare builds the corresponding symmetric matrix. Each row of the triangular matrix,
except the last one, must be terminated by a semi-colon ;. For a given element, an arbitrary EXPRESSION
is allowed (instead of a simple constant), but in that case you need to enclose the expression in parentheses.
The order of the covariances in the matrix is the same as the one used in the varexo declaration.

Example

4.8. Shocks on exogenous variables 51

Dynare Reference Manual, Release 5.4

varexo u, e;

Sigma_e = [0.81 (phix0.9%x0.009);
0.0000817];

This sets the variance of u to 0.81, the variance of e to 0.000081, and the correlation between e and u to
phi.

Warning: The use of this special variable is deprecated and is strongly discouraged. You should
use a shocks block instead.

MATLAB/Octave command: get_shock_stderr_by name ('EXOGENOUS_NAME') ;
Given the name of an exogenous variable, returns its standard deviation, as set by a previous shocks block.

MATLAB/Octave command: set_shock_stderr_ value ('EXOGENOUS_NAME', MATLAB_EXPRESSION) ;
Sets the standard deviation of an exgonous variable. This does essentially the same as setting the standard
error via a shocks block, except that it accepts arbitrary MATLAB/Octave expressions, and that it works
from MATLAB/Octave scripts.

4.9 Other general declarations

Command: dsample INTEGER [INTEGER];
Reduces the number of periods considered in subsequent output commands.

Command: periods INTEGER
This command is now deprecated (but will still work for older model files). It is not necessary when
no simulation is performed and is replaced by an option periods in perfect_foresight_setup,
simul and stoch_simul.

This command sets the number of periods in the simulation. The periods are numbered from 1 to INTEGER.
In perfect foresight simulations, it is assumed that all future events are perfectly known at the beginning of
period 1.

Example

periods 100;

4.10 Steady state

There are two ways of computing the steady state (i.e. the static equilibrium) of a model. The first way is to let
Dynare compute the steady state using a nonlinear Newton-type solver; this should work for most models, and is
relatively simple to use. The second way is to give more guidance to Dynare, using your knowledge of the model,
by providing it with a method to compute the steady state, either using a steady_state_model block or writing
matlab routine.

52 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.10.1 Finding the steady state with Dynare nonlinear solver

Command: steady ;

Command: steady (OPTIONS...);
This command computes the steady state of a model using a nonlinear Newton-type solver and displays it.
When a steady state file is used st eady displays the steady state and checks that it is a solution of the static
model.

More precisely, it computes the equilibrium value of the endogenous variables for the value of the exogenous
variables specified in the previous initval or endval block.

steady uses an iterative procedure and takes as initial guess the value of the endogenous variables set in
the previous initval or endval block.

For complicated models, finding good numerical initial values for the endogenous variables is the trickiest
part of finding the equilibrium of that model. Often, it is better to start with a smaller model and add new
variables one by one.

Options

maxit = INTEGER
Determines the maximum number of iterations used in the non-linear solver. The default value of
maxit is 50.

tolf = DOUBLE
Convergence criterion for termination based on the function value. Iteration will cease when the
residuals are smaller than t ol f. Default: eps” (1/3)

solve_algo = INTEGER
Determines the non-linear solver to use. Possible values for the option are:

0
Use fsolve (under MATLAB, only available if you have the Optimization Tool-
box; always available under Octave).

1
Use a Newton-like algorithm with line-search.

2
Splits the model into recursive blocks and solves each block in turn using the same
solver as value 1.

3
Use Chris Sims’ solver.

4
Splits the model into recursive blocks and solves each block in turn using a trust-
region solver with autoscaling.

5
Newton algorithm with a sparse Gaussian elimination (SPE) (requires bytecode
option, see Model declaration).

6
Newton algorithm with a sparse LU solver at each iteration (requires bytecode
and/or block option, see Model declaration).

7
Newton algorithm with a Generalized Minimal Residual (GMRES) solver at each
iteration (requires bytecode and/or block option, see Model declaration).

8

4.10. Steady state 53

Dynare Reference Manual, Release 5.4

Newton algorithm with a Stabilized Bi-Conjugate Gradient (BICGSTAB) solver at
each iteration (requires bytecode and/or block option, see Model declaration).

Trust-region algorithm with autoscaling (same as value 4, but applied to the entire
model, without splitting).

10

Levenberg-Marquardt mixed complementarity problem (LMMCP) solver (Kanzow
and Petra (2004)). The complementarity conditions are specified with an mcp equa-
tion tag, see lmmcp.

11

PATH mixed complementarity problem solver of Ferris and Munson (1999). The
complementarity conditions are specified with an mcp equation tag, see Immcp.
Dynare only provides the interface for using the solver. Due to licence restrictions,
you have to download the solver’s most current version yourself from http://pages.
cs.wisc.edu/~ferris/path.html and place it in MATLAB’s search path.

12

Specialized version of 2 for models where all the equations have one endogenous
variable on the left hand side and where each equation determines a different en-
dogenous variable. Only expressions allowed on the left hand side are the natural
logarithm of an endogenous variable, the first difference of an endogenous variable
(with the diff operator), or the first difference of the logarithm of an endogenous
variable. Univariate blocks are solved by evaluating the expression on the right hand
side.

14

Specialized version of 4 for models where all the equations have one endogenous
variable on the left hand side and where each equation determines a different en-
dogenous variable. Only expressions allowed on the left hand side are the natural
logarithm of an endogenous variable, the first difference of an endogenous variable
(with the di £ f operator), or the first difference of the logarithm of an endogenous
variable.. Univariate blocks are solved by evaluating the expression on the right hand
side.

Default value is 4.

homotopy_mode = INTEGER
Use a homotopy (or divide-and-conquer) technique to solve for the steady state. If you use this option,
you must specify a homotopy_setup block. This option can take three possible values:

1
In this mode, all the parameters are changed simultaneously, and the distance be-
tween the boundaries for each parameter is divided in as many intervals as there are
steps (as defined by the homot opy_steps option); the problem is solved as many
times as there are steps.

2
Same as mode 1, except that only one parameter is changed at a time; the problem
is solved as many times as steps times number of parameters.

3

Dynare tries first the most extreme values. If it fails to compute the steady state,
the interval between initial and desired values is divided by two for all parameters.
Every time that it is impossible to find a steady state, the previous interval is divided
by two. When it succeeds to find a steady state, the previous interval is multiplied

54 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

by two. In that last case homotopy_steps contains the maximum number of
computations attempted before giving up.

homotopy_ steps = INTEGER
Defines the number of steps when performing a homotopy. See homotopy_mode option for more
details.

homotopy force_continue = INTEGER
This option controls what happens when homotopy fails.

0

steady fails with an error message

steady keeps the values of the last homotopy step that was successful and contin-
ues. BE CAREFUL: parameters and/or exogenous variables are NOT at the value
expected by the user

Default is 0.

nocheck
Don’t check the steady state values when they are provided explicitly either by a steady state file or a
steady_state_model block. This is useful for models with unit roots as, in this case, the steady
state is not unique or doesn’t exist.

markowitz = DOUBLE
Value of the Markowitz criterion (in the interval (0, 00)) used to select the pivot with sparse Gaussian
elimination (solve_algo = 5). This criterion governs the tradeoff between selecting the pivot
resulting in the most accurate solution (low markowit z values) and the one that preserves maximum
sparsity (high markowitz values). Default: 0.5.

Example
See Initial and terminal conditions.
After computation, the steady state is available in the following variable:

MATLAB/Octave variable: oo_.steady_ state
Contains the computed steady state. Endogenous variables are ordered in the order of declaration used in
the var command (which is also the order used in M_ . endo_names).

MATLAB/Octave command: get_mean ('ENDOGENOUS_NAME' [, 'ENDOGENOUS_NAME']...);
Returns the steady of state of the given endogenous variable(s), as it is stored in oo_ . steady_state.
Note that, if the steady state has not yet been computed with steady, it will first try to compute it.

Block: homotopy setup ;
This block is used to declare initial and final values when using a homotopy method. It is used in conjunction
with the option homot opy_mode of the steady command.

The idea of homotopy (also called divide-and-conquer by some authors) is to subdivide the problem of
finding the steady state into smaller problems. It assumes that you know how to compute the steady state
for a given set of parameters, and it helps you finding the steady state for another set of parameters, by
incrementally moving from one to another set of parameters.

The purpose of the homot opy_setup block is to declare the final (and possibly also the initial) values for
the parameters or exogenous that will be changed during the homotopy. It should contain lines of the form:

VARIABLE_NAME, EXPRESSION, EXPRESSION;

This syntax specifies the initial and final values of a given parameter/exogenous.

There is an alternative syntax:

VARIABLE_NAME, EXPRESSION;

4.10. Steady state 55

Dynare Reference Manual, Release 5.4

Here only the final value is specified for a given parameter/exogenous; the initial value is taken from the
preceeding initwval block.

A necessary condition for a successful homotopy is that Dynare must be able to solve the steady state for the
initial parameters/exogenous without additional help (using the guess values given in the initval block).

If the homotopy fails, a possible solution is to increase the number of steps (given in homotopy_steps
option of steady).

Example

In the following example, Dynare will first compute the steady state for the initial values (gam=0.5 and
x=1), and then subdivide the problem into 50 smaller problems to find the steady state for the final values
(gam=2 and x=2):

var c kj;
varexo x;

parameters alph gam delt bet aa;
alph=0.5;

delt=0.02;

aa=0.5;

bet=0.05;

model;

c + k - aarxxk(-1)"alph - (l-delt)x*k(-1);

c” (—gam) - (lt+bet)”(-1)=* (aaxalph*x(+1)+*k” (alph-1) + 1 - delt)=xc(+1l)” (—gam);
end;

initval;

x = 1;

k ((delt+bet) / (aaxx*alph))” (1/ (alph-1));
c = aa*x*k”alph-delt«k;

end;

homotopy_setup;
gam, 0.5, 2;

X, 2;

end;

steady (homotopy_mode = 1, homotopy_steps = 50);

4.10.2 Providing the steady state to Dynare

If you know how to compute the steady state for your model, you can provide a MATLAB/Octave function doing
the computation instead of using steady. Again, there are two options for doing that:

e The easiest way is to write a steady_state_model block, which is described below in more details.
See also £s2000.mod in the examples directory for an example. The steady state file generated by
Dynare will be called +FILENAME /steadystate.m.

* You can write the corresponding MATLAB function by hand. If your .mod file is called
FILENAME.mod, the steady state file must be called FILENAME_steadystate.m. See
NK_baseline_steadystate.m in the examples directory for an example. This option gives a bit
more flexibility (loops and conditional structures can be used), at the expense of a heavier programming
burden and a lesser efficiency.

Note that both files allow to update parameters in each call of the function. This allows for example to calibrate a
model to a labor supply of 0.2 in steady state by setting the labor disutility parameter to a corresponding value (see
NK_baseline_steadystate.m in the examples directory). They can also be used in estimation where
some parameter may be a function of an estimated parameter and needs to be updated for every parameter draw.
For example, one might want to set the capital utilization cost parameter as a function of the discount rate to
ensure that capacity utilization is 1 in steady state. Treating both parameters as independent or not updating one as

56 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

a function of the other would lead to wrong results. But this also means that care is required. Do not accidentally
overwrite your parameters with new values as it will lead to wrong results.

Block: steady_state_model ;
When the analytical solution of the model is known, this command can be used to help Dynare find the
steady state in a more efficient and reliable way, especially during estimation where the steady state has to
be recomputed for every point in the parameter space.

Each line of this block consists of a variable (either an endogenous, a temporary variable or a parame-
ter) which is assigned an expression (which can contain parameters, exogenous at the steady state, or any
endogenous or temporary variable already declared above). Each line therefore looks like:

VARIABLE_NAME = EXPRESSION;

Note that it is also possible to assign several variables at the same time, if the main function in the right
hand side is a MATLAB/Octave function returning several arguments:

[VARIABLE_NAME, VARIABLE NAME...] = EXPRESSION;

Dynare will automatically generate a steady state file (of the form +FILENAME/steadystate.m) using
the information provided in this block.

Steady state file for deterministic models

The steady_state_model block also works with deterministic models. An initwval block and,
when necessary, an endval block, is used to set the value of the exogenous variables. Each initval or
endval block must be followed by steady to execute the function created by steady_state_model
and set the initial, respectively terminal, steady state.

Example

var m P ¢ e W R k dn 1 gy_obs gp_obs y dAa;
varexo e_a e_m;

parameters alp bet gam mst rho psi del;

// parameter calibration, (dynamic) model declaration, shock,_,
—calibration...

steady_ state_model;
dA = exp(gam);
gst = 1/dA; // A temporary variable
m = mst;

// Three other temporary variables

khst = ((l-gstxbet*(l-del)) / (alpxgst”alpxbet))" (1/(alp-1));
xist = (((khstxgst)“alp - (l-gstx(l-del))+khst)/mst)" (-1);
nust = psixmst”2/((l-alp)* (l-psi)«betxgst”alprkhst”alp);

n = xist/(nust+xist);

P = xist + nust;

k = khstx*n;

1 = psixmst*n/((1-psi)*(1l-n));
c = mst/P;

d =1 - mst + 1;

y = k*alp*n” (l-alp)*gst”alp;

R = mst/bet;

// You can use MATLAB functions which return several arguments
[W, e] = my_function(l, n);
(continues on next page)

4.10. Steady state 57

Dynare Reference Manual, Release 5.4

(continued from previous page)

gp_obs = m/dA;
gy_obs = dA;
end;
steady;

4.10.3 Replace some equations during steady state computations

When there is no steady state file, Dynare computes the steady state by solving the static model, i.e. the model
from the . mod file from which leads and lags have been removed.

In some specific cases, one may want to have more control over the way this static model is created. Dynare
therefore offers the possibility to explicitly give the form of equations that should be in the static model.

More precisely, if an equation is prepended by a [static] tag, then it will appear in the static model used for
steady state computation, but that equation will not be used for other computations. For every equation tagged
in this way, you must tag another equation with [dynamic]: that equation will not be used for steady state
computation, but will be used for other computations.

This functionality can be useful on models with a unit root, where there is an infinity of steady states. An equation
(tagged [dynamic]) would give the law of motion of the nonstationary variable (like a random walk). To pin
down one specific steady state, an equation tagged [static] would affect a constant value to the nonstationary
variable. Another situation where the [static] tag can be useful is when one has only a partial closed form
solution for the steady state.

Example

This is a trivial example with two endogenous variables. The second equation takes a different form in the static
model:

var c k;

varexo X;

model;

c + k — aar*x+k(-1)"alph - (l-delt)x*k(-1);

[dynamic] c¢” (-gam) - (ltbet)” (-1)=* (aaxalph*x(+1)+k” (alph-1) + 1 - delt)=xc(+1l)" (—
—gam) ;

[static] k = ((delt+bet)/ (x+aaxalph))”(1/(alph-1));

end;

4.11 Getting information about the model

Command: check ;

Command: check (OPTIONS...);
Computes the eigenvalues of the model linearized around the values specified by the last initval,
endval or steady statement. Generally, the eigenvalues are only meaningful if the linearization is done
around a steady state of the model. It is a device for local analysis in the neighborhood of this steady state.

A necessary condition for the uniqueness of a stable equilibrium in the neighborhood of the steady state
is that there are as many eigenvalues larger than one in modulus as there are forward looking variables
in the system. An additional rank condition requires that the square submatrix of the right Schur vectors
corresponding to the forward looking variables (jumpers) and to the explosive eigenvalues must have full
rank.

Note that the outcome may be different from what would be suggested by sum (abs (oo_.dr.eigval))
when eigenvalues are very close to gz_criterium.

Options

58 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

solve_algo = INTEGER
See solve_algo, for the possible values and their meaning.

gz_zero_threshold = DOUBLE
Value used to test if a generalized eigenvalue is 0/0 in the generalized Schur decomposition (in which
case the model does not admit a unique solution). Default: 1e-6.

Output
check returns the eigenvalues in the global variable co_.dr.eigval.

MATLAB/Octave variable: oo_.dr.eigval
Contains the eigenvalues of the model, as computed by the check command.

Command: model_diagnostics ;
This command performs various sanity checks on the model, and prints a message if a problem is detected
(missing variables at current period, invalid steady state, singular Jacobian of static model).

Command: model_info ;
Command: model info (OPTIONS...);
This command provides information about the model.

When used outside the context of the bl ock option of the model block, it will provide a list of predeter-
mined state variables, forward-looking variables, and purely static variables.

When used in conjunction with the b1l ock option of the model block, it displays:
* The normalization of the model: an endogenous variable is attributed to each equation of the model;

* The block structure of the model: for each block model info indicates its type, the equations
number and endogenous variables belonging to this block.

There are five different types of blocks depending on the simulation method used:
¢ EVALUATE FORWARD

In this case the block contains only equations where the endogenous variable attributed to the equation
appears at current period on the left hand side and where no forward looking endogenous variables
appear. The block has the form: y; ¢+ = f;(ys. Ye—1,-- -, Yt—k)-

¢ EVALUATE BACKWARD

The block contains only equations where the endogenous variable attributed to the equation appears
at current period on the left hand side and where no backward looking endogenous variables appear.
The block has the form: y; ¢+ = f; (Ye, Yet1s- - - Yetk)-

¢ SOLVE BACKWARD x

The block contains only equations where the endogenous variable attributed to the equation does not
appear at current period on the left hand side and where no forward looking endogenous variables
appear. The block has the form: ¢;(y;+, Y¢, Y+—1,-- -, y+—) = 0. x is equal to SIMPLE if the block
has only one equation. If several equations appear in the block, x is equal to COMPLETE.

¢ SOLVE FORWARD x

The block contains only equations where the endogenous variable attributed to the equation does not
appear at current period on the left hand side and where no backward looking endogenous variables
appear. The block has the form: ¢;(v; ¢, ¥, Ye+1,- -, Ye+x) = 0. x is equal to SIMPLE if the block
has only one equation. If several equations appear in the block, x is equal to COMPLETE.

¢ SOLVE TWO BOUNDARIES x

The block contains equations depending on both forward and backward variables. The block looks
like: g5 (Yj,ts Ytr Ye—1s- - Ytk Yts Y15 - - - » Yi+k) = 0. x is equal to SIMPLE if the block has only
one equation. If several equations appear in the block, x is equal to COMPLETE.

Options

4.11. Getting information about the model 59

Dynare Reference Manual, Release 5.4

static
Prints out the block decomposition of the static model. Without the static option, model_info
displays the block decomposition of the dynamic model.

incidence
Displays the gross incidence matrix and the reordered incidence matrix of the block decomposed
model.

Command: print_bytecode_dynamic_model ;
Prints the equations and the Jacobian matrix of the dynamic model stored in the bytecode binary format file.
Can only be used in conjunction with the bytecode option of the mode 1 block.

Command: print_bytecode_static_model ;
Prints the equations and the Jacobian matrix of the static model stored in the bytecode binary format file.
Can only be used in conjunction with the bytecode option of the model block.

4.12 Deterministic simulation

When the framework is deterministic, Dynare can be used for models with the assumption of perfect foresight.
Typically, the system is supposed to be in a state of equilibrium before a period ‘1’ when the news of a contem-
poraneous or of a future shock is learned by the agents in the model. The purpose of the simulation is to describe
the reaction in anticipation of, then in reaction to the shock, until the system returns to the old or to a new state
of equilibrium. In most models, this return to equilibrium is only an asymptotic phenomenon, which one must
approximate by an horizon of simulation far enough in the future. Another exercise for which Dynare is well
suited is to study the transition path to a new equilibrium following a permanent shock. For deterministic simu-
lations, the numerical problem consists of solving a nonlinar system of simultaneous equations in n endogenous
variables in T periods. Dynare offers several algorithms for solving this problem, which can be chosen via the
stack_solve_algo option. By default (stack_solve_algo=0), Dynare uses a Newton-type method to
solve the simultaneous equation system. Because the resulting Jacobian is in the order of n by T and hence will
be very large for long simulations with many variables, Dynare makes use of the sparse matrix capacities of MAT-
LAB/Octave. A slower but potentially less memory consuming alternative (stack_solve_algo=6) is based
on a Newton-type algorithm first proposed by Laffargue (1990) and Boucekkine (1995), which uses relaxation
techniques. Thereby, the algorithm avoids ever storing the full Jacobian. The details of the algorithm can be found
in Juillard (1996). The third type of algorithms makes use of block decomposition techniques (divide-and-conquer
methods) that exploit the structure of the model. The principle is to identify recursive and simultaneous blocks in
the model structure and use this information to aid the solution process. These solution algorithms can provide a
significant speed-up on large models.

Warning: Be careful when employing auxiliary variables in the context of perfect foresight computations.
The same model may work for stochastic simulations, but fail for perfect foresight simulations. The issue
arises when an equation suddenly only contains variables dated t+1 (or t-1 for that matter). In this case,
the derivative in the last (first) period with respect to all variables will be 0, rendering the stacked Jacobian
singular.

Example
Consider the following specification of an Euler equation with log utility:

Lambda = betaxC(-1)/C;
Lambda (+1) *R(+1)= 1;

Clearly, the derivative of the second equation with respect to all endogenous variables at time t
is zero, causing perfect_foresight_solver to generally fail. This is due to the use of the
Lagrange multiplier Lambda as an auxiliary variable. Instead, employing the identical

betaxC/C(+1)*R(+1)= 1;

will work.

Command: perfect_foresight_setup ;

60 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Command: perfect_ foresight_setup (OPTIONS...);
Prepares a perfect foresight simulation, by extracting the information in the initval, endval and
shocks blocks and converting them into simulation paths for exogenous and endogenous variables.

This command must always be called before running the simulation with
perfect_foresight_solver.

Options
periods = INTEGER

Number of periods of the simulation.

datafile = FILENAME
Used to specify path for all endogenous and exogenous variables. Strictly equivalent to
initval_ file.

Output
The paths for the exogenous variables are stored into co_.exo_simul.

The initial and terminal conditions for the endogenous variables and the initial guess for the path of endoge-
nous variables are stored into oo_.endo_simul.

Command: perfect_foresight_solver ;
Command: perfect_foresight_solver (OPTIONS...);
Computes the perfect foresight (or deterministic) simulation of the model.

Note that perfect_foresight_setup must be called before this command, in order to setup the
environment for the simulation.

Options

maxit = INTEGER
Determines the maximum number of iterations used in the non-linear solver. The default value of
maxit is 50.

tolf = DOUBLE
Convergence criterion for termination based on the function value. Iteration will cease when it proves
impossible to improve the function value by more than tolf. Default: 1e-5

tolx = DOUBLE
Convergence criterion for termination based on the change in the function argument. Iteration will
cease when the solver attempts to take a step that is smaller than tolx. Default: 1e-5

noprint

Don’t print anything. Useful for loops.
print

Print results (opposite of noprint).

stack_solve_algo = INTEGER
Algorithm used for computing the solution. Possible values are:

0
Newton method to solve simultaneously all the equations for every period, using
sparse matrices (Default).
1
Use a Newton algorithm with a sparse LU solver at each iteration (requires
bytecode and/or block option, see Model declaration).
2
Use a Newton algorithm with a Generalized Minimal Residual (GMRES) solver at
each iteration (requires bytecode and/or block option, see Model declaration)
3

4.12. Deterministic simulation 61

Dynare Reference Manual, Release 5.4

Use a Newton algorithm with a Stabilized Bi-Conjugate Gradient (BICGSTAB)
solver at each iteration (requires bytecode and/or block option, see Model dec-

laration).

4
Use a Newton algorithm with an optimal path length at each iteration (requires
bytecode and/or block option, see Model declaration).

5
Use a Newton algorithm with a sparse Gaussian elimination (SPE) solver at each
iteration (requires bytecode option, see Model declaration).

6
Use the historical algorithm proposed in Juillard (1996): it is slower than
stack_solve_algo=0, but may be less memory consuming on big models (not
available with bytecode and/or block options).

7

Allows the user to solve the perfect foresight model with the solvers available
through option solve_algo (See solve_algo for a list of possible values, note
that values 5, 6, 7 and 8, which require bytecode and/or block options, are not
allowed). For instance, the following commands:

perfect_foresight_setup (periods=400) ;
perfect_ foresight_solver (stack_solve_algo=7, solve_algo=9)

trigger the computation of the solution with a trust region algorithm.

robust_lin_solve
Triggers the use of a robust linear solver for the default stack_solve_algo=0.

solve_algo
See solve_algo. Allows selecting the solver used with stack_solve_algo=7.

no_homotopy
By default, the perfect foresight solver uses a homotopy technique if it cannot solve the problem.
Concretely, it divides the problem into smaller steps by diminishing the size of shocks and increasing
them progressively until the problem converges. This option tells Dynare to disable that behavior.
Note that the homotopy is not implemented for purely forward or backward models.

markowitz = DOUBLE
Value of the Markowitz criterion, used to select the pivot. Only used when stack_solve_algo =
5. Default: 0.5.

minimal_ solving_periods = INTEGER
Specify the minimal number of periods where the model has to be solved, before using a constant set
of operations for the remaining periods. Only used when stack_solve_algo = 5. Default: 1.

lmmcp
Solves the perfect foresight model with a Levenberg-Marquardt mixed complementarity problem
(LMMCP) solver (Kanzow and Petra (2004)), which allows to consider inequality constraints on the
endogenous variables (such as a ZLB on the nominal interest rate or a model with irreversible invest-
ment). This option is equivalent to stack_solve_algo=7 and solve_algo=10. Using the
LMMCP solver avoids the need for min/max operators and explicit complementary slackness condi-
tions in the model as they will typically introduce a singularity into the Jacobian. This is done by

62

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

setting the problem up as a mixed complementarity problem (MCP) of the form:

LB=X = F(X)>0
LB<X<UB= F(X)=0

X =UB= F(X)<0.

where X denotes the vector of endogenous variables, F'(X) the equations of the model, LB denotes a
lower bound, and U B an upper bound. Such a setup is implemented by attaching an equation tag (see
Model declaration) with the mcp keyword to the affected equations. This tag states that the equation
to which the tag is attached has to hold unless the inequality constraint within the tag is binding.

For instance, a ZLB on the nominal interest rate would be specified as follows in the model block:

model;

[mcp = 'r > -1.94478"']
r = rhoxr(-1) + (l-rho)x(gpixInfl+gy*YGap) + e;

end;

where 1.94478 is the steady state level of the nominal interest rate and r is the nominal interest
rate in deviation from the steady state. This construct implies that the Taylor rule is operative, unless
the implied interest rate r<=-1.94478, in which case the r is fixed at —1. 94478 (thereby being
equivalent to a complementary slackness condition). By restricting the value of r coming out of this
equation, the mcp tag also avoids using max (r, —1.94478) for other occurrences of r in the rest of
the model. Two things are important to keep in mind. First, because the mcp tag effectively replaces
a complementary slackness condition, it cannot be simply attached to any equation. Rather, it must
be attached to the correct affected equation as otherwise the solver will solve a different problem than
originally intended. Second, the sign of the residual of the dynamic equation must conform to the
MCEP setup outlined above. In case of the ZLB, we are dealing with a lower bound. Consequently,
the dynamic equation needs to return a positive residual. Dynare by default computes the residual of
an equation LHS=RHS as residual=LHS-RHS, while an implicit equation LHS is interpreted as
LHS=0. For the above equation this implies

residual= r - (rhoxr(-1) + (l-rho)*(gpi*Infl+gy*xYGap) + e);

which is correct, since it will be positive if the implied interest rate rhoxr (-1) +
(1-rho) * (gpi*Infl+gy*YGap) + e is below r=-1.94478. In contrast, specifying the
equation as

rho*xr (=1) + (l-rho)* (gpi*Infl+gy*YGap) + e = r;
would be wrong.

Note that in the current implementation, the content of the mcp equation tag is not parsed by the pre-
processor. The inequalities must therefore be as simple as possible: an endogenous variable, followed
by a relational operator, followed by a number (not a variable, parameter or expression).

endogenous_terminal_period
The number of periods is not constant across Newton iterations when solving the perfect foresight
model. The size of the nonlinear system of equations is reduced by removing the portion of the
paths (and associated equations) for which the solution has already been identified (up to the tolerance
parameter). This strategy can be interpreted as a mix of the shooting and relaxation approaches. Note
that round off errors are more important with this mixed strategy (user should check the reported value
of the maximum absolute error). Only available with option stack_solve_algo==0.

linear_ approximation
Solves the linearized version of the perfect foresight model. The model must be stationary. Only
available with option stack_solve_algo==0 or stack_solve_algo==7.

Output

4.12. Deterministic simulation 63

Dynare Reference Manual, Release 5.4

The simulated endogenous variables are available in global matrix oo_.endo_simul.

Command: simul ;

Command: simul (OPTIONS...);
This command is deprecated. It is strictly equivalent to a call to perfect__foresight_setup followed
by acallto perfect_foresight_solver.

Options
Accepts all the options of perfect_foresight_setup and perfect_foresight_solver.

MATLAB/Octave variable: oo_.endo_simul

This variable stores the result of a deterministic simulation (computed by
perfect_foresight_solver or simul) or of a stochastic simulation (computed by stoch_simul
with the periods option or by extended_path). The variables are arranged row by row, in order of
declaration (as in M_ . endo_names). Note that this variable also contains initial and terminal conditions,
so it has more columns than the value of the periods option: the first simulation period is in column
1+M_.maximum_lag, and the total number of columns is M_.maximum_lag+periods+M_.
maximum_lead.

MATLAB/Octave variable: oo_.exo_simul

This variable stores the path of exogenous variables during a simulation (computed by
perfect_foresight_solver, simul, stoch_simul or extended_path). The variables
are arranged in columns, in order of declaration (as in M_ . exo_names). Periods are in rows. Note that
this convention regarding columns and rows is the opposite of the convention for co_.endo_simul!
Also note that this variable also contains initial and terminal conditions, so it has more rows than the value
of the periods option: the first simulation period is in row 1+M_ .maximum_Jlag, and the total number
of rows isM__.maximum_lag+periods+M_.maximum_lead.

MATLAB/Octave variable: M_.maximum lag
The maximum number of lags in the model. Note that this value is computed on the model after the
transformations related to auxiliary variables, so in practice it is either 1 or O (the latter value corresponds
to a purely forward or static model).

MATLAB/Octave variable: M_.maximum lead
The maximum number of leads in the model. Note that this value is computed on the model after the
transformations related to auxiliary variables, so in practice it is either 1 or O (the latter value corresponds
to a purely backward or static model).

4.13 Stochastic solution and simulation

In a stochastic context, Dynare computes one or several simulations corresponding to a random draw of the shocks.

The main algorithm for solving stochastic models relies on a Taylor approximation, up to third order, of the ex-
pectation functions (see Judd (1996), Collard and Juillard (2001a, 2001b), and Schmitt-Grohé and Uribe (2004)).
The details of the Dynare implementation of the first order solution are given in Villemot (2011). Such a solution
is computed using the stoch_simul command.

As an alternative, it is possible to compute a simulation to a stochastic model using the extended path method
presented by Fair and Taylor (1983). This method is especially useful when there are strong nonlinearities or
binding constraints. Such a solution is computed using the extended_path command.

64 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.13.1 Computing the stochastic solution

Command: stoch_simul [VARIABLE_NAME...];
Command: stoch_simul (OPTIONS...) [VARIABLE_NAME...];
Solves a stochastic (i.e. rational expectations) model, using perturbation techniques.

More precisely, stoch_simul computes a Taylor approximation of the model around the deterministic
steady state and solves of the the decision and transition functions for the approximated model. Using this, it
computes impulse response functions and various descriptive statistics (moments, variance decomposition,
correlation and autocorrelation coefficients). For correlated shocks, the variance decomposition is computed
as in the VAR literature through a Cholesky decomposition of the covariance matrix of the exogenous vari-
ables. When the shocks are correlated, the variance decomposition depends upon the order of the variables
in the varexo command.

The Taylor approximation is computed around the steady state (see Steady state).

The IRFs are computed as the difference between the trajectory of a variable following a shock at the
beginning of period 1 and its steady state value. More details on the computation of IRFs can be found at
https://archives.dynare.org/Dynare Wiki/IrFs.

Variance decomposition, correlation, autocorrelation are only displayed for variables with strictly positive
variance. Impulse response functions are only plotted for variables with response larger than 10710,

Variance decomposition is computed relative to the sum of the contribution of each shock. Normally, this is
of course equal to aggregate variance, but if a model generates very large variances, it may happen that, due
to numerical error, the two differ by a significant amount. Dynare issues a warning if the maximum relative
difference between the sum of the contribution of each shock and aggregate variance is larger than 0.01%.

The covariance matrix of the shocks is specified with the shocks command (see Shocks on exogenous
variables).

When a list of VARIABLE_NAME is specified, results are displayed only for these variables.

The stoch_simul command with a first order approximation can benefit from the block decomposition
of the model (see b1ock).

Options

ar = INTEGER
Order of autocorrelation coefficients to compute and to print. Default: 5.

drop = INTEGER
Number of points (burnin) dropped at the beginning of simulation before computing the summary
statistics. Note that this option does not affect the simulated series stored in co__.endo_simul and
the workspace. Here, no periods are dropped. Default: 100.

hp_filter = DOUBLE
Uses HP filter with A = DOUBLE before computing moments. If theoretical moments are requested,
the spectrum of the model solution is filtered following the approach outlined in Uhlig (2001). Default:
no filter.

one_sided hp filter = DOUBLE
Uses the one-sided HP filter with A\ = DOUBLE described in Stock and Watson (1999) before comput-
ing moments. This option is only available with simulated moments. Default: no filter.

bandpass_filter
Uses a bandpass filter with the default passband before computing moments. If theoretical moments
are requested, the spectrum of the model solution is filtered using an ideal bandpass filter. If empirical
moments are requested, the Baxter and King (1999) filter is used. Default: no filter.

bandpass_filter = [HIGHEST_ PERIODICITY LOWEST_PERIODICITY]
Uses a bandpass filter before computing moments. The passband is set to a periodicity of to LOW-
EST_PERIODICITY, e.g. 6 to 32 quarters if the model frequency is quarterly. Default: [6, 32].

filtered theoretical moments_grid = INTEGER
When computing filtered theoretical moments (with either option hp_filter or option

4.13. Stochastic solution and simulation 65

Dynare Reference Manual, Release 5.4

bandpass_filter), this option governs the number of points in the grid for the discrete Inverse
Fast Fourier Transform. It may be necessary to increase it for highly autocorrelated processes. Default:
512.

irf = INTEGER
Number of periods on which to compute the IRFs. Setting i r£=0 suppresses the plotting of IRFs.
Default: 40.

irf_shocks = (VARIABLE_NAME [[,] VARIABLE NAME ...])
The exogenous variables for which to compute IRFs. Default: all.

relative_irf

Requests the computation of normalized IRFs. At first order, the normal shock vector of size one
standard deviation is divided by the standard deviation of the current shock and multiplied by 100.
The impulse responses are hence the responses to a unit shock of size 1 (as opposed to the regular
shock size of one standard deviation), multiplied by 100. Thus, for a loglinearized model where
the variables are measured in percent, the IRFs have the interpretation of the percent responses to
a 100 percent shock. For example, a response of 400 of output to a TFP shock shows that output
increases by 400 percent after a 100 percent TFP shock (you will see that TFP increases by 100 on
impact). Given linearity at order=1, it is straightforward to rescale the IRFs stored in co_.irfs
to any desired size. At higher order, the interpretation is different. The relative_irf option then
triggers the generation of IRFs as the response to a 0.01 unit shock (corresponding to 1 percent for
shocks measured in percent) and no multiplication with 100 is performed. That is, the normal shock
vector of size one standard deviation is divided by the standard deviation of the current shock and
divided by 100. For example, a response of 0.04 of log output (thus measured in percent of the steady
state output level) to a TFP shock also measured in percent then shows that output increases by 4
percent after a 1 percent TFP shock (you will see that TFP increases by 0.01 on impact).

irf plot_threshold = DOUBLE
Threshold size for plotting IRFs. All IRFs for a particular variable with a maximum absolute deviation
from the steady state smaller than this value are not displayed. Default: 1e-10.

nocorr
Don’t print the correlation matrix (printing them is the default).

nodecomposition
Don’t compute (and don’t print) unconditional variance decomposition.

nofunctions
Don’t print the coefficients of the approximated solution (printing them is the default).

nomoments
Don’t print moments of the endogenous variables (printing them is the default).

nograph
Do not create graphs (which implies that they are not saved to the disk nor displayed). If this option
is not used, graphs will be saved to disk (to the format specified by graph_format option, except
if graph_format=none) and displayed to screen (unless nodisplay option is used).

graph
Re-enables the generation of graphs previously shut off with nograph.

nodisplay
Do not display the graphs, but still save them to disk (unless nograph is used).

graph_format = FORMAT

graph_format = (FORMAT, FORMAT...)
Specify the file format(s) for graphs saved to disk. Possible values are eps (the default), pdf, fig
and none (under Octave, £1g is unavailable). If the file format is set equal to none, the graphs are
displayed but not saved to the disk.

noprint
See noprint.

66

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

print
See print.

order = INTEGER
Order of Taylor approximation. Note that for third order and above, the k_order_solver option
is implied and only empirical moments are available (you must provide a value for periods option).
Default: 2 (except after an est imation command, in which case the default is the value used for
the estimation).

k_order_solver
Use a k-order solver (implemented in C++) instead of the default Dynare solver. This option is not yet
compatible with the bytecode option (see Model declaration). Default: disabled for order 1 and 2,
enabled for order 3 and above.

periods = INTEGER
If different from zero, empirical moments will be computed instead of theoretical moments. The value
of the option specifies the number of periods to use in the simulations. Values of the initval block,
possibly recomputed by steady, will be used as starting point for the simulation. The simulated
endogenous variables are made available to the user in a vector for each variable and in the global
matrix oo_.endo_simul (see oo_ .endo_simul). The simulated exogenous variables are made
available in oo_.exo_simul (see oo_.exo simul). Default: 0.

gz_criterium = DOUBLE
Value used to split stable from unstable eigenvalues in reordering the Generalized Schur decomposition
used for solving first order problems. Default: 1.000001 (except when estimating with 1ik_init
option equal to 1: the defaultis 0. 999999 in that case; see Estimation based on likelihood).

gz_zero_threshold = DOUBLE
See gz_zero threshold

replic = INTEGER
Number of simulated series used to compute the IRFs. Default: 1 if order=1, and 50 otherwise.

simul_replic = INTEGER
Number of series to simulate when empirical moments are requested (i.e. periods > 0). Note that if
this option is greater than 1, the additional series will not be used for computing the empirical moments
but will simply be saved in binary form to the file FILENAME_simul in the FILENAME/Output
folder. Default: 1.

solve_algo = INTEGER
See solve_algo, for the possible values and their meaning.

aim_solver
Use the Anderson-Moore Algorithm (AIM) to compute the decision rules, instead of using Dynare’s
default method based on a generalized Schur decomposition. This option is only valid for first order
approximation. See AIM website for more details on the algorithm.

conditional_variance_decomposition INTEGER

conditional_ variance_decomposition [INTEGER1 : INTEGER2]

conditional_variance_decomposition = [INTEGER1 INTEGER2 ...]
Computes a conditional variance decomposition for the specified period(s). The periods must be
strictly positive. Conditional variances are given by var(y;4|t). For period 1, the conditional variance
decomposition provides the decomposition of the effects of shocks upon impact.

The results are stored in oo_.conditional_variance_decomposition (see oo .
conditional_variance_decomposition). In the presence of measurement error, the
oo_.conditional_variance_decomposition field will contain the variance contribu-
tion after measurement error has been taken out, i.e. the decomposition will be conducted of
the actual as opposed to the measured variables. The variance decomposition of the measured
variables will be stored in co_.conditional_variance_decomposition_ME (see oo _ .
conditional variance decomposition_ME). The variance decomposition is only con-
ducted, if theoretical moments are requested, i.e. using the periods=0 option. Only available at
order<3 and without pruning. In case of order=2, Dynare provides a second-order accurate
approximation to the true second moments based on the linear terms of the second-order solution

4.13. Stochastic solution and simulation 67

Dynare Reference Manual, Release 5.4

(see Kim, Kim, Schaumburg and Sims (2008)). Note that the unconditional variance decomposi-
tion i.e. at horizon infinity) is automatically conducted if theoretical moments are requested and if
nodecomposition isnotset(see oo _.variance_decomposition).

pruning

Discard higher order terms when iteratively computing simulations of the solution. At second order,
Dynare uses the algorithm of Kim, Kim, Schaumburg and Sims (2008), while at third order its gener-
alization by Andreasen, Ferndndez-Villaverde and Rubio-Ramirez (2018) is used. Not available above
third order. When specified, theoretical moments are based on the pruned state space, i.e. the com-
putation of second moments uses all terms as in Andreasen, Ferndndez-Villaverde and Rubio-Ramirez
(2018), page 10 as opposed to simply providing a second-order accurate result based on the linear
solution as in Kim, Kim, Schaumburg and Sims (2008).

partial information

Computes the solution of the model under partial information, along the lines of Pearlman, Currie
and Levine (1986). Agents are supposed to observe only some variables of the economy. The set of
observed variables is declared using the varobs command. Note that if varobs is not present or
contains all endogenous variables, then this is the full information case and this option has no effect.
More references can be found here .

sylvester = OPTION

Determines the algorithm used to solve the Sylvester equation for block decomposed model. Possible
values for OPTION are:

default

Uses the default solver for Sylvester equations (gensylv) based on Ondra Ka-
menik’s algorithm (see here for more information).

fixed_point

Uses a fixed point algorithm to solve the Sylvester equation (gensylv_fp). This
method is faster than the default one for large scale models.

Default value is default.

sylvester_fixed point_tol = DOUBLE

The convergence criterion used in the fixed point Sylvester solver. Its default value is 1e-12.

= OPTION

Determines the method used to compute the decision rule. Possible values for OPTION are:
default

Uses the default method to compute the decision rule based on the generalized Schur
decomposition (see Villemot (2011) for more information).

cycle_reduction

Uses the cycle reduction algorithm to solve the polynomial equation for retrieving
the coefficients associated to the endogenous variables in the decision rule. This
method is faster than the default one for large scale models.

logarithmic_reduction

Uses the logarithmic reduction algorithm to solve the polynomial equation for re-
trieving the coefficients associated to the endogenous variables in the decision rule.
This method is in general slower than the cycle_reduction.

Default value is default.

dr_cycle_reduction_tol = DOUBLE

The convergence criterion used in the cycle reduction algorithm. Its default value is 1e-7.

dr_logarithmic_reduction_tol = DOUBLE

The convergence criterion used in the logarithmic reduction algorithm. Its default value is 1e-12.

68

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

dr_ logarithmic_reduction maxiter = INTEGER
The maximum number of iterations used in the logarithmic reduction algorithm. Its default value is
100.

loglinear
See loglinear. Note that ALL variables are log-transformed by using the Jacobian transformation, not
only selected ones. Thus, you have to make sure that your variables have strictly positive steady states.
stoch_simul will display the moments, decision rules, and impulse responses for the log-linearized
variables. The decision rules saved in oo__ . dr and the simulated variables will also be the ones for
the log-linear variables.

tex
Requests the printing of results and graphs in TeX tables and graphics that can be later directly included
in LaTeX files.

dr_display_tol = DOUBLE
Tolerance for the suppression of small terms in the display of decision rules. Rows where all terms are
smaller than dr_display_tol are not displayed. Default value: 1e—6.

contemporaneous_correlation
Saves the contemporaneous correlation between the endogenous variables in oo_.
contemporaneous_correlation. Requires the nocorr option not to be set.

spectral_density
Triggers the computation and display of the theoretical spectral density of the (filtered) model vari-
ables. Results are stored in oo_.SpectralDensity, defined below. Default: do not request
spectral density estimates.

hp_ngrid = INTEGER
Deprecated option. It has the same effect as filtered theoretical moments_grid.

Output

This command sets co__.dr, oo_ .mean, oo_.var,oo_.var_list,and oo_.autocorr, which are
described below.

If the periods option is present, sets oo_ . skewness, oo_.kurtosis,and oo_.endo_simul (see
oo_.endo_simul), and also saves the simulated variables in MATLAB/Octave vectors of the global
workspace with the same name as the endogenous variables.

If option irf is different from zero, sets co_.irfs (see below) and also saves the IRFs in MAT-
LAB/Octave vectors of the global workspace (this latter way of accessing the IRFs is deprecated and will
disappear in a future version).

If the option contemporaneous_correlation is different from 0, sets oo_
contemporaneous_correlation, which is described below.

Example

shocks;

var e;

stderr 0.0348;
end;

stoch_simul;

Performs the simulation of the 2nd-order approximation of a model with a single stochastic shock
e, with a standard error of 0.0348.

Example

stoch_simul (irf=60) vy k;

Performs the simulation of a model and displays impulse response functions on 60 periods for
variables y and k.

4.13. Stochastic solution and simulation 69

Dynare Reference Manual, Release 5.4

MATLAB/Octave variable: oo_.mean
After arun of stoch_simul, contains the mean of the endogenous variables. Contains theoretical mean if
the periods option is not present, and simulated mean otherwise. The variables are arranged in declaration
order.

MATLAB/Octave variable: oo_.var
After a run of stoch_simul, contains the variance-covariance of the endogenous variables. Contains
theoretical variance if the periods option is not present and simulated variance otherwise. Only available
for order<4. At order=2 it will be be a second-order accurate approximation (i.e. ignoring terms of
order 3 and 4 that would arise when using the full second-order policy function). At order=3, theoretical
moments are only available with pruning. The variables are arranged in declaration order.

MATLAB/Octave variable: oo_.var_list
The list of variables for which results are displayed.

MATLAB/Octave variable: oo_.skewness
After arun of stoch_simul contains the skewness (standardized third moment) of the simulated variables
if the periods option is present. The variables are arranged in declaration order.

MATLAB/Octave variable: oo_.kurtosis
After a run of stoch_simul contains the excess kurtosis (standardized fourth moment) of the simulated
variables if the periods option is present. The variables are arranged in declaration order.

MATLAB/Octave variable: oo_.autocorr
After arun of stoch_simul, contains a cell array of the autocorrelation matrices of the endogenous vari-
ables. The element number of the matrix in the cell array corresponds to the order of autocorrelation. The
option ar specifies the number of autocorrelation matrices available. Contains theoretical autocorrelations if
the periods option is not present and simulated autocorrelations otherwise. Only available for order<4.
At order=2 it will be be a second-order accurate approximation. At order=3, theoretical moments are
only available with pruning. The field is only created if stationary variables are present.

The element oo_.autocorr{i} (k, 1) is equal to the correlation between yF and y! _,, where y* (resp.
y') is the k-th (resp. [-th) endogenous variable in the declaration order.

Note that if theoretical moments have been requested, oo_.autocorr{i} is the same than oco_.
gamma_y{i+1}.

MATLAB/Octave variable: oo_.gamma_y
After a run of stoch_simul, if theoretical moments have been requested (i.e. if the periods option
is not present), this variable contains a cell array with the following values (where ar is the value of the
option of the same name):

0o0__.gamma{l}
Variance/covariance matrix.
oo_.gamma {i+1} (fori=l:ar)

Autocorrelation function. See oo . autocorr for more details. Beware, this is the
autocorrelation function, not the autocovariance function.

oo_.gamma{ar+2}
Unconditional variance decomposition, see oco_ . variance_decomposition.
oOo_.gamma{ar+3}

If a second order approximation has been requested, contains the vector of the mean
correction terms.

Only available at order<4. In case order=2, the theoretical second moments
are a second order accurate approximation of the true second moments. See condi-
tional_variance_decomposition. At order=3, theoretical moments are only available
with pruning.

MATLAB/Octave variable: oo_.variance_decomposition
After arun of stoch_simul when requesting theoretical moments (periods=0), contains a matrix with

70 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

the result of the unconditional variance decomposition (i.e. at horizon infinity). The first dimension corre-
sponds to the endogenous variables (in the order of declaration after the command orinM_ . endo_names)
and the second dimension corresponds to exogenous variables (in the order of declaration). Numbers are in
percent and sum up to 100 across columns. In the presence of measurement error, the field will contain the
variance contribution after measurement error has been taken out, i.e. the decomposition will be conducted
of the actual as opposed to the measured variables.

MATLAB/Octave variable: oo_.variance_decomposition_ ME

Field set after a run of stoch_simul when requesting theoretical moments (periods=0) if measure-
ment error is present. It is similar to co_ . variance decomposition, but the decomposition will
be conducted of the measured variables. The field contains a matrix with the result of the unconditional
variance decomposition (i.e. at horizon infinity). The first dimension corresponds to the observed endooge-
nous variables (in the order of declaration after the command) and the second dimension corresponds to
exogenous variables (in the order of declaration), with the last column corresponding to the contribution of
measurement error. Numbers are in percent and sum up to 100 across columns.

MATLAB/Octave variable: oo_.conditional_variance_decomposition

After a run of stoch_simul with the conditional_variance_decomposition option, con-
tains a three-dimensional array with the result of the decomposition. The first dimension corresponds to
the endogenous variables (in the order of declaration after the command or in M_ . endo_names if not
specified), the second dimension corresponds to the forecast horizons (as declared with the option), and the
third dimension corresponds to the exogenous variables (in the order of declaration). In the presence of
measurement error, the field will contain the variance contribution after measurement error has been taken
out, i.e. the decomposition will be conductedof the actual as opposed to the measured variables.

MATLAB/Octave variable: oo_.conditional_variance_decomposition_ ME

Field set after a run of stoch_simul with the conditional_variance_decomposition option
if measurement error is present. It is similar to oo_ .conditional variance_ decomposition,
but the decomposition will be conducted of the measured variables. It contains a three-dimensional array
with the result of the decomposition. The first dimension corresponds to the endogenous variables (in the
order of declaration after the command or in M_.endo_names if not specified), the second dimension
corresponds to the forecast horizons (as declared with the option), and the third dimension corresponds to
the exogenous variables (in the order of declaration), with the last column corresponding to the contribution
of the measurement error.

MATLAB/Octave variable: oo_.contemporaneous_correlation
After a run of stoch_simul with the contemporaneous_correlation option, contains theo-
retical contemporaneous correlations if the periods option is not present, and simulated contemporaneous
correlations otherwise. Only available for order<4. At order=2 it will be be a second-order accurate
approximation. At order=3, theoretical moments are only available with pruning. The variables are
arranged in declaration order.

MATLAB/Octave variable: oo_.SpectralDensity
After a run of stoch_simul with option spectral_density, contains the spectral density of the
model variables. There will be a nvars by nfrequencies subfield freqgs storing the respective fre-
quency grid points ranging from 0 to 27 and a same sized subfield density storing the corresponding
density.

MATLAB/Octave variable: oo_.irfs
After a run of stoch_simul with option irf different from zero, contains the impulse responses, with
the following naming convention: VARIABLE_NAME_SHOCK_NAME.

For example, oo_ . irfs.gnp_ea contains the effect on gnp of a one-standard deviation shock
on ea.

MATLAB/Octave command: get_irf ('EXOGENOUS_NAME' [, 'ENDOGENOUS_NAME']...);
Given the name of an exogenous variables, returns the IRFs for the requested endogenous variable(s), as
they are stored in oo__.irfs.

The approximated solution of a model takes the form of a set of decision rules or transition equations expressing
the current value of the endogenous variables of the model as function of the previous state of the model and
shocks observed at the beginning of the period. The decision rules are stored in the structure oo_ . dr which is
described below.

4.13. Stochastic solution and simulation 71

Dynare Reference Manual, Release 5.4

MATLAB/Octave variable: oo_.dr

Structure storing the decision rules. The subfields for different orders of approximation are explained below.

Command: extended_path ;
Command: extended_path (OPTIONS...);

Simulates a stochastic (i.e. rational expectations) model, using the extended path method presented by Fair
and Taylor (1983). Time series for the endogenous variables are generated by assuming that the agents
believe that there will no more shocks in the following periods.

This function first computes a random path for the exogenous variables (stored in co_.exo_simul,
see oo_.exo_simul) and then computes the corresponding path for endogenous variables, taking the
steady state as starting point. The result of the simulation is stored in co_.endo_simul (see oo_ .
endo_simul). Note that this simulation approach does not solve for the policy and transition equations
but for paths for the endogenous variables.

Options

periods = INTEGER
The number of periods for which the simulation is to be computed. No default value, mandatory
option.

solver_periods = INTEGER
The number of periods used to compute the solution of the perfect foresight at every iteration of the
algorithm. Default: 200.

order = INTEGER
If order is greater than 0 Dynare uses a gaussian quadrature to take into account the effects of future
uncertainty. If order = S then the time series for the endogenous variables are generated by assum-
ing that the agents believe that there will no more shocks after period ¢t + S. This is an experimental
feature and can be quite slow. A non-zero value is not compatible with either the bytecode or the
block option of the model block. Default: 0.

hybrid
Use the constant of the second order perturbation reduced form to correct the paths generated by the
(stochastic) extended path algorithm.

lmmcp
Solves the perfect foresight model with a Levenberg-Marquardt mixed complementarity problem
(LMMCP) solver (Kanzow and Petra (2004)), which allows to consider inequality constraints on
the endogenous variables (such as a ZLB on the nominal interest rate or a model with irreversible
investment). For specifying the necessary mcp tag, see Immcp.

4.13.2 Typology and ordering of variables

Dynare distinguishes four types of endogenous variables:

Purely backward (or purely predetermined) variables

Those that appear only at current and past period in the model, but not at future period (i.e. at ¢t and
t — 1 but not ¢t + 1). The number of such variables is equal to M_ . npred.

Purely forward variables

Those that appear only at current and future period in the model, but not at past period (i.e. at ¢t and
t 4+ 1 but not ¢t — 1). The number of such variables is stored in M_ . nfwrd.

Mixed variables

Those that appear at current, past and future period in the model (i.e. at¢, ¢t + 1 and ¢ — 1). The
number of such variables is stored in M__ . nboth.

Static variables

Those that appear only at current, not past and future period in the model (i.e. only at ¢, not at ¢ + 1
or t — 1). The number of such variables is stored in M_ .nstatic.

72

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Note that all endogenous variables fall into one of these four categories, since after the creation of auxiliary
variables (see Auxiliary variables), all endogenous have at most one lead and one lag. We therefore have the
following identity:

M_.npred + M_.both + M_.nfwrd + M_.nstatic = M_.endo_nbr

MATLAB/Octave variable: M .state_var
Vector of numerical indices identifying the state variables in the vector of declared variables. M__
endo_names (M_.state_var) therefore yields the name of all variables that are states in the model

declaration, i.e. that show up with a lag.

Internally, Dynare uses two orderings of the endogenous variables: the order of declaration (which is reflected
in M_.endo_names), and an order based on the four types described above, which we will call the DR-order
(“DR” stands for decision rules). Most of the time, the declaration order is used, but for elements of the decision
rules, the DR-order is used.

The DR-order is the following: static variables appear first, then purely backward variables, then mixed variables,
and finally purely forward variables. Inside each category, variables are arranged according to the declaration
order.

MATLAB/Octave variable: oo_.dr.order var
This variables maps DR-order to declaration order.

MATLAB/Octave variable: oo_.dr.inv_order_ var
This variable contains the inverse map.

In other words, the k-th variable in the DR-order corresponds to the endogenous variable numbered oo_ .
dr.order_var (k) in declaration order. Conversely, k-th declared variable is numbered oco_.dr.
inv_order_var (k) in DR-order.

Finally, the state variables of the model are the purely backward variables and the mixed variables. They are or-
dered in DR-order when they appear in decision rules elements. There are M_.nspred = M_.npred + M_.
nboth such variables. Similarly, onehasM_.nsfwrd = M_.nfwrd + M_.nboth,andM_.ndynamic =
M_.nfwrd + M_.nboth + M_.npred.

4.13.3 First-order approximation
The approximation has the stylized form:
ye =y° + Ayi_y + Buy

where y* is the steady state value of y and y?* = y; — y°.

MATLAB/Octave variable: oo.dr.state_var
Vector of numerical indices identifying the state variables in the vector of declared variables, given the
current parameter values for which the decision rules have been computed. It may differ from M_.
state_var in case a state variable drops from the model given the current parameterization, because
it only gets O coefficients in the decision rules. See M_. state_var.

The coefficients of the decision rules are stored as follows:
* y%isstored in oo_.dr.ys. The vector rows correspond to all endogenous in the declaration order.

* A is stored in oo_.dr.ghx. The matrix rows correspond to all endogenous in DR-order. The matrix
columns correspond to state variables in DR-order, as given by oo_.dr.state_var. (N.B.: if the
block option to the model block has been specified, then rows are in declaration order, and columns are
ordered according to oo_ .dr. state_var which may differ from DR-order.)

* Bisstored oo_.dr .ghu. The matrix rows correspond to all endogenous in DR-order. The matrix columns
correspond to exogenous variables in declaration order. (N.B.: if the bl ock option to the mode1 block has
been specified, then rows are in declaration order.)

4.13. Stochastic solution and simulation 73

Dynare Reference Manual, Release 5.4

Of course, the shown form of the approximation is only stylized, because it neglects the required different ordering
in y° and yJ'. The precise form of the approximation that shows the way Dynare deals with differences between
declaration and DR-order, is

y¢(oo_.dr.order_var) = y*(oo_.dr.order_var) + A - y;_1(oo_.dr.order_var(k2)) — y*(oo_.dr.order_var(k2)) + B - u;

where k2 selects the state variables, y; and y® are in declaration order and the coefficient matrices are in DR-order.
Effectively, all variables on the right hand side are brought into DR order for computations and then assigned to
¢ in declaration order.

4.13.4 Second-order approximation
The approximation has the form:
v = y° + 0.5A% + Ayf’_1 + Bu; + 0.50(3/?’_1 ® yf’_l) +0.5D(ur ® uz) + E(yf’_:l ® ut)
where y° is the steady state value of ¥, yi‘ =y, — y*, and A? is the shift effect of the variance of future shocks.

For the reordering required due to differences in declaration and DR order, see the first order approximation.

The coefficients of the decision rules are stored in the variables described for first order approximation, plus the
following variables:

» A?isstored in oo_.dr.ghs2. The vector rows correspond to all endogenous in DR-order.

* (Cis stored in oo_.dr.ghxx. The matrix rows correspond to all endogenous in DR-order. The matrix
columns correspond to the Kronecker product of the vector of state variables in DR-order.

e D is stored in oo_.dr.ghuu. The matrix rows correspond to all endogenous in DR-order. The matrix
columns correspond to the Kronecker product of exogenous variables in declaration order.

e F is stored in oo_.dr.ghxu. The matrix rows correspond to all endogenous in DR-order. The matrix
columns correspond to the Kronecker product of the vector of state variables (in DR-order) by the vector of
exogenous variables (in declaration order).

4.13.5 Third-order approximation
The approximation has the form:
Y = Y° + Go+ Grzg + Ga(2 @ 1) + Ga(2 @ 2 @ 2t)

where y° is the steady state value of y, and z, is a vector consisting of the deviation from the steady state of the
state variables (in DR-order) at date ¢ — 1 followed by the exogenous variables at date ¢ (in declaration order). The
vector z; is therefore of size n, =M_ .nspred + M_.exo_nbr.

The coefficients of the decision rules are stored as follows:
» y®isstored in oo_.dr.ys. The vector rows correspond to all endogenous in the declaration order.
* (G is stored in oo__.dr.g_0. The vector rows correspond to all endogenous in DR-order.

e (G is stored in oo_.dr.g_1. The matrix rows correspond to all endogenous in DR-order. The matrix
columns correspond to state variables in DR-order, followed by exogenous in declaration order.

* (35 is stored in oo_.dr.g_2. The matrix rows correspond to all endogenous in DR-order. The matrix
columns correspond to the Kronecker product of state variables (in DR-order), followed by exogenous (in
declaration order). Note that the Kronecker product is stored in a folded way, i.e. symmetric elements are
stored only once, which implies that the matrix has n.(n, + 1)/2 columns. More precisely, each column
of this matrix corresponds to a pair (i1, 42) where each index represents an element of z; and is therefore
between 1 and n,. Only non-decreasing pairs are stored, i.e. those for which 2; < 5. The columns are
arranged in the lexicographical order of non-decreasing pairs. Also note that for those pairs where i1 # o,
since the element is stored only once but appears two times in the unfolded G matrix, it must be multiplied
by 2 when computing the decision rules.

74 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

* (33 is stored in oo_.dr.g_3. The matrix rows correspond to all endogenous in DR-order. The matrix
columns correspond to the third Kronecker power of state variables (in DR-order), followed by exogenous
(in declaration order). Note that the third Kronecker power is stored in a folded way, i.e. symmetric elements
are stored only once, which implies that the matrix has n,(n, + 1)(n, + 2)/6 columns. More precisely,
each column of this matrix corresponds to a tuple (i1, 42, ¢3) where each index represents an element of z;
and is therefore between 1 and n,. Only non-decreasing tuples are stored, i.e. those for which i1 < 79 < i3.
The columns are arranged in the lexicographical order of non-decreasing tuples. Also note that for tuples
that have three distinct indices (i.e. i1 # i2 and i1 # i3 and i5 # i3), since these elements are stored only
once but appears six times in the unfolded G5 matrix, they must be multiplied by 6 when computing the
decision rules. Similarly, for those tuples that have two equal indices (i.e. of the form (a, a, b) or (a, b, a) or
(b, a, a)), since these elements are stored only once but appears three times in the unfolded G3 matrix, they
must be multiplied by 3 when computing the decision rules.

4.13.6 Higher-order approximation

Higher-order approximations are simply a generalization of what is done at order 3.

The steady state is stored in oo_ . dr . ys and the constant correction is stored in oo__.dr.g_0. The coefficient
for orders 1, 2, 3, 4... are respectively stored in co_.dr.g_0,00_.dr.g_1,00_.dr.g_2,00_.dr.g_3,
oo_.dr.g_4... The columns of those matrices correspond to multidimensional indices of state variables, in
such a way that symmetric elements are never repeated (for more details, see the description of oo_.dr.g_3 in
the third-order case).

4.14 Occasionally binding constraints (OCCBIN)

Dynare allows simulating models with up to two occasionally-binding constraints by relying on a piecewise linear
solution as in Guerrieri and lacoviello (2015). 1t also allows estimating such models employing either the inver-
sion filter of Cuba-Borda, Guerrieri, lacoviello, and Zhong (2019) or the piecewise Kalman filter of Giovannini,
Pfeiffer, and Ratto (2021). To trigger computations involving occasionally-binding constraints requires

1. defining and naming the occasionally-binding constraints using an occlbin_constraints block

2. specifying the model equations for the respective regimes in the model block using appropriate equation
tags.

3. potentially specifying a sequence of surprise shocks using a shocks (surprise) block

4. setting up Occbin simulations or estimation with occbin_setup

5. triggering a simulation with occbin_solver or running estimation or calib_smoother.
All of these elements are discussed in the following.

Block: occbin_constraints ;
The occbin_constraints block specifies the occasionally-binding constraints. It contains one or two
of the following lines:

name ‘STRING’; bind EXPRESSION; [relax EXPRESSION;] [error_bind EXPRESSION;] [er-
ror_relax EXPRESSION;]

STRING is the name of constraint that is used to reference the constraint in relax / bind equation tags
to identify the respective regime (see below). The bind expression is mandatory and defines a logical
condition that is evaluated in the baseline/steady state regime to check whether the specified constraint
becomes binding. In contrast, the relax expression is optional and specifies a logical condition that is
evaluated in the binding regime to check whether the regime returns to the baseline/steady state regime. If
not specified, Dynare will simply check in the binding regime whether the bind expression evaluates to
false. However, there are cases where the bind expression cannot be evaluated in the binding regime(s),
because the variables involved are constant by definition so that e.g. the value of the Lagrange multiplier
on the complementary slackness condition needs to be checked. In these cases, it is necessary to provide an
explicit condition that can be evaluated in the binding regime that allows to check whether it should be left.

4.14. Occasionally binding constraints (OCCBIN) 75

Dynare Reference Manual, Release 5.4

Note that the baseline regime denotes the steady state of the model where the economy will settle in the
long-run without shocks. For that matter, it may be one where e.g. a borrowing constraint is binding. In that
type of setup, the bind condition is used to specify the condition when this borrowing constraint becomes
non-binding so that the alternative regime is entered.

Three things are important to keep in mind when specifying the expressions. First, feasible expressions
may only contain contemporaneous endogenous variables. If you want to include leads/lags or exogenous
variables, you need to define an auxiliary variable. Second, Dynare will at the current stage not linearly
approximate the entered expressions. Because Occbin will work with a linearized model, consistency will
often require the user to enter a linearized constraint. Otherwise, the condition employed for checking
constraint violations may differ from the one employed within model simulations based on the piecewise-
linear model solution. Third, in contrast to the original Occbin replication codes, the variables used in
expressions are not automatically demeaned, i.e. they refer to the levels, not deviations from the steady
state. To access the steady state level of a variable, the STEADY_STATE () operator can be used.

Finally, it’s worth keeping in mind that for each simulation period, Occbin will check the respective condi-
tions for whether the current regime should be left. Small numerical differences from the cutoff point for
a regime can sometimes lead to oscillations between regimes and cause a spurious periodic solution. Such
cases may be prevented by introducing a small buffer between the two regimes, e.g.

occbin_constraints;
name 'ELB'; bind inom <= iss-1e8; relax inom > iss+le-8;
end;

The error_bindand error_relax options are optional and allow specifying numerical criteria for the
size of the respective constraint violations employed in numerical routines. By default, Dynare will simply
use the absolute value of the bind and relax inequalities. But occasionnally, user-specified expressions
perform better.

Example

occbin_constraints;

name 'IRR'; bind log_Invest-log(steady_state (Invest))<log(phi);,
—relax Lambda<0;

name 'INEG'; bind log_Invest-log(steady_state (Invest))<0;
end;

IRR is a constraint for irreversible investment that becomes binding if investment drops below
its steady state by more than 0.025 percent in the non-binding regime. The constraint will be
relaxed whenever the associated Lagrange multiplier Lambda in the binding regime becomes
negative. Note that the constraint here takes on a linear form to be consistent with a piecewise
linear model solution

The specification of the model equations belonging to the respective regimes is done in the model block,
with equation tags indicating to which regime a particular equation belongs. All equations that differ across
regimes must have a name tag attached to them that allows uniquely identifying different versions of the
same equation. The name of the constraints specified is then used in conjunction withabind or relax tag
to indicate to which regime a particular equation belongs. In case of more than one occasionally-binding
constraint, if an equation belongs to several regimes (e.g. both constraints binding), the constraint name
tags must be separated by a comma. If only one name tag is present, the respective equation is assumed to
hold for both states of the other constraint.

Example

[name="'investment',bind="'IRR, INEG']

(log_Invest - log(phixsteady_state(Invest))) = 0;
[name="'investment', relax="'IRR']

Lambda=0;

[name="'investment',bind='IRR', relax="INEG']
(log_Invest - log(phixsteady_state(Invest)))

0;

The three entered equations for the investment condition define the model equation for all four
possible combinations of the two constraints. The first equation defines the model equation in the

76

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

regime where both the IRR and INEG constraint are binding. The second equation defines the
model equation for the regimes where the IRR constraint is non-binding, regardless of whether
the INEG constraint is binding or not. Finally, the last equation defines the model equation for
the final regime where the IRR constraint is binding, but the INEG one is not.

Block: shocks (surprise) ;

Block: shocks(surprise,overwrite);
The shocks (surprise) block allows specifying a sequence of temporary changes in the value of ex-
ogenous variables that in each period come as a surprise to agents, i.e. are not anticipated. Note that to
actually use the specified shocks in subsequent commands like occbin_solver, the block needs to be
followed by a call to occbin_setup.

The block mirrors the perfect foresight syntax in that it should contain one or more occurrences of the
following group of three lines:

var VARIABLE_NAME;
periods INTEGER[:INTEGER] [[,] INTEGER[:INTEGER]]...;
values DOUBLE | (EXPRESSION) [[,] DOUBLE | (EXPRESSION)]...;

Example (with vector values and overwrite option)

shockssequence = randn(100,1)%0.02;

shocks (surprise, overwrite) ;
var epsilon;

periods 1:100;

values (shockssequence);
end;

Command: occbin_setup ;
Command: occbin_setup (OPTIONS...);

Prepares a simulation with occasionally binding constraints. This command will also translate
the contents of a shocks (surprise) block for use in subsequent commands.

In order to conduct estimation with occasionally binding constraints, it needs to be pref-
aced by a call to occbin_setup to trigger the use of either the inversion filter or the piece-
wise Kalman filter (default). An issue that can arise in the context of estimation is a struc-
tural shock dropping out of the model in a particular regime. For example, at the zero lower
bound on interest rates, the monetary policy shock in the Taylor rule will not appear anymore.
This may create a problem of stochastic singularity if there are then more observables than
shocks. To avoid this issue, the data points for the zero interest rate should be set to NaN and
the standard deviation of the associated shock set to O for the corresponding periods using the
heteroskedastic_shocks block.

Note that models with unit roots will require the user to specify the diffuse_filter option
as otherwise Blanchard-Kahn errors will be triggered. For the piecewise Kalman filter, the ini-
tialization steps in the diffuse filter will always rely on the model solved for the baseline regime,
without checking whether this is the actual regime in the first period(s).

Example
occbin_setup(likelihood_inversion_filter, smoother_inversion_
—~filter);
estimation (smoother, heteroskedastic_filter,...);

The above piece of code sets up an estimation employing the inversion filter for both the like-
lihood evaluation and the smoother, while also accounting for heteroskedastic_shocks
using the heteroskedastic_filter option.

Be aware that Occbin has largely command-specific options, i.e. there are separate options to
control the behavior of Occbin when called by the smoother or when computing the likelihood.
These latter commands will not inherit the options potentially previously set for simulations.

4.14. Occasionally binding constraints (OCCBIN) 77

Dynare Reference Manual, Release 5.4

Options

simul_periods = INTEGER
Number of periods of the simulation. Default: 100.

simul maxit = INTEGER
Maximum number of iterations when trying to find the regimes of the piecewise solution.
Default: 30.

simul_check ahead periods = INTEGER
Number of periods for which to check ahead for return to the baseline regime. This number
should be chosen large enough, because Occbin requires the simulation to return to the
baseline regime at the end of time. Default: 200.

simul_curb_retrench
Instead of basing the initial regime guess for the current iteration on the last iteration, update
the guess only one period at a time. This will slow down the iterations, but may lead to more
robust convergence behavior. Default: not enabled.

simul_periodic_solution
Accept a periodic solution where the solution alternates between two sets of results across
iterations, i.e. is not found to be unique. This is sometimes caused by spurious numerical
errors that lead to oscillations between regiems and may be prevented by allowing for a
small buffer in regime transitions. Default: not enabled.

simul_debug
Provide additional debugging information during solving. Default: not enabled.

smoother_periods = INTEGER
Number of periods employed during the simulation when called by the smoother (equivalent
of simul_periods). Default: 100.

smoother maxit = INTEGER
Maximum number of iterations employed during the simulation when called by the
smoother (equivalent of simul_maxit). Default: 30.

smoother_ check_ahead periods = INTEGER
Number of periods for which to check ahead for return to the baseline regime during the sim-
ulation when called by the smoother (equivalent of simul_check_ahead_periods).
Default: 200.

smoother_ curb_ retrench
Have the smoother invoke the simul_curb_retrench option during simulations. De-
fault: not enabled.

smoother periodic_solution
Accept periodic solution where solution alternates between two sets of results (equivalent
of simul_periodic_solution). Default: not enabled.

likelihood_periods = INTEGER
Number of periods employed during the simulation when computing the likelihood (equiv-
alent of simul_periods). Default: 100.

likelihood_maxit = INTEGER
Maximum number of iterations employed during the simulation when computing the likeli-
hood (equivalent of simul_maxit). Default: 30.

likelihood check_ _ahead periods = INTEGER
Number of periods for which to check ahead for return to the baseline
regime during the simulation when computing the likelihood (equivalent of
simul_check_ahead_periods). Default: 200.

likelihood_curb_ retrench
Have the likelihood computation invoke the simul_curb_retrench option during sim-
ulations. Default: not enabled.

78 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

likelihood periodic_solution
Accept periodic solution where solution alternates between two sets of results (equivalent
of simul_periodic_solution). Default: not enabled.

likelihood_inversion_ filter
Employ the inversion filter of Cuba-Borda, Guerrieri, lacoviello, and Zhong (2019) when
estimating the model. Default: not enabled.

likelihood_piecewise_kalman filter
Employ the piecewise Kalman filter of Giovannini, Pfeiffer, and Ratto (2021) when esti-
mating the model. Note that this filter is incompatible with univariate Kalman filters, i.e.
kalman_algo=2, 4. Default: enabled.

likelihood max_ kalman_iterations
Maximum number of iterations of the outer loop for the piecewise Kalman filter. Default:
10.

smoother inversion filter
Employ the inversion filter of Cuba-Borda, Guerrieri, lacoviello, and Zhong (2019) when
running the smoother. The underlying assumption is that the system starts at the steady
state. In this case, the inversion filter will provide the required smoother output. Default:
not enabled.

smoother_ piecewise_kalman_filter
Employ the piecewise Kalman filter of Giovannini, Pfeiffer, and Ratto (2021) when running
the smoother. Default: enabled.

filter_use_relaxation
Triggers relaxation within the guess and verify algorithm used in the update step of the
piecewise Kalman filter. When old and new guess regime differ to much, use a new guess
closer to the previous guess. In case of multiple solutions, tends to provide an occasionally
binding regime with a shorter duration (typically preferable). Specifying this option may
slow down convergence. Default: not enabled.

Output
The paths for the exogenous variables are stored into options_.occbin.simul.SHOCKS.

Command: occbin_solver ;
Command: occbin_solver (OPTIONS...);
Computes a simulation with occasionally-binding constraints based on a piecewise-linear solution.

Note that occbin_setup must be called before this command in order for the simulation to take into
account previous shocks (surprise) blocks.

Options

simul_periods = INTEGER
See simul_periods.

simul maxit = INTEGER
See simul_maxit.

simul_ check ahead periods = INTEGER
See simul_check ahead periods.

simul curb_ retrench
See simul_curb_retrench.

simul_debug
See simul_debug.

Output

The command outputs various objects into oo__.occbin.

4.14. Occasionally binding constraints (OCCBIN) 79

Dynare Reference Manual, Release 5.4

MATLAB/Octave variable: oo_.occbin.simul.piecewise
Matrix storing the simulations based on the piecewise-linear solution. The variables are arranged by column,
in order of declaration (as in M__. endo_names), while the the rows correspond to the simul_periods.

MATLAB/Octave variable: oo_.occbin.simul.linear
Matrix storing the simulations based on the linear solution, i.e. ignoring the occasionally binding con-
straint(s). The variables are arranged column by column, in order of declaration (as in M_ . endo_names),
while the the rows correspond to the simul_periods.

MATLAB/Octave variable: oo_.occbin.simul.shocks_sequence
Matrix storing the shock sequence employed during the simulation. The shocks are arranged column by
column, with theirorderinM__. exo_names stored in oo__.occbin.exo_pos. The the rows correspond
to the number of shock periods specified in a shocks (surprise) block, which may be smaller than
simul_periods.

MATLAB/Octave variable: oo_.occbin.simul.regime_history

Structure storing information on the regime history, conditional on the shock that happened in the respective
period (stored along the rows). type is equal to either smoother or simul, depending on whether the
output comes from a run of simulations or the smoother. The subfield regime contains a vector storing
the regime state, while the the subfield regimestart indicates the expected start of the respective regime
state. For example, if row 40 contains [1, 0] for regime2 and [1, 6] for regimestart?2, it indicates
that - after the shock in period 40 has occurred - the second constraint became binding (1) and is expected
to revert to non-binding (0) after six periods including the current one, i.e. period 45.

MATLAB/Octave variable: oo_.occbin.simul.ys
Vector of steady state values

Command: occbin_graph [VARIABLE_NAME...];

Command: occbin_graph (OPTIONS...) [VARIABLE_NAME...];
Plots a graph comparing the simulation results of the piecewise-linear solution with the occasionally binding
contraints to the linear solution ignoring the constraint.

Options

noconstant
Omit the steady state in the graphs.

Command: occbin_write_ regimes ;

Command: occbin_write_ regimes (OPTIONS...);
Write the information on the regime history stored in co_.occbin.simul.regime_history or
oo_.occbin.smoother.regime_history into an Excel file stored in the FILENAME /Output
folder.

Options

periods = INTEGER
Number of periods for which to write the expected regime durations. Default: write all available
periods.

filename = FILENAME
Name of the Excel file to write. Default: FILENAME_occbin_regimes.

simul
Selects the regime history from the last run of simulations. Default: enabled.

smoother
Selects the regime history from the last run of the smoother. Default: use simul.

80 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.15 Estimation based on likelihood

Provided that you have observations on some endogenous variables, it is possible to use Dynare to estimate some
or all parameters. Both maximum likelihood (as in Ireland (2004)) and Bayesian techniques (as in Ferndndez-
Villaverde and Rubio-Ramirez (2004), Rabanal and Rubio-Ramirez (2003), Schorfheide (2000) or Smets and
Wouters (2003)) are available. Using Bayesian methods, it is possible to estimate DSGE models, VAR models, or
a combination of the two techniques called DSGE-VAR.

Note that in order to avoid stochastic singularity, you must have at least as many shocks or measurement errors in
your model as you have observed variables.

The estimation using a first order approximation can benefit from the block decomposition of the model (see
block).

Command: varobs VARIABLE_NAME...;
This command lists the name of observed endogenous variables for the estimation procedure. These vari-
ables must be available in the data file (see estimation_cmd).

Alternatively, this command is also used in conjunction with the partial_ information option of
stoch_simul, for declaring the set of observed variables when solving the model under partial informa-
tion.

Only one instance of varobs is allowed in a model file. If one needs to declare observed variables in a
loop, the macro processor can be used as shown in the second example below.

Example

varobs C y rr;

Declares endogenous variables C, v and rr as observed variables.

Example (with a macro processor loop)

varobs

@#for co in countries
GDP_Q{co}

@#fendfor

’

Block: observation_ trends ;
This block specifies linear trends for observed variables as functions of model parameters. In case the
loglinear option is used, this corresponds to a linear trend in the logged observables, i.e. an exponential
trend in the level of the observables.

Each line inside of the block should be of the form:

VARIABLE_NAME (EXPRESSION) ;

In most cases, variables shouldn’t be centered when observation_trends is used.

Example

observation_ trends;
Y (eta);

P (mu/eta);

end;

Block: estimated params ;
This block lists all parameters to be estimated and specifies bounds and priors as necessary.
Each line corresponds to an estimated parameter.

In a maximum likelihood or a method of moments estimation, each line follows this syntax:

4.15. Estimation based on likelihood 81

Dynare Reference Manual, Release 5.4

stderr VARIABLE NAME | corr VARIABLE NAME 1, VARIABLE NAME 2 | PARAMETER_NAME
, INITIAL_VALUE [, LOWER_BOUND, UPPER_BOUND];

In a Bayesian MCMC or a penalized method of moments estimation, each line follows this syntax:

stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 | PARAMETER_NAME
— | DSGE_PRIOR_WEIGHT

[, INITIAL VALUE [, LOWER BOUND, UPPER_BOUND]], PRIOR_SHAPE,
PRIOR_MEAN, PRIOR_STANDARD ERROR [, PRIOR_3RD_PARAMETER [,
PRIOR_4TH_PARAMETER [, SCALE_PARAMETER]] 1;

The first part of the line consists of one of the four following alternatives:
e stderr VARIABLE_NAME

Indicates that the standard error of the exogenous variable VARIABLE_NAME, or of the observation
error/measurement errors associated with endogenous observed variable VARIABLE_NAME, is to be
estimated.

e corr VARIABLE _NAME1l, VARIABLE_NAME2

Indicates that the correlation between the exogenous variables VARIABLE_NAMEI] and VARI-
ABLE_NAME?2, or the correlation of the observation errors/measurement errors associated with en-
dogenous observed variables VARIABLE_NAMEI and VARIABLE_NAME?2, is to be estimated.
Note that correlations set by previous shocks blocks or estimation commands are kept at their value
set prior to estimation if they are not estimated again subsequently. Thus, the treatment is the same as
in the case of deep parameters set during model calibration and not estimated.

¢ PARAMETER_NAME
The name of a model parameter to be estimated
e DSGE_PRIOR_WEIGHT
Special name for the weigh of the DSGE model in DSGE-VAR model.
The rest of the line consists of the following fields, some of them being optional:

INITIAL VALUE
Specifies a starting value for the posterior mode optimizer or the maximum likelihood estimation. If
unset, defaults to the prior mean.

LOWER_BOUND

Specifies a lower bound for the parameter value in maximum likelihood estimation. In a Bayesian es-
timation context, sets a lower bound only effective while maximizing the posterior kernel. This lower
bound does not modify the shape of the prior density, and is only aimed at helping the optimizer in
identifying the posterior mode (no consequences for the MCMC). For some prior densities (namely
inverse gamma, gamma, uniform, beta or Weibull) it is possible to shift the support of the prior dis-
tributions to the left or the right using prior 3rd parameter. In this case the prior density is
effectively modified (note that the truncated Gaussian density is not implemented in Dynare). If unset,
defaults to minus infinity (ML) or the natural lower bound of the prior (Bayesian estimation).

UPPER_BOUND
Same as lower_bound, but specifying an upper bound instead.

PRIOR_SHAPE
A keyword specifying the shape of the prior density. The possible values are: beta_pdf,
gamma_pdf, normal pdf, uniform pdf, inv_gamma_pdf, inv_gammal_pdf,
inv_gamma2_pdf and weibull_pdf. Note that inv_gamma_pdf is equivalent to
inv_gammal_pdf.

PRIOR_MEAN
The mean of the prior distribution.

PRIOR_STANDARD ERROR
The standard error of the prior distribution.

82

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

PRIOR_3RD_PARAMETER
A third parameter of the prior used for generalized beta distribution, generalized gamma, generalized
Weibull and for the uniform distribution. Default: 0.

PRIOR_4TH PARAMETER
A fourth parameter of the prior used for generalized beta distribution and for the uniform distribution.
Default: 1.

SCALE_PARAMETER
A parameter specific scale parameter for the jumping distribution’s covariance matrix of the
Metropolis-Hasting algorithm.

Note that INITIAL_VALUE, LOWER_BOUND, UPPER_BOUND, PRIOR_MEAN,
PRIOR_STANDARD_ERROR, PRIOR 3RD_PARAMETER, PRIOR_4TH _PARAMETER and
SCALE_PARAMETER can be any valid EXPRESSION. Some of them can be empty, in which
Dynare will select a default value depending on the context and the prior shape.

In case of the uniform distribution, it can be specified either by providing an upper and a lower bound us-
ing PRIOR_3RD_PARAMETER and PRIOR_4TH_PARAMETER or via mean and standard deviation using
PRIOR_MEAN, PRTOR_STANDARD_ERROR. The other two will automatically be filled out. Note that
providing both sets of hyperparameters will yield an error message.

As one uses options more towards the end of the list, all previous options must be filled: for exam-
ple, if you want to specify SCALE_PARAMETER, you must specify PRIOR_3RD_PARAMETER and
PRIOR_4TH_PARAMETER. Use empty values, if these parameters don’t apply.

Example

corr eps_1, eps_2, 0.5, , , beta_pdf, 0, 0.3, -1, 1;

Sets a generalized beta prior for the correlation between eps_1 and eps_2 with mean 0 and
variance 0. 3. By setting PRIOR_3RD_PARAMETER to -1 and PRIOR_4TH_PARAMETER
to 1 the standard beta distribution with support [0, 1] is changed to a generalized beta with
support [-1,1]. Note that LOWER_BOUND and UPPER_BOUND are left empty and thus
default to —1 and 1, respectively. The initial value is set to 0. 5.

Example

corr eps_1, eps_2, 0.5, -0.5, 1, beta_pdf, 0, 0.3, -1, 1;
Sets the same generalized beta distribution as before, but now truncates this distribution to [-0 .
5, 1] through the use of LOWER_BOUND and UPPER_BOUND.

Parameter transformation

Sometimes, it is desirable to estimate a transformation of a parameter appearing in the model, rather than
the parameter itself. It is of course possible to replace the original parameter by a function of the estimated
parameter everywhere is the model, but it is often unpractical.

In such a case, it is possible to declare the parameter to be estimated in the parameters statement and to
define the transformation, using a pound sign (#) expression (see Model declaration).

Example

parameters bet;

model;

sig = 1/bet;

c = sigxc(+1) *mpk;

end;

estimated params;

bet, normal_pdf, 1, 0.05;
end;

4.15. Estimation based on likelihood 83

Dynare Reference Manual, Release 5.4

Block: estimated params_init ;
Block: estimated params_init (OPTIONS...);

This block declares numerical initial values for the optimizer when these ones are different from the prior
mean. It should be specified after the estimated_params block as otherwise the specified starting
values are overwritten by the latter.

Each line has the following syntax:

stderr VARIABLE _NAME | corr VARIABLE NAME_1, VARIABLE NAME_ 2 | PARAMETER NAME,
—INITIAL_VALUE;

Options

use_calibration
For not specifically initialized parameters, use the deep parameters and the elements of the covariance
matrix specified in the shocks block from calibration as starting values for estimation. For compo-
nents of the shocks block that were not explicitly specified during calibration or which violate the
prior, the prior mean is used.

See estimated_params, for the meaning and syntax of the various components.

Block: estimated params_bounds ;

This block declares lower and upper bounds for parameters in maximum likelihood estimation.

Each line has the following syntax:

stderr VARIABLE_NAME | corr VARIABLE_NAME 1, VARIABLE NAME_2 | PARAMETER_NAME,
— LOWER_BOUND, UPPER_BOUND;

See estimated_params, for the meaning and syntax of the various components.

Command: estimation [VARIABLE_NAME...];
Command: estimation (OPTIONS...) [VARIABLE_NAME...];

This command runs Bayesian or maximum likelihood estimation.
The following information will be displayed by the command:
* Results from posterior optimization (also for maximum likelihood)
* Marginal log data density
 Posterior mean and highest posterior density interval (shortest credible set) from posterior simulation

» Convergence diagnostic table when only one MCM chain is used or Metropolis-Hastings convergence
graphs documented in Pfeifer (2014) in case of multiple MCM chains

¢ Table with numerical inefficiency factors of the MCMC
* Graphs with prior, posterior, and mode
* Graphs of smoothed shocks, smoothed observation errors, smoothed and historical variables

Note that the posterior moments, smoothed variables, k-step ahead filtered variables and forecasts
(when requested) will only be computed on the variables listed after the est imation command. Al-
ternatively, one can choose to compute these quantities on all endogenous or on all observed vari-
ables (see consider_all_endogenous, consider_all_endogenous_and_auxiliary, and
consider_only_observed options below). If no variable is listed after the estimation command, then
Dynare will interactively ask which variable set to use.

Also, during the MCMC (Bayesian estimation with mh_replic > 0) a (graphical or text) waiting bar
is displayed showing the progress of the Monte-Carlo and the current value of the acceptance ratio. Note
that if the 1load_mh_file option is used (see below) the reported acceptance ratio does not take into
account the draws from the previous MCMC. In the literature there is a general agreement for saying that
the acceptance ratio should be close to one third or one quarter. If this not the case, you can stop the MCMC
(Ctrl-C) and change the value of option mh_ jscale (see below).

84

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Note that by default Dynare generates random numbers using the algorithm mt 199937ar (i.e. Mersenne
Twister method) with a seed set equal to 0. Consequently the MCMCs in Dynare are deterministic: one
will get exactly the same results across different Dynare runs (ceteris paribus). For instance, the posterior
moments or posterior densities will be exactly the same. This behaviour allows to easily identify the conse-
quences of a change on the model, the priors or the estimation options. But one may also want to check that
across multiple runs, with different sequences of proposals, the returned results are almost identical. This
should be true if the number of iterations (i.e. the value of mh_replic) is important enough to ensure
the convergence of the MCMC to its ergodic distribution. In this case the default behaviour of the random
number generators in not wanted, and the user should set the seed according to the system clock before the
estimation command using the following command:

set_dynare_seed('clock');

so that the sequence of proposals will be different across different runs.

Finally, Dynare does not always properly distinguish between maximum likelihood and Bayesian estima-
tion in its field names. While there is an important conceptual distinction between frequentist confidence
intervals and Bayesian highest posterior density intervals (HPDI) as well as between posterior density and
likelilhood, Dynare sometimes uses the Bayesian terms as a stand-in in its display of maximum likelihood
results. An example is the storage of the output of the forecast option of est imat ion with ML, which
will use HPDinf /HPDsup to denote the confidence interval.

Algorithms

The Monte Carlo Markov Chain (MCMC) diagnostics are generated by the estimation command if
mh_replic is larger than 2000 and if option nodiagnostic is not used. If mh _nblocks is equal
to one, the convergence diagnostics of Geweke (1992,1999) is computed. It uses a chi-square test to com-
pare the means of the first and last draws specified by geweke_interval after discarding the burn-in of
mh_drop. The test is computed using variance estimates under the assumption of no serial correlation as
well as using tapering windows specified in taper._steps. If mh_nblocks is larger than 1, the conver-
gence diagnostics of Brooks and Gelman (1998) are used instead. As described in section 3 of Brooks and
Gelman (1998) the univariate convergence diagnostics are based on comparing pooled and within MCMC
moments (Dynare displays the second and third order moments, and the length of the Highest Probability
Density interval covering 80% of the posterior distribution). Due to computational reasons, the multivariate
convergence diagnostic does not follow Brooks and Gelman (1998) strictly, but rather applies their idea
for univariate convergence diagnostics to the range of the posterior likelihood function instead of the in-
dividual parameters. The posterior kernel is used to aggregate the parameters into a scalar statistic whose
convergence is then checked using the Brooks and Gelman (1998) univariate convergence diagnostic.

The inefficiency factors are computed as in Giordano et al.(2011) based on Parzen windows as in e.g.
Andrews (1991).

Options

datafile = FILENAME
The datafile: a .mfile, a .mat file,a .csv file,ora .x1s/.x1sx file (under Octave, the io package
from Octave-Forge is required for the .csv and . x1sx formats and the . x1s file extension is not
supported). Note that the base name (i.e. without extension) of the datafile has to be different from
the base name of the model file. If there are several files named FILENAME, but with different file
endings, the file name must be included in quoted strings and provide the file ending like:

estimation (datafile='../fsdat_simul.mat',...);

dirname = FILENAME
Directory in which to store estimation output. To pass a subdirectory of a directory, you must
quote the argument. Default: <mod_file>.

xls_sheet = QUOTED_STRING
The name of the sheet with the data in an Excel file.

xls_range = RANGE
The range with the data in an Excel file. For example, x1s_range=B2:D200.

4.15. Estimation based on likelihood 85

Dynare Reference Manual, Release 5.4

nobs = INTEGER
The number of observations following first_obs to be used. Default: all observations in the file
after first_obs.

nobs = [INTEGERL:INTEGER2]
Runs a recursive estimation and forecast for samples of size ranging of INTEGERL to INTEGER2.
Option forecast must also be specified. The forecasts are stored in the RecursiveForecast
field of the results structure (see RecursiveForecast). The respective results structures oo_
are saved in oo_recursive_ (see oo_recursive_) and are indexed with the respective sample
length.

first_obs = INTEGER
The number of the first observation to be used. In case of estimating a DSGE-VAR, first_obs
needs to be larger than the number of lags. Default: 1.

first_obs = [INTEGER1:INTEGER2]
Runs a rolling window estimation and forecast for samples of fixed size nobs starting with the first
observation ranging from INTEGER1 to INTEGER2. Option forecast must also be specified. This
option is incompatible with requesting recursive forecasts using an expanding window (see nobs).
The respective results structures oo__ are saved in oo_recursive_ (see oo_recursive_) and
are indexed with the respective first observation of the rolling window.

prefilter = INTEGER
A value of 1 means that the estimation procedure will demean each data series by its empirical mean.
If the loglinear option without the 1 ogdat a option is requested, the data will first be logged and then
demeaned. Default: 0, i.e. no prefiltering.

presample = INTEGER
The number of observations after first_obs to be skipped before evaluating the likelihood. These
presample observations do not enter the likelihood, but are used as a training sample for starting the
Kalman filter iterations. This option is incompatible with estimating a DSGE-VAR. Default: 0.

loglinear

Computes a log-linear approximation of the model instead of a linear approximation. As always in
the context of estimation, the data must correspond to the definition of the variables used in the model
(see Pfeifer (2013) for more details on how to correctly specify observation equations linking model
variables and the data). If you specify the loglinear option, Dynare will take the logarithm of both
your model variables and of your data as it assumes the data to correspond to the original non-logged
model variables. The displayed posterior results like impulse responses, smoothed variables, and
moments will be for the logged variables, not the original un-logged ones. Default: computes a linear
approximation.

logdata
Dynare applies the [og transformation to the provided data if a log-linearization of the model is re-
quested (1oglinear) unless logdata option is used. This option is necessary if the user provides
data already in logs, otherwise the log transformation will be applied twice (this may result in complex
data).

plot_priors = INTEGER
Control the plotting of priors.

0

No prior plot.

Prior density for each estimated parameter is plotted. It is important to check that
the actual shape of prior densities matches what you have in mind. Ill-chosen values
for the prior standard density can result in absurd prior densities.

Default value is 1.

nograph
See nograph.

86

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

posterior_nograph
Suppresses the generation of graphs associated with Bayesian IRFs (bayesian_irf), posterior
smoothed objects (smoother), and posterior forecasts (forecast).

posterior_graph
Re-enables the generation of graphs previously shut off with posterior _nograph.

nodisplay
See nodisplay.

graph_format = FORMAT
graph_format = (FORMAT, FORMAT...)
See graph_format.

no_init_estimation_check first_ obs
Do not check for stochastic singularity in first period. If used, ESTIMATION CHECKS does not return
an error if the check fails only in first observation. This should only be used when observing stock
variables (e.g. capital) in first period, on top of their associated flow (e.g. investment). Using this
option may lead to a crash or provide undesired/wrong results for badly specified problems (e.g. the
additional variable observed in first period is not predetermined).

For advanced use only.

lik_init = INTEGER
Type of initialization of Kalman filter:

1
For stationary models, the initial matrix of variance of the error of forecast is set
equal to the unconditional variance of the state variables.

2
For nonstationary models: a wide prior is used with an initial matrix of variance
of the error of forecast diagonal with 10 on the diagonal (follows the suggestion of
Harvey and Phillips(1979)).

3
For nonstationary models: use a diffuse filter (use rather the diffuse_filter
option).

4
The filter is initialized with the fixed point of the Riccati equation.

5

Use 1) option 2 for the non-stationary elements by setting their initial variance in the
forecast error matrix to 10 on the diagonal and all covariances to 0 and ii) option 1
for the stationary elements.

Default value is 1. For advanced use only.

lik_algo = INTEGER
For internal use and testing only.

conf_sig = DOUBLE
Level of significance of the confidence interval used for classical forecasting after estimation. Default:
0.9.

mh_conf sig = DOUBLE
Confidence/HPD interval used for the computation of prior and posterior statistics like: parameter dis-
tributions, prior/posterior moments, conditional variance decomposition, impulse response functions,
Bayesian forecasting. Default: 0. 9.

mh_replic = INTEGER
Number of replications for each chain of the Metropolis-Hastings algorithm. The number of draws

4.15. Estimation based on likelihood 87

Dynare Reference Manual, Release 5.4

should be sufficient to achieve convergence of the MCMC and to meaningfully compute posterior
objects. Default: 20000.

sub_draws = INTEGER
Number of draws from the MCMC that are used to compute posterior distribution of various ob-
jects (smoothed variable, smoothed shocks, forecast, moments, IRF). The draws used to compute
these posterior moments are sampled uniformly in the estimated empirical posterior distribution
(i.e. draws of the MCMC). sub_draws should be smaller than the total number of MCMC
draws available. Default: min (posterior_max_subsample_draws, (Total number
of draws) * (number of chains)).

posterior_max subsample_draws = INTEGER
Maximum number of draws from the MCMC used to compute posterior distribution of various ob-
jects (smoothed variable, smoothed shocks, forecast, moments, IRF), if not overriden by option
sub_draws. Default: 1200.

mh_nblocks = INTEGER
Number of parallel chains for Metropolis-Hastings algorithm. Default: 2.

mh_drop = DOUBLE
The fraction of initially generated parameter vectors to be dropped as a burn-in before using posterior
simulations. Default: 0. 5.

mh_jscale = DOUBLE
The scale parameter of the jumping distribution’s covariance matrix (Metropolis-Hastings or TaRB-
algorithm). The default value is rarely satisfactory. This option must be tuned to obtain, ideally, an
acceptance ratio of 25%-33%. Basically, the idea is to increase the variance of the jumping distribution
if the acceptance ratio is too high, and decrease the same variance if the acceptance ratio is too low. In
some situations it may help to consider parameter-specific values for this scale parameter. This can be
done in the est imated params block.

Note that mode_compute=6 will tune the scale parameter to achieve an acceptance rate
of AcceptanceRateTarget. — The resulting scale parameter will be saved into a file named
MODEL_FILENAME_mh_scale.mat in the FILENAME/Output folder. This file can be
loaded in subsequent runs via the posterior_sampler_options option scale_file. Both
mode_compute=6and scale_file will overwrite any value specified in est imated_params
with the tuned value. Default: 0. 2.

Note also that for the Random Walk Metropolis Hastings algorithm, it is possible to use option
mh_tune_jscale, to automatically tune the value of mh_ jscale. In this case, the mh_jscale
option must not be used.

mh_init_scale = DOUBLE
The scale to be used for drawing the initial value of the Metropolis-Hastings chain. Generally, the
starting points should be overdispersed for the Brooks and Gelman (1998) convergence diagnostics to
be meaningful. Default: 2+mh_jscale.

It is important to keep in mind that mh_init_scale is set at the beginning of Dynare exe-
cution, i.e. the default will not take into account potential changes in mh_jscale introduced
by either mode_compute=6 or the posterior_sampler_options option scale_file. If
mh_init_scale is too wide during initalization of the posterior sampler so that 100 tested draws
are inadmissible (e.g. Blanchard-Kahn conditions are always violated), Dynare will request user in-
put of a new mh_init_scale value with which the next 100 draws will be drawn and tested. If
the nointeractive option has been invoked, the program will instead automatically decrease
mh_init_scale by 10 percent after 100 futile draws and try another 100 draws. This iterative
procedure will take place at most 10 times, at which point Dynare will abort with an error message.

mh_tune_jscale [= DOUBLE]
Automatically tunes the scale parameter of the jumping distribution’s covariance matrix (Metropolis-
Hastings), so that the overall acceptance ratio is close to the desired level. Default value is 0.33. It
is not possible to match exactly the desired acceptance ratio because of the stochastic nature of the
algorithm (the proposals and the initial conditions of the markov chains if mh_nblocks>1). This

88

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

option is only available for the Random Walk Metropolis Hastings algorithm. Must not be used in
conjunction with mh_ jscale = DOUBLE.

mh_tune_guess = DOUBLE
Specifies the initial value for the mh_tune jscale option. Default: 0.2. Must not be set if
mh_tune_jscale is not used.

mh_recover
Attempts to recover a Metropolis-Hastings simulation that crashed prematurely, starting with the last
available saved mh-file. Shouldn’t be used together with 1oad_mh_file oradifferentmh_replic
than in the crashed run. Since Dynare 4.5 the proposal density from the previous run will automat-
ically be loaded. In older versions, to assure a neat continuation of the chain with the same pro-
posal density, you should provide the mode_ file used in the previous run or the same user-defined
mcme_jumping_covariance when using this option. Note that under Octave, a neat continuation
of the crashed chain with the respective last random number generator state is currently not supported.

mh_posterior _mode_estimation
Skip optimizer-based mode-finding and instead compute the mode based on a run of a MCMC. The
MCMC will start at the prior mode and use the prior variances to compute the inverse Hessian.

mode_file = FILENAME
Name of the file containing previous value for the mode. When computing the mode, Dynare
stores the mode (xparaml) and the hessian (hh, only if cova_compute=1) in a file called
MODEL_FILENAME_mode.mat in the FILENAME /Output folder. After a successful run of the
estimation command, the mode_ £i 1e will be disabled to prevent other function calls from implicitly
using an updated mode file. Thus, if the . mod file contains subsequent est imat ion commands, the
mode_file option, if desired, needs to be specified again.

mode_compute = INTEGER | FUNCTION_NAME
Specifies the optimizer for the mode computation:

0

The mode isn’t computed. When the mode_f1ile option is specified, the mode is
simply read from that file.

When mode_ f1ile option is not specified, Dynare reports the value of the log pos-
terior (log likelihood) evaluated at the initial value of the parameters.

When mode_file is not specified and there is no estimated_params block,
but the smoother option is used, it is a roundabout way to compute the smoothed
value of the variables of a model with calibrated parameters.

Uses fmincon optimization routine (available under MATLAB if the Optimiza-
tion Toolbox is installed; available under Octave if the optim package from Octave-
Forge, version 1.6 or above, is installed).

Uses the continuous simulated annealing global optimization algorithm described in
Corana et al.(1987) and Goffe et al.(1994).

Uses fminunc optimization routine (available under MATLAB if the Optimization
Toolbox is installed; available under Octave if the optim package from Octave-Forge
is installed).

Uses Chris Sims’s csminwel.

Uses Marco Ratto’s newrat. This value is not compatible with non linear filters
or DSGE-VAR models. This is a slice optimizer: most iterations are a sequence

4.15. Estimation based on likelihood 89

Dynare Reference Manual, Release 5.4

of univariate optimization step, one for each estimated parameter or shock. Uses
csminwel for line search in each step.

Uses a Monte-Carlo based optimization routine (see https://archives.dynare.org/
DynareWiki/MonteCarloOptimization for more details).

Uses fminsearch, a simplex-based optimization routine (available under MAT-
LAB if the Optimization Toolbox is installed; available under Octave if the optim
package from Octave-Forge is installed).

Uses Dynare implementation of the Nelder-Mead simplex-based optimization rou-
tine (generally more efficient than the MATLAB or Octave implementation available
with mode_ compute=7).

Uses the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) algorithm
of Hansen and Kern (2004), an evolutionary algorithm for difficult non-linear non-
convex optimization.

10

Uses the simpsa algorithm, based on the combination of the non-linear simplex
and simulated annealing algorithms as proposed by Cardoso, Salcedo and Feyo de
Azevedo (1996).

11

This is not strictly speaking an optimization algorithm. The (estimated) parameters
are treated as state variables and estimated jointly with the original state variables
of the model using a nonlinear filter. The algorithm implemented in Dynare is de-
scribed in Liu and West (2001), and works with k order local approximations of the
model.

12

Uses the particleswarm optimization routine (available under MATLAB if the
Global Optimization Toolbox is installed; not available under Octave).

13

Uses the 1sgnonlin non-linear least squares optimization routine (available
under MATLAB if the Optimization Toolbox is installed; available under Oc-
tave if the optim package from Octave-Forge is installed). Only supported for
method_of_moments.

101

Uses the SolveOpt algorithm for local nonlinear optimization problems proposed by
Kuntsevich and Kappel (1997).

102

Uses simulannealbnd optimization routine (available under MATLAB if the
Global Optimization Toolbox is installed; not available under Octave)

FUNCTION_NAME

It is also possible to give a FUNCTION_NAME to this option, instead of an IN-
TEGER. In that case, Dynare takes the return value of that function as the posterior
mode.

Default value is 4.

90

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

silent_optimizer
Instructs Dynare to run mode computing/optimization silently without displaying results or saving
files in between. Useful when running loops.

mcme__jumping covariance = OPTION
Tells Dynare which covariance to use for the proposal density of the MCMC sampler. OPTION can
be one of the following:

hessian
Uses the Hessian matrix computed at the mode.
prior_variance
Uses the prior variances. No infinite prior variances are allowed in this case.
identity matrix
Uses an identity matrix.
FILENAME

Loads an arbitrary user-specified covariance matrix from FILENAME .mat. The
covariance matrix must be saved in a variable named jumping_covariance,
must be square, positive definite, and have the same dimension as the number of
estimated parameters.

Note that the covariance matrices are still scaled with mh_ jscale. Default value is hessian.

mode_check
Tells Dynare to plot the posterior density for values around the computed mode for each estimated
parameter in turn. This is helpful to diagnose problems with the optimizer. Note that for order>1 the
likelihood function resulting from the particle filter is not differentiable anymore due to the resampling
step. For this reason, the mode_check plot may look wiggly.

mode_check neighbourhood _size = DOUBLE
Used in conjunction with option mode_check, gives the width of the window around the pos-
terior mode to be displayed on the diagnostic plots. This width is expressed in percentage de-
viation. The Inf value is allowed, and will trigger a plot over the entire domain (see also
mode_check_symmetric_plots). Default:0. 5.

mode_check_symmetric_plots = INTEGER
Used in conjunction with option mode_check, if set to 1, tells Dynare to ensure that the check
plots are symmetric around the posterior mode. A value of 0 allows to have asymmetric plots,
which can be useful if the posterior mode is close to a domain boundary, or in conjunction with
mode_check_neighbourhood_size = Inf when the domain in not the entire real line. De-
fault: 1.

mode_check_number_of_points = INTEGER
Number of points around the posterior mode where the posterior kernel is evaluated (for each param-
eter). Default is 20.

prior_trunc = DOUBLE
Probability of extreme values of the prior density that is ignored when computing bounds for the
parameters. Default: 1e-32.

huge_number = DOUBLE
Value for replacing infinite values in the definition of (prior) bounds when finite values are required
for computational reasons. Default: 1e7.

load mh_file
Tells Dynare to add to previous Metropolis-Hastings simulations instead of starting from scratch.
Since Dynare 4.5 the proposal density from the previous run will automatically be loaded. In older
versions, to assure a neat continuation of the chain with the same proposal density, you should provide
the mode_ f1ile used in the previous run or the same user-defined mcmc_ jumping_covariance
when using this option. Shouldn’t be used together with mh_recover. Note that under Octave, a

4.15. Estimation based on likelihood 91

Dynare Reference Manual, Release 5.4

neat continuation of the chain with the last random number generator state of the already present draws
is currently not supported.

load_results_after_ load mh
This option is available when loading a previous MCMC run without adding additional draws, i.e.
when load_mh_file is specified with mh_replic=0. It tells Dynare to load the previously
computed convergence diagnostics, marginal data density, and posterior statistics from an existing
_results file instead of recomputing them.

mh_initialize_from_previous_mcmc

This option allows to pick initial values for new MCMC from a previous one, where the model spec-
ification, the number of estimated parameters, (some) prior might have changed (so a situation where
load_mh_f1ile would not work). If an additional parameter is estimated, it is automatically initial-
ized from prior_draw. Note that, if this option is used to skip the optimization step, you should use a
sampling method which does not require a proposal density, like slice. Otherwise, optimization should
always be done beforehand or a mode file with an appropriate posterior covariance matrix should be
used.

mh_initialize from previous_mcmc directory = FILENAME
Ifmh_initialize_from_previous_mcmc is set, users must provide here the path to the stan-
dard FNAME folder from where to load prior definitions and last MCMC values to be used to initialize
the new MCMC.

Example: if previous project directory is /my_previous_dir and FNAME is mymodel, users
should set the option as

mh_initialize_from_previous_mcmc_directory = '/my_previous_dir/
mymodel'

Dynare will then look for the last record file into
/my_previous_dir/mymodel/metropolis/mymodel_mh_history_ <LAST>.mat
and for the prior definition file into
/my_previous_dir/mymodel/prior/definition.mat

mh_initialize from previous_mcmc_record = FILENAME
Ifmh_initialize_from_previous_mcmc is set, and whenever the standard file or directory
tree is not applicable to load initial values, users may directly provide here the path to the record file
from which to load values to be used to initialize the new MCMC.

mh_initialize_ from previous_mcmc_prior = FILENAME
Ifmh_initialize_from_previous_mcmc is set, and whenever the standard file or directory
tree is not applicable to load initial values, users may directly provide here the path to the prior defini-
tion file, to get info in the priors used in previous MCMC.

optim = (NAME, VALUE, ...)
A list of NAME and VALUE pairs. Can be used to set options for the optimization routines. The
set of available options depends on the selected optimization routine (i.e. on the value of option
mode_compute):

i, 3, 7, 12, 13

Available options are given in the documentation of the MATLAB Optimization
Toolbox or in Octave’s documentation.

Available options are:
'initial_step_length'
Initial step length. Default: 1.
'initial_temperature'

Initial temperature. Default: 15.

92 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

'MaxIter'
Maximum number of function evaluations. Default: 100000.
'neps'

Number of final function values used to decide upon termination. Default:
10.

ns
Number of cycles. Default: 10.
tnt !
Number of iterations before temperature reduction. Default: 10.
'step_length_c'
Step length adjustment. Default: 0. 1.
'TolFun'
Stopping criteria. Default: 1e—-8.
Crg
Temperature reduction factor. Default: 0. 1.
'verbosity'

Controls verbosity of display during optimization, ranging from 0 (silent)
to 3 (each function evaluation). Default: 1

Available options are:
'InitialInverseHessian’

Initial approximation for the inverse of the Hessian matrix of the posterior
kernel (or likelihood). Obviously this approximation has to be a square,
positive definite and symmetric matrix. Default: 'le-4xeye (nx) ',
where nx is the number of parameters to be estimated.

'MaxIter'
Maximum number of iterations. Default: 1000.
'NumgradAlgorithm'

Possible values are 2, 3 and 5, respectively, corresponding to the two,
three and five points formula used to compute the gradient of the objective
function (see Abramowitz and Stegun (1964)). Values 13 and 15 are more
experimental. If perturbations on the right and the left increase the value of
the objective function (we minimize this function) then we force the cor-
responding element of the gradient to be zero. The idea is to temporarily
reduce the size of the optimization problem. Default: 2.

'NumgradEpsilon'

Size of the perturbation used to compute numerically the gradient of the
objective function. Default: 1e—6.

'TolFun'
Stopping criteria. Default: 1e—-7.
'verbosity'

Controls verbosity of display during optimization. Set to 0 to set to silent.
Default: 1.

. Estimation based on likelihood 93

Dynare Reference Manual, Release 5.4

'SaveFiles'

Controls saving of intermediate results during optimization. Set to O to
shut off saving. Default: 1.

Available options are:

'Hessian'

Triggers three types of Hessian computations. 0: outer product gradient; 1:
default Dynare Hessian routine; 2: mixed’ outer product gradient, where di-
agonal elements are obtained using second order derivation formula and outer
product is used for correlation structure. Both {0} and {2} options require uni-
variate filters, to ensure using maximum number of individual densities and a
positive definite Hessian. Both {0} and {2} are quicker than default Dynare
numeric Hessian, but provide decent starting values for Metropolis for large
models (option {2} being more accurate than {0}). Default: 1.

'MaxIter'

Maximum number of iterations. Default: 1000.

'TolFun'

Stopping criteria. Default: 1e-5 for numerical derivatives, 1e—7 for analytic
derivatives.

'verbosity'

Controls verbosity of display during optimization. Set to 0 to set to silent.
Default: 1.

'SaveFiles'

Controls saving of intermediate results during optimization. Set to 0 to shut off
saving. Default: 1.

Available options are:

'AcceptanceRateTarget'

A real number between zero and one. The scale parameter of the jumping
distribution is adjusted so that the effective acceptance rate matches the
value of option 'AcceptanceRateTarget'. Default: 1.0/3.0.

'InitialCovarianceMatrix'

Initial covariance matrix of the jumping distribution. Default is
'previous' if option mode_fileisused, 'prior' otherwise.

'nclimb-mh'

Number of iterations in the last MCMC (climbing mode). Default:
200000.

'ncov-mh'

Number of iterations used for updating the covariance matrix of the jump-
ing distribution. Default: 20000.

'nscale-mh'

Maximum number of iterations used for adjusting the scale parameter of
the jumping distribution. Default: 200000.

'NumberOfMh'

Number of MCMC run sequentially. Default: 3.

94

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Available options are:
'ITnitialSimplexSize'

Initial size of the simplex, expressed as percentage deviation from the pro-
vided initial guess in each direction. Default: . 05.

'MaxIter'

Maximum number of iterations. Default: 5000.
'MaxFunEvals'

Maximum number of objective function evaluations. No default.
'MaxFunvEvalFactor'

Set MaxFunvEvals equal to MaxFunvEvalFactor times the number
of estimated parameters. Default: 500.

'TolFun'

Tolerance parameter (w.r.t the objective function). Default: 1e-4.
'TolX'

Tolerance parameter (w.r.t the instruments). Default: 1e-4.
'verbosity'

Controls verbosity of display during optimization. Set to 0 to set to silent.
Default: 1.

Available options are:
'CMAESResume'

Resume previous run. Requires the variablescmaes.mat from the
last run. Set to 1 to enable. Default: 0.

'MaxIter'

Maximum number of iterations.
'MaxFunEvals'

Maximum number of objective function evaluations. Default: Inf.
'TolFun'

Tolerance parameter (w.r.t the objective function). Default: 1e-7.
'TolX'

Tolerance parameter (w.r.t the instruments). Default: 1e-7.
'verbosity'

Controls verbosity of display during optimization. Set to 0 to set to silent.
Default: 1.

'SaveFiles'

Controls saving of intermediate results during optimization. Set to O to
shut off saving. Default: 1.

10
Available options are:

'EndTemperature’

4.15.

Estimation based on likelihood 95

Dynare Reference Manual, Release 5.4

Terminal condition w.r.t the temperature. When the temperature reaches
EndTemperature, the temperature is set to zero and the algorithm falls
back into a standard simplex algorithm. Default: 0. 1.

'MaxIter'

Maximum number of iterations. Default: 5000.
'MaxFunvEvals'

Maximum number of objective function evaluations. No default.
'TolFun'

Tolerance parameter (w.r.t the objective function). Default: 1e—-4.
'TolX'

Tolerance parameter (w.r.t the instruments). Default: 1e—4.
'verbosity'

Controls verbosity of display during optimization. Set to 0 to set to silent.
Default: 1.

101
Available options are:
'LBGradientStep'

Lower bound for the stepsize used for the difference approximation of
gradients. Default: 1e-11.

'MaxIter'

Maximum number of iterations. Default: 15000
'SpaceDilation'

Coefficient of space dilation. Default: 2. 5.
'TolFun'

Tolerance parameter (w.r.t the objective function). Default: 1e-6.
'TolX'

Tolerance parameter (w.r.t the instruments). Default: 1e—6.
'verbosity'

Controls verbosity of display during optimization. Set to O to set to silent.
Default: 1.

102

Available options are given in the documentation of the MATLAB Global Optimiza-
tion Toolbox.

Example

To change the defaults of csminwel (mode_compute=4):

estimation(..., mode_compute=4,optim=('NumgradAlgorithm',3, 'TolFun’',
—le=-5),...);

nodiagnostic
Does not compute the convergence diagnostics for Metropolis-Hastings. Default: diagnostics are
computed and displayed.

96 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

bayesian_irf
Triggers the computation of the posterior distribution of IRFs. The length of the IRFs are controlled
by the irf option. Results are stored in oo__.PosteriorIRF.dsge (see below for a description
of this variable).

relative_ irf
See relative_irf

dsge_var = DOUBLE
Triggers the estimation of a DSGE-VAR model, where the weight of the DSGE prior of the VAR
model is calibrated to the value passed (see Del Negro and Schorfheide (2004)). It represents the ratio
of dummy over actual observations. To assure that the prior is proper, the value must be bigger than
(k 4+ n)/T, where k is the number of estimated parameters, n is the number of observables, and T is
the number of observations.

NB: The previous method of declaring dsge_prior_weight as a parameter and then cal-
ibrating it is now deprecated and will be removed in a future release of Dynare. Some of ob-
jects arising during estimation are stored with their values at the mode in co_.dsge_var.
posterior_mode.

dsge_var
Triggers the estimation of a DSGE-VAR model, where the weight of the DSGE prior of the VAR
model will be estimated (as in Adjemian et al.(2008)). The prior on the weight of the DSGE prior,
dsge_prior_weight, must be defined in the est imated_params section.

NB: The previous method of declaring dsge_prior_weight as a parameter and then placing it in
estimated_params is now deprecated and will be removed in a future release of Dynare.

dsge_varlag = INTEGER
The number of lags used to estimate a DSGE-VAR model. Default: 4.

posterior_ sampling method = NAME
Selects the sampler used to sample from the posterior distribution during Bayesian estimation. De-
fault:” random_walk_metropolis_hastings’.

'random_walk_metropolis_hastings'

Instructs Dynare to use the Random-Walk Metropolis-Hastings. In this algorithm,
the proposal density is recentered to the previous draw in every step.

'tailored_random_block_metropolis_hastings'

Instructs Dynare to use the Tailored randomized block (TaRB) Metropolis-Hastings
algorithm proposed by Chib and Ramamurthy (2010) instead of the standard
Random-Walk Metropolis-Hastings. In this algorithm, at each iteration the esti-
mated parameters are randomly assigned to different blocks. For each of these
blocks a mode-finding step is conducted. The inverse Hessian at this mode is then
used as the covariance of the proposal density for a Random-Walk Metropolis-
Hastings step. If the numerical Hessian is not positive definite, the generalized
Cholesky decomposition of Schnabel and Eskow (1990) is used, but without piv-
oting. The TaRB-MH algorithm massively reduces the autocorrelation in the MH
draws and thus reduces the number of draws required to representatively sample
from the posterior. However, this comes at a computational cost as the algorithm
takes more time to run.

'independent_metropolis_hastings'

Use the Independent Metropolis-Hastings algorithm where the proposal distribution
- in contrast to the Random Walk Metropolis-Hastings algorithm - does not depend
on the state of the chain.

'slice'

Instructs Dynare to use the Slice sampler of Planas, Ratto, and Rossi (2015). Note
that "slice' is incompatible with prior_ trunc=0.

4.15. Estimation based on likelihood 97

Dynare Reference Manual, Release 5.4

Whereas one Metropolis-Hastings iteration requires one evaluation of the posterior,
one slice iteration requires neval evaluations, where as a rule of thumb neval = 7 x
npar with npar denoting the number of estimated parameters. Spending the same
computational budget of N posterior evaluations in the slice sampler then implies
setting mh_replic=N/neval.

Note that the slice sampler will typically return less autocorrelated Monte Carlo
Markov Chain draws than the MH-algorithm. Its relative (in)efficiency can be inves-
tigated via the reported inefficiency factors.

posterior_sampler options = (NAME, VALUE, ...)
A list of NAME and VALUE pairs. Can be used to set options for the posterior sampling methods.
The set of available options depends on the selected posterior sampling routine (i.e. on the value of
option posterior_sampling_method):

'random_walk_metropolis_hastings'

Available options are:
'proposal_distribution’

Specifies the statistical distribution used for the proposal density.
'rand_multivariate_normal'

Use a multivariate normal distribution. This is the default.
'rand_multivariate_student'

Use a multivariate student distribution.
'student_degrees_of_freedom'

Specifies the degrees of freedom to be used with the multivariate student distribution.
Default: 3.

'use_mh_covariance_matrix'

Indicates to use the covariance matrix of the draws from a previous MCMC run to
define the covariance of the proposal distribution. Requires the 1oad mh_file
option to be specified. Default: 0.

'scale_file'

Provides the name of a_mh_scale.mat file storing the tuned scale factor from a
previous run of mode_compute=6.

'save_tmp_file'

Save the MCMC draws into a _mh_tmp_blck file at the refresh rate of the sta-
tus bar instead of just saving the draws when the current _mh+_b1lck file is full.
Default: 0

'independent_metropolis_hastings'

Takes the same options as in the case of
random_walk_metropolis_hastings.

'slice'
'rotated'

Triggers rotated slice iterations using a covariance matrix from initial
burn-in iterations. Requires either use_mh_covariance_matrix or
slice_initialize_with_mode. Default: O.

'mode_files'

For multimodal posteriors, provide the name of a file containing a nparam by
nmodes variable called xparams storing the different modes. This array must

98 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

have one column vector per mode and the estimated parameters along the row di-
mension. With this info, the code will automatically trigger the rotated and mode
options. Default: [].

'slice_initialize_with_mode'

The default for slice is to set mode_compute=0 and start the chain(s) from a
random location in the prior space. This option first runs the mode-finder and then
starts the chain from the mode. Together with rotated, it will use the inverse
Hessian from the mode to perform rotated slice iterations. Default: 0.

'initial_step_size'

Sets the initial size of the interval in the stepping-out procedure as fraction of
the prior support, i.e. the size will be initial_step_size x (UB-LB).
initial_step_size must be a real number in the interval [0, 1]. Default:
0.8.

'use_mh_covariance_matrix'

See use_mh_covariance_matrix. Must be used with ' rotated’. Default: O.
'save_tmp_file'

See save_tmp_file. Default: 1.
'tailored_random_block_metropolis_hastings'
'proposal_distribution'’

Specifies the statistical distribution used for the proposal density. See pro-
posal_distribution.

new_block_probability = DOUBLE

Specifies the probability of the next parameter belonging to a new block when the
random blocking in the TaRB Metropolis-Hastings algorithm is conducted. The
higher this number, the smaller is the average block size and the more random blocks
are formed during each parameter sweep. Default: 0.25.

mode_compute = INTEGER

Specifies the mode-finder run in every iteration for every block of the TaRB
Metropolis-Hastings algorithm. See mode_compute. Default: 4.

optim = (NAME, VALUE,...)

Specifies the options for the mode-finder used in the TaRB Metropolis-Hastings al-
gorithm. See optim.

'scale_file'

See scale_file..
'save_tmp_file'

See save_tmp_file. Default: 1.

moments_varendo
Triggers the computation of the posterior distribution of the theoretical moments of the endoge-
nous variables. Results are stored in oco_.PosteriorTheoreticalMoments (see oo .
PosteriorTheoreticalMoments). The number of lags in the autocorrelation function is con-
trolled by the ar option.

contemporaneous_correlation
See contemporaneous_correlation. Results are stored in 0O0o_
PosteriorTheoreticalMoments. Note that the nocorr option has no effect.

no_posterior_kernel density
Shuts off the computation of the kernel density estimator for the posterior objects (see density field).

4.15. Estimation based on likelihood 99

Dynare Reference Manual, Release 5.4

conditional_variance_decomposition INTEGER

conditional_variance_decomposition = [INTEGER1:INTEGER2]

conditional_variance_decomposition = [INTEGER1l INTEGER2 ...]
Computes the posterior distribution of the conditional variance decomposition for the specified pe-
riod(s). The periods must be strictly positive. Conditional variances are given by var(yi1x|t).
For period 1, the conditional variance decomposition provides the decomposition of the effects
of shocks upon impact. The results are stored in co_.PosteriorTheoreticalMoments.
dsge.ConditionalVarianceDecomposition.. Note that this option requires the option
moments_varendo to be specified. In the presence of measurement error, the field will con-
tain the variance contribution after measurement error has been taken out, i.e. the decomposition
will be conducted of the actual as opposed to the measured variables. The variance decomposition
of the measured variables will be stored in oo_.PosteriorTheoreticalMoments.dsge.
ConditionalVarianceDecompositionME.

filtered vars
Triggers the computation of the posterior distribution of filtered endogenous variables/one-step ahead
forecasts, i.e. Eyys1. Results are stored in oo_.FilteredVariables (see below for a descrip-
tion of this variable)

smoother

Triggers the computation of the posterior distribution of smoothed endogenous variables and shocks,
i.e. the expected value of variables and shocks given the information available in all observa-
tions up to the final date (Ery:). Results are stored in oo_.SmoothedVariables, oo_.
SmoothedShocks and oo_ . SmoothedMeasurementErrors. Also triggers the computation
of oo_.UpdatedvVariables, which contains the estimation of the expected value of variables
given the information available at the current date (F,y,). See below for a description of all these
variables.

smoother redux

Triggers a faster computation of the smoothed endogenous variables and shocks for large models.
It runs the smoother only for the state variables (i.e. with the same representation used for likeli-
hood computations) and computes the remaining variables ex-post. Static unobserved objects (filtered,
smoothed, updated, k-step ahead) are recovered, but there are exceptions to a full recovery, depending
on how static unobserved variables depend on the restricted state space adopted. For example, lagged
shocks which are ONLY used to recover NON-observed static variables will not be recovered). For
such exceptions, only the following output is provided:

FilteredvVariablesKStepAhead: will be fully recovered

SmoothedVariables,FilteredVariables, UpdatedVariables: recovered for all periods beyond j
where d denotes the number of diffuse filtering steps.

FilteredVariablesKStepAheadVariances, Variance, and
State_uncertainty cannot be recovered, and ZERO is provided as output.

If you need variances for those variables, either do not set the option, or declare the variable as ob-
served, using NaNs as data points.

forecast = INTEGER
Computes the posterior distribution of a forecast on INTEGER periods after the end of the sample used
in estimation. If no Metropolis-Hastings is computed, the result is stored in variable co_ . forecast
and corresponds to the forecast at the posterior mode. If a Metropolis-Hastings is computed, the
distribution of forecasts is stored in variables oo .PointForecast and oo_.MeanForecast.
See Forecasting, for a description of these variables.

tex
See tex.

kalman_algo = INTEGER
0

Automatically use the Multivariate Kalman Filter for stationary models and the Mul-
tivariate Diffuse Kalman Filter for non-stationary models.

100 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

1
Use the Multivariate Kalman Filter.
2
Use the Univariate Kalman Filter.
3
Use the Multivariate Diffuse Kalman Filter.
4

Use the Univariate Diffuse Kalman Filter.

Default value is 0. In case of missing observations of single or all series, Dynare treats those miss-
ing values as unobserved states and uses the Kalman filter to infer their value (see e.g. Durbin and
Koopman (2012), Ch. 4.10) This procedure has the advantage of being capable of dealing with ob-
servations where the forecast error variance matrix becomes singular for some variable(s). If this
happens, the respective observation enters with a weight of zero in the log-likelihood, i.e. this ob-
servation for the respective variable(s) is dropped from the likelihood computations (for details see
Durbin and Koopman (2012), Ch. 6.4 and 7.2.5 and Koopman and Durbin (2000)). If the use of a
multivariate Kalman filter is specified and a singularity is encountered, Dynare by default automati-
cally switches to the univariate Kalman filter for this parameter draw. This behavior can be changed
viathe use_univariate filters_if singularity is_detected option.

fast_kalman_filter
Select the fast Kalman filter using Chandrasekhar recursions as described by Herbst (2015).
This setting is only used with kalman_algo=1 or kalman_algo=3. In case of using the diffuse
Kalman filter (kalman_algo=3/1ik_init=3), the observables must be stationary. This option
is not yet compatible with analytic derivation.

kalman_tol = DOUBLE
Numerical tolerance for determining the singularity of the covariance matrix of the prediction errors
during the Kalman filter (minimum allowed reciprocal of the matrix condition number). Default value
is 1e-10.

diffuse_kalman_ tol = DOUBLE
Numerical tolerance for determining the singularity of the covariance matrix of the prediction errors
(Fs) and the rank of the covariance matrix of the non-stationary state variables (P,) during the
Diffuse Kalman filter. Default value is 1e—-6.

filter covariance
Saves the series of one step ahead error of forecast covariance matrices. With Metropolis, they are
saved in oo_.FilterCovariance, otherwise in oo_.Smoother.Variance. Saves also k-
step ahead error of forecast covariance matrices if filter_step_ahead is set.

filter_step_ahead [INTEGER1 : INTEGER2]

filter_step_ahead = [INTEGER1 INTEGER2 ...]
Triggers the computation k-step ahead filtered values, i.e. Eyyiyk. Stores results
in oo_.FilteredVariablesKStepAhead. Also stores 1-step ahead values in oo_.
FilteredVariables. oo_.FilteredVariablesKStepAheadVariances is stored if
filter_covariance.

filter_decomposition
Triggers the computation of the shock decomposition of the above k-step ahead filtered values. Stores
results in oo_.FilteredVariablesShockDecomposition.

smoothed state_ uncertainty
Triggers the computation of the variance of smoothed estimates, i.e. vary(y;). Stores results in oo_.
Smoother.State_uncertainty.

diffuse_ filter
Uses the diffuse Kalman filter (as described in Durbin and Koopman (2012) and Koopman and Durbin
(2003) for the multivariate and Koopman and Durbin (2000) for the univariate filter) to estimate models

4.15. Estimation based on likelihood 101

Dynare Reference Manual, Release 5.4

with non-stationary observed variables. This option will also reset the gz_criterium to count unit
root variables towards the stable variables. Trying to estimate a model with unit roots will otherwise
result in a Blanchard-Kahn error.

When diffuse_filterisusedthe 1ik_init option of estimation has no effect.

When there are nonstationary exogenous variables in a model, there is no unique deterministic steady
state. For instance, if productivity is a pure random walk:

ar = ar—1 + €

any value of @ of a is a deterministic steady state for productivity. Consequently, the model ad-
mits an infinity of steady states. In this situation, the user must help Dynare in selecting one
steady state, except if zero is a trivial model’s steady state, which happens when the 1inear op-
tion is used in the model declaration. The user can either provide the steady state to Dynare us-
ing a steady_state_model block (or writing a steady state file) if a closed form solution is
available, see steady_state_model, or specify some constraints on the steady state, see equa-
tion_tag_for_conditional_steady_state, so that Dynare computes the steady state conditionally on
some predefined levels for the non stationary variables. In both cases, the idea is to use dummy
values for the steady state level of the exogenous non stationary variables.

Note that the nonstationary variables in the model must be integrated processes (their first difference
or k-difference must be stationary).

heteroskedastic_filter
Runs filter, likelihood, and smoother using heteroskedastic definitions provided in a
heteroskedastic_shocks block.

selected variables_only
Only run the classical smoother on the variables listed just after the est imation command. This
option is incompatible with requesting classical frequentist forecasts and will be overridden in this
case. When using Bayesian estimation, the smoother is by default only run on the declared endogenous
variables. Default: run the smoother on all the declared endogenous variables.

cova_compute = INTEGER
When 0, the covariance matrix of estimated parameters is not computed after the computation of pos-
terior mode (or maximum likelihood). This increases speed of computation in large models during
development, when this information is not always necessary. Of course, it will break all successive
computations that would require this covariance matrix. Otherwise, if this option is equal to 1, the co-
variance matrix is computed and stored in variable hh of MODEL_FILENAME_mode .mat. Default
is 1.

solve_algo = INTEGER
See solve_algo.

order = INTEGER
Order of approximation around the deterministic steady state. When greater than 1, the likelihood
is evaluated with a particle or nonlinear filter (see Ferndndez-Villaverde and Rubio-Ramirez (2005)).
Default is 1, i.e. the likelihood of the linearized model is evaluated using a standard Kalman filter.

irf = INTEGER
See irf. Only used if bayesian_irf is passed.

irf shocks = (VARIABLE NAME [[,] VARIABLE NAME ...])
See irf_shocks. Only used if bayesian_ irf ispassed.

irf plot_threshold = DOUBLE
See irf_plot_threshold. Only usedif hayesian_irf is passed.

aim_solver
See aim _solver.

102

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

sylvester = OPTION
See sylvester

sylvester_fixed point_tol = DOUBLE
See sylvester_fixed_point_tol.

lyapunov = OPTION
Determines the algorithm used to solve the Lyapunov equation to initialized the variance-covariance
matrix of the Kalman filter using the steady-state value of state variables. Possible values for OPTION
are:

default
Uses the default solver for Lyapunov equations based on Bartels-Stewart algorithm.
fixed_point

Uses a fixed point algorithm to solve the Lyapunov equation. This method is faster
than the default one for large scale models, but it could require a large amount of
iterations.

doubling

Uses a doubling algorithm to solve the Lyapunov equation (disclyap_fast).
This method is faster than the two previous one for large scale models.

square_root_solver

Uses a square-root solver for Lyapunov equations (d1lyapchol). This method is
fast for large scale models (available under MATLAB if the Control System Tool-
box is installed; available under Octave if the control package from Octave-Forge is
installed)

Default value is default.

lyapunov_fixed point_tol = DOUBLE
This is the convergence criterion used in the fixed point Lyapunov solver. Its default value is 1e-10.

lyapunov_doubling tol = DOUBLE
This is the convergence criterion used in the doubling algorithm to solve the Lyapunov equation. Its
default value is 1e-16.

use_penalized objective_for_ hessian
Use the penalized objective instead of the objective function to compute numerically the hessian matrix
at the mode. The penalties decrease the value of the posterior density (or likelihood) when, for some
perturbations, Dynare is not able to solve the model (issues with steady state existence, Blanchard and
Kahn conditions, .. .). In pratice, the penalized and original objectives will only differ if the posterior
mode is found to be near a region where the model is ill-behaved. By default the original objective
function is used.

analytic_derivation
Triggers estimation with analytic gradient at order=1. The final hessian at the mode is also
computed analytically. Only works for stationary models without missing observations, i.e. for
kalman_algo<3. Optimizers that rely on analytic gradients are mode_compute=1, 3,4, 5,
101.

ar = INTEGER
See ar. Only useful in conjunction with option moments_varendo.

endogenous_prior
Use endogenous priors as in Christiano, Trabandt and Walentin (2011). The procedure is motivated
by sequential Bayesian learning. Starting from independent initial priors on the parameters, specified
in the estimated_params block, the standard deviations observed in a “pre-sample”, taken to be
the actual sample, are used to update the initial priors. Thus, the product of the initial priors and the
pre-sample likelihood of the standard deviations of the observables is used as the new prior (for more
information, see the technical appendix of Christiano, Trabandt and Walentin (2011)). This procedure
helps in cases where the regular posterior estimates, which minimize in-sample forecast errors, result

4.15. Estimation based on likelihood 103

Dynare Reference Manual, Release 5.4

in a large overprediction of model variable variances (a statistic that is not explicitly targeted, but often
of particular interest to researchers).

use_univariate_filters_if singularity_is_detected = INTEGER
Decide whether Dynare should automatically switch to univariate filter if a singularity is encountered
in the likelihood computation (this is the behaviour if the option is equal to 1). Alternatively, if the
option is equal to 0, Dynare will not automatically change the filter, but rather use a penalty value for
the likelihood when such a singularity is encountered. Default: 1.

keep_kalman_algo_if_ singularity_is_detected

With the default use _univariate filters if singularity_ is detected=1,Dynare
will switch to the univariate Kalman filter when it encounters a singular forecast error variance matrix
during Kalman filtering. Upon encountering such a singularity for the first time, all subsequent param-
eter draws and computations will automatically rely on univariate filter, i.e. Dynare will never try the
multivariate filter again. Use the keep_kalman_algo_1if_singularity_is_detected op-
tion to have the use_univariate_filters_if_singularity_is_detected only affect
the behavior for the current draw/computation.

rescale_prediction_error_covariance
Rescales the prediction error covariance in the Kalman filter to avoid badly scaled matrix and reduce
the probability of a switch to univariate Kalman filters (which are slower). By default no rescaling is
done.

gz_zero_threshold = DOUBLE
See qz_zero_threshold.

taper_steps = [INTEGER1 INTEGER2 ...]
Percent tapering used for the spectral window in the Geweke (1992,1999) convergence diagnostics
(requires mh_nblocks=1). The tapering is used to take the serial correlation of the posterior draws
into account. Default: [4 8 15].

geweke_interval = [DOUBLE DOUBLE]
Percentage of MCMC draws at the beginning and end of the MCMC chain taken to compute the
Geweke (1992,1999) convergence diagnostics (requires mh_nblocks=1) after discarding the first
mh_drop = DOUBLE percent of draws as a burnin. Default: [0.2 0.5].

raftery_ lewis_diagnostics

Triggers the computation of the Raftery and Lewis (1992) convergence diagnostics. The goal is deliver
the number of draws required to estimate a particular quantile of the CDF g with precision r with a
probability s. Typically, one wants to estimate the g=0 . 025 percentile (corresponding to a 95 percent
HPDI) with a precision of 0.5 percent (r=0.005) with 95 percent certainty (s=0.95). The defaults
can be changed via raftery lewis_ grs. Based on the theory of first order Markov Chains, the
diagnostics will provide a required burn-in (M), the number of draws after the burnin (N) as well as a
thinning factor that would deliver a first order chain (k). The last line of the table will also deliver the
maximum over all parameters for the respective values.

raftery lewis_qrs = [DOUBLE DOUBLE DOUBLE]
Sets the quantile of the CDF ¢ that is estimated with precision r with a probability s in the Raftery
and Lewis (1992) convergence diagnostics. Default: [0.025 0.005 0.95].

consider_all endogenous
Compute the posterior moments, smoothed variables, k-step ahead filtered variables and forecasts
(when requested) on all the endogenous variables. This is equivalent to manually listing all the en-
dogenous variables after the est imation command.

consider_all_endogenous_and_auxiliary
Compute the posterior moments, smoothed variables, k-step ahead filtered variables and forecasts
(when requested) on all the endogenous variables and the auxiliary variables introduced by the prepro-
cessor. This option is useful when e.g. running smoother2histval on the results of the Kalman
smoother.

consider_only observed
Compute the posterior moments, smoothed variables, k-step ahead filtered variables and forecasts

104

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

(when requested) on all the observed variables. This is equivalent to manually listing all the observed
variables after the est imation command.

number_ of_ particles = INTEGER
Number of particles used when evaluating the likelihood of a non linear state space model. Default:
1000.

resampling = OPTION
Determines if resampling of the particles is done. Possible values for OPTION are:

none
No resampling.
systematic
Resampling at each iteration, this is the default value.
generic

Resampling if and only if the effective sample size is below a certain level defined
by resampling_threshold * number_of particles

resampling threshold = DOUBLE
A real number between zero and one. The resampling step is triggered as soon as the effec-
tive number of particles is less than this number times the total number of particles (as set by
number_of_particles). This option is effective if and only if option resampling has value
generic.

resampling method = OPTION
Sets the resampling method. Possible values for OPTION are: kitagawa, stratified and
smooth.

filter_algorithm = OPTION
Sets the particle filter algorithm. Possible values for OPTION are:

sis

Sequential importance sampling algorithm, this is the default value.
apf

Aucxiliary particle filter.
gf

Gaussian filter.
gmf

Gaussian mixture filter.
cpf

Conditional particle filter.
nlkf

Use a standard (linear) Kalman filter algorithm with the nonlinear measurement and
state equations.

proposal_approximation = OPTION
Sets the method for approximating the proposal distribution. Possible values for OPTION are:
cubature, montecarlo and unscented. Default value is unscented.

distribution_approximation = OPTION
Sets the method for approximating the particle distribution. Possible values for OPTION are:
cubature, montecarlo and unscented. Default value is unscented.

4.15. Estimation based on likelihood 105

Dynare Reference Manual, Release 5.4

cpf_weights = OPTION
Controls the method used to update the weights in conditional particle filter, possible values are
amisanotristani (Amisano et al. (2010)) or murrayjonesparslow (Murray et al. (2013)).
Default value is amisanotristani.

nonlinear filter initialization = INTEGER

Sets the initial condition of the nonlinear filters. By default the nonlinear filters are initialized with
the unconditional covariance matrix of the state variables, computed with the reduced form solution
of the first order approximation of the model. If nonlinear_filter_initialization=2,
the nonlinear filter is instead initialized with a covariance matrix estimated with a stochastic sim-
ulation of the reduced form solution of the second order approximation of the model. Both these
initializations assume that the model is stationary, and cannot be used if the model has unit roots
(which can be seen with the check command prior to estimation). If the model has stochas-
tic trends, user must use nonlinear_filter_ initialization=3, the filters are then ini-
tialized with an identity matrix for the covariance matrix of the state variables. Default value is
nonlinear_filter_initialization=1 (initialization based on the first order approxima-
tion of the model).

particle filter_ options = (NAME, VALUE, ...)
A list of NAME and VALUE pairs. Can be used to set some fine-grained options for the particle filter
routines. The set of available options depends on the selected filter routine.

More information on particle filter options is available at https://git.dynare.org/Dynare/dynare/-/wikis/
Particle-filters.

Available options are:

'pruning’

Enable pruning for particle filter-related simulations. Default: false.
'liu_west_delta'

Set the value for delta for the Liu/West online filter. Default: 0. 99.
'unscented_alpha'

Set the value for alpha for unscented transforms. Default: 1.
'unscented_beta'

Set the value for beta for unscented transforms. Default: 2.
'unscented_kappa'

Set the value for kappa for unscented transforms. Default: 1.
'initial_state_prior_std'

Value of the diagonal elements for the initial covariance of the state variables when
employing nonlinear_filter_initialization=3. Default: 1.

'mixture_state_variables'

Number of mixture components in the Gaussian-mixture filter (gmf) for the state
variables. Default: 5.

'mixture_structural_shocks'

Number of mixture components in the Gaussian-mixture filter (gmf) for the struc-
tural shocks. Default: 1.

'mixture_measurement_shocks'

Number of mixture components in the Gaussian-mixture filter (gmf) for the mea-
surement errors. Default: 1.

Note

106 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

If no mh_jscale parameter is used for a parameter in estimated_params, the procedure uses
mh_ jscale for all parameters. If mh__jscale option isn’t set, the procedure uses O . 2 for all parameters.
Note that if mode_compute=6 is used or the posterior_sampler_option called scale_file
is specified, the values set in est imated_params will be overwritten.

“Endogenous” prior restrictions

It is also possible to impose implicit “endogenous” priors about IRFs and moments on the model during
estimation. For example, one can specify that all valid parameter draws for the model must generate fiscal
multipliers that are bigger than 1 by specifying how the IRF to a government spending shock must look like.
The prior restrictions can be imposed via irf_calibration and moment_calibration blocks (see
IRF/Moment calibration). The way it works internally is that any parameter draw that is inconsistent with
the “calibration” provided in these blocks is discarded, i.e. assigned a prior density of 0. When specifying
these blocks, it is important to keep in mind that one won’t be able to easily do model_comparison in
this case, because the prior density will not integrate to 1.

Output

After running estimation, the parameters M_ .params and the variance matrix M_.Sigma_e of the
shocks are set to the mode for maximum likelihood estimation or posterior mode computation without
Metropolis iterations. After estimation with Metropolis iterations (option mh_replic > 0 or option
load_mh_file set) the parameters M_.params and the variance matrix M_ . Sigma_e of the shocks
are set to the posterior mean.

Depending on the options, estimation stores results in various fields of the oo_ structure, described
below. In the following variables, we will adopt the following shortcuts for specific field names:

MOMENT_NAME
This field can take the following values:
HPDinf
Lower bound of a 90% HPD interval.*
HPDsup
Upper bound of a 90% HPD interval.
HPDinf ME

Lower bound of a 90% HPD interval® for observables when taking measure-
ment error into account (see e.g. Christoffel et al. (2010), p.17).

HPDsup_ME

Upper bound of a 90% HPD interval for observables when taking measurement
error into account.

Mean

Mean of the posterior distribution.
Median

Median of the posterior distribution.
std

Standard deviation of the posterior distribution.
Variance

Variance of the posterior distribution.
deciles

Deciles of the distribution.

4 See options conf_sig and mh_conf_sig to change the size of the HPD interval.
5 See options conf sig () and mh_conf _sigq to change the size of the HPD interval.

4.15. Estimation based on likelihood 107

Dynare Reference Manual, Release 5.4

density

Non parametric estimate of the posterior density following the approach out-
lined in Skoeld and Roberts (2003). First and second columns are respectively
abscissa and ordinate coordinates.

ESTIMATED_OBJECT

This field can take the following values:
measurement_errors_corr

Correlation between two measurement errors.
measurement_errors_std

Standard deviation of measurement errors.
parameters

Parameters.
shocks_corr

Correlation between two structural shocks.
shocks_std

Standard deviation of structural shocks.

MATLAB/Octave variable: oo_.MarginalDensity.LaplaceApproximation
Variable set by the est imation command. Stores the marginal data density based on the Laplace
Approximation.

MATLAB/Octave variable: oo_.MarginalDensity.ModifiedHarmonicMean
Variable set by the estimation command, if it is used with mh_replic > 0 or

load_mh_file option. Stores the marginal data density based on Geweke (1999) Modified Har-
monic Mean estimator.

MATLAB/Octave variable: oo_.posterior.optimization

Variable set by the est imat ion command if mode-finding is used. Stores the results at the mode.
Fields are of the form:

00_.posterior.optimization.OBJECT

where OBJECT is one of the following:
mode
Parameter vector at the mode.
Variance

Inverse Hessian matrix at the mode or MCMC jumping covariance matrix when used
with the MCMC__ jumping_covariance option.

log_density

Log likelihood (ML)/log posterior density (Bayesian) at the mode when used with
mode_compute>0.

MATLAB/Octave variable: oo_.posterior.metropolis
Variable set by the est imation command if mh_replic>0 is used. Fields are of the form:

oo_.posterior.metropolis.OBJECT

where OBJECT is one of the following:
mean

Mean parameter vector from the MCMC.

108 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Variance
Covariance matrix of the parameter draws in the MCMC.

MATLAB/Octave variable: oo_.FilteredVariables

Variable set by the est imat ion command, if it is used with the filtered_vars option.

After an estimation without Metropolis, fields are of the form:

oo_.FilteredVariables.VARIABLE NAME

After an estimation with Metropolis, fields are of the form:

oo_.FilteredVariables.MOMENT NAME.VARIABLE_ NAME

MATLAB/Octave variable: oo_.FilteredVariablesKStepAhead
Variable set by the est imat ion command, if it is used with the filter_step_ahead option.
The k-steps are stored along the rows while the columns indicate the respective variables. The third
dimension of the array provides the observation for which the forecast has been made. For example,
if filter_step_ahead=[1 2 4] and nobs=200, the element (3,5,204) stores the four period
ahead filtered value of variable 5 computed at time t=200 for time t=204. The periods at the beginning
and end of the sample for which no forecasts can be made, e.g. entries (1,5,1) and (1,5,204) in the
example, are set to zero. Note that in case of Bayesian estimation the variables will be ordered in
the order of declaration after the estimation command (or in general declaration order if no variables
are specified here). In case of running the classical smoother, the variables will always be ordered
in general declaration order. If the selected variables only option is specified with the
classical smoother, non-requested variables will be simply left out in this order.

MATLAB/Octave variable: oo_.FilteredVariablesKStepAheadVariances

Variable set by the est imat ion command, if it is used withthe filter_step_ahead option.
It is a 4 dimensional array where the k-steps are stored along the first dimension, while the fourth
dimension of the array provides the observation for which the forecast has been made. The second
and third dimension provide the respective variables. For example, if filter_step_ahead=[1
2 4] and nobs=200, the element (3,4,5,204) stores the four period ahead forecast error covariance
between variable 4 and variable 5, computed at time t=200 for time t=204. Padding with zeros and
variable ordering is analogous to co_.FilteredvVariablesKStepAhead.

MATLAB/Octave variable: oo_.Filtered Variables_X step_ahead
Variable set by the est imat ion command, if it is used with the filter_step_ahead option
in the context of Bayesian estimation. Fields are of the form:

oo_.Filtered Variables_X_step_ahead.VARIABLE_NAME

The n-th entry stores the k-step ahead filtered variable computed at time n for time n+k.

MATLAB/Octave variable: oo_.FilteredVariablesShockDecomposition

Variable set by the est imation command, if it is used with the filter_step_ahead option.
The k-steps are stored along the rows while the columns indicate the respective variables. The third
dimension corresponds to the shocks in declaration order. The fourth dimension of the array provides
the observation for which the forecast has been made. For example, if filter_ step_ahead=]1
2 4] and nobs=200, the element (3,5,2,204) stores the contribution of the second shock to the four
period ahead filtered value of variable 5 (in deviations from the mean) computed at time t=200 for time
t=204. The periods at the beginning and end of the sample for which no forecasts can be made, e.g.
entries (1,5,1) and (1,5,204) in the example, are set to zero. Padding with zeros and variable ordering
is analogous to oo__.FilteredVariablesKStepAhead.

MATLAB/Octave variable: oo_.PosteriorIRF.dsge
Variable set by the est imation command, if it is used with the bayesian_irf option. Fields
are of the form:

oo_.PosteriorIRF.dsge.MOMENT_NAME.VARIABLE_NAME_SHOCK_NAME

4.15. Estimation based on likelihood 109

Dynare Reference Manual, Release 5.4

MATLAB/Octave variable: oo_.SmoothedMeasurementErrors

Variable set by the est imation command, if it is used with the smoother option. Fields are of
the form:

oo_ .SmoothedMeasurementErrors.VARIABLE_NAME

MATLAB/Octave variable: oo_.SmoothedShocks

Variable set by the estimation command (if used with the smoother option), or by the
calib_smoother command.

After an estimation without Metropolis, or if computed by calib_smoother, fields are of the form:

o0o_ .SmoothedShocks.VARIABLE_ NAME

After an estimation with Metropolis, fields are of the form:

0o_.SmoothedShocks .MOMENT_NAME .VARIABLE_NAME

MATLAB/Octave variable: oo_.SmoothedVariables

Variable set by the estimation command (if used with the smoother option), or by the
calib_smoother command.

After an estimation without Metropolis, or if computed by calib_smoother, fields are of the form:

oo_.SmoothedVariables.VARIABLE_NAME

After an estimation with Metropolis, fields are of the form:

oo_.SmoothedVariables.MOMENT_NAME.VARIABLE_NAME

MATLAB/Octave command: get_smooth ('VARIABLE_NAME' [, 'VARIABLE_NAME']...

Returns the smoothed values of the given endogenous or exogenous variable(s), as they are stored in
the oo_.SmoothedVariables and oo_ . SmoothedShocks variables.

MATLAB/Octave variable: oo_.UpdatedvVariables

Variable set by the estimation command (if used with the smoother option), or by the
calib_smoother command. Contains the estimation of the expected value of variables given the
information available at the current date.

After an estimation without Metropolis, or if computed by calib_smoother, fields are of the form:

oo_.UpdatedVariables.VARIABLE_NAME

After an estimation with Metropolis, fields are of the form:

oo_.UpdatedVariables.MOMENT_NAME.VARIABLE_NAME

MATLAB/Octave command: get update ('VARIABLE NAME' [, 'VARIABLE NAME']...

Returns the updated values of the given variable(s), as they are stored in the oo_.
UpdatedVariables variable.

MATLAB/Octave variable: oo_.FilterCovariance

Three-dimensional array set by the estimation command if used with the smoother and
Metropolis, if the filter_covariance option has been requested. Contains the series of one-
step ahead forecast error covariance matrices from the Kalman smoother. The M_ . endo_nbr times
M_.endo_nbr times T+1 array contains the variables in declaration order along the first two dimen-
sions. The third dimension of the array provides the observation for which the forecast has been made.
Fields are of the form:

oo_.FilterCovariance .MOMENT_NAME

Note that density estimation is not supported.

110

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Three-dimensional array set by the est imation command (if used with the smoother) without
Metropolis, or by the calib_smoother command, if the filter_covariance option has been
requested. Contains the series of one-step ahead forecast error covariance matrices from the Kalman
smoother. The M_ .endo_nbr times M_.endo_nbr times T+1 array contains the variables in dec-
laration order along the first two dimensions. The third dimension of the array provides the observation
for which the forecast has been made.

MATLAB/Octave variable: oo_.Smoother.Variance

MATLAB/Octave variable: oo_.Smoother.State_ uncertainty

Three-dimensional array set by the estimation command (if wused with the
smoother option) without Metropolis, or by the calib_smoother command, if the
smoothed_state_uncertainty option has been requested. Contains the series of co-
variance matrices for the state estimate given the full data from the Kalman smoother. The
M_.endo_nbr times M_.endo_nbr times T array contains the variables in declaration order along
the first two dimensions. The third dimension of the array provides the observation for which the
smoothed estimate has been made.

MATLAB/Octave variable: oo_.Smoother.SteadyState
Variable set by the est imation command (if used with the smoother) without Metropolis, or by
the calib_smoother command. Contains the steady state component of the endogenous variables
used in the smoother in order of variable declaration.

MATLAB/Octave variable: oo_.Smoother.TrendCoeffs
Variable set by the est imation command (if used with the smoother) without Metropolis, or by
the calib_smoother command. Contains the trend coefficients of the observed variables used in

the smoother in order of declaration of the observed variables.

MATLAB/Octave variable: oo_.Smoother.Trend

Variable set by the estimation command (if used with the smoother option), or by the
calib_smoother command. Contains the trend component of the variables used in the smoother.

Fields are of the form:

o0o_ .Smoother.Trend.VARIABLE_NAME

MATLAB/Octave variable: oo_.Smoother.Constant

Variable set by the estimation command (if used with the smoother option), or by the
calib_smoother command. Contains the constant part of the endogenous variables used in the
smoother, accounting e.g. for the data mean when using the prefilter option.

Fields are of the form:

oo_ .Smoother.Constant .VARIABLE_NAME

MATLAB/Octave variable: oo_.Smoother.loglinear
Indicator keeping track of whether the smoother was run with the /oglinear option and thus whether
stored smoothed objects are in logs.

MATLAB/Octave variable: oo_.PosteriorTheoreticalMoments
Variable set by the est imat i on command, if it is used with the moment s_varendo option. Fields
are of the form:

oo_.PosteriorTheoreticalMoments.dsge.THEORETICAL_MOMENT.ESTIMATED_OBJECT.
—MOMENT_NAME . VARIABLE_NAME
where THEORETICAL_MOMENT is one of the following:
covariance
Variance-covariance of endogenous variables.
contemporaneous_correlation

Contemporaneous correlation of endogenous variables when the
contemporaneous_correlation option is specified.

4.15.

Estimation based on likelihood 111

Dynare Reference Manual, Release 5.4

correlation

Auto- and cross-correlation of endogenous variables. Fields are vectors with corre-
lations from 1 up to order options_.ar.

VarianceDecomposition
Decomposition of variance (unconditional variance, i.e. at horizon infinity).®
VarianceDecompositionME

Same as VarianceDecomposition, but contains the decomposition of the measured
as opposed to the actual variable. The joint contribution of the measurement error
will be saved in a field named ME.

ConditionalVarianceDecomposition

Only if the conditional_variance_decomposition option has been spec-
ified. In the presence of measurement error, the field will contain the variance con-
tribution after measurement error has been taken out, i.e. the decomposition will be
conducted of the actual as opposed to the measured variables.

ConditionalVarianceDecompositionME

Only ifthe conditional_variance_decomposition option has been spec-
ified. Same as ConditionalVarianceDecomposition, but contains the decomposition
of the measured as opposed to the actual variable. The joint contribution of the
measurement error will be saved in a field names ME.

MATLAB/Octave variable: oo_.posterior density
Variable set by the estimation command, if it is used with mh_replic
load_mh_f1ile option. Fields are of the form:

oo_.posterior_density.PARAMETER_NAME

MATLAB/Octave variable: oo_.posterior_hpdinf
Variable set by the estimation command, if it is used with mh_replic
load_mh_f1ile option. Fields are of the form:

oo_.posterior_hpd .ESTIMATED_OBJECT.VARIABLE_NAME

MATLAB/Octave variable: oo_.posterior_hpdsup
Variable set by the estimation command, if it is used with mh_replic
load_mh_f1ile option. Fields are of the form:

oo_.posterior_hpdsup.ESTIMATED_OBJECT.VARIABLE_NAME

MATLAB/Octave variable: oo_.posterior_mean
Variable set by the estimation command, if it is used with mh_replic
load_mh_file option. Fields are of the form:

oo_.posterior_mean.ESTIMATED_OBJECT.VARIABLE_NAME

MATLAB/Octave variable: oo_.posterior_mode
Variable set by the est imat ion command during mode-finding. Fields are of the form:

00_.posterior_mode.ESTIMATED_ OBJECT.VARIABLE_NAME

MATLAB/Octave variable: oo_.posterior_std_at_mode
Variable set by the est imation command during mode-finding. It is based on the inverse Hessian
at oo__.posterior_mode. Fields are of the form:

or

or

or

or

% When the shocks are correlated, it is the decomposition of orthogonalized shocks via Cholesky decomposition according to the order of
declaration of shocks (see Variable declarations)

112

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

oo_.posterior_std_at_mode.ESTIMATED_OBJECT.VARIABLE_NAME

MATLAB/Octave variable: oo_.posterior_std
Variable set by the estimation command, if it is used with
load_mh_file option. Fields are of the form:

oo_.posterior_std.ESTIMATED_OBJECT.VARIABLE_NAME

MATLAB/Octave variable: oo_.posterior_var
Variable set by the estimation command, if it is used with
load_mh_f1ile option. Fields are of the form:

00_.posterior_var.ESTIMATED_ OBJECT.VARIABLE_NAME

MATLAB/Octave variable: oo_.posterior_median
Variable set by the estimation command, if it is used with
load_mh_file option. Fields are of the form:

oo_.posterior _median.ESTIMATED_OBJECT.VARIABLE_NAME

Example

Here are some examples of generated variables:

00_.posterior_mode.parameters.alp
oo_.posterior_mean.shocks_std.ex
oo_ .posterior_hpdsup.measurement_errors_corr.gdp_conso

MATLAB/Octave variable: oo_.dsge_var.posterior mode

mh_replic > 0 or

mh_replic > 0 or

mh_replic > 0 or

Structure set by the dsge_var option of the est imat ion command after mode_compute.

The following fields are saved:

PHI_tilde

Stacked posterior DSGE-BVAR autoregressive matrices at the mode (equation (28)

of Del Negro and Schorfheide (2004)).

SIGMA_u_tilde

Posterior covariance matrix of the DSGE-BVAR at the mode (equation (29) of Del

Negro and Schorfheide (2004)).

1XX

Posterior population moments in the DSGE-BVAR at the mode (inv(ATT% y +

X'X)).
prior
Structure storing the DSGE-BVAR prior.

PHI_star

Stacked prior DSGE-BVAR autoregressive matrices at the mode (equation (22) of

Del Negro and Schorfheide (2004)).

SIGMA_star

Prior covariance matrix of the DSGE-BVAR at the mode (equation (23) of Del Negro

and Schorfheide (2004)).
ArtificialSampleSize

Size of the artifical prior sample (inv(AT)).
DF

4.15.

Estimation based on likelihood

113

Dynare Reference Manual, Release 5.4

Prior degrees of freedom (‘inv(AT — k — n)).
iGXX_star

Inverse of the theoretical prior “covariance” between X and X (I'%_. in Del Negro
and Schorfheide (2004)).

MATLAB/Octave variable: oo_.RecursiveForecast
Variable set by the forecast option of the est imation command when used with the nobs =
[INTEGER1:INTEGER?2] option (see nobs).

Fields are of the form:

oo_.RecursiveForecast .FORECAST_OBJECT.VARIABLE_NAME

where FORECAST_OBJECT is one of the following7 :
Mean

Mean of the posterior forecast distribution.
HPDinf/HPDsup

Upper/lower bound of the 90% HPD interval taking into account only parameter uncertainty
(corresponding to oo_ . MeanForecast).

HPDTotalinf/HPDTotalsup.

Upper/lower bound of the 90% HPD interval taking into account both parameter and future
shock uncertainty (corresponding to oo_ . PointForecast)

VARIABLE_NAME contains a matrix of the following size: number of time periods for which forecasts
are requested using the nobs = [INTEGER1:INTEGER2] option times the number of forecast
horizons requested by the forecast option. i.e., the row indicates the period at which the forecast is
performed and the column the respective k-step ahead forecast. The starting periods are sorted in
ascending order, not in declaration order.

MATLAB/Octave variable: oo_.convergence.geweke
Variable set by the convergence diagnostics of the estimation command when used with
mh_nblocks=1 option (see mh_nblocks).

Fields are of the form:

oo_.convergence.geweke.VARIABLE_NAME.DIAGNOSTIC_OBJECT

where DIAGNOSTIC_OBJECT is one of the following:
posteriormean

Mean of the posterior parameter distribution.
posteriorstd

Standard deviation of the posterior parameter distribution.
nse_iid

Numerical standard error (NSE) under the assumption of iid draws.
rne_iid

Relative numerical efficiency (RNE) under the assumption of iid draws.
nse_x

Numerical standard error (NSE) when using an x% taper.
rne_x

Relative numerical efficiency (RNE) when using an x% taper.

7 See forecast for more information.

114 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

pooled_mean

Mean of the parameter when pooling the beginning and end parts of the chain specified in
geweke_interval and weighting them with their relative precision. It is a vector con-
taining the results under the iid assumption followed by the ones using the taper_steps
option (see taper_steps).

pooled_nse

NSE of the parameter when pooling the beginning and end parts of the chain and weighting
them with their relative precision. See pooled_mean.

prob_chi2_test

p-value of a chi-squared test for equality of means in the beginning and the end of the MCMC
chain. See pooled_mean. A value above 0.05 indicates that the null hypothesis of equal
means and thus convergence cannot be rejected at the 5 percent level. Differing values along
the taper_steps signal the presence of significant autocorrelation in draws. In this case,
the estimates using a higher tapering are usually more reliable.

Command: unit_root_vars VARIABLE_NAME...;
This command is deprecated. Use estimation option diffuse_filter instead for estimating a
model with non-stationary observed variables or steady option nocheck to prevent steady to check
the steady state returned by your steady state file.

Dynare also has the ability to estimate Bayesian VARSs:

Command: bvar_density ;
Computes the marginal density of an estimated BVAR model, using Minnesota priors.

See bvar-a-la-sims.pdf, which comes with Dynare distribution, for more information on this com-
mand.

4.16 Estimation based on moments

Provided that you have observations on some endogenous variables, it is possible to use Dynare to estimate some
or all parameters using a method of moments approach. Both the Simulated Method of Moments (SMM) and
the Generalized Method of Moments (GMM) are available. The general idea is to minimize the distance between
unconditional model moments and corresponding data moments (so called orthogonality or moment conditions).
For SMM, Dynare computes model moments via stochastic simulations based on the perturbation approximation
up to any order, whereas for GMM model moments are computed in closed-form based on the pruned state-space
representation of the perturbation solution up to third order. The implementation of SMM is inspired by Born
and Pfeifer (2014) and Ruge-Murcia (2012), whereas the one for GMM is adapted from Andreasen, Ferndndez-
Villaverde and Rubio-Ramirez (2018) and Mutschler (2018). Successful estimation heavily relies on the accuracy
and efficiency of the perturbation approximation, so it is advised to tune this as much as possible (see Computing
the stochastic solution). The method of moments estimator is consistent and asymptotically normally distributed
given certain regularity conditions (see Duffie and Singleton (1993) for SMM and Hansen (1982) for GMM). For
instance, it is required to have at least as many moment conditions as estimated parameters (over-identified or just
identified). Moreover, the Jacobian of the moments with respect to the estimated parameters needs to have full
rank. Performing identification analysis helps to check this regularity condition.

In the over-identified case of declaring more moment conditions than estimated parameters, the choice of
welghting matrix matters for the efficiency of the estimation, because the estimated orthogonality condi-
tions are random variables with unequal variances and usually non-zero cross-moment covariances. A weighting
matrix allows to re-weight moments to put more emphasis on moment conditions that are more informative or
better measured (in the sense of having a smaller variance). To achieve asymptotic efficiency, the weighting ma-
trix needs to be chosen such that, after appropriate scaling, it has a probability limit proportional to the inverse
of the covariance matrix of the limiting distribution of the vector of orthogonality conditions. Dynare uses a
Newey-West-type estimator with a Bartlett kernel to compute an estimate of this so-called optimal weighting ma-
trix. Note that in this over-identified case, it is advised to perform the estimation in at least two stages by setting
e.g. weighting matrix=['DIAGONAL', '"'DIAGONAL '] so that the computation of the optimal weighting

4.16. Estimation based on moments 115

Dynare Reference Manual, Release 5.4

matrix benefits from the consistent estimation of the previous stages. The optimal weighting matrix is used to
compute standard errors and the J-test of overidentifying restrictions, which tests whether the model and selection
of moment conditions fits the data sufficiently well. If the null hypothesis of a “valid” model is rejected, then
something is (most likely) wrong with either your model or selection of orthogonality conditions.

In case the (presumed) global minimum of the moment distance function is located in a region of the param-
eter space that is typically considered unlikely (dilemma of absurd parameters), you may opt to choose the
penalized estimator option. Similar to adding priors to the likelihood, this option incorporates prior
knowledge (i.e. the prior mean) as additional moment restrictions and weights them by their prior precision to
guide the minimization algorithm to more plausible regions of the parameter space. Ideally, these regions are
characterized by only slightly worse values of the objective function. Note that adding prior information comes at
the cost of a loss in efficiency of the estimator.

Command: varobs VARIABLE_NAME...;
Required. All variables used in the mat ched_moment s block need to be observable. See varobs for more
details.

Block: matched moments ;
This block specifies the product moments which are used in estimation. Currently, only linear prod-
uct moments (e.g. E[y], E[y?], Elxiys), Elyiyi—1], Elypx?_,]) are supported. For other functions like
E[log(y:)e*] you need to declare auxiliary endogenous variables.

Each line inside of the block should be of the form:

VARIABLE_NAME (LEAD/LAG) "POWER*VARIABLE_NAME (LEAD/LAG) "POWER* . . . *VARIABLE__
—NAME (LEAD/LAG) "POWER;

where VARIABLE_NAME is the name of a declared observable variable, LEAD/LAG is either a negative
integer for lags or a positive one for leads, and POWER is a positive integer indicating the exponent on the
variable. You can omit LEAD/LAG equal to 0 or POWER equal to /.

Example

For Elc], Elyi], Ec}], Elciyi), Ely?], Elciciys], Elyiy 1 ¢i_y), Elci_sy?] use the following block:
matched moments;
Cy
Yi
er@g
C*¥ys
v'2;
cxc(3);
y(1)"2xc(-4)"3;
c(=5)"3*xy(0)"2;
end;

Limitations

1. For GMM, Dynare can only compute the theoretical mean, covariance, and autocovariances (i.e. first and
second moments). Higher-order moments are only supported for SMM.

2. By default, the product moments are not demeaned, unless the prefilter option is set to 1. That is,
by default, c*c corresponds to E[c?] and not to Var[c;] = E[c?] — E[ct]?.

Output

Dynare translates the mat ched_moment s block into a cell array M_ . mat ched_moment s where:
* the first column contains a vector of indices for the chosen variables in declaration order
* the second column contains the corresponding vector of leads and lags
¢ the third column contains the corresponding vector of powers

During the estimation phase, Dynare will eliminate all redundant or duplicate orthogonality conditions in
M_.matched_moments and display which conditions were removed. In the example above, this would

116 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

be the case for the last row, which is the same as the second-to-last one. The original block is saved in
M_.matched_moments_orig.

Block: estimated_params ;
Required. See estimated params for the meaning and syntax.

Block: estimated params_init ;
See estimated params_init for the meaning and syntax.

Block: estimated_params_bounds ;
See estimated_params_bounds for the meaning and syntax.

Command: method of moments (OPTIONS...);
This command runs the method of moments estimation. The following information will be displayed in the
command window:

* Overview of options chosen by the user
» Estimation results for each stage and iteration

* Value of minimized moment distance objective function

L]

Result of the J-test
¢ Table of data moments and estimated model moments
Necessary options

mom_method = SMM|GMM
“Simulated Method of Moments” is triggered by SMM and “Generalized Method of Moments” by
GMM.

datafile = FILENAME
The name of the file containing the data. See datafi le for the meaning and syntax.

Options common for SMM and GMM

order = INTEGER
Order of perturbation approximation. For GMM only orders 11213 are supported. For SMM, you can
choose an arbitrary order. Note that the order set in other functions will not overwrite the default.
Default: 1.

pruning
Discard higher order terms when iteratively computing simulations of the solution. See pruning for
more details. Default: not set for SMM, always set for GMM.

penalized_estimator
This option includes deviations of the estimated parameters from the prior mean as additional moment
restrictions and weights them by their prior precision. Default: not set.

weighting matrix = ['WM1',6K 'WM2', ..., 'WMn']
Determines the weighting matrix used at each estimation stage. The number of elements will define the

number of stages, i.e. weighting matrix = ['DIAGONAL', 'DIAGONAL', 'OPTIMAL']
performs a three-stage estimation. Possible values for WM are:

IDENTITY_ MATRIX
Sets the weighting matrix equal to the identity matrix.
OPTIMAL

Uses the optimal weighting matrix computed by a Newey-West-type estimate
with a Bartlett kernel. At the first stage, the data-moments are used as initial
estimate of the model moments, whereas at subsequent stages the previous es-
timate of model moments will be used when computing the optimal weighting
matrix.

DIAGONAL

4.16. Estimation based on moments 117

Dynare Reference Manual, Release 5.4

Uses the diagonal of the OPTIMAL weighting matrix. This choice puts weights
on the specified moments instead of on their linear combinations.

FILENAME

The name of the MAT-file (extension . mat) containing a user-specified weight-
ing matrix. The file must include a positive definite square matrix called
weighting_matrix with both dimensions equal to the number of orthogo-
nality conditions.

Default value is ['DIAGONAL', 'OPTIMAL'].

weighting matrix_ scaling factor = DOUBLE
Scaling of weighting matrix in objective function. This value should be chosen to obtain values of the
objective function in a reasonable numerical range to prevent over- and underflows. Default: 1.

bartlett_kernel_lag = INTEGER
Bandwidth of kernel for computing the optimal weighting matrix. Default: 20.

se_tolx = DOUBLE
Step size for numerical differentiation when computing standard errors with a two-sided finite differ-
ence method. Default: 1e-5.

verbose
Display and store intermediate estimation results in oo_ . mom. Default: not set.

SMM-specific options
burnin = INTEGER
Number of periods dropped at the beginning of simulation. Default: 500.

bounded_shock_support
Trim shocks in simulations to +2 standard deviations. Default: not set.

seed = INTEGER
Common seed used in simulations. Default: 24051986.

simulation_multiple = INTEGER
Multiple of data length used for simulation. Default: 7.

GMM-specific options

analytic_standard errors
Compute standard errors using analytical derivatives of moments with respect to estimated parameters.
Default: not set, i.e. standard errors are computed using a two-sided finite difference method, see
se_tolx.

General options

dirname = FILENAME
Directory in which to store estimation output. See dirname for more details. Default:
<mod_file>.

graph_format = FORMAT
Specify the file format(s) for graphs saved to disk. See graph format for more details. Default:
eps.

nodisplay

See nodisplay. Default: not set.
nograph

See nograph. Default: not set.

noprint
See noprint. Default: not set.

plot_priors = INTEGER
Control the plotting of priors. See plot_priors for more details. Default: 1, i.e. plot priors.

118

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

prior_trunc = DOUBLE
See prior_trunc for more details. Default: 1e—10.

tex
See tex. Default: not set.

Data options

first obs = INTEGER
See first_obs. Default: 1.

nobs = INTEGER
See nobs. Default: all observations are considered.

prefilter = INTEGER
A value of 1 means that the estimation procedure will demean each data series by its empirical mean
and each model moment by its theoretical mean. See prefilter for more details. Default: 0, i.e.
no prefiltering.

logdata
See 1ogdata. Default: not set.

xls_sheet = QUOTED_ STRING
See x1s sheet.

xls_range = RANGE
See x1s_range.
Optimization options
huge_number = DOUBLE
See huge _number. Default: 1e7.

mode_compute = INTEGER | FUNCTION_ NAME
See mode_compute. Default: 13, i.e. 1sgnonlin if the MATLAB Optimization Toolbox or the
Octave optim-package are present, 4, i.e. csminwel otherwise.

additional_ optimizer steps = [INTEGER|FUNCTION_NAME, INTEGER|FUNCTION_ NAME, ...

Vector of additional minimization algorithms run after mode_compute. If verbose option is set,
then the additional estimation results are saved into the oo__.mom structure prefixed with verbose_.
Default: no additional optimization iterations.

optim = (NAME, VALUE, ...)
See optim.

silent_optimizer
See silent_optimizer. Default: not set.

Numerical algorithms options

aim_solver
See aim solver. Default: not set.

k_order_solver
See k_order solver. Default: disabled for order 1 and 2, enabled for order 3 and above.

dr = OPTION
See dr. Default: default, i.e. generalized Schur decomposition.

dr_cycle_reduction_tol = DOUBLE
See dr_cycle reduction_tol. Default: 1e-7.

dr_logarithmic_reduction_tol = DOUBLE
See dr_logarithmic_reduction_tol. Default: 1e-12.

dr_logarithmic_reduction maxiter = INTEGER
See dr_logarithmic_reduction_maxiter. Default: 100.

4.16. Estimation based on moments 119

Dynare Reference Manual, Release 5.4

lyapunov = OPTION
See 1yapunov. Default: default, i.e. based on Bartlets-Stewart algorithm.

lyapunov_complex_threshold = DOUBLE
See lyapunov_complex_threshold. Default: 1e-15.

lyapunov_fixed point_tol = DOUBLE
See lyapunov_fixed point_tol. Default: 1e-10.

lyapunov_doubling tol = DOUBLE
See lyapunov_doubling tol. Default: 1e-16.

sylvester = OPTION
See sylvester. Default: default,i.e. uses gensylv.

sylvester_ fixed point_tol = DOUBLE
See sylvester fixed point_tol. Default: 1e-12.

gz_criterium = DOUBLE
See gz_criterium. Default: 0.999999 as it is assumed that the observables are weakly station-
ary.

gz_zero_threshold = DOUBLE
See gz_zero threshold. Default: 1e-6.

schur vec_tol = DOUBLE
Tolerance level used to find nonstationary variables in Schur decomposition of the transition matrix.
Default: 1e-11.

mode_check
Plots univariate slices through the moments distance objective function around the computed minimum
for each estimated parameter. This is helpful to diagnose problems with the optimizer. Default: not
set.

mode_check neighbourhood _size = DOUBLE
See mode_check_neighbourhood_size. Default: 0.5.

mode_check_symmetric_plots = INTEGER
See mode_check_symmetric_plots. Default: 1.

mode_check_number of points = INTEGER
See mode_check_number._of_points. Default: 20.

Output

method_of_moments stores user options in a structure called options_mom_ in the global workspace.
After running the estimation, the parameters M_ . params and the covariance matrices of the shocks M_ .
Sigma_e and of the measurement errors M__ . H are set to the parameters that minimize the quadratic mo-
ments distance objective function. The estimation results are stored in the oo_ .mom structure with the
following fields:

MATLAB/Octave variable: oo_.mom.data moments
Variable set by the method_of moments command. Stores the mean of the selected empirical
moments of data. NaN values due to leads/lags or missing data are omitted when computing the mean.
Vector of dimension equal to the number of orthogonality conditions.

MATLAB/Octave variable: oo_.mom.m data
Variable set by the method_of_moment s command. Stores the selected empirical moments at each
point in time. NaN values due to leads/lags or missing data are replaced by the corresponding mean
of the moment. Matrix of dimension time periods times number of orthogonality conditions.

MATLAB/Octave variable: oo_.mom.Sw
Variable set by the method_of_moments command. Stores the Cholesky decomposition of the
currently used weighting matrix. Square matrix of dimensions equal to the number of orthogonality
conditions.

120

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

MATLAB/Octave variable: oo_.mom.model moments
Variable set by the method_of_moments command. Stores the implied selected model moments
given the current parameter guess. Model moments are computed in closed-form from the pruned
state-space system for GMM, whereas for SMM these are based on averages of simulated data. Vector
of dimension equal to the number of orthogonality conditions.

MATLAB/Octave variable: oo_.mom.Q
Variable set by the method_of_moments command. Stores the scalar value of the quadratic mo-
ment’s distance objective function.

MATLAB/Octave variable: oo_.mom.model_moments_params_derivs
Variable set by the method_of_moments command. Stores the analytically computed Jacobian
matrix of the derivatives of the model moments with respect to the estimated parameters. Only for
GMM with analytic_standard_errors. Matrix with dimension equal to the number of or-
thogonality conditions times number of estimated parameters.

MATLAB/Octave variable: oo_.mom.gmm_stage_*_mode
MATLAB/Octave variable: oo_.mom.smm_stage_*_mode
MATLAB/Octave variable: oo_.mom.verbose_gmm_stage_x*_mode

MATLAB/Octave variable: oo_.mom.verbose_smm_stage_x_mode
Variables set by the method_of_moment s command when estimating with GMM or SMM. Stores
the estimated values at stages 1, 2,.... The structures contain the following fields:

* measurement_errors_corr: estimated correlation between two measurement errors
e measurement_errors_std: estimated standard deviation of measurement errors

* parameters: estimated model parameters

¢ shocks_corr: estimated correlation between two structural shocks.

¢ shocks_std: estimated standard deviation of structural shocks.

If the verbose option is set, additional fields prefixed with verbose_ are saved for all
additional_optimizer_steps.

MATLAB/Octave variable: oo_.mom.gmm_stage_x*_std_at_mode
MATLAB/Octave variable: oo_.mom.smm_stage_x*_std_at_mode
MATLAB/Octave variable: oo_.mom.verbose_gmm_stage_x*_std_at_mode

MATLAB/Octave variable: oo_.mom.verbose_smm_stage_x*_std_at_mode
Variables set by the method_of_moments command when estimating with GMM or SMM. Stores
the estimated standard errors at stages 1, 2,.... The structures contain the following fields:

e measurement_errors_corr: standard error of estimated correlation between two measure-
ment errors

e measurement_errors_std: standard error of estimated standard deviation of measurement
errors

* parameters: standard error of estimated model parameters
¢ shocks_corr: standard error of estimated correlation between two structural shocks.
e shocks_std: standard error of estimated standard deviation of structural shocks.

If the verbose option is set, additional fields prefixed with verbose_ are saved for all
additional_optimizer._ steps.

MATLAB/Octave variable: oo_.mom.J test
Variable set by the method_of_moments command. Structure where the value of the test statistic
is saved into a field called j_stat, the degress of freedom into a field called degrees_freedom
and the p-value of the test statistic into a field called p_val.

4.16. Estimation based on moments 121

Dynare Reference Manual, Release 5.4

4.17 Model Comparison

Command: model_ comparison FILENAME[(DOUBLE)]...;

Command: model comparison(marginal_density = ESTIMATOR) FILENAME[(DOUBLE)]...;
This command computes odds ratios and estimate a posterior density over a collection of models (see e.g.
Koop (2003), Ch. 1). The priors over models can be specified as the DOUBLE values, otherwise a uniform
prior over all models is assumed. In contrast to frequentist econometrics, the models to be compared do
not need to be nested. However, as the computation of posterior odds ratios is a Bayesian technique, the
comparison of models estimated with maximum likelihood is not supported.

It is important to keep in mind that model comparison of this type is only valid with proper priors. If the prior
does not integrate to one for all compared models, the comparison is not valid. This may be the case if part of
the prior mass is implicitly truncated because Blanchard and Kahn conditions (instability or indeterminacy
of the model) are not fulfilled, or because for some regions of the parameters space the deterministic steady
state is undefined (or Dynare is unable to find it). The compared marginal densities should be renormalized
by the effective prior mass, but this not done by Dynare: it is the user’s responsibility to make sure that
model comparison is based on proper priors. Note that, for obvious reasons, this is not an issue if the
compared marginal densities are based on Laplace approximations.

Options

marginal_density = ESTIMATOR
Specifies the estimator for computing the marginal data density. ESTIMATOR can take one of the
following two values: laplace for the Laplace estimator or modifiedharmonicmean for the
Geweke (1999) Modified Harmonic Mean estimator. Default value: laplace

Output
The results are stored in oo__.Model_Comparison, which is described below.

Example

model comparison my_model (0.7) alt_model (0.3);

This example attributes a 70% prior over my_model and 30% prior over alt_model.

MATLAB/Octave variable: oo_.Model_Comparison
Variable set by the model_comparison command. Fields are of the form:

oo_.Model_ Comparison.FILENAME.VARIABLE_NAME

where FILENAME is the file name of the model and VARIABLE_NAME is one of the following:
Prior
(Normalized) prior density over the model.
Log_Marginal_Density
Logarithm of the marginal data density.
Bayes_Ratio

Ratio of the marginal data density of the model relative to the one of the first declared
model

Posterior_Model_Probability

Posterior probability of the respective model.

122 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Command:

4.18 Shock Decomposition

Command: shock_decomposition [VARIABLE_NAME]...;
shock_decomposition (OPTIONS...)

[VARTIABLE NAME]...;

This command computes the historical shock decomposition for a given sample based on the Kalman
smoother, i.e. it decomposes the historical deviations of the endogenous variables from their respective
steady state values into the contribution coming from the various shocks. The variable_names pro-
vided govern for which variables the decomposition is plotted.

Note that this command must come after either estimation (in case of an estimated model) or

stoch_simul (in case of a calibrated model).

Options

parameter_set = OPTION

Specify the parameter set to use for running the smoother. Possible values for OPTION are:

* calibration

* prior_mode

* prior_mean

* posterior_mode

* posterior_mean

* posterior_median

* mle_mode

Note that the parameter set used in subsequent commands like stoch_simul will be set to the spec-
ified parameter_set. Default value: posterior_mean if Metropolis has been run, mle_mode

if MLE has been run.

datafile = FILENAME

See datafile. Useful when computing the shock decomposition on a calibrated model.

first _obs = INTEGER
See first_obs.

nobs = INTEGER
See nobs.

prefilter = INTEGER
See prefilter.

loglinear
See Ioglinear.

diffuse_kalman_tol = DOUBLE
See diffuse kalman tol.

diffuse filter
See diffuse filter.

x1s_sheet = QUOTED_STRING
See x1s_sheet.

xls_range = RANGE
See x1s_range.

use_shock_groups [= NAME]

Uses shock grouping defined by the string instead of individual shocks in the decomposition. The
groups of shocks are defined in the shock _groups block. If no group name is given, default is

assumed.

4.18. Shock Decomposition

123

Dynare Reference Manual, Release 5.4

colormap = VARIABLE_ NAME
Controls the colormap used for the shocks decomposition graphs. VARIABLE_NAME must be
the name of a MATLAB/Octave variable that has been declared beforehand and whose value will be
passed to the MATLAB/Octave colormap function (see the MATLAB/Octave manual for the list of
acceptable values).

nograph
See nograph. Suppresses the display and creation only within the shock_decomposition
command, but does not affect other commands. See plot_shock_decomposition for plotting
graphs.

init_ state = BOOLEAN
If equal to O, the shock decomposition is computed conditional on the smoothed state variables in
period 0, i.e. the smoothed shocks starting in period 1 are used. If equal to 1, the shock decomposition
is computed conditional on the smoothed state variables in period 1. Default: 0.

with_epilogue
If set, then also compute the decomposition for variables declared in the epilogue block (see Epi-
logue Variables).

Output

MATLAB/Octave variable: oo_.shock_decomposition

The results are stored in the field oo_ . shock_decomposition, which is a three dimensional ar-
ray. The first dimension contains the M_ . endo_nbr endogenous variables. The second dimension
stores in the first M_.exo_nbr columns the contribution of the respective shocks. Column M_ .
exo_nbr+1 stores the contribution of the initial conditions, while column M_ . exo_nbr+2 stores
the smoothed value of the respective endogenous variable in deviations from their steady state, i.e. the
mean and trends are subtracted. The third dimension stores the time periods. Both the variables and
shocks are stored in the order of declaration, i.e. M_.endo_names and M_.exo_names, respec-
tively.

Block: shock_groups ;
Block: shock_groups (OPTIONS...);

Shocks can be regrouped for the purpose of shock decomposition. The composition of the shock groups is
written in a block delimited by shock_groups and end.

Each line defines a group of shocks as a list of exogenous variables:

SHOCK_GROUP_NAME
'SHOCK GROUP NAME'

VARIABLE_1 [[,] VARIABLE_ 2 [,]...];
VARIABLE 1 [[,] VARIABLE 2 [,]...];

Options

name = NAME
Specifies a name for the following definition of shock groups. It is possible to use several
shock_groups blocks in a model file, each grouping being identified by a different name. This
name must in turn be used in the shock_decomposition command. If no name is given,
default is used.

Example

varexo e_a, e_b, e_c, e_d;

shock_groups (name=groupl) ;
supply = e_a, e_b;

'aggregate demand' = e_c, e_d;
end;

shock decomposition (use_shock_groups=groupl) ;

This example defines a shock grouping with the name group1, containing a set of supply and
demand shocks and conducts the shock decomposition for these two groups.

124

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Command: realtime shock decomposition [VARIABLE NAME]...;

Command: realtime_shock decomposition (OPTIONS...) [VARIABLE_NAME]...;
This command computes the realtime historical shock decomposition for a given sample based on the
Kalman smoother. For each period T' = [presample, ..., nobs], it recursively computes three objects:

* Real-time historical shock decomposition Y (¢|T) for ¢t = [1,...,T], i.e. without observing data in
[T+1,...,nobs]. This results in a standard shock decomposition being computed for each additional
datapoint becoming available after presample.

* Forecast shock decomposition Y (T + k|T') for k = [1,..., forecast], i.e. the k-step ahead forecast
made for every 7" is decomposed in its shock contributions.

* Real-time conditional shock decomposition of the difference between the real-time historical shock
decomposition and the forecast shock decomposition. If vintage is equal to 0, it computes the
effect of shocks realizing in period T, i.e. decomposes Y (T'|T) — Y (T|T — 1). Put differently, it
conducts a 1-period ahead shock decomposition from 7" — 1 to 7', by decomposing the update step
of the Kalman filter. If vintage>0 and smaller than nobs, the decomposition is conducted of the
forecast revision Y(T' + k[T + k) — Y(T + k|T).

Like shock_decomposition it decomposes the historical deviations of the endogenous variables
from their respective steady state values into the contribution coming from the various shocks. The
variable_names provided govern for which variables the decomposition is plotted.

Note that this command must come after either estimation (in case of an estimated model) or
stoch_simul (in case of a calibrated model).

Options

parameter_set = OPTION
See parameter_set for possible values.

datafile = FILENAME
See datafile.

first _obs = INTEGER
See first_obs.

nobs = INTEGER
See nobs.

use_shock_groups [= NAME]
See use_shock_groups.

colormap = VARIABLE_NAME
See colormap.

nograph
See nograph. Only shock decompositions are computed and stored in oo_.
realtime_shock_decomposition, oo_.conditional_shock_decomposition

and oo_.realtime_forecast_shock_decomposition but no plot is made (See
plot_shock _decomposition).

presample = INTEGER
Data point above which recursive realtime shock decompositions are computed, i.e. for T =
[presample+1...nobs].

forecast = INTEGER
Compute shock decompositions up to 7' + k periods, i.e. get shock contributions to k-step ahead
forecasts.

save_realtime = INTEGER_VECTOR
Choose for which vintages to save the full realtime shock decomposition. Default: 0.

fast_realtime = INTEGER
fast_realtime = [INTEGER1:INTEGER2]
fast_realtime = [INTEGER1 INTEGER2 ...]

Runs the smoother only for the data vintages provided by the specified integer (vector).

4.18. Shock Decomposition 125

Dynare Reference Manual, Release 5.4

with epilogue
See with_epilogue.

Output

MATLAB/Octave variable: oo_.realtime_shock_decomposition
Structure storing the results of realtime historical decompositions. Fields are three-dimensional ar-
rays with the first two dimension equal to the ones of oco_ . shock decomposition. The third
dimension stores the time periods and is therefore of size T+forecast. Fields are of the form:

0o_.realtime_shock decomposition.OBJECT

where OBJECT is one of the following:
pool

Stores the pooled decomposition, i.e. for every real-time shock decomposition termi-
nal period T' = [presample, ..., nobs] it collects the last period’s decomposition
Y(T|T) (see also plot_shock_decomposition). The third dimension of the
array will have size nobs+forecast.

time_*

Stores the vintages of realtime historical shock decompositions if
save_realtime is used. For example, if save_realtime=[5] and
forecast=8, the third dimension will be of size 1 3.

MATLAB/Octave variable: oo_.realtime_conditional_shock_decomposition
Structure storing the results of real-time conditional decompositions. Fields are of the form:

0oo_.realtime_conditional_shock_decomposition.OBJECT

where OBJECT is one of the following:
pool

Stores the pooled real-time conditional shock decomposition, i.e. collects the
decompositions of Y(T|T) — Y(T|T — 1) for the terminal periods T =
[presample, ..., nobs]. The third dimension is of size nobs.

time_*

Store the vintages of k-step conditional forecast shock decompositions Y (¢|T" + k),
fort =[T...T+k]. See vintage. The third dimension is of size 1+forecast.

MATLAB/Octave variable: oo_.realtime_forecast_shock_decomposition
Structure storing the results of realtime forecast decompositions. Fields are of the form:

oo_.realtime_forecast_shock_decomposition.OBJECT

where OBJECT is one of the following:
pool

Stores the pooled real-time forecast decomposition of the 1-step ahead effect of
shocks on the 1-step ahead prediction, i.e. Y(T|T — 1).

time_*

Stores the vintages of k-step out-of-sample forecast shock decompositions, i.e.
Y(#|T), fort =[T...T + k]. See vintage.

Command: plot_shock _decomposition [VARIABLE_NAME]...;

Command: plot_shock decomposition (OPTIONS...) [VARIABLE_NAME]...;
This command plots the historical shock decomposition already computed by shock_decomposition
or realtime_shock_decomposition. For that reason, it must come after one of these commands.
The variable_ names provided govern which variables the decomposition is plotted for.

126 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Further note that, unlike the majority of Dynare commands, the options specified below are overwritten
with their defaults before every call to plot_shock_decomposition. Hence, if you want to reuse an
option in a subsequent call to plot_shock_decomposition, you must pass it to the command again.
Options

use_shock_groups [= NAME]

See use_shock_groups.

colormap = VARIABLE NAME
See colormap.

nodisplay

See nodisplay.
nograph

See nograph.

graph_format FORMAT
graph_format = (FORMAT, FORMAT...)
See graph_format.

detail_plot
Plots shock contributions using subplots, one per shock (or group of shocks). Default: not activated

interactive
Under MATLAB, add uimenus for detailed group plots. Default: not activated

screen_shocks
For large models (i.e. for models with more than 16 shocks), plots only the shocks that have the largest
historical contribution for chosen selected variable_names. Historical contribution is ranked by
the mean absolute value of all historical contributions.

steadystate
If passed, the the y-axis value of the zero line in the shock decomposition plot is translated to the
steady state level. Default: not activated

type = gqoq | yoy | aoa
For quarterly data, valid arguments are: qoq for quarter-on-quarter plots, yoy for year-on-year plots
of growth rates, aoa for annualized variables, i.e. the value in the last quarter for each year is plotted.
Default value: empty, i.e. standard period-on-period plots (goq for quarterly data).

fig name = STRING
Specifies a user-defined keyword to be appended to the default figure name set by
plot_shock_decomposition. This can avoid to overwrite plots in case of sequential calls to
plot_shock_decomposition.

write_xls
Saves shock decompositions to Excel file in the main directory, named
FILENAME_shock_decomposition_TYPE_FIG_NAME.xls. This option requires your
system to be configured to be able to write Excel files.?

realtime = INTEGER
Which kind of shock decomposition to plot. INTEGER can take the following values:

* 0: standard historical shock decomposition. See shock_decomposition.
 1: realtime historical shock decomposition. See realtime_shock_decomposition.
* 2: conditional realtime shock decomposition. See realtime shock_decomposition.

* 3: realtime forecast shock decomposition. See realtime_shock_decomposition.

8 In case of Excel not being installed, https://mathworks.com/matlabcentral/fileexchange/38591-xlwrite—generate-xls-x—files-without-
excel-on-mac-linux-win may be helpful.

4.18. Shock Decomposition 127

Dynare Reference Manual, Release 5.4

If no vintage is requested, i.e. vintage=0 then the pooled objects from
realtime_shock_decomposition will be plotted and the respective vintage otherwise.
Default: 0.

vintage = INTEGER
Selects a particular data vintage in [presample, ..., nobs| for which to plot the results from
realtime_shock_decomposition selected via the realt ime option. If the standard histori-
cal shock decomposition is selected (realt ime=0), vintage will have no effect. If vintage=0
the pooled objects from realtime_shock_decomposition will be plotted. If vintage>0, it
plots the shock decompositions for vintage 7' = vintage under the following scenarios:

* realtime=1: the full vintage shock decomposition Y (¢|T) for ¢t = [1,...,T]

* realtime=2: the conditional forecast shock decomposition from 7, i.e. plots Y (T + j|T + j)
and the shock contributions needed to get to the data Y (7" + j) conditional on T' = vintage, with
j=1[0,...,forecast].

* realtime=3: plots unconditional forecast shock decomposition from 7', i.e. Y (T+5|T'), where
T =vintageandj =[0,...,forecast].

Default: 0.

plot_init_date = DATE
If passed, plots decomposition using plot_init_date as initial period. Default: first observation
in estimation

plot_end date = DATE
If passed, plots decomposition using plot_end_date as last period. Default: last observation in
estimation

diff
If passed, plot the decomposition of the first difference of the list of variables. If used in combination
with £11p, the diff operator is first applied. Default: not activated

flip
If passed, plot the decomposition of the opposite of the list of variables. If used in combination with
diff,the diff operator is first applied. Default: not activated

max_nrows
Maximum number of rows in the subplot layout of detailed shock decomposition graphs. Note that
columns are always 3. Default: 6

with_epilogue
See with_epilogue.

init2shocks

init2shocks = NAME
Use the information contained in an init2shocks block, in order to attribute initial conditions to
shocks. The name of the block can be explicitly given, otherwise it defaults to the default block.

Block: init2shocks ;

Block: init2shocks (OPTIONS...);
This blocks gives the possibility of attributing the initial condition of endogenous variables to the contribu-
tion of exogenous variables in the shock decomposition.

For example, in an AR(1) process, the contribution of the initial condition on the process variable can
naturally be assigned to the innovation of the process.

Each line of the block should have the syntax:

VARIABLE_1 [,] VARIABLE_2;

Where VARIABLE 1 is an endogenous variable whose initial condition will be attributed to the exogenous
VARIABLE_2.

128 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

The information contained in this block is used by the plot_shock_decomposition command when
given the init2shocks option.

Options

name = NAME
Specifies a name for the block, that can be referenced from plot_shock_decomposition, so
that several such blocks can coexist in a single model file. If the name is unspecified, it defaults to
default.

Example
var y y_s R pie dg pie_s de A y_obs pie_obs R_obs;

varexo €_R e_g e_ys e_pies e_A;

model;
dg = rho_g*dg(-1)+e_qg;
A = rho_A*A(-1)+e_A;

end;

init2shocks;
dg e_qg;
A e_A;
end;

shock_decomposition (nograph) ;

plot_shock_decomposition (init2shocks) y_obs R_obs pie_obs dg de;

In this example, the initial conditions of dg and A will be respectively attributed to e_qg and

e_A.
Command: initial_ condition_decomposition [VARIABLE_NAME]...;
Command: initial_condition_decomposition (OPTIONS...) [VARIABLE_NAME]...;

This command computes and plots the decomposition of the effect of smoothed initial conditions of state
variables. The variable_names provided govern which variables the decomposition is plotted for.

Further note that, unlike the majority of Dynare commands, the options specified below are overwritten
with their defaults before every call to initial_condition_decomposition. Hence, if you want
to reuse an option in a subsequent call to initial_ condition_decomposition, you must pass it
to the command again.

Options
colormap = VARIABLE_ NAME
See colormap.
nodisplay
See nodisplay.
graph_format = FORMAT

graph format = (FORMAT, FORMAT...)
See graph_format.

detail_plot
Plots shock contributions using subplots, one per shock (or group of shocks). Default: not activated

steadystate
If passed, the the y-axis value of the zero line in the shock decomposition plot is translated to the
steady state level. Default: not activated

4.18. Shock Decomposition 129

Dynare Reference Manual, Release 5.4

type = qoq | yoy | aoca
For quarterly data, valid arguments are: goq for quarter-on-quarter plots, yoy for year-on-year plots
of growth rates, aoa for annualized variables, i.e. the value in the last quarter for each year is plotted.
Default value: empty, i.e. standard period-on-period plots (qoq for quarterly data).

fig name = STRING
Specifies a user-defined keyword to be appended to the default figure name set by
plot_shock_decomposition. This can avoid to overwrite plots in case of sequential calls to
plot_shock_decomposition.

write xls
Saves shock decompositions to Excel file in the main directory, named
FILENAME_shock_decomposition TYPE_FIG_NAME_initval.xls. This option
requires your system to be configured to be able to write Excel files.®

plot_init_date = DATE
If passed, plots decomposition using plot_init_date as initial period. Default: first observation
in estimation

plot_end date = DATE
If passed, plots decomposition using plot_end_date as last period. Default: last observation in
estimation

diff
If passed, plot the decomposition of the first difference of the list of variables. If used in combination
with £11p, the diff operator is first applied. Default: not activated

flip
If passed, plot the decomposition of the opposite of the list of variables. If used in combination with
diff,the diff operator is first applied. Default: not activated

Command: squeeze_shock decomposition [VARIABLE_NAME]...;
For large models, the size of the information stored by shock decompositions (especially various settings
of realtime decompositions) may become huge. This command allows to squeeze this information in two
possible ways:

* Automatic (default): only the variables for which plotting has been explicitly required with
plot_shock_decomposition will have their decomposition left in oo__ after this command
is run;

« If a list of variables is passed to the command, then only those variables will have their decomposition
left in oo__ after this command is run.

4.19 Calibrated Smoother

Dynare can also run the smoother on a calibrated model:

Command: calib_smoother [VARIABLE_NAME]...;
Command: calib_smoother (OPTIONS...) [VARIABLE_NAME]...;
This command computes the smoothed variables (and possible the filtered variables) on a calibrated model.

A datafile must be provided, and the observable variables declared with varobs. The smoother is based
on a first-order approximation of the model.

By default, the command computes the smoothed variables and shocks and stores the results in oo_ .
SmoothedVariables and oo_.SmoothedShocks. It also fills oo_ . Updatedvariables.

Options

datafile = FILENAME
See datafile.

filtered_vars
Triggers the computation of filtered variables. See fi1tered_vars, for more details.

130 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

filter step ahead = [INTEGERI1:INTEGER2]
See filter _step_ahead.

prefilter = INTEGER
See prefilter.

parameter_set = OPTION
See parameter._set for possible values. Default: calibration.

loglinear
See loglinear.

first obs = INTEGER
See first_obs.

filter decomposition
See filter _decomposition.

filter covariance
See filter _covariance.

smoother_ redux
See smoother redux.

kalman_algo = INTEGER
See kalman_algo.

diffuse_ filter = INTEGER
See diffuse_filter.

diffuse_kalman_tol = DOUBLE
See diffuse_kalman tol.

x1s_sheet = QUOTED_STRING
See x1s_sheet.

xls_range = RANGE
See x1s_range.

4.20 Forecasting

On a calibrated model, forecasting is done using the forecast command. On an estimated model, use the
forecast option of est imation command.

It is also possible to compute forecasts on a calibrated or estimated model for a given constrained path of
the future endogenous variables. This is done, from the reduced form representation of the DSGE model, by
finding the structural shocks that are needed to match the restricted paths. Use conditional_ forecast,
conditional forecast_pathsand plot_conditional_forecast for that purpose.

Finally, it is possible to do forecasting with a Bayesian VAR using the bvar_forecast command.

Command: forecast [VARIABLE_NAME...];
Command: forecast (OPTIONS...) [VARIABLE_NAME...];
This command computes a simulation of a stochastic model from an arbitrary initial point.

When the model also contains deterministic exogenous shocks, the simulation is computed conditionally to
the agents knowing the future values of the deterministic exogenous variables.

forecast must be called after stoch_simul.

forecast plots the trajectory of endogenous variables. When a list of variable names follows the com-
mand, only those variables are plotted. A 90% confidence interval is plotted around the mean trajectory.
Use option conf__sig to change the level of the confidence interval.

Options

4.20. Forecasting 131

Dynare Reference Manual, Release 5.4

periods = INTEGER
Number of periods of the forecast. Default: 5.

conf_sig = DOUBLE
Level of significance for confidence interval. Default: 0. 90.

nograph
See nograph.

nodisplay
See nodisplay.

graph_format = FORMAT
graph_format = (FORMAT, FORMAT...)
See graph_format = FORMAT.

Initial Values

forecast computes the forecast taking as initial values the values specified in histval (see histval).
When no histval block is present, the initial values are the one stated in initval. When initval is
followed by command steady, the initial values are the steady state (see steady).

Output
The results are stored in oo__. forecast, which is described below.

Example

varexo_det tau;
varexo e;

shocks;

var e; stderr 0.01;
var tau;

periods 1:9;

values -0.15;
end;

stoch_simul (irf=0) ;

forecast;

MATLAB/Octave variable: oo_.forecast

Variable set by the forecast command, or by the estimation command if used with the
forecast option and ML or if no Metropolis-Hastings has been computed (in that case, the forecast
is computed for the posterior mode). Fields are of the form:

oo_.forecast .FORECAST_MOMENT .VARIABLE_NAME

where FORECAST_MOMENT is one of the following:
HPDinf

Lower bound of a 90% HPD interval’ of forecast due to parameter uncertainty, but
ignoring the effect of measurement error on observed variables. In case of ML, it
stores the lower bound of the confidence interval.

HPDsup

Upper bound of a 90% HPD forecast interval due to parameter uncertainty, but ig-
noring the effect of measurement error on observed variables. In case of ML, it
stores the upper bound of the confidence interval.

HPDinf ME

9 See option conf _sig to change the size of the HPD interval.

132 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Lower bound of a 90% HPD interval'® of forecast for observed variables due to
parameter uncertainty and measurement error. In case of ML, it stores the lower
bound of the confidence interval.

HPDsup_ME

Upper bound of a 90% HPD interval of forecast for observed variables due to pa-
rameter uncertainty and measurement error. In case of ML, it stores the upper bound
of the confidence interval.

Mean
Mean of the posterior distribution of forecasts.

MATLAB/Octave variable: oo_.PointForecast
Set by the est imat ion command, if it is used with the forecast option and if eithermh_replic
> 0 orthe load_mh_file option are used.

Contains the distribution of forecasts taking into account the uncertainty about both parameters and
shocks.

Fields are of the form:

oo_ .PointForecast .MOMENT_NAME .VARIABLE_NAME

MATLAB/Octave variable: oo_.MeanForecast
Set by the est imat ion command, if it is used with the forecast option and if eithermh_replic
> 0or load_mh_file option are used.

Contains the distribution of forecasts where the uncertainty about shocks is averaged out. The distri-
bution of forecasts therefore only represents the uncertainty about parameters.

Fields are of the form:

00_ .MeanForecast .MOMENT_NAME .VARIABLE_NAME

Command: conditional_forecast (OPTIONS...);
This command computes forecasts on an estimated or calibrated model for a given constrained path of some
future endogenous variables. This is done using the reduced form first order state-space representation of
the DSGE model by finding the structural shocks that are needed to match the restricted paths. Consider the
augmented state space representation that stacks both predetermined and non-predetermined variables into
a vector y:

ye = Ty;—1 + Req

Both y; and €, are split up into controlled and uncontrolled ones, and we assume without loss of generality
that the constrained endogenous variables and the controlled shocks come first :

Ye,t — Tc,c Tc,u Ye,t—1 + Rc,c Rc,u Ecit

Yu,t Tue Tuu Yu,t—1 Ryc Ry Eut
where matrices 1" and R are partitioned consistently with the vectors of endogenous variables and innova-
tions. Provided that matrix R, . is square and full rank (a necessary condition is that the number of free

endogenous variables matches the number of free innovations), given ¥+, €,,+ and y;_; the first block of
equations can be solved for €. ;:

_ p-1
gep =R, (yc,t —TecYet — Teulut — Rc,ueu,t)

10 See option conf _sig to change the size of the HPD interval.

4.20. Forecasting 133

Dynare Reference Manual, Release 5.4

and y,, ; can be updated by evaluating the second block of equations:

Yu,t = Tu,cyc,t—l + Tu,uyu,t—l + Ru,cgc,t + Ru,ugu,t

By iterating over these two blocks of equations, we can build a forecast for all the endogenous variables
in the system conditional on paths for a subset of the endogenous variables. If the distribution of the free
innovations €, ; is provided (i.e. some of them have positive variances) this exercise is replicated (the
number of replication is controlled by the option repl ic described below) by drawing different sequences
of free innovations. The result is a predictive distribution for the uncontrolled endogenous variables, 4, ¢,
that Dynare will use to report confidence bands around the point conditional forecast.

A few things need to be noted. First, the controlled exogenous variables are set to zero for the uncontrolled
periods. This implies that there is no forecast uncertainty arising from these exogenous variables in un-
controlled periods. Second, by making use of the first order state space solution, even if a higher-order
approximation was performed, the conditional forecasts will be based on a first order approximation. Since
the controlled exogenous variables are identified on the basis of the reduced form model (i.e. after solving
for the expectations), they are unforeseen shocks from the perspective of the agents in the model. That is,
agents expect the endogenous variables to return to their respective steady state levels but are surprised in
each period by the realisation of shocks keeping the endogenous variables along a predefined (unexpected)
path. Fourth, if the structural innovations are correlated, because the calibrated or estimated covariance ma-
trix has non zero off diagonal elements, the results of the conditional forecasts will depend on the ordering
of the innovations (as declared after varexo). As in VAR models, a Cholesky decomposition is used to
factorise the covariance matrix and identify orthogonal impulses. It is preferable to declare the correlations
in the model block (explicitly imposing the identification restrictions), unless you are satisfied with the
implicit identification restrictions implied by the Cholesky decomposition.

This command has to be called after est imation or stoch_simul.

Use conditional forecast_paths block to give the list of constrained endogenous, and their con-
strained future path. Option controlled_varexo is used to specify the structural shocks which will be
matched to generate the constrained path.

Use plot_conditional_ forecast to graph the results.
Options

parameter_ set = OPTION
See parameter._set for possible values. No default value, mandatory option.

controlled varexo = (VARIABLE NAME...)
Specify the exogenous variables to use as control variables. No default value, mandatory option.

periods = INTEGER
Number of periods of the forecast. Default: 40. periods cannot be smaller than the number of
constrained periods.

replic = INTEGER
Number of simulations used to compute the conditional forecast uncertainty. Default: 5000.

conf_sig = DOUBLE
Level of significance for confidence interval. Default: 0. 80.

Output
The results are stored in oo__.conditional_forecast, which is described below.

Example

var y a;
varexo e u;

estimation(...);

(continues on next page)

134 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

(continued from previous page)

conditional_ forecast_paths;
var y;

periods 1:3, 4:5;

values 2, 5;

var a;

periods 1:5;

values 3;

end;

conditional forecast (parameter_set = calibration, controlled varexo =
— (e, u), replic = 3000);

plot_conditional forecast (periods = 10) a y;

MATLAB/Octave variable: oo_.conditional_forecast.cond
Variable set by the conditional_forecast command. It stores the conditional forecasts. Fields
are periods+1 by 1 vectors storing the steady state (time 0) and the subsequent periods forecasts
periods. Fields are of the form:

oo_.conditional forecast.cond.FORECAST_ MOMENT.VARIABLE NAME

where FORECAST_MOMENT is one of the following:
Mean
Mean of the conditional forecast distribution.
ci

Confidence interval of the conditional forecast distribution. The size corresponds to
conf_sig.

MATLAB/Octave variable: oo_.conditional_forecast.uncond
Variable set by the conditional_forecast command. It stores the unconditional forecasts.
Fields are of the form:

00_.conditional_ forecast.uncond.FORECAST_MOMENT.VARIABLE_NAME

MATLAB/Octave variable: forecasts.instruments
Variable set by the conditional_forecast command. Stores the names of the exogenous
instruments.

MATLAB/Octave variable: oo_.conditional_ forecast.controlled variables
Variable set by the conditional_forecast command. Stores the position of the constrained
endogenous variables in declaration order.

MATLAB/Octave variable: oo_.conditional forecast.controlled exo_variables
Variable set by the conditional_ forecast command. Stores the values of the controlled exoge-
nous variables underlying the conditional forecasts to achieve the constrained endogenous variables.
Fields are [number of constrained periods] by 1 vectors and are of the form:

oo_.conditional forecast.controlled_exo_variables.FORECAST_MOMENT.SHOCK_
—NAME

MATLAB/Octave variable: oo_.conditional_forecast.graphs
Variable set by the conditional_ forecast command. Stores the information for generating the
conditional forecast plots.

Block: conditional_forecast_paths ;
Describes the path of constrained endogenous, before calling conditional_forecast. The syntax is
similar to deterministic shocks in shocks, see conditional_forecast for an example.

The syntax of the block is the same as for the deterministic shocks in the shocks blocks (see Shocks on
exogenous variables). Note that you need to specify the full path for all constrained endogenous variables

4.20. Forecasting 135

Dynare Reference Manual, Release 5.4

between the first and last specified period. If an intermediate period is not specified, a value of 0 is assumed.
That is, if you specify only values for periods 1 and 3, the values for period 2 will be 0. Currently, it is not
possible to have uncontrolled intermediate periods.

It is however possible to have different number of controlled periods for different variables. In that
case, the order of declaration of endogenous controlled variables and of controlled_varexo mat-
ters: if the second endogenous variable is controlled for less periods than the first one, the second
controlled_varexo isn’t set for the last periods.

In case of the presence of observation_trends, the specified controlled path for these variables needs
to include the trend component. When using the /oglinear option, it is necessary to specify the logarithm of
the controlled variables.

Block: filter_initial state ;
This block specifies the initial values of the endogenous states at the beginning of the Kalman filter re-
cursions. That is, if the Kalman filter recursion starts with time t=1 being the first observation, this block
provides the state estimate at time O given information at time 0, Ey(x). If nothing is specified, the initial
condition is assumed to be at the steady state (which is the unconditional mean for a stationary model).

This block is terminated by end; .
Each line inside of the block should be of the form:

VARIABLE_NAME (INTEGER) =EXPRESSION;

EXPRESSION is any valid expression returning a numerical value and can contain parameter values. This
allows specifying relationships that will be honored during estimation. INTEGER refers to the lag with
which a variable appears. By convention in Dynare, period 1 is the first period. Going backwards in time,
the first period before the start of the simulation is period 0, then period -1, and so on. Note that the
filter_initial_state block does not take non-state variables.

Example

filter_initial_state;

k(0)= ((1l/bet-(l-del))/alp) " (1l/(alp-1))+1_ss;
P(0)=2.5258;

m(0)= mst;

end;

Command: plot_conditional forecast [VARIABLE_NAME...];
Command: plot_conditional_forecast (periods = INTEGER) [VARIABLE_NAME...];
Plots the conditional (plain lines) and unconditional (dashed lines) forecasts.

To be used after conditional_forecast.
Options

periods = INTEGER
Number of periods to be plotted. Default: equal to periods in conditional_forecast. The
number of periods declared in plot_conditional_forecast cannot be greater than the one
declared in conditional_forecast.

Command: bvar forecast ;
This command computes (out-of-sample) forecasts for an estimated BVAR model, using Minnesota priors.

See bvar-a-la-sims.pdf, which comes with Dynare distribution, for more information on this com-
mand.

If the model contains strong non-linearities or if some perfectly expected shocks are considered, the forecasts and
the conditional forecasts can be computed using an extended path method. The forecast scenario describing the
shocks and/or the constrained paths on some endogenous variables should be build. The first step is the forecast
scenario initialization using the function init_plan:

MATLAB/Octave command: HANDLE = init_plan (DATES);
Creates a new forecast scenario for a forecast period (indicated as a dates class, see dates class members).
This function return a handle on the new forecast scenario.

136 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

The forecast scenario can contain some simple shocks on the exogenous variables. This shocks are described
using the function basic_plan:

MATLAB/Octave command: HANDLE = basic_plan (HANDLE, “VAR_NAME', ~SHOCK_TYPE',

Adds to the forecast scenario a shock on the exogenous variable indicated between quotes in the second
argument. The shock type has to be specified in the third argument between quotes: ’surprise’ in case of
an unexpected shock or ’perfect_foresight’ for a perfectly anticipated shock. The fourth argument indicates
the period of the shock using a dates class (see dates class members). The last argument is the shock path
indicated as a MATLAB vector of double. This function return the handle of the updated forecast scenario.

The forecast scenario can also contain a constrained path on an endogenous variable. The values of the related
exogenous variable compatible with the constrained path are in this case computed. In other words, a conditional
forecast is performed. This kind of shock is described with the function f1ip_plan:

DATES,

MAT

MATLAB/Octave command: HANDLE = flip_ plan (HANDLE, “VAR NAME', “VAR_NAME', ~SHOCK_TYPE',

Once

Adds to the forecast scenario a constrained path on the endogenous variable specified between quotes in
the second argument. The associated exogenous variable provided in the third argument between quotes, is
considered as an endogenous variable and its values compatible with the constrained path on the endogenous
variable will be computed. The nature of the expectation on the constrained path has to be specified in
the fourth argument between quotes: ’surprise’ in case of an unexpected path or ’perfect_foresight’ for a
perfectly anticipated path. The fifth argument indicates the period where the path of the endogenous variable
is constrained using a dates class (see dates class members). The last argument contains the constrained path
as a MATLAB vector of double. This function return the handle of the updated forecast scenario.

the forecast scenario if fully described, the forecast is computed with the command

det_cond_forecast:

MATLAB/Octave command:

Computes the forecast or the conditional forecast using an extended path method for the given forecast
scenario (first argument). The past values of the endogenous and exogenous variables provided with a
dseries class (see dseries class members) can be indicated in the second argument. By default, the past
values of the variables are equal to their steady-state values. The initial date of the forecast can be provided
in the third argument. By default, the forecast will start at the first date indicated in the init_plan
command. This function returns a dset containing the historical and forecast values for the endogenous and
exogenous variables.

Example

% conditional forecast using extended path method
% with perfect foresight on r path

var y r;
varexo e u;

smoothed = dseries('smoothed variables.csv');

fplan = init_plan(2013Q4:2029Q4) ;

fplan = flip_plan(fplan, 'y', 'u', 'surprise', 201304:20140Q4, [1 1.1 1.2
—1.1 1);
fplan = flip_plan(fplan, 'r', 'e', 'perfect_foresight', 2013Q4:2014Q4, _,

—[2 1.9 1.9 1.9 1);
dset_forecast = det_cond_forecast (fplan, smoothed);

plot (dset_forecast.{'y','u'});
plot (dset_forecast.{'r','e'});

Command: smoother2histval ;
Command: smoother2histval (OPTIONS...);

The purpose of this command is to construct initial conditions (for a subsequent simulation) that are the
smoothed values of a previous estimation.

More precisely, after an estimation run with the smoother option, smoother2histval will extract

4.20.

Forecasting 137

DSERIES = det_cond_forecast (HANDLE [, DSERIES [, DATES]]);

Dynare Reference Manual, Release 5.4

the smoothed values (from oo_ . SmoothedVariables, and possibly from oo_ . SmoothedShocks
if there are lagged exogenous), and will use these values to construct initial conditions (as if they had been
manually entered through histval).

Options

period = INTEGER
Period number to use as the starting point for the subsequent simulation. It should be between 1 and the
number of observations that were used to produce the smoothed values. Default: the last observation.

infile = FILENAME
Load the smoothed values from a _results.mat file created by a previous Dynare run. Default:
use the smoothed values currently in the global workspace.

invars = (VARIABLE NAME [VARIABLE NAME ...])
A list of variables to read from the smoothed values. It can contain state endogenous variables, and also
exogenous variables having a lag. Default: all the state endogenous variables, and all the exogenous
variables with a lag.

outfile = FILENAME
Write the initial conditions to a file. Default: write the initial conditions in the current workspace, so
that a simulation can be performed.

outvars = (VARIABLE NAME [VARIABLE NAME ...])
A list of variables which will be given the initial conditions. This list must have the same length than
the list given to invars, and there will be a one-to-one mapping between the two list. Default: same
value as option invars.

Use cases
There are three possible ways of using this command:

 Everything in a single file: run an estimation with a smoother, then run smoother2histval (with-
outthe infile and outfile options), then run a stochastic simulation.

¢ In two files: in the first file, run the smoother and then run smoother2histval withthe outfile
option; in the second file, run histval_file to load the initial conditions, and run a (deterministic
or stochastic) simulation.

¢ In two files: in the first file, run the smoother; in the second file, run smoother2histval with the
infileoptionequaltothe results.mat file created by the first file, and then run a (deterministic
or stochastic) simulation.

4.21 Optimal policy

Dynare has tools to compute optimal policies for various types of objectives. You can either solve
for optimal policy under commitment with ramsey_model, for optimal policy under discretion with
discretionary_policy or for optimal simple rules with osr (also implying commitment).

Command: planner_objective MODEL_EXPRESSION ;

This command declares the policy maker objective, for use with ramsey model or
discretionary_policy.

You need to give the one-period objective, not the discounted lifetime objective. The discount factor is
given by the planner_discount option of ramsey_model and discretionary_policy. The
objective function can only contain current endogenous variables and no exogenous ones. This limitation is
easily circumvented by defining an appropriate auxiliary variable in the model.

With ramsey_model, you are not limited to quadratic objectives: you can give any arbitrary nonlinear
expression.

With discretionary_policy, the objective function must be quadratic.

138

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Command: evaluate planner_ objective ;
This command computes, displays, and stores the value of the planner objective function under Ramsey
policy or discretion in oo_.planner_objective_value. It will provide both unconditional welfare
and welfare conditional on the initial (i.e. period 0) values of the endogenous and exogenous state variables
inherited by the planner. In a deterministic context, the respective initial values are set using initval or
histval (depending on the exact context).

In a stochastic context, if no initial state values have been specified with histval, their values are taken
to be the steady state values. Because conditional welfare is computed conditional on optimal policy by the
planner in the first endogenous period (period 1), it is conditional on the information set in the period 1.
This information set includes both the predetermined states inherited from period O (specified viahistval
for both endogenous and lagged exogenous states) as well as the period 1 values of the exogenous shocks.
The latter are specified using the perfect foresight syntax of the shocks block.

At the current stage, the stochastic context does not support the pruning option. At order>3, only
the computation of conditional welfare with steady state Lagrange multipliers is supported. Note that at
order=2, the output is based on the second-order accurate approximation of the variance stored in oo_.
var.

Example (stochastic context)

var a ...;
varexo u;

model;
a = rhoxa(-1)+utu(-1);

end;

histval;
u(0)=1;
a(0)=-1;
end;

shocks;

var u; stderr 0.008;
var u;

periods 1;

values 1;

end;

evaluate_planner_ objective;

MATLAB/Octave variable: oo_.planner_objective_value.unconditional

Scalar storing the value of unconditional welfare. In a perfect foresight context, it corresponds to welfare in
the long-run, approximated as welfare in the terminal simulation period.

MATLAB/Octave variable: oo_.planner_objective_value.conditional

In a perfect foresight context, this field will be a scalar storing the value of welfare conditional on the
specified initial condition and zero initial Lagrange multipliers.

In a stochastic context, it will have two subfields:

MATLAB/Octave variable: oo_.planner_objective_value.conditional.steady_initial_mul:

Stores the value of the planner objective when the initial Lagrange multipliers associated with the planner’s
problem are set to their steady state values (see ramsey_policy).

MATLAB/Octave variable: oo_.planner_objective_value.conditional.zero_initial_ multi]

Stores the value of the planner objective when the initial Lagrange multipliers associated with the planner’s
problem are set to 0, i.e. it is assumed that the planner exploits its ability to surprise private agents in the
first period of implementing Ramsey policy. This value corresponds to the planner implementing optimal
policy for the first time and committing not to re-optimize in the future.

4.21. Optimal policy 139

Dynare Reference Manual, Release 5.4

4.21.1 Optimal policy under commitment (Ramsey)

Dynare allows to automatically compute optimal policy choices of a Ramsey planner who takes the specified pri-
vate sector equilibrium conditions into account and commits to future policy choices. Doing so requires specifying
the private sector equilibrium conditions in the model block and aplanner_objective as well as potentially
some instruments to facilitate computations.

Warning: Be careful when employing forward-looking auxiliary variables in the context of timeless perspec-
tive Ramsey computations. They may alter the problem the Ramsey planner will solve for the first period,
although they seemingly leave the private sector equilibrium unaffected. The reason is the planner optimizes
with respect to variables dated t and takes the value of time O variables as given, because they are predeter-
mined. This set of initially predetermined variables will change with forward-looking definitions. Thus, users
are strongly advised to use model-local variables instead.

Example

Consider a perfect foresight example where the Euler equation for the return to capital is given by

1/C=betax1/C(+1)* (R(+1)+ (l-delta))

The job of the Ramsey planner in period 1 is to choose C'; and Ry, taking as given Cp. The above
equation may seemingly equivalently be written as

1/C=beta*1/C(+1) * (R_cap) ;
R_cap=R(+1)+ (1l-delta);

due to perfect foresight. However, this changes the problem of the Ramsey planner in the first
period to choosing C; and R;, taking as given both Cyy and R;*”. Thus, the relevant return to
capital in the Euler equation of the first period is not a choice of the planner anymore due to the

forward-looking nature of the definition in the second line!
A correct specification would be to instead define R_cap as a model-local variable:

1/C=betax1/C(+1)* (R_cap) ;
#R_cap=R (+1) + (1-delta);

Command: ramsey model (OPTIONS...);

This command computes the First Order Conditions for maximizing the policy maker objective function
subject to the constraints provided by the equilibrium path of the private economy.

The planner objective must be declared with the planner._objective command.

This command only creates the expanded model, it doesn’t perform any computations. It needs to be
followed by other instructions to actually perform desired computations. Examples are calls to steady to
compute the steady state of the Ramsey economy, to stoch_simul with various approximation orders
to conduct stochastic simulations based on perturbation solutions, to estimation in order to estimate
models under optimal policy with commitment, and to perfect foresight simulation routines.

See Auxiliary variables, for an explanation of how Lagrange multipliers are automatically created.
Options
This command accepts the following options:

planner_discount = EXPRESSION
Declares or reassigns the discount factor of the central planner
optimal_policy_discount_factor. Default: 1.0.

planner_discount_latex_name = LATEX NAME
Sets the LaTeX name of the opt imal_policy_discount_factor parameter.

instruments = (VARIABLE_NAME, ...)
Declares instrument variables for the computation of the steady state under optimal policy. Requires a
steady_state_model blockora_steadystate.m file. See below.

140

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Steady state

Dynare takes advantage of the fact that the Lagrange multipliers appear linearly in the equations of the
steady state of the model under optimal policy. Nevertheless, it is in general very difficult to compute the
steady state with simply a numerical guess in initval for the endogenous variables.

It greatly facilitates the computation, if the user provides an analytical solution for the steady state (in
steady_state_model block orin a _steadystate.m file). In this case, it is necessary to provide
a steady state solution CONDITIONAL on the value of the instruments in the optimal policy problem and
declared with the option instruments. The initial value of the instrument for steady state finding in
this case is set with initval. Note that computing and displaying steady state values using the steady
command or calls to resid must come after the ramsey_model statement and the initval block.

Note that choosing the instruments is partly a matter of interpretation and you can choose instruments that
are handy from a mathematical point of view but different from the instruments you would refer to in the
analysis of the paper. A typical example is choosing inflation or nominal interest rate as an instrument.

Block: ramsey_ constraints ;
This block lets you define constraints on the variables in the Ramsey problem. The constraints take the form
of a variable, an inequality operator (> or <) and a constant.

Example

ramsey_constraints;
i > 0;
end;

Command: ramsey_policy [VARIABLE_NAME...];
Command: ramsey_ policy (OPTIONS...) [VARIABLE NAME...];
This command is deprecated and formally equivalent to the calling sequence

ramsey_model;
stoch_simul;
evaluate_planner objective;

It computes an approximation of the policy that maximizes the policy maker’s objective function subject
to the constraints provided by the equilibrium path of the private economy and under commitment to this
optimal policy. The Ramsey policy is computed by approximating the equilibrium system around the pertur-
bation point where the Lagrange multipliers are at their steady state, i.e. where the Ramsey planner acts as if
the initial multipliers had been set to O in the distant past, giving them time to converge to their steady state
value. Consequently, the optimal decision rules are computed around this steady state of the endogenous
variables and the Lagrange multipliers.

Note that the variables in the list after the ramsey_policy or stoch_simul command can also contain
multiplier names, but in a case-sensititve way (e.g. MULT_1). In that case, Dynare will for example display
the IRFs of the respective multipliers when 1 r£>0.

The planner objective must be declared with the p1anner._objective command.
Options
This command accepts all options of stoch_simul, plus:

planner_discount = EXPRESSION
See planner_discount.

instruments = (VARIABLE NAME, ...)
Declares instrument variables for the computation of the steady state under optimal policy. Requires a
steady_state_model block ora _steadystate.mfile. See below.

Output

This command generates all the output variables of stoch_simul. For specifying the initial values for
the endogenous state variables (except for the Lagrange multipliers), see above.

Steady state

4.21. Optimal policy 141

Dynare Reference Manual, Release 5.4

See Ramsey steady state.

4.21.2 Optimal policy under discretion

Command: discretionary policy [VARIABLE_NAME...];
Command: discretionary policy (OPTIONS...) [VARIABLE NAME...];

This command computes an approximation of the optimal policy under discretion. The algorithm imple-
mented is essentially an LQ solver, and is described by Dennis (2007).

You must ensure that your objective is quadratic. Regarding the model, it must either be linear or solved at
first order with an analytical steady state provided. In the first case, you should set the 1inear option of
the mode1l block.

It is possible to use the est imat i on command after the discretionary_policy command, in order
to estimate the model with optimal policy under discretion and evaluate planner objective to
compute welfare.

Options
This command accepts the same options as ramsey_policy, plus:

discretionary tol = NON-NEGATIVE DOUBLE
Sets the tolerance level used to assess convergence of the solution algorithm. Default: 1e-7.

maxit = INTEGER
Maximum number of iterations. Default: 3000.

4.21.3 Optimal Simple Rules (OSR)

Command: osr [VARIABLE_NAME...];
Command: osr(OPTIONS...) [VARIABLE_NAME...];

This command computes optimal simple policy rules for linear-quadratic problems of the form:

min E(y;Wy:)
P

such that:

A1Ey1 + Aoy + Asyp—1 +Cey =0

where:
» E denotes the unconditional expectations operator;

e ~ are parameters to be optimized. They must be elements of the matrices Ay, Ay, A3, i.e. be specified
as parameters in the params command and be entered in the mode 1 block;

* y are the endogenous variables, specified in the var command, whose (co)-variance enters the loss
function;

* ¢ are the exogenous stochastic shocks, specified in the varexo- ommand;
* W is the weighting matrix;

The linear quadratic problem consists of choosing a subset of model parameters to minimize the weighted
(co)-variance of a specified subset of endogenous variables, subject to a linear law of motion implied by the
first order conditions of the model. A few things are worth mentioning. First, y denotes the selected en-
dogenous variables’ deviations from their steady state, i.e. in case they are not already mean 0 the variables
entering the loss function are automatically demeaned so that the centered second moments are minimized.
Second, osr only solves linear quadratic problems of the type resulting from combining the specified

142

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

quadratic loss function with a first order approximation to the model’s equilibrium conditions. The reason
is that the first order state-space representation is used to compute the unconditional (co)-variances. Hence,
osr will automatically select order=1. Third, because the objective involves minimizing a weighted sum
of unconditional second moments, those second moments must be finite. In particular, unit roots in y are
not allowed.

The subset of the model parameters over which the optimal simple rule is to be optimized, y, must be listed
with osr_params.

The weighting matrix W used for the quadratic objective function is specified in the optim_weights
block. By attaching weights to endogenous variables, the subset of endogenous variables entering the
objective function, y, is implicitly specified.

The linear quadratic problem is solved using the numerical optimizer specified with opt_algo.
Options

The osr command will subsequently run stoch_simul and accepts the same options, including restrict-
ing the endogenous variables by listing them after the command, as stoch_simul (see Stochastic solution
and simulation) plus

opt_algo = INTEGER
Specifies the optimizer for minimizing the objective function. = The same solvers as for
mode_compute (see mode_compute) are available, except for 5, 6, and 10.

optim = (NAME, VALUE, ...)
A list of NAME" " and VALUE pairs. Can be used to set options for the optimization routines. The
set of available options depends on the selected optimization routine (i.e. on the value of option
opt_algo). See opt im.

maxit = INTEGER
Determines the maximum number of iterations used in opt_algo=4. This option is now deprecated
and will be removed in a future release of Dynare. Use opt im instead to set optimizer-specific values.
Default: 1000.

tolf = DOUBLE
Convergence criterion for termination based on the function value used in opt_algo=4. Iteration
will cease when it proves impossible to improve the function value by more than tolf. This option
is now deprecated and will be removed in a future release of Dynare. Use optim instead to set
optimizer-specific values. Default: e—7.

silent_optimizer
See silent_optimizer.

huge _number = DOUBLE
Value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for
numerical reasons (see huge_number). Users need to make sure that the optimal parameters are not
larger than this value. Default: 1e7.

The value of the objective is stored in the variable co_.osr.objective_function and the value of
parameters at the optimum is stored in oo_.osr.optim_params. See below for more details.

After running osr the parameters entering the simple rule will be set to their optimal value so that subse-
quent runs of stoch_simul will be conducted at these values.

Command: osr_params PARAMETER NAME...;
This command declares parameters to be optimized by osr.

Block: optim weights ;
This block specifies quadratic objectives for optimal policy problems.

More precisely, this block specifies the nonzero elements of the weight matrix 1 used in the quadratic form
of the objective function in osr.

An element of the diagonal of the weight matrix is given by a line of the form:

4.21. Optimal policy 143

Dynare Reference Manual, Release 5.4

VARIABLE_NAME EXPRESSION;

An off-the-diagonal element of the weight matrix is given by a line of the form:

VARIABLE_NAME, VARIABLE_NAME EXPRESSION;

Example
var y lation r;
varexo y_ 5

parameters delta sigma alpha kappa gammarr gammax(0O gammacO gamma_y_ gamma__

— i

delta = 0.44;
kappa = 0.18;
alpha = 0.48;
sigma = -0.06;
gammarr = 0;
gammax0 = 0.2;
gammacO = 1.5;
gamma_y_ = 8;
gamma__ _ = 3;

model (linear) ;

y = delta % y(-1) + (l-delta)x*y(+1l)+sigma *(r — lation(+1)) + y_;
lation = alpha =* lation(-1) + (l-alpha) = lation (+1) +_,

—kappa*y + B

r = gammax0+y (—1)+gammacOx* lation(—1) tgamma_y_*y_-+gamma__ _* _ B

end;

shocks;

var y_; stderr 0.63;

var _; stderr 0.4;

end;

optim_weights;
lation 1;

y 1;

vV, lation 0.5;

end;

osr params gammax0 gammacO gamma y gamma_ inf_;
osr y;

Block: osr_ params_bounds ;
This block declares lower and upper bounds for parameters in the optimal simple rule. If not specified the
optimization is unconstrained.

Each line has the following syntax:

PARAMETER_NAME, LOWER_BOUND, UPPER_BOUND;

Note that the use of this block requires the use of a constrained optimizer, i.e. setting opt_algoto 1, 2,5

or 9.

Example
osr_params_bounds;
gamma__ _p 0, 2.5¢
end;

(continues on next page)

144 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

(continued from previous page)
osr (opt_algo=9) y;

MATLAB/Octave variable: oo_.osr.objective_function
After an execution of the osr command, this variable contains the value of the objective under optimal
policy.

MATLAB/Octave variable: o0o_.osr.optim params
After an execution of the osr command, this variable contains the value of parameters at the optimum,
stored in fields of the form co_ .osr.optim_params.PARAMETER_NAME.

MATLAB/Octave variable: M_.osr.param names
After an execution of the osr command, this cell contains the names of the parameters.

MATLAB/Octave variable: M_.osr.param indices
After an execution of the osr command, this vector contains the indices of the OSR parameters in M__.
params.

MATLAB/Octave variable: M_.osr.param bounds
After an execution of the osr command, this two by number of OSR parameters matrix contains the lower
and upper bounds of the parameters in the first and second column, respectively.

MATLAB/Octave variable: M_.osr.variable_weights
After an execution of the osr command, this sparse matrix contains the weighting matrix associated with
the variables in the objective function.

MATLAB/Octave variable: M_.osr.variable_indices
After an execution of the osr command, this vector contains the indices of the variables entering the
objective function in M_ . endo_names.

4.22 Sensitivity and identification analysis

Dynare provides an interface to the global sensitivity analysis (GSA) toolbox (developed by the Joint Research
Center (JRC) of the European Commission), which is now part of the official Dynare distribution. The GSA
toolbox can be used to answer the following questions:

1. What is the domain of structural coefficients assuring the stability and determinacy of a DSGE model?

2. Which parameters mostly drive the fit of, e.g., GDP and which the fit of inflation? Is there any conflict
between the optimal fit of one observed series versus another?

3. How to represent in a direct, albeit approximated, form the relationship between structural parameters and
the reduced form of a rational expectations model?

The discussion of the methodologies and their application is described in Ratfo (2008).

With respect to the previous version of the toolbox, in order to work properly, the GSA toolbox no longer requires
that the Dynare estimation environment is set up.

4.22.1 Performing sensitivity analysis

Command: dynare_sensitivity ;

Command: dynare_sensitivity (OPTIONS...);
This command triggers sensitivity analysis on a DSGE model.
Sampling Options

Nsam = INTEGER
Size of the Monte-Carlo sample. Default: 2048.

4.22. Sensitivity and identification analysis 145

Dynare Reference Manual, Release 5.4

ilptau = INTEGER
If equal to 1, use LP, quasi-Monte-Carlo. If equal to 0, use LHS Monte-Carlo. Default: 1.

pprior = INTEGER
If equqal to 1, sample from the prior distributions. If equal to 0, sample from the multivariate normal
N(0,Y), where @ is the posterior mode and > = H !, H is the Hessian at the mode. Default: 1.

prior_range = INTEGER
If equal to 1, sample uniformly from prior ranges. If equal to 0, sample from prior distributions.
Default: 1.

morris = INTEGER
If equal to 0, ANOVA mapping (Type I error) If equal to 1, Screening analysis (Type II error). If equal
to 2, Analytic derivatives (similar to Type II error, only valid when identification=1). Default: 1 when
identification=1, 0 otherwise.

morris nliv = INTEGER
Number of levels in Motris design. Default: 6.

morris_ntra = INTEGER
Number trajectories in Morris design. Default: 20.

ppost = INTEGER
If equal to 1, use Metropolis posterior sample. If equal to 0, do not use Metropolis posterior sample.
Default: 0.

NB: This overrides any other sampling option.

neighborhood _width = DOUBLE
When pprior=0 and ppost=0, allows for the sampling of parameters around the value specified
in the mode_ file, in the range xparaml + |[xparaml x neighborhood_width]|. Default: 0.

Stability Mapping Options

stab = INTEGER
If equal to 1, perform stability mapping. If equal to 0, do not perform stability mapping. Default: 1.

load _stab = INTEGER
If equal to 1, load a previously created sample. If equal to 0, generate a new sample. Default: 0.

alpha2_ stab = DOUBLE
Critical value for correlations p in filtered samples: plot couples of parmaters with |p| >
alpha?2_stab. Default: 0.

pvalue_ks = DOUBLE
The threshold pvalue for significant Kolmogorov-Smirnov test (i.e. plot parameters with pvalue <
pvalue_ks). Default: 0.001.

pvalue_corr = DOUBLE
The threshold pvalue for significant correlation in filtered samples (i.e. plot bivariate samples when
pvalue < pvalue_corr). Default: 1e-5.

Reduced Form Mapping Options

redform = INTEGER
If equal to 1, prepare Monte-Carlo sample of reduced form matrices. If equal to O, do not prepare
Monte-Carlo sample of reduced form matrices. Default: 0.

load_redform = INTEGER
If equal to 1, load previously estimated mapping. If equal to O, estimate the mapping of the reduced
form model. Default: 0.

logtrans_redform = INTEGER
If equal to 1, use log-transformed entries. If equal to 0, use raw entries. Default: 0.

threshold redform = [DOUBLE DOUBLE]
The range over which the filtered Monte-Carlo entries of the reduced form coefficients should be

146

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

analyzed. The first number is the lower bound and the second is the upper bound. An empty vector
indicates that these entries will not be filtered. Default: empty.

ksstat_redform = DOUBLE
Critical value for Smirnov statistics d when reduced form entries are filtered. Default: 0.001.

alpha2_redform = DOUBLE
Critical value for correlations p when reduced form entries are filtered. Default: 1e-5.

namendo = (VARIABLE_NAME...)
List of endogenous variables. ‘:” indicates all endogenous variables. Default: empty.

namlagendo = (VARIABLE NAME...)
List of lagged endogenous variables. ‘:” indicates all lagged endogenous variables. Analyze entries
[namendo x namlagendo] Default: empty.

namexo = (VARIABLE NAME...)
List of exogenous variables. °’
namexo]. Default: empty.

indicates all exogenous variables. Analyze entries [namendo X

RMSE Options

rmse = INTEGER
If equal to 1, perform RMSE analysis. If equal to 0, do not perform RMSE analysis. Default: 0.

load rmse = INTEGER
If equal to 1, load previous RMSE analysis. If equal to 0, make a new RMSE analysis. Default: 0.

lik_only = INTEGER
If equal to 1, compute only likelihood and posterior. If equal to 0, compute RMSE’s for all observed
series. Default: 0.

var_rmse = (VARIABLE NAME...)
List of observed series to be considered. ‘:” indicates all observed variables. Default: varobs.

pfilt_rmse = DOUBLE
Filtering threshold for RMSE’s. Default: 0. 1.

istart _rmse = INTEGER
Value at which to start computing RMSE’s (use 2 to avoid big intitial error). Default: presample+1.

alpha rmse = DOUBLE
Critical value for Smirnov statistics d: plot parameters with d > alpha_rmse. Default: 0.001.

alpha2_ rmse = DOUBLE
Critical value for correlation p: plot couples of parmaters with |p| = alpha2_rmse. Default: 1e-5.

datafile = FILENAME
See datafile.

nobs = INTEGER
nobs = [INTEGERL:INTEGER2]
See nobs.

first obs = INTEGER
See first_obs.

prefilter = INTEGER
See prefilter.

presample = INTEGER
See presample.

nograph

See nograph.
nodisplay

See nodisplay.

4.22. Sensitivity and identification analysis 147

Dynare Reference Manual, Release 5.4

graph_format = FORMAT
graph_format = (FORMAT, FORMAT...)
See graph_format.

conf_sig = DOUBLE
See conf sig.

loglinear
See loglinear.

mode_file = FILENAME
See mode _file.

kalman_algo = INTEGER
See kalman_algo.

Identification Analysis Options

identification = INTEGER
If equal to 1, performs identification analysis (forcing redform=0 and morris=1) If equal to O,
no identification analysis. Default: 0.

morris = INTEGER
See morris.

morris_nliv = INTEGER
See morris_nliv.

morris ntra = INTEGER
See morris_ntra.

load _ident_files = INTEGER
Loads previously performed identification analysis. Default: 0.

useautocorr = INTEGER
Use autocorrelation matrices in place of autocovariance matrices in moments for identification analy-
sis. Default: 0.

ar = INTEGER
Maximum number of lags for moments in identification analysis. Default: 1.

diffuse filter = INTEGER
See diffuse_filter.

4.22.2 IRF/Moment calibration

The irf_calibration and moment_calibration blocks allow imposing implicit “endogenous” priors
about IRFs and moments on the model. The way it works internally is that any parameter draw that is inconsistent
with the “calibration” provided in these blocks is discarded, i.e. assigned a prior density of 0. In the context of
dynare_sensitivity, these restrictions allow tracing out which parameters are driving the model to satisfy
or violate the given restrictions.

IRF and moment calibration can be defined in irf_calibration and moment_calibration blocks:

Block: irf calibration ;

Block: irf calibration (OPTIONS...);
This block allows defining IRF calibration criteria and is terminated by end; . To set IRF sign restrictions,
the following syntax is used:

VARIABLE_NAME (INTEGER), EXOGENOUS_NAME, —;
VARIABLE_NAME (INTEGER:INTEGER), EXOGENOUS_NAME, +;

To set IRF restrictions with specific intervals, the following syntax is used:

148 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

VARIABLE_NAME (INTEGER), EXOGENOUS_NAME, [EXPRESSION, EXPRESSION];
VARIABLE_NAME (INTEGER: INTEGER), EXOGENOUS_NAME, [EXPRESSION, EXPRESSION];

When (INTEGER:INTEGER) is used, the restriction is considered to be fulfilled by a logical OR. A list
of restrictions must always be fulfilled with logical AND.

Options

relative_irf
See relative irf

Example

irf calibration;

y(l:4), e_ys, [-50, 501; //[first year response with logical OR]

@#for ilag in 21:40

R_obs(@{ilag}), e_ys, [0, 6]; //[response from 5th to 10th years with_
—~logical AND]

@#endfor

end;

Block: moment_calibration ;

Block: moment_calibration (OPTIONS...);
This block allows defining moment calibration criteria. This block is terminated by end;, and contains
lines of the form:

VARIABLE_NAME1, VARIABLE_NAME?Z (+/-INTEGER), [EXPRESSION, EXPRESSION];
VARIABLE_NAMEl, VARIABLE_NAME? (+/-INTEGER), +/-;

VARIABLE_NAME1l, VARIABLE_NAME2 (+/- (INTEGER:INTEGER)), [EXPRESSION, EXPRESSION];
VARIABLE_NAME1l, VARIABLE_NAME2 ((-INTEGER:+INTEGER)), [EXPRESSION, EXPRESSION];

When (INTEGER:INTEGER) is used, the restriction is considered to be fulfilled by a logical OR. A list
of restrictions must always be fulfilled with logical AND. The moment restrictions generally apply to auto-
and cross-correlations between variables. The only exception is a restriction on the unconditional variance
of an endogenous variable, specified as shown in the example below.

Example

moment_calibration;

y_obs,y obs, [0.5, 1.5]; //[unconditional variance]
y_obs,y_obs(-(1:4)), +; //[sign restriction for first year,,
—autocorrelation with logical OR]

@#for ilag in -2:2

y_obs,R_obs(@{ilag}), —-; //[-2:2 cross correlation with logical AND]
@#endfor

@#for ilag in -4:4

y_obs,pie_obs (@{ilag}), —; //[-4_4 cross correlation with logical AND]
@#endfor

end;

4.22.3 Performing identification analysis

Command: identification ;
Command: identification (OPTIONS...);
This command triggers:

1. Theoretical identification analysis based on
e moments as in Iskrev (2010)
* spectral density as in Qu and Tkachenko (2012)

* minimal system as in Komunjer and Ng (2011)

4.22. Sensitivity and identification analysis 149

Dynare Reference Manual, Release 5.4

¢ reduced-form solution and linear rational expectation model as in Ratto and Iskrev (2011)

Note that for orders 2 and 3, all identification checks are based on the pruned state space system as in
Mutschler (2015). That is, theoretical moments and spectrum are computed from the pruned ABCD-
system, whereas the minimal system criteria is based on the first-order system, but augmented by the
theoretical (pruned) mean at order 2 or 3.

. Identification strength analysis based on (theoretical or simulated) curvature of moment information

matrix as in Ratto and Iskrev (2011)

. Parameter checks based on nullspace and multicorrelation coefficients to determine which (combina-

tions of) parameters are involved

General Options

order = 1|2]|3

Order of approximation. At orders 2 and 3 identification is based on the pruned state space
system. Note that the order set in other functions does not overwrite the default. Default: 1.

parameter_set = OPTION

See parameter._set for possible values. Default: prior_mean.

prior_mc = INTEGER

Size of Monte-Carlo sample. Default: 1.

prior_range = INTEGER

Triggers uniform sample within the range implied by the prior specifications (when
prior_mc>1). Default: 0.

advanced = INTEGER

If set to 1, shows a more detailed analysis, comprised of an analysis for the linearized rational
expectation model as well as the associated reduced form solution. Further performs a bruteforce
search of the groups of parameters best reproducing the behavior of each single parameter. The
maximum dimension of the group searched is triggered by max_dim_cova_group. Default:
0.

max_dim_cova_group = INTEGER

In the brute force search (performed when advanced=1) this option sets the maximum dimen-
sion of groups of parameters that best reproduce the behavior of each single model parameter.
Default: 2.

gsa_sample_file = INTEGER|FILENAME

If equal to 0, do not use sample file. If equal to 1, triggers gsa prior sample. If equal to 2, triggers
gsa Monte-Carlo sample (i.e. loads a sample corresponding to pprior=0 and ppost=0 in the
dynare_sensitivity options). If equal to FILENAME uses the provided path to a specific
user defined sample file. Default: 0.

diffuse filter

Deals with non-stationary cases. See diffuse filter.

Numerical Options

analytic_derivation mode = INTEGER

Different ways to compute derivatives either analytically or numerically. Possible values are:
* 0: efficient sylvester equation method to compute analytical derivatives
¢ 1: kronecker products method to compute analytical derivatives (only at order=1)

e —1: numerical two-sided finite difference method to compute all identification Jacobians
(numerical tolerance level is equal to options_.dynatol.x)

* —2: numerical two-sided finite difference method to compute derivatives of steady state and
dynamic model numerically, the identification Jacobians are then computed analytically
(numerical tolerance level is equal to options_.dynatol.x)

Default: 0.

150

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

normalize_ jacobians = INTEGER
If set to 1: Normalize Jacobian matrices by rescaling each row by its largest element in abso-
lute value. Normalize Gram (or Hessian-type) matrices by transforming into correlation-type
matrices. Default: 1

tol _rank = DOUBLE
Tolerance level used for rank computations. Default: 1.e-10.

tol_deriv = DOUBLE
Tolerance level for selecting non-zero columns in Jacobians. Default: 1.e-8.

tol_sv = DOUBLE
Tolerance level for selecting non-zero singular values. Default: 1.e-3.

schur vec_tol = DOUBLE
See schur _vec_ tol.

Identification Strength Options

no_identification_strength
Disables computations of identification strength analysis based on sample information matrix.

periods = INTEGER
When the analytic Hessian is not available (i.e. with missing values or diffuse Kalman filter or
univariate Kalman filter), this triggers the length of stochastic simulation to compute Simulated
Moments Uncertainty. Default: 300.

replic = INTEGER
When the analytic Hessian is not available, this triggers the number of replicas to compute
Simulated Moments Uncertainty. Default: 100.

Moments Options

no_identification_moments
Disables computations of identification check based on Iskrev (2010)’s J, i.e. derivative of first
two moments.

ar = INTEGER
Number of lags of computed autocovariances/autocorrelations (theoretical moments) in Iskrev
(2010)’s J criteria. Default: 1.

useautocorr = INTEGER
If equal to 1, compute derivatives of autocorrelation. If equal to 0, compute derivatives of
autocovariances. Default: 0.

Spectrum Options

no_identification_ spectrum
Disables computations of identification check based on Qu and Tkachenko (2012)’s G, i.e. Gram
matrix of derivatives of first moment plus outer product of derivatives of spectral density.

grid nbr = INTEGER
Number of grid points in [-pi;pi] to approximate the integral to compute Qu and Tkachenko
(2012)’s G criteria. Default: 5000.

Minimal State Space System Options

no_identification minimal
Disables computations of identification check based on Komunjer and Ng (2011)’s D, i.e. mini-
mal state space system and observational equivalent spectral density transformations.
Misc Options
nograph
See nograph.

nodisplay
See nodisplay.

4.22. Sensitivity and identification analysis 151

Dynare Reference Manual, Release 5.4

graph_format = FORMAT
graph_format = (FORMAT, FORMAT...)
See graph_format.

tex
See tex.

Debug Options

load ident_files = INTEGER
If equal to 1, allow Dynare to load previously computed analyzes. Default: 0.

lik_init = INTEGER
See 1ik _init.

kalman_algo = INTEGER
See kalman_algo.

no_identification reducedform
Disables computations of identification check based on steady state and reduced-form solution.

checks_via_subsets = INTEGER
If equal to 1: finds problematic parameters in a bruteforce fashion: It computes the rank of the
Jacobians for all possible parameter combinations. If the rank condition is not fullfilled, these
parameter sets are flagged as non-identifiable. The maximum dimension of the group searched
is triggered by max_dim_subsets_groups. Default: 0.

max_dim subsets_groups = INTEGER
Sets the maximum dimension of groups of parameters for which the above bruteforce search is
performed. Default: 4.

4.22.4 Types of analysis and output files

The sensitivity analysis toolbox includes several types of analyses. Sensitivity analysis results are saved locally in
<mod_file>/gsa, where <mod_file>.mod is the name of the Dynare model file.

4.22.4.1 Sampling

The following binary files are produced:

e <mod_file>_prior.mat: this file stores information about the analyses performed sampling from the
prior, i.e. pprior=1 and ppost=0;

* <mod_file>_mc.mat: this file stores information about the analyses performed sampling from multi-
variate normal, i.e. pprior=0 and ppost=0;

e <mod_file>_post.mat: this file stores information about analyses performed using the Metropolis
posterior sample, i.e. ppost=1.

4.22.4.2 Stability Mapping

Figure files produced are of the form <mod_file>_prior_x.fig and store results for stability mapping from
prior Monte-Carlo samples:

e <mod_file>_prior_stable.fig: plots of the Smirnov test and the correlation analyses confronting
the cdf of the sample fulfilling Blanchard-Kahn conditions (blue color) with the cdf of the rest of the sample
(red color), i.e. either instability or indeterminacy or the solution could not be found (e.g. the steady state
solution could not be found by the solver);

e <mod_file>_prior_indeterm.fig: plots of the Smirnov test and the correlation analyses con-
fronting the cdf of the sample producing indeterminacy (red color) with the cdf of the rest of the sample
(blue color);

152 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

<mod_file>_prior_unstable.fig: plots of the Smirnov test and the correlation analyses con-
fronting the cdf of the sample producing explosive roots (red color) with the cdf of the rest of the sample
(blue color);

<mod_file>_prior_wrong.fig: plots of the Smirnov test and the correlation analyses confronting
the cdf of the sample where the solution could not be found (e.g. the steady state solution could not be
found by the solver - red color) with the cdf of the rest of the sample (blue color);

<mod_file> prior_calib.fig: plots of the Smirnov test and the correlation analyses splitting the
sample fulfilling Blanchard-Kahn conditions, by confronting the cdf of the sample where IRF/moment
restrictions are matched (blue color) with the cdf where IRF/moment restrictions are NOT matched (red
color);

Similar conventions apply for <mod_file> mc_=«.fig files, obtained when samples from multivariate normal

are u

4.22

sed.

.4.3 IRF/Moment restrictions

The following binary files are produced:

<mod_file>_ prior_restrictions.mat: this file stores information about the IRF/moment re-
striction analysis performed sampling from the prior ranges, i.e. pprior=1 and ppost=0;

<mod_file> mc_restrictions.mat: this file stores information about the IRF/moment restriction
analysis performed sampling from multivariate normal, i.e. pprior=0 and ppost=0;

<mod_file>_ post_restrictions.mat: this file stores information about IRF/moment restriction
analysis performed using the Metropolis posterior sample, i.e. ppost=1.

Figure files produced are of the form <mod_file> prior_irf calib_x.fig and
<mod_file> prior_moment_calib_«.fig and store results for mapping restrictions from prior
Monte-Carlo samples:

<mod_file>_prior_irf_calib_<ENDO_NAME>_vs_<EXO_NAME>_<PERIOD>.fig: plots of
the Smirnov test and the correlation analyses splitting the sample fulfilling Blanchard-Kahn conditions, by
confronting the cdf of the sample where the individual IRF restriction <ENDO_NAME> vs. <EXO_NAME>
at period(s) <PERIOD> is matched (blue color) with the cdf where the IRF restriction is NOT matched (red
color)

<mod_file>_prior_irf_calib_<ENDO_NAME>_vs_<EXO_NAME>_ALL.fig: plots of the
Smirnov test and the correlation analyses splitting the sample fulfilling Blanchard-Kahn conditions,
by confronting the cdf of the sample where ALL the individual IRF restrictions for the same couple
<ENDO_NAME> vs. <EXO_NAME> are matched (blue color) with the cdf where the IRF restriction is
NOT matched (red color)

<mod_file>_prior_irf_restrictions.fig: plots visual information on the IRF restrictions
compared to the actual Monte Carlo realization from prior sample.

<mod_file>_ prior_moment_calib_<ENDO_NAME1l>_vs_<ENDO_NAME2>_<LAG>.fig:
plots of the Smirnov test and the correlation analyses splitting the sample fulfilling Blanchard-Kahn
conditions, by confronting the cdf of the sample where the individual acf/ccf moment restriction
<ENDO_NAME1> vs. <ENDO_NAME2> at lag(s) <LAG> is matched (blue color) with the cdf where the
IRF restriction is NOT matched (red color)

<mod_file>_prior_moment_calib_<ENDO_NAME>_vs_<EXO_NAME>_ALL. fig: plots of the
Smirnov test and the correlation analyses splitting the sample fulfilling Blanchard-Kahn conditions, by
confronting the cdf of the sample where ALL the individual acf/ccf moment restrictions for the same couple
<ENDO_NAME1> vs. <ENDO_NAME2> are matched (blue color) with the cdf where the IRF restriction is
NOT matched (red color)

<mod_file>_prior_moment_restrictions.fig: plots visual information on the moment re-
strictions compared to the actual Monte Carlo realization from prior sample.

4.22

. Sensitivity and identification analysis 153

Dynare Reference Manual, Release 5.4

Similar conventions apply for <mod_file> mc_x.fig and <mod_file> post_x.fig files, obtained
when samples from multivariate normal or from posterior are used.

4.22.4.4 Reduced Form Mapping

When the option threshold_redform is not set, or it is empty (the default), this analysis estimates a mul-
tivariate smoothing spline ANOVA model (the mapping’) for the selected entries in the transition matrix of the
shock matrix of the reduce form first order solution of the model. This mapping is done either with prior samples
or with MC samples with neighborhood_width. Unless neighborhood_width is set with MC samples,
the mapping of the reduced form solution forces the use of samples from prior ranges or prior distributions, i.e.:
pprior=1 and ppost=0. It uses 250 samples to optimize smoothing parameters and 1000 samples to compute
the fit. The rest of the sample is used for out-of-sample validation. One can also load a previously estimated
mapping with a new Monte-Carlo sample, to look at the forecast for the new Monte-Carlo sample.

The following synthetic figures are produced:

* <mod_file>_redform_<endo name>_vs_lags_«.fig: shows bar charts of the sensitivity in-
dices for the ten most important parameters driving the reduced form coefficients of the selected endoge-
nous variables (namendo) versus lagged endogenous variables (namlagendo); suffix 1og indicates the
results for log-transformed entries;

e <mod_file>_redform_<endo name>_vs_shocks_x.fig: shows bar charts of the sensitivity
indices for the ten most important parameters driving the reduced form coefficients of the selected en-
dogenous variables (namendo) versus exogenous variables (namexo); suffix 1og indicates the results for
log-transformed entries;

e <mod_file>_redform_gsa (_log) .fig: shows bar chart of all sensitivity indices for each parame-
ter: this allows one to notice parameters that have a minor effect for any of the reduced form coefficients.

Detailed results of the analyses are shown in the subfolder <mod_file>/gsa/redform prior for prior
samples and in <mod_file>/gsa/redform mc for MC samples with option neighborhood_width,
where the detailed results of the estimation of the single functional relationships between parameters 6 and reduced
form coefficient (denoted as y hereafter) are stored in separate directories named as:

¢ <namendo>_vs_<namlagendo>, for the entries of the transition matrix;
* <namendo>_vs_<namexo>, for entries of the matrix of the shocks.

The following files are stored in each directory (we stick with prior sample but similar conventions are used for
MC samples):

* <mod_file>_prior_<namendo>_vs_<namexo>.fig: histogram and CDF plot of the MC sample
of the individual entry of the shock matrix, in sample and out of sample fit of the ANOVA model;

e <mod_file>_prior_<namendo>_vs_<namexo>_map_SE. fig: forentries of the shock matrix it
shows graphs of the estimated first order ANOVA terms y = f(6;) for each deep parameter 0;;

e <mod_file>_prior_<namendo>_vs_<namlagendo>.fig: histogram and CDF plot of the MC
sample of the individual entry of the transition matrix, in sample and out of sample fit of the ANOVA model;

e <mod_file>_prior_<namendo>_vs_<namlagendo>_map_SE. fig: forentries of the transition
matrix it shows graphs of the estimated first order ANOVA terms y = f(0;) for each deep parameter 0;;

* <mod_file> prior_<namendo>_vs_<namexo>_map.mat,<mod_file>_<namendo>_vs_<namlagendo>_
mat: these files store info in the estimation;

When option logtrans_redform is set, the ANOVA estimation is performed using a log-transformation of
each y. The ANOVA mapping is then transformed back onto the original scale, to allow comparability with the
baseline estimation. Graphs for this log-transformed case, are stored in the same folder in files denoted with the
_log suffix.

When the option threshold_redformis set, the analysis is performed via Monte Carlo filtering, by displaying
parameters that drive the individual entry y inside the range specified in threshold_redform. If no entry is
found (or all entries are in the range), the MCF algorithm ignores the range specified in threshold_redform

154 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

and performs the analysis splitting the MC sample of y into deciles. Setting threshold_redform=[-inf
inf] triggers this approach for all y’s.

Results are stored in subdirectories of <mod_file>/gsa/redform_prior named

<mod_file>_prior_<namendo>_vs_<namlagendo>_threshold, for the entries of the transi-
tion matrix;

<mod_file>_prior_<namendo>_vs_<namexo>_threshold, for entries of the matrix of the
shocks.

The files saved are named:

<mod_file>_ prior_<namendo>_vs_<namexo>_threshold.fig,
<mod_file>_<namendo>_vs_<namlagendo>_threshold. fig: graphical outputs;

<mod_file> prior_<namendo>_vs_<namexo>_ threshold.mat,
<mod_file>_<namendo>_vs_<namlagendo>_threshold.mat: info on the analysis;

4.22.4.5 RMSE

The RMSE analysis can be performed with different types of sampling options:

1.

When pprior=1 and ppost=0, the toolbox analyzes the RMSEs for the Monte-Carlo sample obtained
by sampling parameters from their prior distributions (or prior ranges): this analysis provides some hints
about what parameter drives the fit of which observed series, prior to the full estimation;

When pprior=0 and ppost=0, the toolbox analyzes the RMSEs for a multivariate normal Monte-Carlo
sample, with covariance matrix based on the inverse Hessian at the optimum: this analysis is useful when
maximum likelihood estimation is done (i.e. no Bayesian estimation);

When ppost=1 the toolbox analyzes the RMSEs for the posterior sample obtained by Dynare’s Metropolis
procedure.

The use of cases 2 and 3 requires an estimation step beforehand. To facilitate the sensitivity analysis after esti-
mation, the dynare_sensitivity command also allows you to indicate some options of the estimation
command. These are:

datafile
nobs
first_obs
prefilter
presample
nograph
nodisplay
graph_format
conf_sig
loglinear

mode_file

Binary files produced my RMSE analysis are:

<mod_file>_prior_x*.mat: these files store the filtered and smoothed variables for the prior Monte-
Carlo sample, generated when doing RMSE analysis (opprior=1 and ppost=0);

<mode_file> mc_*.mat: these files store the filtered and smoothed variables for the multivariate nor-
mal Monte-Carlo sample, generated when doing RMSE analysis (pprior=0 and ppost=0).

Figure files <mod_file>_rmse_*.fig store results for the RMSE analysis.

4.22.

Sensitivity and identification analysis 155

Dynare Reference Manual, Release 5.4

<mod_file>_rmse_priorx*.fig: save results for the analysis using prior Monte-Carlo samples;

<mod_file>_rmse_mc«.fig: save results for the analysis using multivariate normal Monte-Carlo
samples;

<mod_file>_rmse_post«.fig: save results for the analysis using Metropolis posterior samples.

The following types of figures are saved (we show prior sample to fix ideas, but the same conventions are used for
multivariate normal and posterior):

<mod_file>_rmse_prior_params_x*.fig: for each parameter, plots the cdfs corresponding to the
best 10% RMSEs of each observed series (only those cdfs below the significance threshold alpha_rmse);

<mod_file>_rmse_prior_<var_obs>_x.fig: if a parameter significantly affects the fit of
var_obs, all possible trade-off’s with other observables for same parameter are plotted,;

<mod_file> rmse_prior_ <var_obs> map.fig: plots the MCF analysis of parameters signifi-
cantly driving the fit the observed series var_obs;

<mod_file>_rmse_prior_lnlikx.fig: foreach observed series, plots in BLUE the cdf of the log-
likelihood corresponding to the best 10% RMSEs, in RED the cdf of the rest of the sample and in BLACK
the cdf of the full sample; this allows one to see the presence of some idiosyncratic behavior;

<mod_file>_rmse_prior_lnpost«.fig: for each observed series, plots in BLUE the cdf of the
log-posterior corresponding to the best 10% RMSEs, in RED the cdf of the rest of the sample and in BLACK
the cdf of the full sample; this allows one to see idiosyncratic behavior;

<mod_file>_rmse_prior_lnprior*.fig: for each observed series, plots in BLUE the cdf of the
log-prior corresponding to the best 10% RMSEs, in RED the cdf of the rest of the sample and in BLACK
the cdf of the full sample; this allows one to see idiosyncratic behavior;

<mod_file>_rmse_prior_lik.fig: whenlik_only=1, this shows the MCEF tests for the filtering
of the best 10% log-likelihood values;

<mod_file>_rmse_prior_post.fig: when 1ik_only=1, this shows the MCF tests for the filter-
ing of the best 10% log-posterior values.

4.22.4.6 Screening Analysis

Screening analysis does not require any additional options with respect to those listed in Sampling Options. The
toolbox performs all the analyses required and displays results.

The results of the screening analysis with Morris sampling design are stored in the subfolder <mod_file>/
gsa/screen. The data file <mod_file>_prior stores all the information of the analysis (Morris sample,
reduced form coefficients, etc.).

Screening analysis merely concerns reduced form coefficients. Similar synthetic bar charts as for the reduced form
analysis with Monte-Carlo samples are saved:

<mod_file>_redform_<endo name>_vs_lags_x*.fig: shows bar charts of the elementary ef-
fect tests for the ten most important parameters driving the reduced form coefficients of the selected en-
dogenous variables (namendo) versus lagged endogenous variables (namlagendo);

e <mod_file>_redform_<endo name>_vs_shocks_x*.fig: shows bar charts of the elementary

effect tests for the ten most important parameters driving the reduced form coefficients of the selected
endogenous variables (namendo) versus exogenous variables (namexo);

* <mod_file>_redform_screen.fig: shows bar chart of all elementary effect tests for each parame-

ter: this allows one to identify parameters that have a minor effect for any of the reduced form coefficients.

156

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.22.4.7 Identification Analysis

Setting the option identification=1, an identification analysis based on theoretical moments is performed.
Sensitivity plots are provided that allow to infer which parameters are most likely to be less identifiable.

Prerequisite for properly running all the identification routines, is the keyword identification;in the Dynare
model file. This keyword triggers the computation of analytic derivatives of the model with respect to estimated
parameters and shocks. This is required for option morris=2, which implements Iskrev (2010) identification
analysis.

For example, the placing:

identification;
dynare_sensitivity (identification=1, morris=2);

in the Dynare model file triggers identification analysis using analytic derivatives as in Iskrev (2010), jointly with
the mapping of the acceptable region.

The identification analysis with derivatives can also be triggered by the single command:

identification;

This does not do the mapping of acceptable regions for the model and uses the standard random sampler of
Dynare. Additionally, using only identification; adds two additional identification checks: namely, of Qu
and Tkachenko (2012) based on the spectral density and of Komunjer and Ng (2011) based on the minimal state
space system. It completely offsets any use of the sensitivity analysis toolbox.

4.23 Markov-switching SBVAR

Given a list of variables, observed variables and a data file, Dynare can be used to solve a Markov-switching
SBVAR model according to Sims, Waggoner and Zha (2008)."" Having done this, you can create forecasts and
compute the marginal data density, regime probabilities, IRFs, and variance decomposition of the model.

The commands have been modularized, allowing for multiple calls to the same command within a <mod_file>.
mod file. The default is to use <mod_ f1i le> to tag the input (output) files used (produced) by the program. Thus,
to call any command more than once within a <mod_ file>.mod file, you must use the ~_t ag options described
below.

Command: markov_switching(OPTIONS...);
Declares the Markov state variable information of a Markov-switching SBVAR model.

Options

chain = INTEGER
The Markov chain considered. Default: none.

number_ of_ regimes = INTEGER
Specifies the total number of regimes in the Markov Chain. This is a required option.

duration = DOUBLE | [ROW VECTOR OF DOUBLES]
The duration of the regimes or regimes. This is a required option. When passed a scalar real
number, it specifies the average duration for all regimes in this chain. When passed a vector
of size equal number_of_regimes, it specifies the average duration of the associated regimes
(1:number_of_regimes) in this chain. An absorbing state can be specified through the
restrictions option.

restrictions = [[ROW VECTOR OF 3 DOUBLES], [ROW VECTOR OF 3 DOUBLES], ...]
Provides restrictions on this chain’s regime transition matrix. Its vector argument takes
three inputs of the form: [current_period_regime, next_period_regime,
transition_probability].

T If you want to align the paper with the description herein, please note that A is A® and Fis AT,

4.23. Markov-switching SBVAR 157

Dynare Reference Manual, Release 5.4

The first two entries are positive integers, and the third is a non-negative real in the set [0,1]. If restric-
tions are specified for every transition for a regime, the sum of the probabilities must be 1. Otherwise,
if restrictions are not provided for every transition for a given regime the sum of the provided transition
probabilities msut be <1. Regardless of the number of lags, the restrictions are specified for parameters
at time t since the transition probability for a parameter at t is equal to that of the parameter at t 1.

In case of estimating a MS-DSGE model,'? in addition the following options are allowed:

parameters = [LIST OF PARAMETERS]
This option specifies which parameters are controlled by this Markov Chain.

number_of_ lags = DOUBLE
Provides the number of lags that each parameter can take within each regime in this chain.

Example

markov_switching (chain=1, duration=2.5, restrictions=[[1,3,0]1,I[3,1,
—=011);

Specifies a Markov-switching BVAR with a first chain with 3 regimes that all have a duration of
2.5 periods. The probability of directly going from regime 1 to regime 3 and vice versa is 0.

Example
markov_switching (chain=2, number_of_ regimes=3, duration=[0.5, 2.5, 2.
b ’5] 4
parameter=[alpha, rho], number_of lags=2, restrictions=[[1,3,0]1,I[3,3,
=111);

Specifies a Markov-switching DSGE model with a second chain with 3 regimes that have dura-
tions of 0.5, 2.5, and 2.5 periods, respectively. The switching parameters are alpha and rho.
The probability of directly going from regime 1 to regime 3 is 0, while regime 3 is an absorbing
state.

Command: svar (OPTIONS...);
Each Markov chain can control the switching of a set of parameters. We allow the parameters to be divided
equation by equation and by variance or slope and intercept.

Options

coefficients
Specifies that only the slope and intercept in the given equations are controlled by the given chain.
One, but not both, of coefficients or variances must appear. Default: none.

variances
Specifies that only variances in the given equations are controlled by the given chain. One, but not
both, of coefficients or variances must appear. Default: none.

equations
Defines the equation controlled by the given chain. If not specified, then all equations are controlled
by chain. Default: none.

chain = INTEGER
Specifies a Markov chain defined by markov_switching. Default: none.

Command: sbvar (OPTIONS...);
To be documented. For now, see the wiki: https://archives.dynare.org/DynareWiki/SbvarOptions

Options

datafile, freq, initial_year, initial_subperiod, final_year, final_subperiod,
data, vlist, vlistlog, vlistper, restriction_fname, nlags, cross_restrictions,
contemp_reduced_form, real pseudo_forecast, no_bayesian_prior, dummy_obs,
nstates, indxscalesstates, alpha, beta, gsig2_lmdm, g _diag, flat_prior, ncsk,

12 An example can be found at https://git.dynare.org/Dynare/dynare/blob/master/tests/ms-dsge/test_ms_dsge.mod.

158 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

nstd, ninv, indxparr, indxovr, aband, indxap, apband, indximf, indxfore, foreband,
indxgforhat, indxgimfhat, indxestima, indxgdls, eq_ms, cms, ncms, eq_cms, t1indx,
tlnumber, cnum, forecast, coefficients_prior_hyperparameters

Block: svar identification ;
This block is terminated by end; and contains lines of the form:

UPPER_CHOLESKY;

LOWER_CHOLESKY;

EXCLUSION CONSTANTS;

EXCLUSION LAG INTEGER; EQUATION INTEGER, VARIABLE_NAME [,VARIABLE_NAME...];
RESTRICTION EQUATION INTEGER, EXPRESSION = EXPRESSION;

To be documented. For now, see the wiki: https://archives.dynare.org/Dynare Wiki/
MarkovSwitchinglInterface

Command: ms_estimation (OPTIONS...);
Triggers the creation of an initialization file for, and the estimation of, a Markov-switching SBVAR model.
At the end of the run, the A°, A*, Q and ¢ matrices are contained in the oo_ . ms structure.

General Options

file_tag = FILENAME
The portion of the filename associated with this run. This will create the model initialization file,
init_<file_tag>.dat. Default: <mod_file>.

output_file tag = FILENAME
The portion of the output filename that will be assigned to this run. This will create, among other files,
est_final_ <output_file_tag>.out, est_intermediate_<output_file_tag>.
out. Default: <file_tag>.

no_create_init

Do not create an initialization file for the model. Passing this option will cause the Ini-
tialization Options to be ignored. Further, the model will be generated from the out-
put files associated with the previous estimation run (i.e. est_final <file_tag>.out,
est_intermediate_<file_tag>.out or init_<file_tag>.dat, searched for in se-
quential order). This functionality can be useful for continuing a previous estimation run to ensure
convergence was reached or for reusing an initialization file. NB: If this option is not passed, the files
from the previous estimation run will be overwritten. Default: off (i.e. create initialization file)

Initialization Options

coefficients_prior_ hyperparameters = [DOUBLEl DOUBLE2 ... DOUBLEG6]
Sets the hyper parameters for the model. The six elements of the argument vector have the following
interpretations:
1

Overall tightness for A? and A",

2
Relative tightness for A™.
3
Relative tightness for the constant term.
4
Tightness on lag decay (range: 1.2 - 1.5); a faster decay produces better inflation process.
5
Weight on nvar sums of coeffs dummy observations (unit roots).
6

Weight on single dummy initial observation including constant.

4.23. Markov-switching SBVAR 159

Dynare Reference Manual, Release 5.4

Default: [1.0 1.0 0.1 1.2 1.0 1.0]

freq = INTEGER | monthly | quarterly | yearly
Frequency of the data (e.g. monthly, 12). Default: 4.

initial_year = INTEGER
The first year of data. Default: none.

initial_subperiod = INTEGER
The first period of data (i.e. for quarterly data, an integerin [1, 4]). Default: 1.

final year = INTEGER
The last year of data. Default: Set to encompass entire dataset.

final_ subperiod = INTEGER
The final period of data (i.e. for monthly data, an integer in [1, 12]. Default: When final_year is
also missing, set to encompass entire dataset; when final_year is indicated, set to the maximum
number of subperiods given the frequency (i.e. 4 for quarterly data, 12 for monthly,...).

datafile = FILENAME
See datafile.

xls_sheet = QUOTED_ STRING
See x1s sheet.

xls_range = RANGE
See x1s_range.

nlags = INTEGER
The number of lags in the model. Default: 1.

cross_restrictions
Use cross A and A restrictions. Default: of .

contemp_reduced form
Use contemporaneous recursive reduced form. Default: of £.

no_bayesian_prior
Do not use Bayesian prior. Default: of £ (i.e. use Bayesian prior).

alpha = INTEGER
Alpha value for squared time-varying structural shock lambda. Default: 1.

beta = INTEGER
Beta value for squared time-varying structural shock lambda. Default: 1.

gsig2_lmdm = INTEGER
The variance for each independent A parameter under SimsZha restrictions. Default: 507 2.

specification = sims_zha | none
This controls how restrictions are imposed to reduce the number of parameters. Default: Random
Walk.

Estimation Options

convergence_ starting value = DOUBLE
This is the tolerance criterion for convergence and refers to changes in the objective function value. It
should be rather loose since it will gradually be tightened during estimation. Default: 1e-3.

convergence_ending value = DOUBLE
The convergence criterion ending value. Values much smaller than square root machine epsilon are
probably overkill. Default: 1e-6.

convergence_increment_value = DOUBLE
Determines how quickly the convergence criterion moves from the starting value to the ending value.
Default: 0.1.

160

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

max_iterations_starting value = INTEGER
This is the maximum number of iterations allowed in the hill-climbing optimization routine and should
be rather small since it will gradually be increased during estimation. Default: 50.

max_ iterations_increment_value = DOUBLE
Determines how quickly the maximum number of iterations is increased. Default: 2.

max_block_iterations = INTEGER
The parameters are divided into blocks and optimization proceeds over each block. After a set of
blockwise optimizations are performed, the convergence criterion is checked and the blockwise op-
timizations are repeated if the criterion is violated. This controls the maximum number of times the
blockwise optimization can be performed. Note that after the blockwise optimizations have converged,
a single optimization over all the parameters is performed before updating the convergence value and
maximum number of iterations. Default: 100.

max_repeated_optimization_runs = INTEGER
The entire process described by max _block_iterations is repeated until improvement has
stopped. This is the maximum number of times the process is allowed to repeat. Set this to 0 to
not allow repetitions. Default: 10.

function convergence_criterion = DOUBLE
The convergence criterion for the objective function when
max_repeated_optimizations_runs is positive. Default: 0. 1.

parameter_convergence_criterion = DOUBLE
The convergence criterion for parameter values when max_repeated_optimizations_runs
is positive. Default: 0. 1.

number_ of_ large_perturbations = INTEGER
The entire process described by max_block iterations isrepeated with random starting values
drawn from the posterior. This specifies the number of random starting values used. Set this to 0 to not
use random starting values. A larger number should be specified to ensure that the entire parameter
space has been covered. Default: 5.

number_ of_small_perturbations = INTEGER
The number of small perturbations to make after the large perturbations have stopped improving.
Setting this number much above 10 is probably overkill. Default: 5.

number of posterior draws_after perturbation = INTEGER
The number of consecutive posterior draws to make when producing a small perturbation. Because
the posterior draws are serially correlated, a small number will result in a small perturbation. Default:
1.

max_number of stages = INTEGER
The small and large perturbation are repeated until improvement has stopped. This specifies the max-
imum number of stages allowed. Default: 20.

random_function_convergence_criterion = DOUBLE
The convergence criterion for the objective function when number_of_large_perturbations
is positive. Default: 0. 1.

random_parameter convergence_criterion = DOUBLE
The convergence criterion for parameter values when number_of_large_perturbations is
positive. Default: 0. 1.

Example

ms_estimation (datafile=data, initial_year=1959, final_year=2005,
nlags=4, max_repeated_optimization_runs=1, max_number_ of_stages=0);

ms_estimation(file_tag=second_run, datafile=data, initial_year=1959,
final_year=2005, nlags=4, max_repeated_optimization_runs=1,

max_number_of_stages=0) ;

(continues on next page)

4.23. Markov-switching SBVAR 161

Dynare Reference Manual, Release 5.4

(continued from previous page)
ms_estimation(file_tag=second_run, output_file tag=third_ run,
no_create_init, max_repeated_optimization_runs=5,
number_of_large_perturbations=10);

Command: ms_simulation ;
Command: ms_simulation (OPTIONS...);

Simulates a Markov-switching SBVAR model.
Options

file tag = FILENAME
The portion of the filename associated with the ms_estimation run. Default: <mod_file>.

output_file_tag = FILENAME
The portion of the output filename that will be assigned to this run. Default: <file_tag>.

mh_replic = INTEGER
The number of draws to save. Default: 10, 000.

drop = INTEGER
The number of burn-in draws. Default: 0.1+mh_replic*thinning_factor.

thinning factor = INTEGER
The total number of draws is equal to thinning_factorsmh_replic+drop. Default: 1.

adaptive_mh_draws = INTEGER
Tuning period for Metropolis-Hastings draws. Default: 30, 000.

save_draws
Save all elements of A°, A*, Q, and , to a file named draws_<<file_tag>>.out with each
draw on a separate line. A file that describes how these matrices are laid out is contained in
draws_header_<<file_tag>>.out. Afilecalled load_flat_ file.mis provided to sim-
plify loading the saved files into the corresponding variables A0, Aplus, Q, and Zeta in your MAT-
LAB/Octave workspace. Default: of £.

Example

ms_simulation(file_tag=second_run);
ms_simulation (file_tag=third_run, mh_replic=5000, thinning_factor=3);

Command: ms_compute mdd ;
Command: ms_compute_mdd (OPTIONS...);

Computes the marginal data density of a Markov-switching SBVAR model from the posterior draws. At the
end of the run, the Muller and Bridged log marginal densities are contained in the oo_ . ms structure.

Options

file tag = FILENAME
See file tag.

output_file_tag = FILENAME
See output_file tag.

simulation_file tag = FILENAME
The portion of the filename associated with the simulation run. Default: <file_tag>.

proposal_type = INTEGER

The proposal type:
1

Gaussian.
2

Power.

162

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

3
Truncated Power.
4
Step.
5
Truncated Gaussian.
Default: 3

proposal_lower_bound = DOUBLE
The lower cutoff in terms of probability. Not used for proposal_typein [1, 2]. Required for all
other proposal types. Default: 0. 1.

proposal_upper_bound = DOUBLE
The upper cutoff in terms of probability. Not used for proposal_type equal to 1. Required for all
other proposal types. Default: 0. 9.

mdd_proposal_draws = INTEGER
The number of proposal draws. Default: 100, 000.

mdd use_mean_center
Use the posterior mean as center. Default: of f.

Command: ms_compute probabilities ;

Command: ms_compute probabilities (OPTIONS...);
Computes smoothed regime probabilities of a Markov-switching SBVAR model. Output .eps files are
contained in <output_file_tag/Output/Probabilities>.

Options

file tag = FILENAME
See file tag.

output_file_tag = FILENAME
See output_file tag.

filtered probabilities
Filtered probabilities are computed instead of smoothed. Default: of £.

real time_ smoothed
Smoothed probabilities are computed based on time t information for 0 < ¢t < nobs. Default: of £

Command: ms_irf ;

Command: ms_irf (OPTIONS...);
Computes impulse response functions for a Markov-switching SBVAR model. Output .eps
files are contained in <output_file_tag/Output/IRF>, while data files are contained in
<output_file_tag/IRF>.

Options

file tag = FILENAME
See file tag.

output_file_tag = FILENAME
See output_file tag.

simulation_file tag = FILENAME
See simulation_file_ tag.

horizon = INTEGER
The forecast horizon. Default: 12.

filtered probabilities
Uses filtered probabilities at the end of the sample as initial conditions for regime probabilities. Only
one of filtered_probabilities, regime and regimes may be passed. Default: of f.

4.23. Markov-switching SBVAR 163

Dynare Reference Manual, Release 5.4

error_band percentiles = [DOUBLEl ...]
The percentiles to compute. Default: [0.16 0.50 0.84]. If median is passed, the default is
[0.5].

shock _draws = INTEGER
The number of regime paths to draw. Default: 10, 000.

shocks_per parameter = INTEGER
The number of regime paths to draw under parameter uncertainty. Default: 10.

thinning factor = INTEGER
Only 1/thinning_factor of the draws in posterior draws file are used. Default: 1.

free parameters = NUMERICAL VECTOR
A vector of free parameters to initialize theta of the model. Default: use estimated parameters

parameter_uncertainty
Calculate IRFs under parameter uncertainty. Requires that ms_simulation has been run. Default:
off.

regime = INTEGER
Given the data and model parameters, what is the ergodic probability of being in the specified regime.
Onlyoneof filtered_probabilities, regime and regimes may be passed. Default: of £.

regimes
Describes the evolution of regimes. Only one of filtered_probabilities, regime and
regimes may be passed. Default: of f.

median
A shortcut to setting error_band_percentiles=[0.5]. Default: of f.

Command: ms_forecast ;
Command: ms_forecast (OPTIONS...);

Generates forecasts for a Markov-switching SBVAR model. Output .eps files are con-
tained in <output_file_tag/Output/Forecast>, while data files are contained in
<output_file_tag/Forecast>.

Options

file tag = FILENAME
See file tag.

output_file_tag = FILENAME
See output_file tag.

simulation_file tag = FILENAME
See simulation_file_ tag.

data_obs_nbr = INTEGER
The number of data points included in the output. Default: 0.

error_band_percentiles = [DOUBLEl ...]
See error_band_percentiles.

shock_draws = INTEGER
See shock _draws.

shocks_per_parameter = INTEGER
See shocks_per_parameter.

thinning factor = INTEGER
See thinning_factor.

free_parameters = NUMERICAL_ VECTOR
See free parameters.

parameter_ uncertainty
See parameter_uncertainty.

164

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

regime = INTEGER
See regime.

regimes
See regimes.

median
See median.

horizon = INTEGER
See horizon.

Command: ms_variance_decomposition ;

Command: ms_variance decomposition (OPTIONS...);
Computes the variance decomposition for a Markov-switching SBVAR model. Output . eps files are con-
tained in <output_file_tag/Output/Variance_Decomposition>, while data files are con-
tained in <output_file_tag/Variance_Decomposition>.

Options

file tag = FILENAME
See file tag.

output_file_tag = FILENAME
See output_file tag.

simulation_file tag = FILENAME
See simulation_file_ tag.

horizon = INTEGER
See horizon.

filtered probabilities
See filtered _probabilities.

no_error_bands
Do not output percentile error bands (i.e. compute mean). Default: of £ (i.e. output error bands)

error_band_percentiles = [DOUBLEl ...]
See error_band_percentiles.

shock_draws = INTEGER
See shock_draws.

shocks_per_ parameter = INTEGER
See shocks_per_parameter.

thinning factor = INTEGER
See thinning factor.

free_parameters = NUMERICAL_ VECTOR
See free parameters.

parameter_uncertainty
See parameter_uncertainty.

regime = INTEGER
See regime.

regimes
See regimes.

4.23. Markov-switching SBVAR 165

Dynare Reference Manual, Release 5.4

4.24 Epilogue Variables

Block: epilogue ;

The epilogue block is useful for computing output variables of interest that may not be necessarily defined in
the model (e.g. various kinds of real/nominal shares or relative prices, or annualized variables out of a quarterly
model).

It can also provide several advantages in terms of computational efficiency and flexibility:

* You can calculate variables in the epilogue block after smoothers/simulations have already been run without
adding the new definitions and equations and rerunning smoothers/simulations. Even posterior smoother
subdraws can be recycled for computing epilogue variables without rerunning subdraws with the new defi-
nitions and equations.

* You can also reduce the state space dimension in data filtering/smoothing. Assume, for example, you want
annualized variables as outputs. If you define an annual growth rate in a quarterly model, you need lags up
to order 7 of the associated quarterly variable; in a medium/large scale model this would just blow up the
state dimension and increase by a huge amount the computing time of a smoother.

The epilogue block is terminated by end; and contains lines of the form:
NAME = EXPRESSION;
Example

epilogue;

// annualized level of y

ya = exp (y)texp(y(-1))+texp(y(-2))+texp(y(=3));
// annualized growth rate of y

gya = ya/ya(-4)-1;

end;

4.25 Semi-structural models

Dynare provides tools for semi-structural models, in the vain of the FRB/US model (see Brayton and Tinsley
(1996)), where expectations are not necessarily model consistent but based on a VAR auxiliary model. In the
following, it is assumed that each equation is written as VARIABLE = EXPRESSION or T (VARIABLE) =
EXPRESSION where T (VARIABLE) stands for a transformation of an endogenous variable (log or diff).
This representation, where each equation determines the endogenous variable on the LHS, can be exploited when
simulating the model (see algorithms 12 and 14 in solve_algo) and is mandatory to define auxiliary models used
for computing expectations (see below).

4.25.1 Auxiliary models

The two auxiliary models defined in this section are linear backward-looking models used to form expectations.
Both models can be recast as VAR(1)-processes and therefore offer isomorphic ways of specifying the expectations
process, but differ in their convenience of specifying features like cointegration and error correction. var_model
directly specifies a VAR, while t rend_component_model allows to define a trend target to which the endoge-
nous variables may be attracted in the long-run (i.e. an error correction model).

Command: var_model (OPTIONS...);
Picks equations in the model block to form a VAR model. This model can be used as an auxiliary model
in var_expectation_model or pac_model. It must be of the following form:

P
Y, = C“"ZAiY;f—i +et
i=1

166 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

or

p
AgYy =c+ ZAth—z‘ + ey

i=1

if the VAR is structural (see below), where Y; and €; are n x 1 vectors, c is a n X 1 vector of parameters,
A; i =0,...,p) are n X n matrices of parameters, and Ay is non singular square matrix. Vector ¢ and
matrices 4; (i = 0,...,p) are set by Dynare by parsing the equations in the model block. Then, Dynare
builds a VAR(1)-companion form model for Y, = (1,Y;,...,Yi_,41)" as:

1 1o, 0 1 0

Y; c A Ay A || Y €t

Yiea On In On On||Ye2 On

=l0, 0. I, 0, ... O, N R

: L On : : L : :

}Q—p+l 0, O, ... O, I, O, }Q—p 0y,
C

€t

assuming that we are dealing with a reduced form VAR (otherwise, the right-hand side would additionally
be premultiplied by A, ! to obtain the reduced for representation). If the VAR does not have a constant, we
remove the first line of the system and the first column of the companion matrix C. Dynare only saves the
companion matrix, since that is the only information required to compute the expectations.

MATLAB/Octave variable: oo_.var.MODEL_NAME.CompanionMatrix
Reduced form companion matrix of the var_model.

Options
model name = STRING

Name of the VAR model, which will be referenced in var_expectation_model or
pac_model asan auxiliary_model. Needs to be a valid MATLAB field name.

eqtags = [QUOTED_STRING[, QUOTED_STRING[, ...]11]1]

List of equations in the mode 1 block (referenced using the equation tag name) used to build the
VAR model.

structural

By default the VAR model is not structural, i.e. each equation must contain exactly one con-
temporaneous variable (on the LHS). If the st ructural option is provided then any variable
defined in the system can appear at time ¢ in each equation. Internally Dynare will rewrite this
model as a reduced form VAR (by inverting the implied matrix Ag).

Example
var _model (model_name = toto, eqtags = ['X', 'Y', 'Z' 1);
model;
[name = 'X']

X = a*x(-1) + b*x(-2) + cxz(-2) + e_x;

[name = '72'"]
z = fxz(-1) + e_z;
name = 'Y']

[
y = dxy(-2) + exz(-1) + e_y;
(continues on next page)

4.25. Semi-structural models 167

Dynare Reference Manual, Release 5.4

(continued from previous page)

end;

Command: trend_component_model (OPTIONS...);

Picks equations in the model block to form a trend component model. This model can be used as an auxiliary
model in var_expectation_model or pac_model. It must be of the following form:

AXy =Ao(Xio1 —CoZiq) + D0 ADXy i+ ey
Zy =Zy 1+

where X, and Z; are n x 1 and m x 1 vectors of endogenous variables. Z; defines the trend target to
whose linear combination CyZ; the endogenous variables X; will be attracted, provided the implied error
correction matrix Ay is negative definite. £; and 7; are n x 1 and m x 1 vectors of exogenous variables, A;
(i=0,...,p)are n x n matrices of parameters, and Cj is a n X m matrix. This model can also be cast into
a VAR(1) model by first rewriting it in levels. Let Y; = (X7, Z{)" and ¢; = (¢}, n;)’. Then we have:

p+1
=Y BYii+G

i=1

with

IL,+A4+4 -A
B = Om.n I,

where A = AyCy,

_ Az - Ai—l On,nz
B = (Omn On)

fori =2,...,p, and

_ _Ap On,m
Bp+1 h (O'ITL.”IL O’Hl
This VAR(p+1) in levels can again be rewritten as a VAR(1)-companion model form.

MATLAB/Octave variable: oo_.trend_component.MODEL_NAME.CompanionMatrix
Reduced form companion matrix of the t rend_component_model.

Options
model name = STRING

Name of the trend component model, will be referenced in var_expectation_model or
pac_model as an auxiliary_model. Needs to be a valid MATLAB field name.

egtags = [QUOTED_STRING[, QUOTED_STRING[, ...]]1l]

List of equations in the mode1 block (referenced using the equation tag name) used to build the
trend component model.

targets = [QUOTED_STRING[, QUOTED_STRING[, ...]11]1]

168

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

List of targets, corresponding to the variables in vector Z;, referenced using the equation tag
name) of the associated equation in the model block. target must be a subset of eqtags.

Example
trend component_model (model_name=toto, eqtags=['eqg:x1l', 'eqg:x2',
—'eqg:xlbar', 'eqg:x2bar'], targets=['eqg:xlbar', 'eqg:x2bar']);
model;

[name="'eqg:x1"]

diff(x1l) = a_x1_0+*(x1(-1)-xlbar(-1))+a_x1_0_x*(x2(-1)-x2bar(-1)) + a_x1_
lxdiff(x1(-1)) + a_x1_2+xdiff(x1(-2)) + + a_xl_x2_1xdiff(x2(-1)) + a_
X1 _x2_2+«diff(x2(-2)) + exl;

[name="eq:x2"']

diff (x2) = a_x2_0+(x2(-1)x2bar(-1)) + a_x2_1+diff(x1(-1)) + a_x2_
—2xdiff (x1(-2)) + a_x2_x1_1+diff(x2(-1)) + a_x2_x1_2+diff(x2(-2)) +
—ex2;

—

[name="'eqg:x1lbar']
x1lbar = xlbar(-1) + exlbar;

[name="eqg:x2bar"']
x2bar = x2bar (-1) + ex2bar;

end;

4.25.2 VAR expectations

Suppose we wish to forecast a variable y; and that y, is an element of vector of variables); whose law of motion
is described by a VAR(1) model V; = CY;_1 + ¢;. More generally, y; may be a linear combination of the scalar
variables in);. Let the vector « be such that y; = '), (« is a selection vector if y; is a variable in), i.e. a
column of an identity matrix, or an arbitrary vector defining the weights of a linear combination). Then the best
prediction, in the sense of the minimisation of the RMSE, for y,; given the information set at ¢ — 7 (which we
assume to include all observables up to time ¢t — 7, V;_ ;) is:

Yirnjt—r = Elyesn|Vier] = aC" 7Y,

In a semi-structural model, variables appearing in ¢ + h (e.g. the expected output gap in a dynamic IS curve or
expected inflation in a (New Keynesian) Phillips curve) will be replaced by the expectation implied by an auxiliary
VAR model. Another use case is for the computation of permanent incomes. Typically, consumption will depend
on something like:

o)

h
> B Ynje—r
h=0

Assuming that $0<beta<1$ and knowing the limit of geometric series, the conditional expectation of this variable
can be evaluated based on the same auxiliary model:

E | 8"yern

h=0

J@:I] =aC™ (I —BC) 'V

More generally, it is possible to consider finite discounted sums.

4.25. Semi-structural models 169

Dynare Reference Manual, Release 5.4

Command: var_expectation model (OPTIONS...);

Declares a model used to forecast an endogenous variable or linear combination of variables in ¢ + h. More
generally, the same model can be used to forecast the discounted flow of a variable or a linear expression of
variables:

b
> B T Elyisn|Vir]

h=a
where (a,b) € N2 with a < b, 8 € (0, 1] is a discount factor, and 7 is a finite positive integer.
Options
model name = STRING
Name of the VAR based expectation model, which will be referenced in the mode1 block.
auxiliary model = STRING

Name of the associated auxiliary model, defined with var_model or
trend_component_model.

expression = VARIABLE NAME | EXPRESSION

Name of the variable or expression (linear combination of variables) to be expected.
discount = PARAMETER NAME | DOUBLE

Discount factor (3).

horizon = INTEGER | [INTEGER:INTEGER]

The upper limit b of the horizon A (in which case @ = 0), or range of periods a : b over which
the discounted sum is computed (the upper bound can be Inf).

time_shift = INTEGER

Shift of the information set (7), default value is 0.

Operator: var_expectation (NAME_OF_VAR EXPECTATION_MODEL) ;

This operator is used instead of a leaded variable, e.g. X (1), in the model block to substitute a
model-consistent forecast with a forecast based on a VAR model.

Example
var_model (model_name=toto, egtags=['X', 'Y', 'Z']l);

var_expectation model (model_name=varexp, expression=x, auxiliary_model_
—name=toto, horizon=1, discount=beta);

[name="Y"]
y = dxy(-2) + exz(-1) + e_y;

foo = .5xfoo(-1) + var_expectation (varexp);

end;

In this example var_expectation (varexp) stands for the one step ahead expectation of
%, as a replacement for x (1) .

170

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

MATLAB/Octave command: var_expectation.initialize (NAME_OF_VAR_EXPECTATION_MODEL) ;
Initialise the var_expectation_model by building the companion matrix of the associated auxiliary
var_model. Needs to be executed before attempts to simulate or estimate the model.

MATLAB/Octave command: var_expectation.update (NAME_OF_VAR_EXPECTATION_MODEL) ;
Update/compute the reduced form parameters of var_expectation_model. Needs to be executed
before attempts to simulate or estimate the model and requires the auxiliary var_model to have previously
been initialized.

Example (continued)
var_ expectation.initialize ('varexp');

var_expectation.update ('varexp');

Warning: Changes to the parameters of the underlying auxiliary var_model require calls to
var_expectation.initialize and var_expectation.update to become effective. Changes
to the var_expectation_model or its associated parameters require a call to var_expectation.
update.

4.25.3 PAC equation

In its simplest form, a PAC equation breaks down changes in a variable of interest y into three contributions: (i)
the lagged deviation from a target y*, (ii) the lagged changes in the variable y, and (iii) the expected changes in
the target y*:

m—1 oo
Ay = ao(yi_y — —1) + Z ailyi—; + ZdiAy:-H +er
=1 1=0

Brayton et alii (2000) shows how such an equation can be derived from the minimisation of a quadratic cost
function penalising expected deviations from the target and non-smoothness of ¥, where future costs are discounted
(with discount factor). They also show that the parameters (d;);cn are non-linear functions of the m parameters
a; and the discount factor 5. To simulate or estimate this equation we need to figure out how to determine the
expected changes of the target. This can be done as in the previous section using VAR based expectations, or
considering model consistent expectations (MCE).

To ensure that the endogenous variable y is equal to its target y* in the (deterministic) long run, i.e. that the
error correction term is zero in the long run, we can optionally add a growth neutrality correction to this equation.
Suppose that g is the long run growth rate, for y and y*, then in the long run (assuming that the data are in logs)
we must have:

m—1 o]
9=V —Yso) +9 > ai+g» di
=1 =0

m—1 00
& ao(Ys — Yoo) = (1— Z a; _Zdi) g
i=1 i=0

Unless additional restrictions are placed on the coefficients (a;)["", i.e. on the form of the minimised cost

function, there is no reason for the right-hand side to be zero. Instead, we can optionally add the right hand side
to the PAC equation, to ensure that the error correction term is asymptotically zero.

The PAC equations can be generalised by adding exogenous variables. This can be done in two, non exclusive,
manners. We can replace the PAC equation by a convex combination of the original PAC equation (derived from
an optimisation program) and a linear expression involving exogenous variables (referred as the rule of thumb

4.25. Semi-structural models 171

Dynare Reference Manual, Release 5.4

part as opposed to the part derived from the minimisation of a cost function; not to be confused with exogenous
shocks):

m—1 oo
Ay = A (ao(yt*—1 —ye 1)+ Y, by i+ Zdz‘Ayt*Jri) (L =AY Xe +er
=1 =0

where A € [0, 1] is the weight of the pure PAC equation, 7 is a k& x 1 vector of parameters, and X; a k x 1 vector
of variables in the rule of thumb part. Or we can simply add the exogenous variables to the PAC equation (without
the weight \):

m—1 oo
Ayr=aolyis —yi1) + > aidyri+ > byl +7' X+ &
i=1 =0

Command: pac_model (OPTIONS...);
Declares a PAC model. A .mod file can have more than one PAC model or PAC equation, but each PAC
equation must be associated to a different PAC model.

Options
model name = STRING
Name of the PAC model, will be referenced in the mode1 block.
auxiliary model = STRING

Name of the associated auxiliary model, defined with var _model or
trend_component_model, to compute the VAR based expectations for the expected
changes in the target, i.e. to evaluate >~) d;Ay;, ;. The infinite sum will then be replaced by
a linear combination of the variables involved in the companion representation of the auxiliary
model. The weights defining the linear combination are nonlinear functions of the (a;)" "
coefficients in the PAC equation. This option is not mandatory, if absent Dynare understands
that the expected changes of the target have to be computed under the MCE assumption. This is
done by rewriting recursively the infinite sum as shown in equation 10 of Brayton et alii (2000).

discount = PARAMETER NAME | DOUBLE
Discount factor (3) for future expected costs appearing in the definition of the cost function.
growth = PARAMETER_NAME | VARIABLE _NAME | EXPRESSION | DOUBLE

If present a growth neutrality correction is added to the PAC equation. The user must ensure that
the provided value (or long term level if a variable or expression is given) is consistent with the
asymptotic growth rate of the endogenous variable.

Operator: pac_expectation (NAME_OF_PAC_MODEL);
This operator is used instead of the infinite sum, Z;’io d;Ay;f 4> in a PAC equation defined in the model
block. Depending on the assumption regarding the formation of expectations, it will be replaced by a
linear combination of the variables involved in the companion representation of the auxiliary model or by a
recursive forward equation.

MATLAB/Octave command: pac.initialize (NAME_OF_PAC_MODEL) ;

MATLAB/Octave command: pac.update (NAME_OF_PAC_MODEL) ;
Same as in the previous section for the VAR expectations, initialise the PAC model, by building the com-
panion matrix of the auxiliary model, and computes the reduced form parameters of the PAC equation (the
weights in the linear combination of the variables involved in the companion representation of the auxiliary
model, or the parameters of the recursive representation of the infinite sum in the MCE case).

Example

172 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

trend component_model (model_name=toto, eqtags=['eq:x1l', 'eq:x2', 'eqg:xlbar
—', 'eqg:x2bar'], targets=['eqg:xlbar', 'eqg:x2bar'l);

pac_model (auxiliary_model_name=toto, discount=beta, growth=diff (x1(-1)), .
—model_name=pacman) ;

model;

[name='eq:y"]
y = rho_1xy(-1) + rho_2xy(-2) + ey;

[name="eq:x1"']
diff(x1l) = a_x1_0*(x1(-1)-xlbar(-1)) + a_x1_1+«diff(x1(-1)) + a_x1_
S2xdiff(x1(-2)) + a_x1_x2_1xdiff(x2(-1)) + a_x1_x2_2+diff(x2(-2)) + exl;

[name="'eq:x2"]
diff (x2) = a_x2_0+(x2(-1)—x2bar(-1)) + a_x2_1+«diff(x1(-1)) + a_x2_
S2xdiff(x1(-2)) + a x2_x1_1+diff(x2(-1)) + a_x2_x1_2+diff(x2(-2)) + ex2;

[name="'eqg:x1lbar']
x1bar = xlbar(-1) + exlbar;

[name="'eq:x2bar"]
x2bar = x2bar (-1) + ex2bar;

[name="'zpac']
diff(z) = e cmx(x1(-1)-z(-1)) + c_z 1xdiff(z(-1)) + c_z 2+«diff(z(-2)) +
—pac_expectation (pacman) + ez;

[

end;
pac.initialize ('pacman');

pac.update.expectation ('pacman');

4.25.4 Estimation of a PAC equation

The PAC equation, introduced in the previous section, can be estimated. This equation is nonlinear with respect
to the estimated parameters (ai)g’;gl, since the reduced form parameters (in the computation of the infinite sum)
are nonlinear functions of the autoregressive parameters and the error correction parameter. Brayton et alii (2000)
shows how to estimate the PAC equation by iterative OLS. Although this approach is implemented in Dynare,
mainly for comparison purposes, we also propose NLS estimation, which is much preferable (asymptotic proper-

ties of NLS being more solidly grounded).

Note that it is currently not feasible to estimate the PAC equation jointly with the remaining parameters of the
model using e.g. Bayesian techniques. Thus, estimation of the PAC equation can only be conducted conditional
on the values of the parameters of the auxiliary model.

Warning: The estimation routines described below require the option json=compute be passed to the
preprocessor (via the command line or at the top of the .mod file, see Dynare invocation).

MATLAB/Octave command: pac.estimate.nls (EQNAME, GUESS, DATA, RANGE[, ALGO]);

MATLAB/Octave command: pac.estimate.iterative_ols (EQNAME, GUESS, DATA, RANGE);

Trigger the NLS or iterative OLS estimation of a PAC equation. EQNAME is a row char array designating
the PAC equation to be estimated (the PAC equation must have a name specified with an equation tag).
DATA is a dseries object containing the data required for the estimation (i.e. data for all the endogenous
and exogenous variables in the equation). The residual values of the PAC equation (which correspond to
a defined varexo) must also be a member of DATA, but filled with NaN values. RANGE is a dates object

4.25. Semi-structural models 173

Dynare Reference Manual, Release 5.4

defining the time span of the sample. ALGO is a row char array used to select the method (or minimisation
algorithm) for NLS. Possible values are : ' fmincon', 'fminunc', 'fminsearch’', 'lsgnonlin’',
'particleswarm', 'csminwel', 'simplex', 'annealing', and 'GaussNewton'. The first
four algorithms require the Mathworks Optimisation toolbox. The fifth algorithm requires the Math-
works Global Optimisation toolbox. When the optimisation algorithm allows it, we impose constraints on
the error correction parameter, which must be positive and smaller than 1 (it the case for ' fmincon’,
'lsgnonlin’', 'particleswarm', and 'annealing'). The default optimisation algorithm is
'csminwel'. GUESS is a structure containing the initial guess values for the estimated parameters. Each
field is the name of a parameter in the PAC equation and holds the initial guess for this parameter. If some
parameters are calibrated, then they should not be members of the GUESS structure (and values have to be
provided in the . mod file before the call to the estimation routine).

For the NLS routine the estimation results are displayed in a table after the estimation. For both the NLS
and iterative OLS routines, the results are saved in oo__ (under the fields nls or iterative_ols). Also,
the values of the parameters are updated in M_ . params.

Example (continued)

// Set the initial guess for the estimated parameters
eparams.e_c_m = .9;
eparams.c_z_1 = .5;
eparams.c_z_2 .23

// Define the dataset used for estimation
edata = TrueData;
edata.ez = dseries(NaN); // Set to NaN the residual of the equation.

pac.estimate.nls('zpac', eparams, edata, 2005Q01:2005Q1+200, 'annealing');

Warning: The specification of GUESS and DATA involves the use of structures. As such, their subfields will
not be cleared across Dynare runs as the structures stay in the workspace. Be careful to clear these structures
from the memory (e.g. within the . mod file) when e.g. changing which parameters are calibrated.

4.26 Displaying and saving results

Dynare has comments to plot the results of a simulation and to save the results.

Command: rplot VARIABLE_NAME...;
Plots the simulated path of one or several variables, as stored in oo_.endo_simul by either
perfect_foresight_solver, simul (see Deterministic simulation) or stoch_simul with option
periods (see Stochastic solution and simulation). The variables are plotted in levels.

Command: dynatype (FILENAME) [VARIABLE_NAME...];
This command prints the listed endogenous or exogenous variables in a text file named FILENAME. If no
VARIABLE_NAME is listed, all endogenous variables are printed.

Command: dynasave (FILENAME) [VARIABLE_NAME...];
This command saves the listed endogenous or exogenous variables in a binary file named FILENAME. If
no VARIABLE_NAME is listed, all endogenous variables are saved.

In MATLAB or Octave, variables saved with the dynasave command can be retrieved by the command:

load (FILENAME, '-mat ')

174 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

4.27 Macro processing language

It is possible to use “macro” commands in the . mod file for performing tasks such as: including modular source
files, replicating blocks of equations through loops, conditionally executing some code, writing indexed sums or
products inside equations. . .

The Dynare macro-language provides a new set of macro-commands which can be used in .mod files. It features:
* File inclusion
* Loops (for structure)
¢ Conditional inclusion (1 £/then/else structures)
» Expression substitution

This macro-language is totally independent of the basic Dynare language, and is processed by a separate com-
ponent of the Dynare pre-processor. The macro processor transforms a .mod file with macros into a . mod file
without macros (doing expansions/inclusions), and then feeds it to the Dynare parser. The key point to understand
is that the macro processor only does text substitution (like the C preprocessor or the PHP language). Note that it
is possible to see the output of the macro processor by using the savemacro option of the dynare command
(see Dynare invocation).

The macro processor is invoked by placing macro directives in the .mod file. Directives begin with an at-sign
followed by a pound sign (@#). They produce no output, but give instructions to the macro processor. In most
cases, directives occupy exactly one line of text. If needed, two backslashes (\\) at the end of the line indicate
that the directive is continued on the next line. Macro directives following // are not interpreted by the macro
processor. For historical reasons, directives in commented blocks, ie surrounded by / x and =/, are interpreted by
the macro processor. The user should not rely on this behavior. The main directives are:

* @#includepath, paths to search for files that are to be included,

¢ @#include, for file inclusion,

* @#define, for defining a macro processor variable,

e Q#if, Q#ifdef, @#ifndef, Q#elseif, R@#else, QR#endif for conditional statements,
* @#for, Q#endfor for constructing loops.

The macro processor maintains its own list of variables (distinct from model variables and MATLAB/Octave
variables). These macro-variables are assigned using the @#de fine directive and can be of the following basic
types: boolean, real, string, tuple, function, and array (of any of the previous types).

4.27.1 Macro expressions

Macro-expressions can be used in two places:
* Inside macro directives, directly;

* In the body of the .mod file, between an at-sign and curly braces (like @ {expr}): the macro processor
will substitute the expression with its value

It is possible to construct macro-expressions that can be assigned to macro-variables or used within a macro-
directive. The expressions are constructed using literals of the basic types (boolean, real, string, tuple, array),
comprehensions, macro-variables, macro-functions, and standard operators.

Note: Elsewhere in the manual, MACRO_EXPRESSION designates an expression constructed as explained in
this section.

4.27. Macro processing language 175

Dynare Reference Manual, Release 5.4

Boolean

The following operators can be used on booleans:
» Comparison operators: ==, !=

* Logical operators: &&, ||, !

Real

The following operators can be used on reals:
e Arithmetic operators: +, -, =, /, *
e Comparison operators: <, >, <=, >=, ==, I=
* Logical operators: &&, ||, !

* Ranges with an increment of 1: REALL : REAL2 (for example, 1 : 4 is equivalent to real array [1, 2, 3,
41).

Changed in version 4.6: Previously, putting brackets around the arguments to the colon operator (e.g.
[1:4]) had no effect. Now, [1:4] will create an array containing an array (i.e. [[1, 2, 3, 4]

D.

¢ Ranges with user-defined increment: REAL1 : REAL2 : REAL3 (for example, 6:-2.1: -1 is equivalent to
real array [6, 3.9, 1.8, -0.3]).

¢ Functions: max, min, mod, exp, log, loglO, sin, cos, tan, asin, acos,
atan, sqrt, cbrt, sign, floor, ceil, trunc, erf, erfc, gamma, lgamma,
round, normpdf, normcdf. NB 1n can be used instead of 1og

String

String literals have to be enclosed by double quotes (like "name™").
The following operators can be used on strings:

e Comparison operators: <, >, <=, >=, ==, =

¢ Concatenation of two strings: +

« Extraction of substrings: if s is a string, then s [3] is a string containing only the third character of s, and
s [4: 6] contains the characters from 4th to 6th

¢ Function: length

Tuple

Tuples are enclosed by parenthesis and elements separated by commas (like (a, b, c) or (1,2, 3)).
The following operators can be used on tuples:
e Comparison operators: ==, !=

* Functions: empty, length

176 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Array
Arrays are enclosed by brackets, and their elements are separated by commas (like [1, [2,3],4] or ["US",
"FR"]).
The following operators can be used on arrays:
» Comparison operators: ==, !=
* Dereferencing: if v is an array, then v [2] is its 2nd element
» Concatenation of two arrays: +
* Set union of two arrays: |
* Set intersection of two arrays: &
* Difference —: returns the first operand from which the elements of the second operand have been removed.
* Cartesian product of two arrays: *
* Cartesian product of one array N times: *N
 Extraction of sub-arrays: e.g. v[4:6]
* Testing membership of an array: in operator (for example: "b" in ["a", "b", "c"] returns 1)

¢ Functions: empty, sum, length

Comprehension
Comprehension syntax is a shorthand way to make arrays from other arrays. There are three different ways the
comprehension syntax can be employed: filtering, mapping, and filtering and mapping.
Filtering
Filtering allows one to choose those elements from an array for which a certain condition hold.
Example

Create a new array, choosing the even numbers from the array 1: 5:

[i in 1:5 when mod(i,2) == 0]

would result in:

[2, 4]

Mapping
Mapping allows you to apply a transformation to every element of an array.
Example

Create a new array, squaring all elements of the array 1 : 5:

[172 for 1 in 1:5]

would result in:

[1, 4, 9, 16, 25]

Filtering and Mapping

Combining the two preceding ideas would allow one to apply a transformation to every selected element of an
array.

Example

Create a new array, squaring all even elements of the array 1 : 5:

4.27. Macro processing language 177

Dynare Reference Manual, Release 5.4

[i*2 for i in 1:5 when mod(i, 2)

would result in:

[4, 16l
Further Examples
[(J, 1+1) for (%i,73)
[(j, i+1) for (i, 3)
would result in:
(@, 2, 2, 2), (1,
[(2, 2)]

Function

in
in

3)

(1:2)72]
(1:2)*(

(2, 3)1]

1:2)

== 0]

when 1 < j]

Functions can be defined in the macro processor using the @#define directive (see below). A function is
evaluated at the time it is invoked, not at define time. Functions can be included in expressions and the operators

that can be combined with them depend on their return type.

Checking variable type

Given a variable name or literal, you can check the type it evaluates to using the following functions: isboolean,
isreal, isstring, istuple,and isarray.

Examples

Casting between types

Code Output
isboolean (0) false
isboolean (true) | true

isreal ("str") false

Variables and literals of one type can be cast into another type. Some type changes are straightforward (e.g.
changing a real to a string) whereas others have certain requirements (e.g. to cast an array to a real it must be a

one element array containing a type that can be cast to real).

Examples

Code Output
(bool) -1.1 true
(bool) O false
(real) "2.2" 2.2
(tuple) [3.3] (3.3)
(array) 4.4 [4.4]
(real) [5.5] 5.5
(real) [6.6, 7.7] error
(real) "8.8 in a string" | error

Casts can be used in expressions:

Examples

178

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Code Output
(bool) 0 && true false
(real) "1" + 2 3
(string) (3 + 4) R
(array) 5 + (array) 6 | [5, 6]

4.27.2 Macro directives

Macro directive:
Macro directive:

Example

@#includepath "PATH"

@#includepath MACRO_EXPRESSION

This directive adds the path contained in PATH to the list of those to search when looking for a .mod
file specified by @#include. If provided with a MACRO_EXPRESSION argument, the argument must
evaluate to a string. Note that these paths are added after any paths passed using —I.

@#includepath "/path/to/folder/containing/modfiles"
@#includepath folders_containing mod_files

Macro directive:
Macro directive:

Example

@#include

@#include "FILENAME"

@#include MACRO_EXPRESSION

This directive simply includes the content of another file in its place; it is exactly equivalent to a copy/paste
of the content of the included file. If provided with a MACRO_EXPRESSION argument, the argument must
evaluate to a string. Note that it is possible to nest includes (i.e. to include a file from an included file). The
file will be searched for in the current directory. If it is not found, the file will be searched for in the folders
provided by —I and @#includepath.

"modelcomponent .mod"

@#include location_of_ _modfile

Macro directive:
Macro directive:
Macro directive:

@#define MACRO_VARIABLE
@#define MACRO_VARIABLE
@#define MACRO_FUNCTION

Defines a macro-variable or macro function.

Example

<

@fdefine
@#define
@#define
@#define
@#define
@#define
@#define
@#define
@#define

Hh N & 2 <K X

Example

@fdefine
@#define
@#define 1
@#define f
@#define 1

model;

ar

=5

= "us"

= [1, 2, 4]

= ["us", "EA"]
= [1, ["EA"]]
= 3 + v[2]

= ("US" in w)

(x) =" " + x + vy
= 1

= ["B", "C"]

= 2

(x) = x + " + " + y[i]

/7
//
/7
/7
//
/7
/7
//
/7
/7

MACRO_EXPRESSION
MACRO_EXPRESSTION

Equals 1
Real

String

Real array
String array
Mixed array

Equals 5
Equals true
Function “f° with argument 'x°

returns the string ' ' + x + 'US'

(continues on next page)

4.27. Macro processing language

179

Dynare Reference Manual, Release 5.4

(continued from previous page)

A = @{y[i] + £("D")};
end;

The latter is strictly equivalent to:

model;
A = BD + B;
end;

Macro directive: Q@#if MACRO_EXPRESSION

Macro directive: Q#ifdef MACRO_VARIABLE

Macro directive: Q@#ifndef MACRO_VARIABLE

Macro directive: Q@#elseif MACRO_EXPRESSION

Macro directive: (Qi#else()

Macro directive: (@#endif ()
Conditional inclusion of some part of the .mod file. The lines between @#1f, @#ifdef, or @#ifndef
and the next @#elseif, @#else or @#endif is executed only if the condition evaluates to t rue. Fol-
lowing the @#if body, you can zero or more @#elseif branches. An @#elseif condition is only
evaluated if the preceding @#1if or @#elseif condition evaluated to false. The @#else branch is
optional and is only evaluated if all @#1if and @#elseif statements evaluate to false.

Note that when using @#ifdef, the condition will evaluate to true if the MACRO_VARIABLE has
been previously defined, regardless of its value. Conversely, @#1ifndef will evaluate to true if the
MACRO_VARIABLE has not yet been defined.

Note that when using @#elseif you can check whether or not a variable has been defined by using the
defined operator. Hence, to enter the body of an @#elseif branch if the variable X has not been
defined, you would write: @#elseif !defined (X).

Note that if a real appears as the result of the MACRO_EXPRESSION, it will be interpreted as a boolean; a
value of 0 is interpreted as false, otherwise it is interpreted as t rue. Further note that because of the im-
precision of reals, extra care must be taken when testing them in the MACRO_EXPRESSION. For example,

exp (log(5)) == 5 will evaluate to false. Hence, when comparing real values, you should generally
use a zero tolerance around the value desired, e.g. exp (1log (5)) > 5-le-14 && exp(log(5)) <
5+1le-14

Example

Choose between two alternative monetary policy rules using a macro-variable:

@#define linear_mon_pol = false // 0 would be treated the same
model;
@#if linear_mon_pol
i = wxi(-1) + (l-w)~*i_ss + w2*(pie-piestar);
Q#else
i =1i(-1)"w * i_ss”(l-w) = (ple/piestar) " w2;
@#endif
end;

This would result in:
model;
i =1(-1)"w % i_ss”"(l-w) * (ple/piestar) w2;

end;

Example

180 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Choose between two alternative monetary policy rules using a macro-variable. The only differ-
ence between this example and the previous one is the use of @#1ifdef instead of @#if. Even
though 1inear_mon_pol contains the value false because @#1ifdef only checks that the
variable has been defined, the linear monetary policy is output:

@#define linear_mon_pol =
model;
@#ifdef linear_mon_pol

i = wxi(-1) +
@#else

i =4i(-1)"w * i_ss”(l-w) =
@#endif

end;
This would result in:
model;

i = wxi(—-1) +

end;
Macro directive: @#for MACRO_VARIABLE
Macro directive: @#for MACRO_VARIABLE
Macro directive: @#for MACRO_TUPLE in
Macro directive: @#for MACRO_TUPLE in
Macro directive: @#endfor ()

Loop construction for replicating portions of the

false // 0 would be treated the same

(l-w) xi_ss + w2x (pie-piestar);

(pie/piestar) "w2;

(l-w) xi_ss + w2x (pie-piestar);

in MACRO_EXPRESSION

in MACRO_EXPRESSION when MACRO_EXPRESSION
MACRO_EXPRESSION

MACRO_EXPRESSION when MACRO_EXPRESSION

.mod file. Note that this construct can enclose vari-

able/parameters declaration, computational tasks, but not a model declaration.

Example

model;

@#for country in [
GDP_Q@{country} =

@#endfor

end;

"home",

The latter is equivalent to:

"foreign"]
A * K_@{country}”a * L_@{country}”(l-a);

"foreign"]

model;
GDP_home = A * K_home”a * L_home” (l1-a);
GDP_foreign = A % K_foreign®a » L_foreign” (l-a);
end;
Example
model;
@#for (i, j) in ["GDP"] * ["home",
@{i}_@{j} = A = K Q{j}"a » L_Q{Jj}"(1-a);
@#endfor
end;

The latter is equivalent to:

model;
GDP_home = A * K_home”a * L_home” (l1-a);
GDP_foreign = A % K_foreign®a » L_foreign” (l-a);
end;
Example

4.27. Macro processing language

181

Dynare Reference Manual, Release 5.4

@#define countries = ["US", "FR", "JA"]
@#define nth_co = "US"
model;
@#for co in countries when co != nth_co
(1+1i_Q@{co}) = (1+i_Q@{nth_co}) = E_@{co}(+1) / E_R{co};
@#endfor
E_@{nth_co} = 1;
end;

The latter is equivalent to:

model;
(l+i_FR) = (1+i_US) * E_FR(+1) / E_FR;
(l+i_JA) = (1+i_US) % E_JA(+1) / E_JA;
E_US = 1;

end;

Macro directive: Q@#fecho MACRO_EXPRESSION
Asks the preprocessor to display some message on standard output. The argument must evaluate to a string.

Macro directive: Q@#terror MACRO_EXPRESSION
Asks the preprocessor to display some error message on standard output and to abort. The argument must
evaluate to a string.

Macro directive: @#echomacrovars ()

Macro directive: @#echomacrovars MACRO_VARIABLE_LIST

Macro directive: (@#echomacrovars (save) MACRO_VARIABLE_LIST
Asks the preprocessor to display the value of all macro variables up until this point. If
the save option is passed, then values of the macro variables are saved to options_.
macrovars_line_<<line_numbers>>. If NAME_LIST is passed, only display/save variables and
functions with that name.

Example
@fdefine A = 1
@#fdefine B = 2
@#define C(x) = x*2

@#echomacrovars A C D

The output of the command above is:

Macro Variables:

A =1
Macro Functions:
C(x) = (x = 2)

4.27.3 Typical usages

4.27.3.1 Modularization

The @#include directive can be used to split . mod files into several modular components.
Example setup:
modeldesc.mod

Contains variable declarations, model equations, and shocks declarations.
simul.mod

Includes modeldesc.mod, calibrates parameter,s and runs stochastic simulations.

estim.mod

182 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Includes modeldesc.mod, declares priors on parameters, and runs Bayesian estimation.
Dynare can be called on simul .mod and estim.mod but it makes no sense to run it on modeldesc.mod.

The main advantage is that you don’t have to copy/paste the whole model (at the beginning) or changes to the
model (during development).

4.27.3.2 Indexed sums of products

The following example shows how to construct a moving average:
@fdefine window = 2
var x MA_x;
model;
MA_x = Q{1/(2+*window+1) }* (
@#for 1 in -window:window
+x (@{i})

Q#endfor
) i

end;

After macro processing, this is equivalent to:
var x MA_x;
model;
MA_x = 0.2%(

+x (=2)
+x (1)
+x(0)
+x (1)
+x(2)
)i

end;

4.27.3.3 Multi-country models

Here is a skeleton example for a multi-country model:

Q#define countries = ["US", "EA", "AS", "JP", "RC"]
Q#define nth_co = "US"

Q#for co in countries

var Y_Q@{co} K _@{co} L _Q@{co} i_@{co} E_@{co} ...;
parameters a_@{co} ...;

varexo ...;

@#endfor

model;

@#for co in countries
Y _@{co} = K @{co}"a_@{co} » L _@{co}”(l-a_@{co});

Q#if co != nth_co
(1+i_@{co}) = (1+i_@{nth_co}) * E_Q{co} (+1) / E_R{co}; // UIP relation

(continues on next page)

4.27. Macro processing language 183

Dynare Reference Manual, Release 5.4

(continued from previous page)

Q#else
E_Q@{co} = 1;
@#endif
Q#endfor

end;

4.27.3.4 Endogeneizing parameters

When calibrating the model, it may be useful to consider a parameter as an endogenous variable (and vice-versa).
For example, suppose production is defined by a CES function:

y = (al/gel—l/g T (1- a)1/£k1_1/5)§/(5—1)

and the labor share in GDP is defined as:

lab_rat = (wf)/(py)

In the model, « is a (share) parameter and 1ab_rat is an endogenous variable.

It is clear that calibrating « is not straightforward; on the contrary, we have real world data for 1alb_rat and it is
clear that these two variables are economically linked.

The solution is to use a method called variable flipping, which consists in changing the way of computing the
steady state. During this computation, o will be made an endogenous variable and 1ab_rat will be made a
parameter. An economically relevant value will be calibrated for 1ab_rat, and the solution algorithm will
deduce the implied value for a.

An implementation could consist of the following files:
modegs .mod

This file contains variable declarations and model equations. The code for the declaration of « and
lab_rat would look like:

Q#if steady
var alpha;
parameter lab_rat;
@felse
parameter alpha;
var lab_rat;
Qfendif

steady.mod

This file computes the steady state. It begins with:

@#define steady = 1
@#include "modegs.mod"

Then it initializes parameters (including lab_rat, excluding o), computes the steady state (using
guess values for endogenous, including «), then saves values of parameters and endogenous at steady
state in a file, using the save_params_and_steady_state command.

simul.mod

This file computes the simulation. It begins with:

184 Chapter 4. The model file

Dynare Reference Manual, Release 5.4

@fdefine steady = O
@#include "modegs.mod"

Then it loads values of parameters and endogenous at steady state from file, using the
load_params_and_steady_state command, and computes the simulations.

4.27.4 MATLAB/Octave loops versus macro processor loops

Suppose you have a model with a parameter p and you want to run simulations for three values: p = 0.8,0.9, 1.
There are several ways of doing this:

With a MATLAB/Octave loop

rhos = [0.8, 0.9, 11;
for i = l:length(rhos)
rho = rhos(i);
stoch_simul (order=1) ;
end

Here the loop is not unrolled, MATLAB/Octave manages the iterations. This is interesting when there
are a lot of iterations.

With a macro processor loop (case 1)

rhos = [0.8, 0.9, 1];
@fffor i in 1:3
rho = rhos(Q{i});
stoch_simul (order=1);
@fendfor

This is very similar to the previous example, except that the loop is unrolled. The macro processor
manages the loop index but not the data array (rhos).

With a macro processor loop (case 2)

@#for rho_val in [0.8, 0.9, 1]
rho = @{rho_val};
stoch_simul (order=1) ;
@#endfor

The advantage of this method is that it uses a shorter syntax, since the list of values is directly given in
the loop construct. The inconvenience is that you can not reuse the macro array in MATLAB/Octave.

4.28 Verbatim inclusion

Pass everything contained within the verbatim block to the <mod_file>.m file.

Block: verbatim ;
By default, whenever Dynare encounters code that is not understood by the parser, it is directly passed to
the preprocessor output.

In order to force this behavior you can use the verbatim block. This is useful when the code you want
passed to the driver file contains tokens recognized by the Dynare preprocessor.

Example

verbatim;
% Anything contained in this block will be passed
% directly to the driver file, including comments

(continues on next page)

4.28. Verbatim inclusion 185

Dynare Reference Manual, Release 5.4

(continued from previous page)

var = 1;
end;

4.29 Misc commands

Command: set_dynare_seed (INTEGER)

Command: set_dynare_seed(default')

Command: set_dynare_seed(clock')

Command: set_dynare seed(reset')

Command: set_dynare seed ("ALGORITHM', INTEGER)

Sets the seed used for random number generation. It is possible to set a given integer value, to use a de-
fault value, or to use the clock (by using the latter, one will therefore get different results across different
Dynare runs). The reset option serves to reset the seed to the value set by the last set_dynare_seed
command. On MATLAB 7.8 or above, it is also possible to choose a specific algorithm for random num-
ber generation; accepted values are mcgl16807, m1£g6331_64, mrg32k3a, mt19937ar (the default),
shr3cong and swb2712.

Command: save_params_and_ steady_ state (FILENAME) ;

For all parameters, endogenous and exogenous variables, stores their value in a text file, using a simple
name/value associative table.

« for parameters, the value is taken from the last parameter initialization.
* for exogenous, the value is taken from the last initval block.

» for endogenous, the value is taken from the last steady state computation (or, if no steady state has
been computed, from the last initval block).

Note that no variable type is stored in the file, so that the values can be reloaded with
load_params_and_steady_state in a setup where the variable types are different.

The typical usage of this function is to compute the steady-state of a model by calibrating the steady-state
value of some endogenous variables (which implies that some parameters must be endogeneized during the
steady-state computation).

You would then write a first . mod file which computes the steady state and saves the result of the compu-
tation at the end of the file, using save_params_and_steady_state.

In a second file designed to perform the actual simulations, you would use
load_params_and_steady_state just after your variable declarations, in order to load the
steady state previously computed (including the parameters which had been endogeneized during the steady
state computation).

The need for two separate . mod files arises from the fact that the variable declarations differ between the
files for steady state calibration and for simulation (the set of endogenous and parameters differ between the
two); this leads to different var and parameters statements.

Also note that you can take advantage of the @#include directive to share the model equations between
the two files (see Macro processing language).

Command: load_params_and_ steady state (FILENAME) ;

For all parameters, endogenous and exogenous variables, loads their value from a file created with
save_params_and_steady_state.

« for parameters, their value will be initialized as if they had been calibrated in the . mod file.

* for endogenous and exogenous variables, their value will be initialized as they would have been from
an initval block .

This function is used in conjunction with save_params_and_steady_state; see the documentation
of that function for more information.

186

Chapter 4. The model file

Dynare Reference Manual, Release 5.4

Command: compilation_ setup (OPTIONS) ;
When the use_d1 1 option is present, Dynare uses the GCC compiler that was distributed with it to compile
the static and dynamic C files produced by the preprocessor. You can use this option to change the compiler,
flags, and libraries used.

Options

compiler = FILENAME
The path to the compiler.

substitute_flags = QUOTED_STRING
The flags to use instead of the default flags.

add_flags = QUOTED_STRING
The flags to use in addition to the default flags. If substitute_flags is passed, these
flags are added to the flags specified there.

substitute_libs = QUOTED_STRING
The libraries to link against instead of the default libraries.

add_1libs = QUOTED_STRING
The libraries to link against in addition to the default libraries. If substitute_libs is
passed, these libraries are added to the libraries specified there.

MATLAB/Octave command: dynare_version ;
Output the version of Dynare that is currently being used (i.e. the one that is highest on the MATLAB/Octave
path).

MATLAB/Octave command: write_latex_definitions ;
Writes the names, LaTeX names and long names of model variables to tables in a file named <<M_.
fname>>_latex_definitions.tex. Requires the following LaTeX packages: longtable.

MATLAB/Octave command: write_latex parameter_table ;
Writes the LaTeX names, parameter names, and long names of model parameters to a table in a file
named <<M_.fname>>_latex_parameters.tex. The command writes the values of the param-
eters currently stored. Thus, if parameters are set or changed in the steady state computation, the command
should be called after a steady command to make sure the parameters were correctly updated. The long
names can be used to add parameter descriptions. Requires the following LaTeX packages: longtable,
booktabs.

MATLAB/Octave command: write_ latex prior table ;

Writes descriptive statistics about the prior distribution to a LaTeX table in a file named <<M_.
fname>>_latex_priors_table.tex. The command writes the prior definitions currently stored.
Thus, this command must be invoked after the est imated_params block. If priors are defined over
the measurement errors, the command must also be preceeded by the declaration of the observed variables
(with varobs). The command displays a warning if no prior densities are defined (ML estimation) or if the
declaration of the observed variables is missing. Requires the following LaTeX packages: longtable,
booktabs.

MATLAB/Octave command: collect_ latex files ;
Writes a LaTeX file named <<M_ . fname>>_TeX_binder.tex that collects all TeX output generated
by Dynare into a file. This file can be compiled using pdflatex and automatically tries to load all
required packages. Requires the following LaTeX packages: breqn, psfrag, graphicx, epstopdf,
longtable, booktabs, caption, float, amsmath, amsfonts, and morefloats.

4.29. Misc commands 187

Dynare Reference Manual, Release 5.4

188 Chapter 4. The model file

CHAPTER
FIVE

THE CONFIGURATION FILE

The configuration file is used to provide Dynare with information not related to the model (and hence not placed
in the model file). At the moment, it is only used when using Dynare to run parallel computations.

On Linux and macOS, the default location of the configuration file is SHOME / . dynare, while on Windows it is
$APPDATA%\dynare.ini (typically c: \Users\USERNAME\AppData\dynare.ini). You can specify
a non standard location using the conffile option of the dynare command (see Dynare invocation).

The parsing of the configuration file is case-sensitive and it should take the following form, with each option/choice

pair placed on a newline:

[commandO]
option0 = choice0
optionl = choicel

[commandl]
option0 = choice0
optionl = choicel

The configuration file follows a few conventions (self-explanatory conventions such as USER_NAME have been

excluded for concision):

COMPUTER_NAME

Indicates the valid name of a server (e.g. localhost, server.cepremap.orq) or an IP ad-

dress.

DRIVE_NAME

Indicates a valid drive name in Windows, without the trailing colon (e.g. C).

PATH

Indicates a valid path in the underlying operating system (e.g. /home/user/dynare/matlab/).

PATH_AND_FILE

Indicates a valid path to a file in the underlying operating system (e.g. /usr/local/MATLAB/

R2010b/bin/matlab).

BOOLEAN

Istrueor false.

189

Dynare Reference Manual, Release 5.4

5.1 Dynare Configuration
This section explains how to configure Dynare for general processing. Currently, there is only one option available.

Configuration block: [hooks]
This block can be used to specify configuration options that will be used when running Dynare.

Options

GlobalInitFile = PATH _AND_FILE
The location of the global initialization file to be run at the end of global_initialization.m.

Example

[hooks]
GlobalInitFile = /home/usern/dynare/myInitFile.m

Configuration block: [paths]
This block can be used to specify paths that will be used when running dynare.
Options

Include = PATH
A colon-separated path to use when searching for files to include via @#include. Paths specified
via —T take priority over paths specified here, while these paths take priority over those specified by
@#includepath.

Example

[paths]
Include = /path/to/folder/containing/modfiles:/path/to/another/folder

5.2 Parallel Configuration

This section explains how to configure Dynare for parallelizing some tasks which require very little inter-process
communication.

The parallelization is done by running several MATLAB or Octave processes, either on local or on remote ma-
chines. Communication between master and slave processes are done through SMB on Windows and SSH on
UNIX. Input and output data, and also some short status messages, are exchanged through network filesystems.
Currently the system works only with homogenous grids: only Windows or only Unix machines.

The following routines are currently parallelized:
* the posterior sampling algorithms when using multiple chains;
¢ the Metropolis-Hastings diagnostics;
¢ the posterior IRFs;
* the prior and posterior statistics;
* some plotting routines.

Note that creating the configuration file is not enough in order to trigger parallelization of the computations: you
also need to specify the parallel option to the dynare command. For more details, and for other options
related to the parallelization engine, see Dynare invocation.

You also need to verify that the following requirements are met by your cluster (which is composed of a master
and of one or more slaves):

For a Windows grid:

* a standard Windows network (SMB) must be in place;

190 Chapter 5. The configuration file

Dynare Reference Manual, Release 5.4

¢ the PsTools suite must be installed in the path of the master Windows machine;

 the Windows user on the master machine has to be user of any other slave machine in the cluster, and that
user will be used for the remote computations.

* detailed step-by-step setup instructions can be found in Windows Step-by-Step Guide.
For a UNIX grid:
¢ SSH must be installed on the master and on the slave machines;

* SSH keys must be installed so that the SSH connection from the master to the slaves can be done without
passwords, or using an SSH agent.

Warning: Compatibility considerations between master and slave

It is highly recommended to use the same version of Dynare on both the master and all slaves. Different
versions regularly cause problems like zero acceptance rates during estimation. When upgrading to a newer
Dynare version do not forget to adjust the DynarePath.

We now turn to the description of the configuration directives. Note that comments in the configuration file can be
provided by separate lines starting with a hashtag (#).

Configuration block: [cluster]
When working in parallel, [cluster] is required to specify the group of computers that will be used. It
is required even if you are only invoking multiple processes on one computer.

Options

Name = CLUSTER NAME
The reference name of this cluster.

Members = NODE_NAME [(WEIGHT)] NODE_NAME [(WEIGHT)]
A list of nodes that comprise the cluster with an optional computing weight specified for that node.
The computing weight indicates how much more powerful one node is with respect to the others (e.g.
nl(2) n2 (1) n3(3) means that nl is two times more powerful than n2 whereas n3 is three
times more powerful than n2). Each node is separated by at least one space and the weights are in
parenthesis with no spaces separating them from their node.

Example

[cluster]
Name = cl
Members = nl n2 n3

[cluster]
Name = c2
Members = nl(4) n2 n3
Configuration block: [node]
When working in parallel, [node] is required for every computer that will be used. The options that
are required differ, depending on the underlying operating system and whether you are working locally or
remotely.

Options

Name = NODE_NAME
The reference name of this node.

CPUnbr = INTEGER | [INTEGER:INTEGER]
If just one integer is passed, the number of processors to use. If a range of integers is passed, the
specific processors to use (processor counting is defined to begin at one as opposed to zero). Note
that using specific processors is only possible under Windows; under Linux and macOS, if a range is
passed the same number of processors will be used but the range will be adjusted to begin at one.

5.2. Parallel Configuration 191

Dynare Reference Manual, Release 5.4

ComputerName = COMPUTER NAME
The name or IP address of the node. If you want to run locally, use 1localhost (case-sensitive).

Port = INTEGER

The port number to connect to on the node. The default is empty, meaning that the connection will be
made to the default SSH port (22).

UserName = USER_NAME
The username used to log into a remote system. Required for remote runs on all platforms.

Password = PASSWORD
The password used to log into the remote system. Required for remote runs originating from Windows.

RemoteDrive = DRIVE_NAME
The drive to be used for remote computation. Required for remote runs originating from Windows.

RemoteDirectory = PATH
The directory to be used for remote computation. Required for remote runs on all platforms.

DynarePath = PATH
The path to the matlab subdirectory within the Dynare installation directory. The default is the empty
string.

MatlabOctavePath = PATH AND FILE
The path to the MATLAB or Octave executable. The default value is mat lab.

NumberOfThreadsPerJob = INTEGER
For Windows nodes, sets the number of threads assigned to each remote MATLAB/Octave run. The
default value is 1.

SingleCompThread = BOOLEAN
Whether or not to disable MATLAB’s native multithreading. The default value is false. Option
meaningless under Octave.

OperatingSystem = OPERATING_ SYSTEM
The operating system associated with a node. Only necessary when creating a cluster with nodes from
different operating systems. Possible values are unix or windows. There is no default value.

Example

[node]

Name = nl

ComputerName = localhost
CPUnbr = 1

[node]
Name = n2
ComputerName = dynserv.cepremap.org

CPUnbr = 5

UserName = usern

RemoteDirectory = /home/usern/Remote
DynarePath = /home/usern/dynare/matlab

MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = dynserv.dynare.org
Port = 3333

CPUnbr = [2:4]

UserName = usern

RemoteDirectory = /home/usern/Remote
DynarePath = /home/usern/dynare/matlab

MatlabOctavePath = matlab

192

Chapter 5. The configuration file

Dynare Reference Manual, Release 5.4

5.3 Windows Step-by-Step Guide

This section outlines the steps necessary on most Windows systems to set up Dynare for parallel execution.

1. Write a configuration file containing the options you want. A mimimum working example
setting up a cluster consisting of two local CPU cores that allows for e.g. running two Monte
Carlo Markov Chains in parallel is shown below.

2. Save the configuration file somwhere. The name and file ending do not matter if you are pro-
viding it with the conf fi 1e command line option. The only restrictions are that the path must
be a valid filename, not contain non-alpha-numeric characters, and not contain any whitespaces.
For the configuration file to be accessible without providing an explicit path at the command
line, you must save it under the name dynare. ini into your user account’s Application
Data folder.

3. Install PSTools to your system, e.g. into C: \PSTools.

4. Set the Windows System Path to the PSTools folder (e.g. using something along the line
of pressing Windows Key+Pause to open the System Configuration, then go to Advanced ->
Environment Variables -> Path).

5. Restart your computer to make the path change effective.

6. Open MATLAB and type into the command window:

!psexec

This executes the psexec . exe from PSTools on your system and shows whether Dynare will
be able to locate it. If MATLAB complains at this stage, you did not correctly set your Windows
system path for the PSTools folder.

7. If psexec.exe was located in the previous step, a popup will show up, asking for confirmation
of the license agreement. Confirm this copyright notice of psexec (this needs to be done only
once). After this, Dynare should be ready for parallel execution.

8. Call Dynare on your mod-file invoking the parallel option and providing the path to your
configuration file with the conff£1i1e option (if you did not save it as $APPDATA%\dynare.
ini in step 2 where it should be detected automatically):

dynare 152003 parallel conffile='C:\Users\Dynare~1l\parallel\conf file.
—ini'

Please keep in mind that no white spaces or names longer than 8 characters are allowed in the
conffile path. The 8-character restriction can be circumvented by using the tilde Windows path
notation as in the above example.

Example:

#cluster needs to always be defined first
[cluster]

#Provide a name for the cluster

Name=Local

#declare the nodes being member of the cluster
Members=nl

#declare nodes (they need not all be part of a cluster)
[node]

#name of the node

Name=n1l

#name of the computer (localhost for the current machine)
ComputerName=localhost

#cores to be included from this node

CPUnbr=[1:2]

(continues on next page)

5.3. Windows Step-by-Step Guide 193

Dynare Reference Manual, Release 5.4

(continued from previous page)

#path to matlab.exe; on Windows, the MATLAB bin folder is in the system path
#so we only need to provide the name of the exe file
MatlabOctavePath=matlab

#Dynare path you are using

DynarePath=C:/dynare/4.7.0/matlab

194 Chapter 5. The configuration file

CHAPTER
SIX

TIME SERIES

Dynare provides a MATLAB/Octave class for handling time series data, which is based on a class for handling
dates. Dynare also provides a new type for dates, so that the user does not have to worry about class and methods
for dates. Below, you will first find the class and methods used for creating and dealing with dates and then
the class used for using time series. Dynare also provides an interface to the X-13 ARIMA-SEATS seasonal
adjustment program produced, distributed, and maintained by the US Census Bureau (2017).

6.1 Dates

6.1.1 Dates in a mod file

Dynare understands dates in a mod file. Users can declare annual, bi-annual, quarterly, or monthly dates using the
following syntax:

1990Y
1990S2
199004
1990M11

Behind the scene, Dynare’s preprocessor translates these expressions into instantiations of the MATLAB/Octave’s
class dates described below. Basic operations can be performed on dates:

plus binary operator (+)

An integer scalar, interpreted as a number of periods, can be added to a date. For instance, if a =
195001 thenb = 195102 andb = a + 5 areidentical.

plus unary operator (+)

Increments a date by one period. +19500Q1 is identical to 195002, ++++195001 is identical to
195101.

minus binary operator (-)

Has two functions: difference and subtraction. If the second argument is a date, calculates the differ-
ence between the first date and the secmond date (e.g. 195102-19500Q1 is equal to 5). If the second
argument is an integer X, subtracts X periods from the date (e.g. 1951Q2-2 is equal to 19500Q4).

minus unary operator (-)

Subtracts one period to a date. —1950Q1 is identical to 1949Q4. The unary minus operator is the
reciprocal of the unary plus operator, +-19500Q1 is identical to 195001.

colon operator (:)

Can be used to create a range of dates. For instance, r = 195001:19510Q1 creates a dates
object with five elements: 195001, 195002, 195003, 195004 and 1951Q1. By default
the increment between each element is one period. This default can be changed using, for instance,
the following instruction: 195001:2:195101 which will instantiate a dates object with three
elements: 195001, 195003 and 1951Q1.

195

Dynare Reference Manual, Release 5.4

horzcat operator ([,])

Concatenates dates objects without removing repetitions. For instance [1950Q01, 1950Q2] is a
dates object with two elements (195001 and 195002).

vertcat operator ([;])
Same as horzcat operator.
eq operator (equal, ==

Tests if two dates objects are equal. +195001==19500Q2 returns true, 195001==195002
returns false. If the compared objects have both n>1 elements, the eq operator returns a column
vector, n by 1, of logicals.

ne operator (not equal, ~=)

Tests if two dates objects are not equal. +19500Q1~= returns false while 195001~=195002
returns true. If the compared objects both have n>1 elements, the ne operator returns an n by 1
column vector of logicals.

It operator (less than, <)

Tests if a dates object preceeds another dates object. For instance, 195001<19500Q3 returns
true. If the compared objects have both n>1 elements, the 1t operator returns a column vector, n
by 1, of logicals.

gt operator (greater than, >)

Tests if a dates object follows another dates object. For instance, 195001>19500Q3 returns
false. If the compared objects have both n>1 elements, the gt operator returns a column vector, n
by 1, of logicals.

le operator (less or equal, <=)

Tests if a dates object preceeds another dates object or is equal to this object. For instance,
195001<=19500Q3 returns t rue. If the compared objects have both n>1 elements, the 1e operator
returns a column vector, n by 1, of logicals.

ge operator (greater or equal, >=)

Tests if a dates object follows another dates object or is equal to this object. For instance,
195001>=19500Q3 returns false. If the compared objects have both n>1 elements, the ge oper-
ator returns a column vector, n by 1, of logicals.

One can select an element, or some elements, in a dates object as he would extract some elements from a vector
in MATLAB/Octave. Let a = 1950Q01:1951Q1 be a dates object, then a (1) ==1950Q1 returns true,
a (end)==195101 returns true and a (end-1:end) selects the two last elements of a (by instantiating the
dates object [195004, 1951Q11).

Remark: Dynare substitutes any occurrence of dates in the .mod file into an instantiation of the dates class
regardless of the context. For instance, d = 195001 will be translated as d = dates ('195001") ;. This
automatic substitution can lead to a crash if a date is defined in a string. Typically, if the user wants to display a
date:

disp('Initial period is 1950Q1");

Dynare will translate this as:

disp('Initial period is dates('1950Q1")"');

which will lead to a crash because this expression is illegal in MATLAB. For this situation, Dynare provides the
$ escape parameter. The following expression:

disp('Initial period is $1950Q1"');

will be translated as:

196 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

disp('Initial period is 1950Q1");

in the generated MATLAB script.

6.1.2 The dates class

Dynare class: dates
Members

e freq-equal to 1, 2, 4, 12 or 365 (resp. for annual, bi-annual, quarterly, monthly, or
daily dates).

* time —a n«1 array of integers, the number of periods since year 0 ().

Each member is private, one can display the content of a member but cannot change its value directly.
Note also that it is not possible to mix frequencies in a dates object: all the elements must have common
frequency.

The dates class has the following constructors:

Constructor: dates/()

Constructor: dates (FREQ)
Returns an empty dates object with a given frequency (if the constructor is called with one input
argument). FREQ is a character equal to Y’ or A’ for annual dates, ’S” or "H’ for bi-annual dates,
’Q’ for quarterly dates, "M’ for monthly dates, or D’ for daily dates. Note that FREQ is not case
sensitive, so that, for instance, ’q’ is also allowed for quarterly dates. The frequency can also be set
with an integer scalar equal to 1 (annual), 2 (bi-annual), 4 (quarterly), 12 (monthly), or 365 (daily).
The instantiation of empty objects can be used to rename the dates class. For instance, if one only
works with quarterly dates, object gqg can be created as:

qq = dates('Q")

and a dates object holding the date 2009Q2:

d0 = gg(2009,2);

which is much simpler if dates objects have to be defined programmatically. For daily dates, we
would instantiate an empty daily dates object as:

dd = dates('D")

and a dates object holding the date 2020-12-31:

dl = dd(2020,12,31);

Constructor: dates (STRING)

Constructor: dates (STRING, STRING, ...)
Returns a dates object that represents a date as given by the string STRING. This string has to
be interpretable as a date (only strings of the following forms are admitted: '1990Y"', "1990A",
1990S81,1990H1, '1990Q1", '1990M2",0or '2020-12-31"), the routine i sdate can be used
to test if a string is interpretable as a date. If more than one argument is provided, they should all be
dates represented as strings, the resulting dates object contains as many elements as arguments to
the constructor. For the daily dates, the string must be of the form yyyy-mm-dd with two digits for the
months (mm) and days (dd), even if the number of days or months is smaller than ten (in this case a
leading O is required).

Constructor: dates (DATES)

Constructor: dates (DATES, DATES, ...)
Returns a copy of the dates object DATES passed as input arguments. If more than one argument
is provided, they should all be dates objects. The number of elements in the instantiated dates
object is equal to the sum of the elements in the dates passed as arguments to the constructor.

6.1. Dates 197

Dynare Reference Manual, Release 5.4

Constructor: dates(FREQ, YEAR, SUBPERIOD[, S])

where FREQ is a single character ('Y’, "A’, ’S’, '"H’, ’Q’, °’M’, °D’) or integer (1, 2, 4, 12, or 365)
specifying the frequency, YEAR and SUBPERIOD and S are nx 1 vectors of integers. Returns a dates
object with n elements. The last argument, S, is only to be used for daily frequency. If FREQ is equal
to'Y', 'A' or 1, the third argument is not needed (because SUBPERIOD is necessarily a vector of

ones in this case).

Example

dol = dates ('195001");

do2 = dates ('195002"', '1950Q03");
do3 = dates (dol,do2);

do4 = dates('Q',1950, 1);

do5 = dates('D',1973, 1, 25);

A list of the available methods, by alphabetical order, is given below. Note that by default the methods do
not allow in place modifications: when a method is applied to an object a new object is instantiated. For

instance, to apply the method multiplybytwo to an object X we write:

>> X = 2;
>> Y X.multiplybytwo () ;
>> X

>> Y

or equivalently:

>> Y = multiplybytwo (X);

the object X is left unchanged, and the object Y is a modified copy of X (multiplied by two). This behaviour
is altered if the name of the method is postfixed with an underscore. In this case the creation of a copy is

avoided. For instance, following the previous example, we would have:

>> X = 2;

>> X.multiplybytwo_ () ;
>> X

4

Modifying the objects in place, with underscore methods, is particularly useful if the methods are called in

loops, since this saves the object instantiation overhead.

Method: C = append (A, B)
Method: C = append_ (A, B)

Appends dates object B, or a string that can be interpreted as a date, to the dates object A. If B is

a dates object it is assumed that it has no more than one element.

Example
>> D = dates('195001"', '195002");
>> d = dates('195003");
>> E = D.append(d);
>> F = D.append('195003");
>> isequal (E,F)

ans =

(continues on next page)

198 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

(continued from previous page)

>> F

F = <dates: 195001, 195002, 1950Q3>

>> D

D = <dates: 195001, 1950Q2>

>> D.append_('195003")

ans = <dates: 195001, 195002, 1950Q3>

Method: B = char(d)

Overloads the MATLAB/Octave char function. Converts a dates object into a character array.

Example

>> A = dates ('195001");
> A.char ()

ans =

'195001"

Method: C
Method: C =
Overloads

colon (A, B)
colon (A, i, B)

the MATLAB/Octave colon (:) operator. A and B are dates objects. The optional

increment 1 is a scalar integer (default value is 1=1). This method returns a dates object and can be

used to create ranges of dates.

Example

dates ('195001");
dates ('195102");
A:B

>> A
>> B
>> C

C = <dates: 1950Q1, 1950Q2, 195003, 195004, 19510Q01>

>> D = A:2:B

D = <dates: 195001, 195003, 1951Q1>
Method: B = copy(2)

Returns a copy of a dates object.

Method: disp (2)
Overloads the MATLAB/Octave disp function for dates object.

Method: display(2)
Overloads the MATLAB/Octave display function for dates object.

Example
>> disp (B)

195001, 195102,

195202,

195002, 1950Q3,
1952Q3>

<dates: 195004, 195101,

195201,

B =
—195104,

>> display (B)

B = <dates: 195001, 195002, ..., 195202, 195203>

195103,

6.1. Dates

199

Dynare Reference Manual, Release 5.4

Method: B = double(A)
Overloads the MATLAB/Octave double function. A is a dates object. The method returns a float-
ing point representation of a dates object, the integer and fractional parts respectively corresponding
to the year and the subperiod. The fractional part is the subperiod number minus one divided by the
frequency (1, 4, or 12).

Example:

>> a = dates ('195001") :dates ('195004");
>> a.double ()

ans =

1950.00
1950.25
1950.50
1950.75

Method: C = eq(A, B)
Overloads the MATLAB/Octave eq (equal, ==) operator. dates objects A and B must have the same
number of elements (say, n). The returned argument is a n by 1 vector of logicals. The i-th element
of C is equal to t rue if and only if the dates A (1) and B (1) are the same.

Example

>> A = dates('1950Q1','195102");
>> B dates ('1950Q1"',"'195002") ;
>> A==B

ans =
2x1 logical array

1
0

Method: C = ge (A, B)
Overloads the MATLAB/Octave ge (greater or equal, >=) operator. dates objects A and B must
have the same number of elements (say, n). The returned argument is a n by 1 vector of logicals. The
i-th element of C is equal to t rue if and only if the date A (i) is posterior or equal to the date B (i) .

Example

>> A = dates('1950Q1"','195102");
>> B = dates('19500Q01"', '195002");
>> A>=B

ans =
2x1 logical array

1
1

Method: C = gt (A, B)
Overloads the MATLAB/Octave gt (greater than, >) operator. dates objects A and B must have the
same number of elements (say, n). The returned argument is a n by 1 vector of logicals. The i-th
element of C is equal to 1 if and only if the date A (i) is posterior to the date B (1) .

Example
>> A = dates('195001','195102");
>> B = dates('195001"', '195002"');

(continues on next page)

200 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

(continued from previous page)
>> A>B

ans =
2x1 logical array

0
1

Method: D = horzcat(A, B, C, ...)
Overloads the MATLAB/Octave horzcat operator. All the input arguments must be dates ob-
jects. The returned argument is a dates object gathering all the dates given in the input arguments
(repetitions are not removed).

Example

>> A = dates('195001");
>> B = dates ('195002");
>> C [A, B];

>> C

C = <dates: 1950Q1, 1950Q2>

Method: C = intersect (A, B)
Overloads the MATLAB/Octave intersect function. All the input arguments must be dates
objects. The returned argument is a dates object gathering all the common dates given in the input
arguments. If A and B are disjoint dates objects, the function returns an empty dates object.
Returned dates in dates object C are sorted by increasing order.

Example
>> A = dates('195001"'") :dates ('195104");
>> B = dates('195101"'") :dates ('195104");
>> C = intersect (A, B);
>> C

C = <dates: 1951Q1, 195102, 1951Q3, 195104>

Method: B = isempty (3)
Overloads the MATLAB/Octave isempty function.

Example

>> A = dates('195001");
>> A.isempty ()

ans =
logical
0

>> B = dates();
>> B.isempty ()

ans =
logical

1

Method: C = isequal (A, B)

6.1. Dates 201

Dynare Reference Manual, Release 5.4

Overloads the MATLAB/Octave i sequal function.
Example

>> A = dates ('195001");

>> B = dates ('195002"');

>> isequal (A, B)

ans =

logical

0

Method: C = le (A, B)
Overloads the MATLAB/Octave 1e (less or equal, <=) operator. dates objects A and B must have
the same number of elements (say, n). The returned argument is a n by 1 vector of logicals. The i-th
element of C is equal to t rue if and only if the date A (1) is anterior or equal to the date B (1) .

Example
>> A = dates('1950Q1"','1951Q02");
>> B = dates('1950Q1','195002");
>> A<=B
ans =

2x1 logical array

1
0

Method: B = length(2)
Overloads the MATLAB/Octave 1ength function. Returns the number of elements in a dates
object.

Example

>> A = dates ('195001") :dates (2000Q3) ;
>> A.length ()

ans =

203

Method: C = 1t (A, B)
Overloads the MATLAB/Octave 1t (less than, <) operator. dates objects A and B must have the
same number of elements (say, n). The returned argument is a n by 1 vector of logicals. The i-th
element of C is equal to t rue if and only if the date A (1) is anterior or equal to the date B (1) .

Example
>> A = dates ('195001",'"195102");

>> B = dates('1950Q1"','195002");
>> A<B

ans =
2x1 logical array

0
0

202 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

Method: D = max(A, B, C, ...)
Overloads the MATLAB/Octave max function. All input arguments must be dates objects.
function returns a single element dates object containing the greatest date.

Example

>> A = {dates ('195002'"), dates('1953Q4"','1876Q2"), dates('1794Q3") };
>> max (A{:})

ans = <dates: 1953Q4>

Method: D = min(2A, B, C, ...)
Overloads the MATLAB/Octave min function. All input arguments must be dates objects.
function returns a single element dates object containing the smallest date.

Example

>> A = {dates ('195002'"), dates('1953Q4"','1876Q2"), dates('1794Q3"'")};
>> min (A{:})

ans = <dates: 1794Q3>

Method: C = minus (A, B)

The

The

Overloads the MATLAB/Octave minus operator (—). If both input arguments are dates objects,
then number of periods between A and B is returned (so that A+C=B). If B is a vector of integers, the

minus operator shifts the dates object by B periods backward.

Example
>> dl = dates ('195001"','195002", '196001");
>> d2 = dates ('195003','195004"','19600Q1");
>> ee = d2-dl
ee =
2
2
0
>> dl-(-ee)

ans = <dates: 195003, 195004, 1960Q1>

Method: C = mtimes (A, B)

Overloads the MATLAB/Octave mt imes operator (). A and B are respectively expected to be a

dseries object and a scalar integer. Returns dates object A replicated B times.

Example

>> d = dates ('195001");
>> d*2

ans = <dates: 195001, 1950Q1>

Method: C = ne (A, B)

Overloads the MATLAB/Octave ne (not equal, ~=) operator. dates objects A and B must have the
same number of elements (say, n) or one of the inputs must be a single element dates object. The
returned argument is a n by 1 vector of logicals. The i-th element of C is equal to t rue if and only if

the dates A (1) and B (i) are different.

Example

6.1.

Dates

203

Dynare Reference Manual, Release 5.4

>> A = dates('1950Q1','195102");
>> B = dates ('1950Q1','195002");
>> A~=B

ans =
2x1 logical array

0
1

Method: C = plus(A, B)
Overloads the MATLAB/Octave plus operator (+). If both input arguments are dates objects, then
the method combines A and B without removing repetitions. If B is a vector of integers, the plus
operator shifts the dates object by B periods forward.

Example

>> dl = dates ('195001"','195002") +dates ("196001");

>> d2 = (dates('1950Q1','195002")+2)+dates ('1960Q1");
>> ee = d2-dl;
ee =
2
2
0
>> dl+tee

ans = <dates: 195003, 195004, 1960Q1>

Method: C = pop(d)
Method: C = pop (A, B)
Method: C = pop_ (R)

Method: C = pop_ (A, B)
Pop method for dates class. If only one input is provided, the method removes the last element of a
dates object. If a second input argument is provided, a scalar integer between 1 and 2. length (),
the method removes element number B from dates object A.

Example

>> d = dates ('195001',"'195002");
>> d.pop ()

ans = <dates: 1950Q1>
>> d.pop_ (1)

ans = <dates: 1950Q2>

Method: C = remove (A, B)
Method: C = remove_ (A, B)
Remove method for dates class. Both inputs have to be dates objects, removes dates in B from A.

Example

>> d = dates ('19500Q1','195002");
>> d.remove (dates ('195002"))

ans = <dates: 1950Q1>

Method: C = setdiff (A, B)
Overloads the MATLAB/Octave setdi £ £ function. All the input arguments must be dates objects.

204 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

The returned argument is a dates object all dates present in A but not in B. If A and B are disjoint
dates objects, the function returns A. Returned dates in dates object C are sorted by increasing
order.

Example

>> A = dates ('195001") :dates ('196904");
>> B dates ('196001") :dates ('196904") ;
>> C = dates('1970Q1"'") :dates ('197904") ;
>> setdiff (A, B)

ans = <dates: 1950Q1, 195002, ..., 195903, 195904>
>> setdiff (A, C)

ans = <dates: 1950Q1, 195002, ..., 196903, 196904>

Method: B = sort (A)
Method: B = sort_(A)
Sort method for dates objects. Returns a dates object with elements sorted by increasing order.

Example

>> dd = dates ('1945Q3','193804"','178903");
>> dd.sort ()

ans = <dates: 1789Q3, 1938Q4, 1945Q3>
Method: B = strings(A)
Converts a dates object into a cell of char arrays.

Example

>> A dates ('195001") ;
>> A = A:A+1;
>> A.strings ()

ans =
1x2 cell array

{'195001"} {'195002"}

Method: B = subperiod(2)
Returns the subperiod of a date (an integer scalar between 1 and A . freq). This method is not imple-
mented for daily dates.

Example

>> A = dates ('195002");
>> A.subperiod ()

ans =

Method: B = uminus (A7)
Overloads the MATLAB/Octave unary minus operator. Returns a dates object with elements shifted
one period backward.

Example

6.1.

Dates 205

Dynare Reference Manual, Release 5.4

>> dd = dates('1945Q3"','19380Q4"',"'1973Q1");
>> —-dd

ans = <dates: 1945Q2, 1938Q3, 1972Q4>

Method: D = union(a, B, C, ...)
Overloads the MATLAB/Octave union function. Returns a dates object with elements sorted by
increasing order (repetitions are removed, to keep the repetitions use the horzcat or plus opera-

tors).

Example
>> dl = dates('1945Q03'","'1973Q1"','193804");
>> d2 = dates ('1973Q1','19760Q1"');

>> union (dl,d2)

ans = <dates: 193804, 194503, 1973Q1, 1976Q1>

Method: B = unique(3)

Method: B = unique_ (A7)
Overloads the MATLAB/Octave unique function. Returns a dates object with repetitions removed
(only the last occurence of a date is kept).

Example

>> dl = dates ('1945Q3','1973Q1"','1945Q3");
>> dl.unique ()

ans = <dates: 1973Q1, 1945Q03>

Method: B = uplus(A)
Overloads the MATLAB/Octave unary plus operator. Returns a dates object with elements shifted
one period ahead.

Example

>> dd = dates ('1945Q3'",'19380Q4"','1973Q1");
>> +dd

ans = <dates: 1945Q4, 1939Q1, 1973Q2>

Method: D = vertcat (A, B, C, ...)
Overloads the MATLAB/Octave horzcat operator. All the input arguments must be dates ob-
jects. The returned argument is a dates object gathering all the dates given in the input arguments
(repetitions are not removed).

Method: B = year (A7)
Returns the year of a date (an integer scalar between 1 and A. freq).

Example

>> A = dates ('195002");
>> A.subperiod()

ans =

1950

206 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

6.2 The dseries class

Dynare class: dseries
The MATLAB/Octave dseries class handles time series data. As any MATLAB/Octave statements, this
class can be used in a Dynare’s mod file. A dseries object has six members:

Members

* name — A vobsx*1 cell of strings or a vobs «p character array, the names of the vari-
ables.

* tex — A vobsx1 cell of strings or a vobsx*p character array, the tex names of the
variables.

* dates (dates)— An object with nobs elements, the dates of the sample.
* data (double) — A nobs by vobs array, the data.
» ops — The history of operations on the variables.
* tags — The user-defined tags on the variables.
data, name, tex, and ops are private members. The following constructors are available:

Constructor: dseries()

Constructor: dseries (INITIAL_DATE)
Instantiates an empty dseries object with, if defined, an initial date given by the single element
dates object INITIAL_DATE.

Constructor: dseries (FILENAME[, INITIAL_DATE])
Instantiates and populates a dseries object with a data file specified by FILENAME, a string passed
as input. Valid file types are .m, .mat, .csvand .x1s/.x1sx (Octave only supports .x1sx files
and the io package from Octave-Forge must be installed). The extension of the file should be explicitly
provided.

A typical .m file will have the following form:

FREQ = 4;
INIT = '1994Q3';
NAMES___ {'azert'; 'yuiop'};

TEX = {'azert'; 'yuiop'};

azert = randn(100,1);
yuiop = randn(100,1);

If a .mat file is used instead, it should provide the same informations, except that the data should not
be given as a set of vectors, but as a single matrix of doubles named DATA__. This array should have
as many columns as elements in NAMES___ (the number of variables). Note that the INIT___ variable
can be either a dates object or a string which could be used to instantiate the same dates object. If
INIT__ isnot provided in the .mat or .m file, the initial is by default set equal to dates ('1Y").
If a second input argument is passed to the constructor, dates object INITIAL_DATE, the initial date
defined in FILENAME is reset to INITIAL_DATE. This is typically usefull if INIT___is not provided
in the data file.

If an . x1sx file is used, the first row should be a header containing the variable names. The first col-
umn may contain date information that must correspond to a valid date format recognized by Dynare.
If such date information is specified in the first column, its header name must be left empty.

Constructor: dseries (DATA _MATRIX[,INITIAL DATE[,LIST_OF_NAMES[,TEX NAMES]]])
Constructor: dseries (DATA_MATRIX[,RANGE_OF_DATES[,LIST_OF_NAMES[,TEX_NAMES]I1])
If the data is not read from a file, it can be provided via a T" x N matrix as the first argument to
dseries ’ constructor, with 7" representing the number of observations on N variables. The op-
tional second argument, INITIAL_DATE, can be either a dates object representing the period of the
first observation or a string which would be used to instantiate a dates object. Its default value
is dates ('1Y"). The optional third argument, LIST _OF_NAMES, is a N x 1 cell of strings with

6.2. The dseries class 207

Dynare Reference Manual, Release 5.4

one entry for each variable name. The default name associated with column i of DATA_MATRIX
is Variable_i. The final argument, TEX NAMES, is a N x 1 cell of strings composed of the
LaTeX names associated with the variables. The default LaTeX name associated with column i of
DATA_MATRIX is Variable_i. If the optional second input argument is a range of dates, dates
object RANGE_OF_DATES, the number of rows in the first argument must match the number of ele-
ments RANGE_OF_DATES or be equal to one (in which case the single observation is replicated).

Constructor: dseries (TABLE)
Creates a dseries object given the MATLAB Table provided as the sole argument. It is assumed
that the first column of the table contains the dates of the dseries and the first row contains the
names. This feature is not available under Octave or MATLAB R2013a or earlier.

Example

Various ways to create a dseries object:

dol = dseries (1999Q3);
do2 dseries('filename.csv');
do3 = dseries([1l; 2; 3], 199903, {'varl23'}, {'var_{123}'});

>> dol = dseries(dates('199903"));
>> do2
>> do3

dseries('filename.csv');
dseries([1l; 2; 3], dates('1999Q3"'"), {'varl23'}, {'var_{123}'});

One can easily create subsamples from a dseries object using the overloaded parenthesis operator. If
ds is a dseries object with T observations and d is a dates object with S < T elements, such that
min(d) is not smaller than the date associated to the first observation in ds and max(d) is not greater than
the date associated to the last observation, then ds (d) instantiates a new dseries object containing the
subsample defined by d.

A list of the available methods, by alphabetical order, is given below. As in the previous section the in place
modifications versions of the methods are postfixed with an underscore.

Method: A = abs (B)

Method: abs_ (B)
Overloads the abs () function for dseries objects. Returns the absolute value of the variables in
dseries object B.

Example
>> ts0 = dseries(randn(3,2),'1973Q1',{'Al"'; 'A2'},{'A_1'; 'A_2'});

>> tsl = ts0.abs();
>> ts0

tsO is a dseries object:

| Al | A2
197301 | -0.67284 | 1.4367
197302 | -0.51222 | -0.4948
197303 | 0.99791 | 0.22677
>> tsl

tsl is a dseries object:

| abs(Al) | abs(A2)
1973Q1 | 0.67284 | 1.4367
197302 | 0.51222 | 0.4948
197303 | 0.99791 | 0.22677

Method: [A, B] = align (A, B)
Method: align_ (A, B)
If dseries objects A and B are defined on different time ranges, this function extends A and/or B

208

Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

with NaNs so that they are defined on the same time range. Note that both dseries objects must
have the same frequency.

Example

>>
>>
>>
>>

ts0

200
200
200
200
200
200

>>

tsl

200
200
200
200
200
200

>>
>>
>>
>>

tsl

200
200
200
200
200
200

tsO0 = dseries(rand(5,1),dates ('200001"));
tsl = dseries(rand(3,1),dates ('200004"));
[ts0, tsl] = align(ts0, tsl);
ts0
is a dseries object:
| Variable_1
0Q1 | 0.81472
0Q2 | 0.90579
003 | 0.12699
0Q4 | 0.91338
101 | 0.63236
102 | NaN
tsl
is a dseries object:
| Variable_1
0Q1 | NaN
0Q2 | NaN
003 | NaN
004 | 0.66653
101 | 0.17813
102 | 0.12801
tsO0 = dseries(rand(5,1),dates ('200001"));
tsl = dseries(rand(3,1),dates ('200004"));
align_ (ts0, tsl);
tsl
is a dseries object:
| Variable_1
0Q1 | NaN
0Q2 | NaN
003 | NaN
004 | 0.66653
101 | 0.17813
102 | 0.12801

Method: C = backcast (A, B[, diff])

Method: backcast_(A, B[, diff])
Backcasts dseries object A with dseries object B’s growth rates (except if the last optional
argument, diff, is true in which case first differences are used). Both dseries objects must have
the same frequency.

Method: B = baxter_king filter (A, hf, 1f, K)

Method: baxter_king filter_ (A, hf, 1f, K)
Implementation of the Baxter and King (1999) band pass filter for dseries objects. This filter
isolates business cycle fluctuations with a period of length ranging between hf (high frequency) to
1f (low frequency) using a symmetric moving average smoother with 2K + 1 points, so that K
observations at the beginning and at the end of the sample are lost in the computation of the filter. The
default value for hf is 6, for 1f is 32, and for K is 12.

Example

200001 -> 200101
200004 -> 200102
200001 -> 200102
200001 -> 200101

200004 —> 200102

200001

> 200102

6.2. The dseries class

209

Dynare Reference Manual, Release 5.4

Simulate a component model (stochastic trend, deterministic
trend, and a stationary autoregressive process).

= 0.2xrandn (200,1);

= randn (200,1);

stochastic_trend = cumsum(e);

deterministic_trend = .lxtranspose (1:200);

x = zeros(200,1);

for 1=2:200

x(1i) = .75*x(i-1) + u(i);

oo oo

[()]

end
y = x + stochastic_trend + deterministic_trend;

o

Instantiates time series objects.
tsO0 = dseries(y, '195001");
tsl = dseries(x,'195001'"); &% stationary component.

% Apply the Baxter—-King filter.
ts2 = tsO.baxter_king filter();

% Plot the filtered time series.

plot (tsl(ts2.dates) .data,'-k'); % Plot of the stationary component.
hold on

plot (ts2.data, '-——r');
hold off

axis tight

id = get(gca, 'XTick'");
set (gca, 'XTickLabel', strings (tsl.dates (id)));

oo

Plot of the filtered y.

Method: B = center (A[, geometric])

Method: center_(A[, geometric])
Centers variables in dseries object A around their arithmetic means, except if the optional argument
geometricissetequal to t rue in which case all the variables are divided by their geometric means.

Method: C = chain(A, B)

Method: chain_ (A, B)
Merge two dseries objects along the time dimension. The two objects must have the same number
of observed variables, and the initial date in B must not be posterior to the last date in A. The returned
dseries object, C, is built by extending A with the cumulated growth factors of B.

Example
>> ts = dseries([1l; 2; 3; 4],dates(71950Q1"))

ts is a dseries object:

Variable_1

\
195001 | 1
195002 | 2
195003 | 3
195004 | 4

>> us = dseries([3; 4; 5; 6],dates(7195003"))
us is a dseries object:

Variable_1

\
1950Q3 | 3
195004 | 4
195101 | 5
195102 | 6

>> chain(ts, us)
(continues on next page)

210

Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

(continued from previous page)

ans is a dseries object:

| Variable_1
195001 |
195002 |
195003 |
195004 |
195101 |
1951Q2 |

o U W N

Method: [error_flag, message] = check (2)
Sanity check of dseries object A. Returns 1 if there is an error, 0 otherwise. The second output
argument is a string giving brief informations about the error.

Method: B = copy(A)
Returns a copy of A. If an inplace modification method is applied to A, object B will not be affected.
Note that if A is assigned to C, C = A, then any in place modification method applied to A will change
C.

Example

>> a = dseries(randn(5,1))
a 1s a dseries object:

Variable_1

\
1y | -0.16936
2Y | -1.1451
3Y | -0.034331
4Y | -0.089042
5Y | -0.66997
>> b = copy(a);
>> ¢ = aj;
>> a.abs();
>> a.abs_();
>> a

a 1s a dseries object:

Variable_1

|
1y | 0.16936
2Y | 1.1451
3Y | 0.034331
4y | 0.089042
5Y | 0.66997
>> b

b is a dseries object:

| Variable_1
1Yy | -0.16936
2Y | -1.1451
3Y | -0.034331
4y | -0.089042
5Y | -0.66997
>> ¢

(continues on next page)

6.2. The dseries class 211

Dynare Reference Manual, Release 5.4

(continued from previous page)

c 1s a dseries object:

Variable_1

|
1y | 0.16936
2Y | 1.1451
3Y | 0.034331
4y | 0.089042
5Y | 0.66997

Method: B = cumprod(A[, dI[, v]I])

Method: cumprod (A[, d[, v]])
Overloads the MATLAB/Octave cumprod function for dseries objects. The cumulated product
cannot be computed if the variables in dseries object A have NaNs. If a dates object d is provided
as a second argument, then the method computes the cumulated product with the additional constraint
that the variables in the dseries object B are equal to one in period d. If a single-observation
dseries object v is provided as a third argument, the cumulated product in B is normalized such
that B (d) matches v (dseries objects A and v must have the same number of variables).

Example
>> tsl = dseries(2xones(7,1));
>> ts2 = tsl.cumprod();
>> ts2

ts2 is a dseries object:

cumprod (Variable_ 1)

\
1Yy | 2
2Y | 4
3y | 8
4Y | 16
5Y | 32
6Y | 64
7Y | 128

>> ts3 = tsl.cumprod(dates('3Y"));
>> ts3

ts3 is a dseries object:

cumprod (Variable_1)

\

1y | 0.25
2Y | 0.5
3y | 1

4y | 2

5Y | 4

6Y | 8

7Y | 16

>> ts4 = tsl.cumprod(dates('3Y'"),dseries(pi));
>> ts4

ts4 1is a dseries object:

cumprod (Variable_1)

|
1y | 0.7854
2Y | 1.5708
3Y | 3.1416
4Y | 6.2832
5Y | 12.5664
6Y | 25.1327

(continues on next page)

212 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

7Y | 50.

2655

Method: B = cumsum(A[,

Method: cumsum(A[,

at,

v]l)

vl]l)

(continued from previous page)

Overloads the MATLAB/Octave cumsum function for dseries objects. The cumulated sum cannot
be computed if the variables in dseries object A have NaNs. If a dates object d is provided as
a second argument, then the method computes the cumulated sum with the additional constraint that
the variables in the dseries object B are zero in period d. If a single observation dseries object

v is provided as a third argument, the cumulated sum in B is such that B (d) matches v (dseries
objects A and v must have the same number of variables).

Example

>> tsl = dseries(ones (10,1));
>> ts2 tsl.cumsum() ;
>> ts2

ts2 is a dseries object:

| cumsum (Variable_1)
1y |
2Y |
3y |
4y |
5Y |
6Y |
7Y |
8Y |
9y |
\

P W 0w J o Ul & WN

>> ts3 = tsl.cumsum(dates('3Y"));
>> ts3

ts3 is a dseries object:
cumsum (Variable_1)

-2
=1

\
1y |
2Y |
3y |
4Y |
5Y |
6Y |
7Y |
8Y |
9y |

\

~ o U W DN O

>> ts4 = tsl.cumsum(dates('3Y'),dseries(pi));
>> ts4

ts4 is a dseries object:

cumsum (Variable_ 1)

\
1y | 1.1416
2Y | 2.141e6
3y | 3.141e6
4y | 4.1416
5Y | 5.1416
6Y | 6.1416
7Y | 7.1416

(continues on next page)

6.2. The dseries class

213

Dynare Reference Manual, Release 5.4

(continued from previous page)

8Y | 8.1416
9Y | 9.1416
10y | 10.1416

Method: B = detrend (A, m)

Method: detrend (A, m)
Detrends dseries object A with a fitted polynomial of order m. Note that each variable is detrended
with a different polynomial.

Method: B = dgrowth(A)
Method: dgrowth_(A)
Computes daily growth rates.

Method: B = diff(3a)
Method: diff (A)
Returns the first difference of dseries object A.

Method: disp (2)
Overloads the MATLAB/Octave disp function for dseries object.

Method: display(2)
Overloads the MATLAB/Octave display function for dseries object. display is the function
called by MATLAB to print the content of an object if a semicolon is missing at the end of a MATLAB
statement. If the dseries object is defined over a too large time span, only the first and last periods
will be printed. If the dseries object contains too many variables, only the first and last variables
will be printed. If all the periods and variables are required, the disp method should be used instead.

Method: C = eq(A, B)
Overloads the MATLAB/Octave eq (equal, ==) operator. dseries objects A and B must have the
same number of observations (say, 1') and variables (V). The returned argument is a 7" X [N matrix of
logicals. Element (¢, j) of C is equal to t rue if and only if observation ¢ for variable j in A and B are
the same.

Example
>> ts0 = dseries(2+ones(3,1));
>> tsl = dseries([2; 0; 2]);
>> tsO==tsl
ans =

3x1 logical array

1
0
1

Method: 1 = exist (A, varname)
Tests if variable varname exists in dseries object A. Returns t rue iff variable exists in A.

Example

>> ts = dseries(randn(100,1));
>> ts.exist ('Variable 1")

ans =
logical
1

>> ts.exist ('Variable_2")
(continues on next page)

214 Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

(continued from previous page)

ans =

logical

Method: B = exp(A)
Method: exp_(R)

Overloads the MATLAB/Octave exp function for dseries objects.

Example
>> ts0 = dseries(rand(10,1));
>> tsl = ts0.exp();
Method: C = extract (2, B[, ...])

Extracts some variables from a dseries object A and returns a dseries object C. The input ar-
guments following A are strings representing the variables to be selected in the new dseries ob-
ject C. To simplify the creation of sub-objects, the dseries class overloads the curly braces (D =
extract (A, B, C) isequivalenttoD = A{B,C}) and allows implicit loops (defined between
a pair of @ symbol, see examples below) or MATLAB/Octave’s regular expressions (introduced by
square brackets).

Example

The following selections are equivalent:

>> ts0 = dseries(ones (100,10));

>> tsl = ts0{'Variable_1"', 'Variable_2', 'Variable_3'};
>> ts2 = tsO0{'Variable_(@1,2,3Q@"};

>> ts3 = ts0{'Variable_ [1-3]$"'};

>> isequal (tsl,ts2) && isequal (tsl,ts3)

ans =

logical

It is possible to use up to two implicit loops to select variables:

names = {'GDP_1';'GDP_2';'GDP_3'; 'GDP_4'; 'GDP_5'; 'GDP_6'; 'GDP_7
—~'"'; 'GDP_8"'; .

'GDP_9'; 'GDP_10'; 'GDP_11'; 'GDP_12';

'HICP_1';'HICP_2';'HICP_3'; 'HICP_4'; 'HICP_5'; 'HICP_6'; 'HICP_
—7'; 'HICP_8';

'"HICP_9'; 'HICP_10'; 'HICP_11'; 'HICP_12'};

ts0 = dseries(randn(4,24),dates('1973Q1"),names) ;
ts0{'Q@GDP,HICP@Q@_Q1,3,5@"}

ans is a dseries object:

| GDP_1 | GDP_3 | GDP_5 | HICP_1 | HICP_3 [
—HICP_5
197301 | 1.7906 | -1.6606 | -0.57716 | 0.60963 | -0.52335 | O.
—26172
197302 | 2.1624 | 3.0125 | 0.52563 | 0.70912 | -1.7158 | 1.
7792
197303 | -0.81928 | 1.5008 | 1.152 | 0.2798 | 0.88568 | 1.
8927
(continues on next page)
6.2. The dseries class 215

Dynare Reference Manual, Release 5.4

(continued from previous page)

197304 | -0.03705 | -0.35899 | 0.85838 | -1.4675 | -2.1666 | -
—0.62032

Method: £ = firstdate(R)
Returns the first period in dseries object A.

Method: £ = firstobservedperiod(2)
Returns the first period where all the variables in dseries object A are observed (non NaN).

Method: B = flip(Aa)
Method: flip_ (A)
Flips the rows in the data member (without changing the periods order).

Method: £ = frequency (B)
Returns the frequency of the variables in dseries object B.

Example

>> ts = dseries(randn(3,2),'197301");
>> ts.frequency

ans =

Method: D = horzcat (A, B[, ...])

Overloads the horzcat MATLAB/Octave’s method for dseries objects. Returns a dseries
object D containing the variables in dseries objects passed as inputs: A, B, ... Ifthe inputs are
not defined on the same time ranges, the method adds NaNs to the variables so that the variables are
redefined on the smallest common time range. Note that the names in the dseries objects passed as

inputs must be different and these objects must have common frequency.

Example

>> ts0 = dseries(rand(5,2),'1950Q01"', {'nifnif'; "noufnouf'});
>> tsl = dseries(rand(7,1),'195003"', {'nafnaf'});

>> ts2 = [ts0, tsl];

>> ts2

ts2 is a dseries object:

| nifnif | noufnouf | nafnaf
1950Q1 | 0.17404 | 0.71431 | NaN
195002 | 0.62741 | 0.90704 | NaN
195003 | 0.84189 | 0.21854 | 0.83666
195004 | 0.51008 | 0.87096 | 0.8593
195101 | 0.16576 | 0.21184 | 0.52338
195102 | NaN | NaN | 0.47736
195103 | NaN | NaN | 0.88988
195104 | NaN | NaN | 0.065076
195201 | NaN | NaN | 0.50946

Method: B = hpcycle(A[, lambdal)
Method: hpcycle (A[, lambdal)

Extracts the cycle component from a dseries A object using the Hodrick and Prescott (1997) filter
and returns a dseries object, B. The default value for 1ambda, the smoothing parameter, is 1600.

Example

% Simulate a component model (stochastic trend, deterministic
$ trend, and a stationary autoregressive process) .
e = 0.2*randn(200,1);

(continues on next page)

216

Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

(continued from previous page)

u = randn (200,1);
stochastic_trend = cumsum(e) ;

deterministic_trend = .lxtranspose(1:200);
x = zeros(200,1);
for 1=2:200
x(1i) = .75*x(i-1) + u(i);
end

y = x + stochastic_trend + deterministic_trend;

% Instantiates time series objects.
ts0 = dseries(y, '195001");
tsl = dseries(x,'195001'"); &% stationary component.

% Apply the HP filter.
ts2 = tsO0.hpcycle();

% Plot the filtered time series.

plot (tsl(ts2.dates) .data,'-k'); % Plot of the stationary component.
hold on

plot (ts2.data,'--r'"); % Plot of the filtered y.

hold off

axis tight

id = get(gca, 'XTick'");

set (gca, 'XTickLabel', strings (ts.dates (id)));

Method: B = hptrend(A[, lambdal)

Method: hptrend (A[, lambdal)
Extracts the trend component from a dseries A object using the Hodrick and Prescott (1997) filter
and returns a dseries object, B. Default value for 1ambda, the smoothing parameter, is 1600.

Example

% Using the same generating data process

% as in the previous example:

tsl = dseries(stochastic_trend + deterministic_trend, '195001");
% Apply the HP filter.

ts2 = tsO.hptrend();

% Plot the filtered time series.

plot (tsl.data, '-k'); % Plot of the nonstationary components.
hold on

plot (ts2.data, '--r'); % Plot of the estimated trend.

hold off

axis tight

id = get (gca, 'XTick"');

set (gca, 'XTickLabel', strings (ts0.dates (id)));

Method: C = insert (A, B, I)
Inserts variables contained in dseries object B in dseries object A at positions specified by
integer scalars in vector I, returns augmented dseries object C. The integer scalars in I must take
values between ** and A.length () +1 and refers to A ’s column numbers. The dseries objects
A and B need not be defined over the same time ranges, but it is assumed that they have common
frequency.

Example

>> ts0 = dseries(ones(2,4),'1950Q1',{'Sly'; 'Gobbo'; 'Sneaky';
—"'Stealthy'});
>> tsl = dseries(pixones(2,1),'1950Q1"', {'Noddy"'});
>> ts2 = tsO.insert (tsl, 3)
(continues on next page)

6.2. The dseries class 217

Dynare Reference Manual, Release 5.4

(continued from previous page)

ts2 is a dseries object:

| Sly | Gobbo | Noddy | Sneaky | Stealthy
195001 | 1 | 1 | 3.1416 | 1 | 1
195002 | 1 | 1 | 3.1416 | 1 | 1

>> ts3 = dseries([pi*ones(2,1) sqgrt(pi)=*ones(2,1)],"'19500Q01", {'Noddy

—'; 'Tessie Bear'});
>> ts4 = tsO.insert (tsl, [3, 41])

ts4 is a dseries object:

| Sly | Gobbo | Noddy | Sneaky | Tessie Bear | Stealthy
195001 | 1 | 1 | 3.1416 | 1 | 1.7725 |1
195002 | 1 | 1 | 3.1416 | 1 | 1.7725 |1

Method: B = isempty (A7)
Overloads the MATLAB/octave’s i sempty function. Returns t rue if dseries object A is empty.

Method: C = isequal (A, B)
Overloads the MATLAB/octave’s i sequal function. Returns true if dseries objects A and B
are identical.

Method: C = isinf (2)
Overloads the MATLAB/octave’s isinf function. Returns a logical array, with element (i,)
equal to t rue if and only if variable 7 is finite in period A.dates (1).

Method: C = isnan(2)
Overloads the MATLAB/octave’s isnan function. Returns a logical array, with element (i,)
equal to t rue if and only if variable j isn’t NaN in period A.dates (i).

Method: C = isreal(2)
Overloads the MATLAB/octave’s isreal function. Returns a logical array, with element (i, j)
equal to t rue if and only if variable 7 is real in period A.dates (1).

Method: B = lag(A[, pl)
Method: 1lag (A[, p])
Returns lagged time series. Default value of integer scalar p, the number of lags, is 1.

Example

>> ts0 = dseries(transpose(l:4), '195001")
tsO is a dseries object:

Variable_1

\
195001 | 1
195002 | 2
195003 | 3
195004 | 4

>> tsl = ts0.lag()

tsl is a dseries object:

Variable_1

\
1950Q1 | NaN
195002 | 1
195003 | 2
195004 | 3

(continues on next page)

Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

(continued from previous page)

>> ts2 = ts0.lag(2)

ts2 is a dseries object:

| Variable_1
195001 | NaN
1950Q2 | NaN
195003 | 1
195004 | 2

% dseries class overloads the parenthesis
$ so that ts.lag(p) can be written more
% compactly as ts(-p). For instance:

>> ts0.lag(1l)

ans is a dseries object:

Variable_1

\
195001 | NaN
195002 | 1
195003 | 2
195004 | 3

or alternatively:

>> ts0(-1)
ans is a dseries object:

Variable_1

\
195001 | NaN
195002 | 1
195003 | 2
195004 | 3

Method: 1 = lastdate (B)
Returns the last period in dseries object B.

Example

>> ts = dseries(randn(3,2),'197301");
>> ts.lastdate()

ans = <dates: 1973Q03>
Method: f = lastobservedperiod (R)
Returns the last period where all the variables in dseries object A are observed (non NaN).

Method: B = lead(A[, pl)

Method: 1lead (A[, pl)
Returns lead time series. Default value of integer scalar p, the number of leads, is 1. As in the lag
method, the dseries class overloads the parenthesis so that t s . lead (p) is equivalentto ts (p) .

Example

>> ts0 = dseries(transpose(l:4),'195001");
>> tsl = ts0.lead()

tsl is a dseries object:

| Variable_1
(continues on next page)

6.2. The dseries class 219

Dynare Reference Manual, Release 5.4

(continued from previous page)

195001 | 2
195002 | 3
195003 | 4
195004 | NaN

>> ts2 = ts0(2)

ts2 is a dseries object:

Variable_1

\
195001 | 3
1950Q2 | 4
195003 | NaN
195004 | NaN
Remark

The overloading of the parenthesis for dseries objects, allows to easily create new dseries ob-
jects by copying/pasting equations declared in the model block. For instance, if an Euler equation is
defined in the model block:

model;
1/C - beta/C(l)*(exp(A(l))*K” (alpha-1)+1l-delta) ;

end;

and if variables , ~~A and K are defined as dseries objects, then by writing:

Residuals = 1/C - beta/C(l)*(exp(A(l))«K”" (alpha-1)+1l-delta) ;

outside of the model block, we create a new dseries object, called Residuals, for the residuals
of the Euler equation (the conditional expectation of the equation defined in the mode1 block is zero,
but the residuals are non zero).

Method: B = lineartrend (A)
Returns a linear trend centered on 0, the length of the trend is given by the size of dseries object A
(the number of periods).

Example

>> ts = dseries(ones (3,1));
>> ts.lineartrend()

Method: B = log(A)
Method: 1log_(2)
Overloads the MATLAB/Octave 1og function for dseries objects.

Example

>> ts0 = dseries(rand(10,1));
>> tsl = ts0.log();

Method: B = mdiff (2)
Method: mdiff (A)
Method: B = mgrowth (A7)

220

Chapter 6. Time Series

Dynare Reference Manual, Release 5.4

Method: mgrowth_ (A)
Computes monthly differences or growth rates of variables in dseries object A.

Method: B = mean(A[, geometric])
Overloads the MATLAB/Octave mean function for dseries objects. Returns the mean of each
variable in dseries object A. If the second argument is true the geometric mean is computed,
otherwise (default) the arithmetic mean is reported.

Method: C = merge(A, B[, legacyl)
Merges two dseries objects A and B in dseries object C. Objects A and B need to have common
frequency but can be defined on different time ranges. If a variable, say x, is defined both in dseries
objects A and B, then the merge will select the variable x as defined in the second input argument,
B, except for the NaN elements in B if corresponding elements in A (ie same periods) are well defined
numbers. This behaviour can be changed by setting the optional argument 1egacy equal to true, in
which case the second variable overwrites the first one even if the second variable has NaNs.

Example

>> ts0 = dseries(rand(3,2),'195001"',{'Al';'A2"'})

tsO0 is a dseries object:

| Al | A2
195001 | 0.96284 | 0.5363
195002 | 0.25145 | 0.31866
195003 | 0.34447 | 0.4355

>> tsl = dseries(rand(3,1),'195002", {'Al"})

tsl is a dseries object:

| Al
195002 | 0.40161
195003 | 0.81763
195004 | 0.97769

>> merge (ts0,tsl)

ans is a dseries object:

| Al | A2
195001 | 0.96284 | 0.5363
195002 | 0.40161 | 0.31866
195003 | 0.81763 | 0.4355
195004 | 0.