
HAL Id: hal-04219746
https://hal.science/hal-04219746

Submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BERT4CTR: An Efficient Framework to Combine
Pre-trained Language Model with Non-textual Features

for CTR Prediction
Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, Qi Zhang

To cite this version:
Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, Qi Zhang. BERT4CTR: An Efficient
Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction.
KDD ’23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 2023,
Long Beach CA USA, France. pp.5039-5050, �10.1145/3580305.3599780�. �hal-04219746�

https://hal.science/hal-04219746
https://hal.archives-ouvertes.fr

BERT4CTR: An Efficient Framework to Combine Pre-trained
Language Model with Non-textual Features for CTR Prediction

Dong Wang

STCA, Microsoft Corporation

Beijing, China

donwa@microsoft.com

Kavé Salamatian

University of Savoie

Annecy, France

Kave.salamatian@univ-smb.fr

Yunqing Xia

STCA, Microsoft Corporation

Beijing, China

yxia@microsoft.com

Weiwei Deng

STCA, Microsoft Corporation

Beijing, China

dedeng@microsoft.com

Qi Zhang

STCA, Microsoft Corporation

Beijing, China

zhang.qi@microsoft.com

ABSTRACT
Although deep pre-trained language models have shown promis-

ing benefit in a large set of industrial scenarios, including Click-

Through-Rate (CTR) prediction, how to integrate pre-trained lan-

guage models that handle only textual signals into a prediction

pipeline with non-textual features is challenging.

Up to now, two directions have been explored to integrate multi-

modal inputs in fine-tuning of pre-trained language models. One

consists of fusing the outcome of language models and non-textual

features through an aggregation layer, resulting into ensemble

framework, where the cross-information between textual and non-

textual inputs are learned only in the aggregation layer. The second

one consists of splitting and transforming non-textual features into

fine-grained tokens that are fed, along with textual tokens, directly

into the transformer layers of language models. However, by adding

additional tokens, this approach increases the complexity of the

learning and inference.

We propose in this paper, a novel framework, BERT4CTR, that

addresses these limitations. The new framework leverages Uni-

Attention mechanism to benefit from the interactions between

non-textual and textual features, while maintaining low training

and inference time-costs, through a dimensionality reduction. We

demonstrate through comprehensive experiments on both public

and commercial data that BERT4CTR outperforms significantly the

state-of-the-art approaches to handle multi-modal inputs and is

applicable to CTR prediction. In comparison with ensemble frame-

work, BERT4CTR brings more than 0.4% AUC gain on both tested

data sets with only 7% increase on latency.

CCS CONCEPTS
• Information systems→ Online advertising; Recommender
systems; Language models.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599780

KEYWORDS
Non-textual features; Multi-modal inputs; Pre-trained language

model; CTR prediction; Uni-Attention

ACM Reference Format:
Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, and Qi Zhang.

2023. BERT4CTR: An Efficient Framework to Combine Pre-trained Language

Model with Non-textual Features for CTR Prediction. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3580305.3599780

1 INTRODUCTION
Machine learning has frequently to deal with multi-modal inputs

that are mixing numerical, ordinal, categorical, and textual data.

This is especially the case for the Click-Through-Rate (CTR) predic-

tion, i.e., predicting the likelihood that a candidate ad shown after

an entered query on a search engine, will be clicked based on the

semantic relevance between the query and the candidate ad descrip-

tion that is textual, and the user’s attributes such as user’s ID, user’s

gender, user’s category, etc., which are non-textual. Pre-trained

language models like BERT [4] and RoBERTa [16], which can make

use of the semantic relationship between words in natural language

texts, have shown to be beneficial for improving the accuracy of

CTR prediction. However, combining pre-trained language mod-

els that only handle textual features, with numerous non-textual

features into the CTR prediction pipeline, is still challenging. Pre-

trained language models have already been used in classical CTR

prediction, through adding the final score [32], or intermediate

embedding after fine-tuning with textual signals [18], leading to

cascading workflow. However, such frameworks cannot leverage,

in the fine-tuning of language models, the cross-information be-

tween textual and non-textual signals. In this paper, we confirm

that learning such cross-information can improve the accuracy of

CTR prediction, and the goal of this paper is to design an efficient

framework doing such information fusion at the first stage of the

fine-tuning process. It is noteworthy that although CTR prediction

is the main application in this paper, the approach developed here

can be extended to a large set of applications that have to deal with

multi-modal inputs in pre-trained language models.

Up to now, two directions have been explored for integrating

multi-modal inputs in the fine-tuning of pre-trained language mod-

els. In the first approach, called here as “Shallow Interaction”, the

5039

https://doi.org/10.1145/3580305.3599780
https://doi.org/10.1145/3580305.3599780
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599780&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, & Qi Zhang

language model with textual input is treated as a separated and spe-

cific network, and the outcome of this network (final output score

or [CLS] pooling layer) is fused into the other network dealing with

non-textual inputs through an aggregation layer. This approach has

been adopted in [2][21], resulting into ensemble learning frame-

work. In [30] an in-depth analysis of this approach is presented.

In this approach, interaction between textual and non-textual fea-

tures happens only in the last aggregation layer. As a consequence,

cross-information between textual and non-textual inputs are not

exploited enough for fine-tuning the language model. In the second

class of approach, non-textual features are directly fed as the inputs

of transformer layers in the language model. This makes possible

to leverage the non-textual inputs at the beginning stage of model

learning. Such an approach is at the core of VideoBERT [27], VL-

BERT [26] and NumBERT [34], where non-textual signals, such

as images or numbers, are split into fine-grained fragments (e.g.,
regions-of-interest in images or digits) each of which is transformed

as a new token and combined with textual tokens. However, there

might be hundreds of non-textual features for CTR prediction, and

these long additional inputs complicate the computations and make

the time-costs in learning and inference of model intractable.

Given the limitations of these two approaches, we introduce

in this paper a simple and light framework, named BERT4CTR, to
handle multi-modal inputs mixing textual and non-textual features

in pre-trained language models. Our approach is based on a Uni-
Attention mechanism that combines semantic information coming

from textual features, with cross-information between textual and

non-textual features. We further apply a dimensionality reduction

operation, in order to decrease the time-costs in both learning and

inference. Besides, a two-steps joint-training is introduced to fine-

tune the model and further improve the accuracy of prediction. The

proposed approach scales well with the expected growing of the

number of non-textual features, for improving CTR prediction.

Through empirical evaluation on both commercial and public

data, we show that BERT4CTR significantly improves the CTR

prediction, in comparison with the state-of-the-art approaches that

combine textual and non-textual features, while keeping low latency

both in training and inference. In particular, our results indicate

that increasing the number of non-textual inputs can enhance the

advantages of BERT4CTR, e.g., on the public data set with 57 non-

textual features, BERT4CTR shows a significant gain of 0.7% for the

Area Under the ROC Curve (AUC) along with a decrease in training

cost of 30%, and a decrease in inference cost of 29%, compared

with NumBERT. On the commercial data set with 90 non-textual

features, BERT4CTR provides an AUC gain of 0.6%, and a decrease

in training cost of 64%, and in inference cost of 52%.

In section 2, we present the related work. The section 3 intro-

duces the design of BERT4CTR. The evaluation is presented in

section 4. Finally, we provide concluding remarks.

2 RELATEDWORK
This section presents the related works on handling multi-modal in-

puts which combine non-textual features with pre-trained language

models, and its application to CTR prediction.

2.1 Multi-modal Inputs Handling
The issue of handling multi-modal inputs that are mixing textual

and non-textual input, and integrating semantic insights coming

from pre-trained language models like BERT [4] has been already

investigated in the literature VideoBERT [27], VL-BERT [26], Num-

BERT [34] and CTR-BERT [21]. The approach followed in these

works consists of splitting the non-textual signals into fine-grained

fragments, each of which is transformed as a new token and com-

bined with textual tokens as the inputs of transformer layers. How-

ever, the addition of tokens representing the non-textual features

complicates the language model structure and can make the learn-

ing and inference phases too costly for model updating and online

serving.

2.2 Models for CTR Prediction
CTR prediction is one of the major practical applications of deep

learning. Clicks made on advertisements or candidates shown along

with search results, or web content presentation, are the main

source of revenue for a large set of web actors. In this context,

models are always used to select high quality advertisements or

candidates to present according to the web contents, e.g., in spon-

sored search engines [11] or personal recommendation systems

[24], which should both achieve low-latency and high-accuracy.

For example, the CTR prediction model in Baidu.com uses a deep

neural network, called Phoenix Nest, fed with a handcrafted set

of features extracted from the user, the query, and advertisement

properties [5]. Google Ads is using the “Follow The Regularized

Leader” (FTRL) model to predict CTR [19], while Google play is

using a Wide & Deep model described in [3]. In [23] the “Product

based Neural Network” (PNN) model is introduced to capture in-

teractive patterns between features. This PNN model is extended

in [7] to DeepFM model that emphasizes the interactions between

low- and high-order feature. Microsoft Bing.com has adopted a

Neural Network boosted with GBDT ensemble model [14] for ads

CTR prediction, which is the commercial scenario we are consider-

ing through this paper. The features used in these CTR prediction

models can be grouped into two categories: the raw texts from user,

query and ad, and the other being the non-textual features includ-

ing the attributes of users and items such as gender, age, UserId,

AdId, etc. and the outputs generated from sub-models, such as LR

model [14][19], pre-trained language model [18][32], etc..

2.3 Application of Pre-trained Language Models
in CTR Prediction

Recent work has shown the abilities of pre-trained language models

to extract deep relationship in a sentence pair [4][16][13][28][15],

that are useful for augmenting the semantic features of query and

recommendation pair in CTR prediction [18][32][12][8][33]. Gen-

erally, the pre-trained language models are trained against the

real click data, targeting directly the prediction of click/non-click

labels. Thereafter, the score from the final layer [32][12], or the

embedding from the intermediate layer [18][8] of these fine-tuned

language models is used as an additional NLP input feature in the

CTR prediction model. For example, Microsoft Bing Ads uses the

embedding from the hidden layer of TwinBERTmodel as a semantic

feature [18] while Meituan.com and JD.com use the output score

5040

BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

of BERT [32][12]. Besides that cascading framework, some works

consider the fusion between the outputs of language models and

non-textual features through an aggregation layer, resulting into

ensemble learning frameworks (called “Shallow Interaction” in this

paper), such as BST [2] and CTR-BERT [21], and [30] has done an

in-depth analysis on the Shallow Interaction frameworks, where

the cross-information between textual and non-textual inputs are

not dug enough to fine tune the language models.

3 DESCRIPTION OF BERT4CTR
3.1 Problem Statement
CTR prediction models are using multi-modal inputs, mixing differ-

ent textual features, denoted as T = {𝑡1, 𝑡2, ..., 𝑡𝑁 }, like searching
query, titles and URLs of potential ads to show, and non-textual

features, denoted as C = {𝑐1, 𝑐2, ..., 𝑐𝑀 }, of different type, e.g., dense
features such as historical CTR of the query, last click time of the

user, etc., and sparse features, like ID, category of user, etc..
The learning process of pre-trained language models, with tex-

tual features alone to fine-tune over click data for CTR prediction,

can be formalized as calibrating a network that approximates the

conditional probability of all outcome alternatives, click or non-

click for CTR application, given the textual contexts of query and

candidates:

𝑃𝑐𝑙𝑖𝑐𝑘 = 𝑃 (𝑐𝑙𝑖𝑐𝑘 = 1|T) (1)

As stated above, the non-textual features are crucial in CTR predic-

tion and they should not be ignored. When non-textual features

are added, the conditional probability becomes:

𝑃𝑐𝑙𝑖𝑐𝑘 = 𝑃 (𝑐𝑙𝑖𝑐𝑘 = 1|T , C) (2)

The goal in this paper is to design an efficient network structure

that can generate scores approximating the distribution 𝑃𝑐𝑙𝑖𝑐𝑘 in

Equation 2, while maintaining acceptable training and inference

time-costs for industrial application.

3.2 Model Design
We describe here the evolution of our proposed network struc-

ture, BERT4CTR, by beginning with the NumBERT framework and

gradually adding new components to it.

3.2.1 NumBERT Description. NumBERT [34], is the widely-used

systematic approach to integrate textual and numerical features

in pre-trained language models. Pre-trained language models like

BERT, along with a large class of neural networks, are using at-

tention layers, that enhance over time some part of the input to

enable the training process to concentrate on learning them. In

each attention layer, a feed-forward network and a residual net-

work are used to control the Vanishing/Exploding gradient issue

[9]. NumBERT uses a similar structure, with several layers of bidi-

rectional self-attention. The core idea in NumBERT is to replace all

numerical instances with their scientific notation representations,

i.e., the number 35 is replaced by “35 [EXP] 1”, where [EXP] is

a new token that is added to the vocabulary. These transformed

non-textual inputs are thereafter considered as normal texts and are

fed to the language model. For the CTR prediction application, sev-

eral transformed non-textual inputs might be concatenated using

separator token [SEP], to distinguish one numerical feature from

other, generating a long string of text which is appended to the

end of < 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 > textual input, and is used for the fine-tuning

of language model on click data. Figure 1 depicts an example of

transformation from original non-textual features to transformed

inputs in NumBERT.

Figure 1: Example of transformed and concatenated non-
textual and textual inputs for NumBERT

While NumBERT approach enables the language model to under-

stand the numbers in the non-textual signals, the model still misses

two crucial issues. First, the contextual relationship between textual

features and non-textual ones might not be obvious. For example,

the numerical features such as the historical CTR of user, the ID of

user etc., are less correlated with the semantics of the < 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 >

texts. The second issue is related to the fact that the positions of

these transformed tokens from non-textual features do not bear se-

mantic meanings as normal texts, i.e., the numerical features in CTR

prediction models are always independent of each other. These two

limitations indicate that sharing the same attention weights and

mechanisms for textual features and the transformed non-textual

ones is not optimal. Thus, simply using NumBERT to integrate

non-textual inputs cannot improve the performance of learning

objectives well, as will be shown later in Section 4.

3.2.2 Uni-Attention. To address these two issues, we have im-

proved the architecture of NumBERT. We are using the same bidi-

rectional self-attention mechanism as in NumBERT with inputs

only from textual tokens. However, for non-textual part, a new

type of attention mechanism is introduced, called Uni-Attention.
It is still a Query-Key-Value (QKV) attention function [1], where

the Query is coming only from non-textual tokens, while the Key

and Value are coming from textual tokens in the same layer, i.e.,
in the calculation of uni-attention on each token in non-textual

part, one input is the matrix projected from the value of that token

itself, and the other input is the matrix projected from values of

all tokens in textual part. In the uni-attention mechanism, the non-

textual components have no positional-embedding, which avoids

the issue on positional semantics described above. Moreover, this

hybrid framework allows the tokens in textual part to dig deep for

semantic relationship between each other by the aid of pre-trained

attention weights, while grasping the cross-information between

textual and non-textual ones in parallel.

Feed-forward and residual networks are also used on each uni-

attention output to control the Vanishing/Exploding gradient issue.

We show in Figure 2 the “Uni-Attention” design. In the last attention

layer, all uni-attention outputs from transformed non-textual inputs

are gathered as a single hidden layer, which is concatenated with the

[CLS] pooling layer from textual part. Thereafter, the concatenated

layer is fed to aMultiLayer Perception (MLP) that will finally predict

the probability of click/non-click. We will show in Section 4 that

the proposed design improves strongly the final AUC for both

commercial and public data, compared with simple NumBERT.

5041

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, & Qi Zhang

Figure 2: Framework of Uni-Attention

3.2.3 Dimensionality Reduction. The number of non-textual fea-

tures used in industry for CTR prediction models can be very large,

e.g., Microsoft Bing Ads uses 90 numerical features transformed

each into 4 tokens (accounting for the [EXP] and [SEP] tokens).

This large size of inputs impacts negatively the learning cost and

the prediction latency in CTR prediction.

One way to solve this issue is to apply a dimensionality reduction

on the non-textual features. Such approaches have already been

explored in several previous works like [3][7]. Following these

works, our approach consists of representing each non-textual

feature in C as a 𝑁 -dimensional point in space. The resulting 𝑁 ×
|C| space is then mapped to a 𝐾-dimensional embedding (𝐾 ≪
𝑁 × |C|) through a fully connected network that is fed, along with

the embedding from textual tokens, to the layer calculating the

uni-attentions.

The mapping to the initial 𝑁 -dimensional space depends on

the non-textual features being dense, e.g., the length of the query,

the historical value of CTR etc., or being sparse, e.g., user’s gender,
query’s category etc.. For sparse features, we use an embedding table

that defines for each given value the corresponding 𝑁 -dimensional

embedding. Dense features, on the other hand, are first normalized

using a max-min normalization and thereafter expanded into a

101-dimensional one-hot vectors with 0.01 buckets, used as index

in an embedding table containing the 𝑁 -dimensional embeddings.

We show in Figure 3 the embedding of non-textual features used in

BERT4CTR.

Figure 3: Dimensionality Reduction on embedding of non-
texual features in BERT4CTR

Similarly to NumBERT, the attention alignment score in textual

part is calculated as a dot-product form where the dimensions

of Query and Key are the same. However, after dimensionality

reduction, there is no guarantee that the dimensions of embedding

in the textual and non-textual parts are equivalent.

Considering the flexibility of our model, we use for non-textual

part, an additive attention, known as Bahdanau attention [1], that

consists of a feed-forward network with a single hidden layer, to

calculate the attention alignment score. The formula for deriving

the attention alignment score between Query and Key is as follows:

𝑓𝑎𝑡𝑡 (𝑄,𝐾) = 𝑣𝑇𝑎 𝑡𝑎𝑛ℎ(𝑊𝑎 [𝑄 ;𝐾]) (3)

where [𝑄 ;𝐾] is the concatenation of Query and Key, and 𝑣𝑎 and𝑊𝑎

are learned attention parameters. It is shown in [29] that additive

and dot-product attentions are equivalent, while additive one does

not require Query and Key with same embedding dimensions.

In Section 4, we will show, in Table 3 and Table 4, that the dimen-

sionality reduction operation proposed here can hold more than

90% of the best AUC achieved with uni-attention while substantially

reducing the time-costs of training and inference.

3.2.4 Two-steps Joint-training. The calibration of BERT4CTR con-

sists of jointly training both textual and non-textual features. It is

shown in [30] that a two-steps training can significantly improve

the accuracy of prediction of such joint-training framework, and

inspired with this, BERT4CTR is trained in two-steps too. In the

first step, called warm-up step, we pre-train the standard language

model with only textual features using a Mask Language Model

(MLM) task, and then we fine-tune this model on the same textual

data with click label. The non-textual part, with dimensionality

reduction, is also pre-trained using a MultiLayer Perceptron (MLP)

that predicts the click probability using non-textual features alone.

This pre-training phase will calibrate the parameters of the dimen-

sionality reduction using a cross entropy loss function. The second

step of training, called joint-training step, is initialized with the

pre-trained textual and non-textual weights, and continues the

training of the whole network of BERT4CTR, by mixing textual

and non-textual inputs, with a small learning rate.

We demonstrate this two-steps joint-training in Figure 4. The

results in Section 4 will show that the two-steps joint-training

provides significant AUC gain on both commercial and public data

sets.

4 EXPERIMENTS AND EVALUATIONS
In this section, we evaluate BERT4CTR over two data sets: one,

called commercial data set, is from Microsoft Bing Ads, and the

other one, called public data set, is fromKDDCUP 2012.Wewill first

describe the experimental settings of the data sets, the pre-trained

language models, the baselines, the evaluation metrics and the

environments used.We then compare four incrementally completed

versions of the proposed framework, followed by the introductions

in Section 3, i.e., NumBERT alone, with uni-attention added, with

dimensionality reduction for non-textual feature embedding added,

andwith the two-steps joint-training. This incremental additionwill

show the improvements coming from each individual component.

We will also compare BERT4CTR with three current state-of-

the-art frameworks handling multi-modal inputs in CTR prediction.

5042

BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Figure 4: Two-steps Joint-training in BERT4CTR

These comparisons will provide evidences that BERT4CTR is an

efficient framework to combine pre-trained language model with

non-textual features for CTR prediction.

4.1 Experimental Settings
4.1.1 Data Sets. We use the following two data sets for evaluation.

Moreover, to evaluate the robustness of our work, the experiments

on different data sets are also based on different pre-trained lan-

guage models.

Microsoft Bing Ads Data Set: Microsoft Bing Ads is a com-

mercial system used by Microsoft to select the ads presented to

users after a searching request. This data set consists of 190 million

< 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 > pairs with click labels, which are randomly sampled

from Bing Ads logs obtained in April 2022. The samples in the first

three weeks of April are used as training set, and the remaining as

validation set. Similarly to [30], we use the text of the query, and ad

title concatenated with ad display URL as two textual features. In

addition, a set of 90 non-textual features are also available in this

data set, which can be categorized as: (1) dense features represent-

ing continuous numerical values, such as historical value of CTR

per user, number of historical impressions per ad etc.; (2) sparse
features representing discrete values, such as the user’s gender,

searching query’s category etc.; (3) ads position, a special feature in
CTR prediction. As in [14] and [30], the displayed position of an ad

is assumed to be independent of other features, i.e., for calculating
the likelihood of a click, we assume that the displayed position and

the quality of an ad are independent.

KDDCUP 2012 Data Set1: We are also using in our experiments

a public data set coming from KDD CUP 2012 Track 2 [22][31]. This

data set contains 235 million < 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 > pairs with click label,

sampled from the logs of Tencent search engine Soso.com. This data

set contains 57 non-textual features which can also be classified

into dense and sparse features, along with the position of ads.

However, differently from Bing Ads, in this data set, there is no

time information, meaning that it is not possible to split the training

1
https://www.kaggle.com/c/kddcup2012-track2

and validation data based on time. Thus, we have generated the

training and validation set by randomly selecting 1/11 of samples

as validation data and the remaining as training data.

4.1.2 Pre-trained Language Model Settings. The textual part of

Bing Ads data set is initialized over the RoBERTa-Large model with

24 layers (abbreviated as RoBERTa-24) created by Facebook [16].

Similarly to [4][30],the pre-training of the RoBERTa-24 model is

done using the popular Mask Language Model (MLM) task.

For the textual part in KDD CUP 2012 data set, a BERT-Base

model with 12 layers (abbreviated as BERT-12) [4] is pre-trained

with MLM task and then used as initial model for further experi-

ments.

To enable reproducibility, we present all the details of the ex-

periments run on the KDD CUP 2012 data, including the data pre-

processing steps, hyperparameters settings and pseudocodes, in

the appendix.

4.1.3 Baseline Setups. We compare here BERT4CTR with three

state-of-the-art frameworks handling pre-trained language model

and non-textual features for CTR prediction.

The first baseline framework, called Cascading Framework, is a
traditional way to introduce pre-trained language models in CTR

prediction. It consists of injecting the outcome (final score or inter-

mediate embedding) of a language model fine-tuned on the textual

inputs alone as a new input feature, along with the non-textual

features, for the CTR prediction. Here, we first fine-tune one lan-

guage model (RoBERTa-24 or BERT-12) with only < 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 >

textual pairs, and then feed the predicted score of this fine-tuned

language model as a new feature into a downstream CTR prediction

model. To show the generality of our work, we choose three dif-

ferent CTR prediction models: (1) Wide & Deep [3], introduced by

Google, which combines a shallow linear model with a deep neural

network; (2) DeepFM [7], an improved version of Wide & Deep,

which replaces the linear model with a Factorization-Machine (FM);

5043

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, & Qi Zhang

(3) NN boosted GBDT [14], used for Microsoft Bing Ads, that con-

sists of a Neural Network (NN) boosted with a Gradient Boosting

Decision Tree (GBDT) ensemble model.

The second baseline is called Shallow Interaction Framework,
which is also widely used in practice [2][32][21]. It consists of

fusing the non-textual embedding layer and the last layer of pre-

trained language model, e.g., the [CLS] pooling layer, through an

aggregation layer. We use two variants of this approach: the first

one, called Shallow Interaction-1 Layer, connects the languagemodel

and the non-textual embedding layer directly through a MultiLayer

Perception (MLP). The second one, called Shallow Interaction-N
Layers, uses the same number of feed-forward network (FFN) and

residual network layers stacked above the non-textual embedding

layer, as the ones used in the language model, followed by a MLP.

The second variant provides amore fair comparison, as the depths of

network in textual and non-textual part are the same as BERT4CTR.

The third baseline is the NumBERT framework [34] described

in Section 3.2.1.

4.1.4 Evaluation Metrics. We use in our evaluations, the Area Un-

der the ROC Curve (AUC) [6] and Relative Information Gain (RIG)

[20], as two crucial metrics to evaluate the performance of a predic-

tive model. Besides the measurements on the whole validation data

(called as ALL Slice), we also focus on the infrequent < 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 >

pairs (called Tail Slice), which could lead to cold starting problem

in CTR prediction. As reported in [7], 0.1% improvement on AUC

or RIG can be seen as a significant gain for industrial use. We also

use 𝑡-test results with 𝛼 = 0.05 to compare the performances of

different models, i.e., a difference between two AUCs (or RIGs) with

𝑡-value larger than 3 can be considered as significant [17].

Besides the AUC and RIG, we also use, as two additional per-

formance metrics, the average, median, 90th percentile and 95th

percentile of the time-costs (milliseconds per sample), both for

training and inference. These two metrics are important for CTR

prediction in practice. First, the CTR prediction models must adapt

to user’s interest drift, through frequent updates, e.g., the CTR

model is refreshed weekly in Microsoft Bing Ads. Therefore, the

training time should be less than the refreshing interval. Second,

the online serving latency is directly related to the time-cost in

inference, and should be as low as possible. It is noteworthy that

for different frameworks, the calculations of time-cost are also dif-

ferent. In terms of cascading framework, the training/inference

time-cost is the sum of the training/inference time-cost of the lan-

guage model and the one of downstream CTR prediction model.

For both Shallow Interaction and BERT4CTR which need two-steps

joint-training, the training time-costs are calculated as the sum of

time taken in warm-up step and in joint-training step. While the

time-cost in training of NumBERT is the time only taken in pre-

training and fine-tuning. The time-costs in inference of all these

three no-cascading frameworks are measured as the time taken in

single prediction by language models.

4.1.5 Environments. All model evaluations are implemented us-

ing TensorFlow and running on NVIDIA V100 GPUs with 32 GB

memory. The maximum lengths of sequence for < 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 > are

set as 64, and the batch sizes are set as 10 on both RoBERTa-24

and BERT-12 model. It is noteworthy that the maximum length of

sequence for NumBERT is set to 64+4×|C|, where |C| is the num-

ber of non-textual features used, since each non-textual feature

can be split into 4 tokens in NumBERT, as stated in Section 3.2.1.

To account the random variation, each experiment for time-cost

is repeated for twenty times to obtain metrics. Without explicit

statement, all AUCs and RIGs shown in this section are obtained at

the best step during training.

4.2 Performance of Components in BERT4CTR
In this section, we evaluate the improvement onmodel performance

coming from each individual component of BERT4CTR described

in Section 3.

4.2.1 NumBERT’s Performance. We present in Table 1 the perfor-

mance of NumBERT for CTR prediction over the two data sets used

in this paper. Here, two baseline models can be used for comparison.

The first one, called TextOnly, uses the pre-trained language model

fine-tuned with only < 𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑 > textual input and without any

non-textual features. The second one is the Shallow Interaction-1

Layer described above. We show in the table along with absolute

value of AUC and RIG for each model, the difference of metrics

between two models with 𝑡-values, e.g., Δ 𝐴𝑈𝐶𝑀3−𝑀1, the AUC

difference between Model 3 (NumBERT) and Model 1 (TextOnly).

One can observe, from Table 1, that NumBERT has been able to

benefit from non-textual features. It brings, when compared with

the model without non-textual features, 2.7% AUC improvement

over Bing Ads data and 6.8% AUC improvement on KDD CUP

2012 data. However, compared with the Shallow Interaction model,

NumBERT does not provide benefits neither on AUC nor on RIG,

and shows worse performance. This means that even if NumBERT

allows textual and non-textual features to interact through complex

bidirectional self-attention with multi-layers, it is not efficient in

learning the cross-information between multi-modal signals.

4.2.2 Uni-Attention’s Performance. We follow up with evaluation

of the improvements coming from uni-attention architecture. We

show in Table 2 the performance achieved by NumBERT compared

with NumBERT + Uni-Attention, i.e., transformed non-textual fea-

tures (as depicted in Figure 1) are fed to uni-attention architecture,

as shown in Figure 2.

Table 2 shows that the uni-attention architecture can bring sig-

nificant gains both in terms of AUC and RIG, compared with the

NumBERT model without uni-attention, over both data sets. For

example, the uni-attention architecture can bring additional 0.3%

AUC gain and 0.5% RIG gain on Tail Slice of Bing Ads data. These

gains are even more obvious for KDD CUP 2012 data, where the

AUC gain is 0.5% and the RIG improves by 0.6% over Tail Slice. All

these changes are statistically significant with 𝑡-values larger than

70.

4.2.3 Dimensionality Reduction’s Performance. Here, we evaluate
the impact of dimensionality reduction of non-textual features,

shown in Figure 3, that is made mandatory because of the large

number of non-textual inputs in industrial CTR prediction models.

The performances of dimensionality reduction on the two data

sets are shown in Table 3, where NumBERT + Uni-Attention + Di-
mensionality Reduction is the NumBERT model with uni-attention

framework, as in Figure 2, that is completed with a dimensionality

5044

BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Dateset Slice

Model 1 Model 2 Model 3
Δ 𝐴𝑈𝐶𝑀2−𝑀1 Δ 𝑅𝐼𝐺𝑀2−𝑀1 Δ 𝐴𝑈𝐶𝑀3−𝑀1 Δ 𝑅𝐼𝐺𝑀3−𝑀1 Δ 𝐴𝑈𝐶𝑀3−𝑀2 Δ 𝑅𝐼𝐺𝑀3−𝑀2

TextOnly

Shallow Interaction

- 1 Layer
NumBERT

AUC RIG AUC RIG AUC RIG Diff T Diff T Diff T Diff T Diff T Diff T

Bing Ads

ALL 0.8691 0.4987 0.8968 0.5360 0.8961 0.5348 0.0277 187.59 0.0373 191.72 0.0270 185.07 0.0361 188.95 -0.0007 2.97 -0.0012 3.73

Tail 0.7703 0.4382 0.8084 0.4726 0.8078 0.4719 0.0381 181.50 0.0344 183.06 0.0375 178.81 0.0337 180.34 -0.0006 2.39 -0.0007 2.96

KDD CUP

ALL 0.7591 0.3917 0.8286 0.4842 0.8273 0.4827 0.0695 135.68 0.0925 191.72 0.0682 132.17 0.0910 187.66 -0.0013 5.11 -0.0015 5.62

Tail 0.6757 0.2768 0.7537 0.3739 0.7521 0.3724 0.0780 142.24 0.0971 185.87 0.0764 136.09 0.0956 182.23 -0.0016 5.15 -0.0015 4.74

Table 1: AUC and RIG performance of NumBERT on two data sets

Dataset Slice

Model 1 Model 2

Δ 𝐴𝑈𝐶𝑀2−𝑀1 Δ 𝑅𝐼𝐺𝑀2−𝑀1

NumBERT

NumBERT

+ Uni-Attention

AUC RIG AUC RIG Diff T Diff T

Bing Ads
ALL 0.8961 0.5348 0.8988 0.5397 0.0027 70.06 0.0049 73.91

Tail 0.8078 0.4719 0.8111 0.4772 0.0033 76.08 0.0053 75.08

KDD CUP
ALL 0.8273 0.4827 0.8311 0.4875 0.0038 82.13 0.0048 80.70

Tail 0.7521 0.3724 0.7569 0.3780 0.0048 94.14 0.0056 85.11

Table 2: AUC and RIG performance of Uni-Attention on two
data sets

reduction operation in non-textual part, as shown in Figure 3. Table

3 reports that AUC and RIG for both alternative models are close

on the two data sets. Besides, no one of the performance differences

is statistically significant, i.e., the performance equality hypothesis

cannot be refuted.

Besides the accuracy of prediction, the time-costs in training and

inference of these two models are also evaluated in Table 4. One

can observe that dimensionality reduction reduces strongly the

time-cost, up to 45% of training cost and 24% of inference cost on

KDD CUP 2012 data, with 57 non-textual features, and up to 68% in

training and 43% in inference on Bing Ads data with 90 non-textual

features. This means that dimensionality reduction does not entail

a significant performance reduction while reducing obviously the

time-costs.

Dataset Slice

Model 1 Model 2

Δ 𝐴𝑈𝐶𝑀2−𝑀1 Δ 𝑅𝐼𝐺𝑀2−𝑀1

NumBERT

+ Uni-Attention

NumBERT

+ Uni-Attention

+ Dimensionality Reduction

AUC RIG AUC RIG Diff T Diff T

Bing Ads

ALL 0.8988 0.5397 0.8980 0.5393 -0.0008 2.48 -0.0004 1.97

Tail 0.8111 0.4772 0.8104 0.4766 -0.0007 2.77 -0.0006 2.46

KDD CUP

ALL 0.8311 0.4875 0.8306 0.4869 -0.0005 1.86 -0.0006 2.71

Tail 0.7569 0.3780 0.7563 0.3774 -0.0006 2.15 -0.0006 1.93

Table 3: AUC and RIG performance of Dimensionality Re-
duction on two data sets

4.2.4 Two-steps Joint-training’s Performance. The last component

to be evaluated is the two-steps joint-training described in Section

3.2.4. For this purpose, we compare three initialization approaches

for the textual and non-textual parts: (1) Pre-trained but not fine-

tuned language model for textual part + Random weights in non-

textual part (abbreviated as No Fine-tuned + Randomly Initialized in

Table 5); (2) Fine-tuned weights in textual part + Randomweights in

non-textual part (abbreviated as Fine-tuned + Randomly initialized
in Table 5), where the weights in the textual part are initialized

using the language model pre-trained and fine-tuned on our <

𝑞𝑢𝑒𝑟𝑦, 𝑎𝑑𝑠 > textual pairs, and random initial weights are used in

non-textual part; (3) Two-steps joint-training where both weights

in textual part and non-textual part are initialized with the weights

trained in advance as described in Section 3.2.4. This last setting is

the one used for the BERT4CTR model introduced in this paper.

Table 5 shows the AUC/RIG performance of these three settings

on both data sets. From this table, one can observe that two-steps

joint-training brings significant gain for both data sets. On Bing

Ads data, the AUC gain is more than 0.3% , and more than 0.4% over

KDD CUP 2012 data. All these gains are shown by the 𝑡-tests to be

significant.

4.2.5 Aggregated Training Loss. We show in Figure 5 the training

loss evaluations for all the alternative models. The aggregated log-

loss is derived after training each million samples, and the trends

are reported in Figure 5 for the first training epoch over Bing Ads

data set.

Figure 5: Curves of aggregated training loss on Bing Ads data

The figure leads to four observations. First, the training loss of

the model without non-textual features (i.e., TextOnly model) is

higher than the ones of the other alternative models, indicating

that non-textual features are important for CTR prediction. Second,

training loss for NumBERT with uni-attention is below the one of

NumBERT, which provides another evidence that uni-attention ar-

chitecture improves CTR prediction. Third, the training loss curves

for NumBERTwith uni-attention are close, with and without dimen-

sionality reduction. This means that dimensionality reduction does

not compromise the accuracy of prediction much while reducing

the time-costs of training and inference. Finally, training loss for

BERT4CTR is the lowest one , showing clearly that the two-steps

joint-training improves the performance of CTR prediction. These

observations are consistent with the ones obtained based on AUC

and RIG metrics.

4.3 Comparison of BERT4CTR with Other
Multi-modal Frameworks

In this part, we compare BERT4CTR performances with the three

alternative frameworks, cascading framework, Shallow Interaction

framework and NumBERT, that can handle multi-modal inputs for

CTR prediction.

In Table 6, the AUC and RIG performances are shown for all

possible alternatives. Three major observations can be extracted

from this table. First, cross-information learning between textual

5045

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, & Qi Zhang

(a) Training Cost

Model

Average Median 90th percentile 95th percentile

Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP

NumBERT + Uni-Attention 54.05 11.87 53.76 11.78 54.64 11.92 54.95 11.95

NumBERT + Uni-Attention + Dimensionality Reduction 17.32 6.54 17.16 6.49 17.59 6.61 17.97 6.72

(b) Inference Cost

Model

Average Median 90th percentile 95th percentile

Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP

NumBERT + Uni-Attention 12.34 4.43 12.29 4.37 12.50 4.49 12.69 4.58

NumBERT + Uni-Attention + Dimensionality Reduction 7.05 3.36 7.03 3.32 7.19 3.42 7.31 3.51

Table 4: Time-cost performance (ms/sample) of Dimensionality Reduction on two data sets

Dataset Slice

Model 1 Model 2 Model 3

Δ 𝐴𝑈𝐶𝑀3−𝑀1 Δ 𝑅𝐼𝐺𝑀3−𝑀1 Δ 𝐴𝑈𝐶𝑀3−𝑀2 Δ 𝑅𝐼𝐺𝑀3−𝑀2

No Fine-tuned

+ Randomly Initialized

Fine-tuned

+ Randomly Initialized

Two-steps

Joint-training

(BERT4CTR)

AUC RIG AUC RIG AUC RIG Diff T Diff T Diff T Diff T

Bing Ads

ALL 0.8980 0.5393 0.8985 0.5396 0.9014 0.5413 0.0034 31.37 0.0020 32.13 0.0029 29.71 0.0017 28.74

Tail 0.8104 0.4766 0.8106 0.4769 0.8136 0.4801 0.0032 42.53 0.0035 41.86 0.0030 32.41 0.0032 39.42

KDD CUP

ALL 0.8306 0.4869 0.8315 0.4881 0.8347 0.4903 0.0041 50.62 0.0034 41.48 0.0032 32.25 0.0022 29.59

Tail 0.7563 0.3774 0.7571 0.3783 0.7618 0.3821 0.0055 52.14 0.0047 47.95 0.0047 50.73 0.0038 44.56

Table 5: AUC and RIG performance of Two-steps Joint-training on two data sets

(a) AUC Performance

Dataset Slice

Cascading Framework Shallow Interaction Framework NumBERT Framework BERT4CTR Framework

Δ 𝐴𝑈𝐶𝑀7−𝑀1 Δ 𝐴𝑈𝐶𝑀7−𝑀2 Δ 𝐴𝑈𝐶𝑀7−𝑀3 Δ 𝐴𝑈𝐶𝑀7−𝑀4 Δ 𝐴𝑈𝐶𝑀7−𝑀5 Δ 𝐴𝑈𝐶𝑀7−𝑀6
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Wide & Deep DeepFM NN + GBDT

Shallow Interaction

- 1 Layer

Shallow Interaction

- N Layers

NumBERT BERT4CTR

AUC AUC AUC AUC AUC AUC AUC Diff T Diff T Diff T Diff T Diff T Diff T

Bing Ads

ALL 0.8932 0.8961 0.8956 0.8968 0.8976 0.8961 0.9014 0.0082 73.42 0.0053 52.64 0.0058 55.37 0.0046 53.47 0.0038 47.15 0.0053 60.37

Tail 0.8043 0.8078 0.8070 0.8084 0.8097 0.8078 0.8136 0.0093 72.68 0.0058 60.13 0.0066 61.32 0.0052 52.76 0.0039 40.89 0.0058 67.51

KDD CUP

ALL 0.8223 0.8278 0.8269 0.8286 0.8304 0.8273 0.8347 0.0124 95.73 0.0069 47.05 0.0078 69.98 0.0061 74.33 0.0043 51.58 0.0074 69.90

Tail 0.7471 0.7531 0.7526 0.7537 0.7567 0.7521 0.7618 0.0147 106.42 0.0087 65.09 0.0092 71.48 0.0081 74.68 0.0051 60.46 0.0097 79.34

(b) RIG Performance

Dataset Slice

Cascading Framework Shallow Interaction Framework NumBERT Framework BERT4CTR Framework

Δ 𝑅𝐼𝐺𝑀7−𝑀1 Δ 𝑅𝐼𝐺𝑀7−𝑀2 Δ 𝑅𝐼𝐺𝑀7−𝑀3 Δ 𝑅𝐼𝐺𝑀7−𝑀4 Δ 𝑅𝐼𝐺𝑀7−𝑀5 Δ 𝑅𝐼𝐺𝑀7−𝑀6
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Wide & Deep DeepFM NN + GBDT

Shallow Interaction

- 1 Layer

Shallow Interaction

- N Layers

NumBERT BERT4CTR

RIG RIG RIG RIG RIG RIG RIG Diff T Diff T Diff T Diff T Diff T Diff T

Bing Ads

ALL 0.5321 0.5356 0.5349 0.5360 0.5372 0.5348 0.5413 0.0092 78.46 0.0057 54.89 0.0064 61.73 0.0053 55.82 0.0041 51.34 0.0065 68.89

Tail 0.4702 0.4734 0.4723 0.4726 0.4738 0.4719 0.4801 0.0099 80.43 0.0067 57.67 0.0078 68.34 0.0075 65.19 0.0063 50.38 0.0082 75.33

KDD CUP

ALL 0.4794 0.4829 0.4822 0.4842 0.4853 0.4827 0.4903 0.0109 100.25 0.0074 71.26 0.0081 80.16 0.0061 75.82 0.0050 56.63 0.0076 67.79

Tail 0.3689 0.3726 0.3719 0.3739 0.3754 0.3724 0.3821 0.0132 107.94 0.0095 91.30 0.0102 96.59 0.0082 76.54 0.0067 61.09 0.0097 81.33

Table 6: AUC and RIG performance of BERT4CTR compared with representative models in use on two data sets

and non-textual features during fine-tuning phase can improve

the accuracy of prediction significantly, e.g., BERT4CTR brings

more than 0.5% AUC gain on both Bing Ads data and KDD CUP

2012 data, compared with all cascading methods (Wide & Deep,

DeepFM and NN+GBDT). Second, although increasing the depth of

network in non-textual part improves the accuracy of CTR predic-

tion, deep uni-attentions between textual features and non-textual

features still bring considerable improvement for CTR prediction,

e.g., BERT4CTR can bring 0.4% AUC gain on both Bing Ads data and

KDD CUP 2012 data, compared with Shallow Interaction-N Layers

model, showing the pure benefits brought by the uni-attention ar-

chitecture. Finally, among all seven alternative models in Table 6,

BERT4CTR shows the highest AUC on both data sets, which gives

evidence that the design presented in Section 3 is an effective way

to learn the cross-information between multi-modal inputs for CTR

prediction.

The time-costs of training and inference for the alternative mod-

els are shown in Table 7. We observe, first, that BERT4CTR does

not significantly increase the training time compared with Shal-

low Interaction. In detail, the training time of BERT4CTR only

increases by 7% compared with Shallow Interaction-N Layers and

by 14% compared with Shallow Interaction-1 Layer that have been

widely used in industry [30][2]. For example, in Microsoft Bing

Ads, Shallow Interaction-1 Layer framework has been used to re-

fresh a RoBERTa-24 model. The training takes 5 days in one cycle.

According to Table 7, BERT4CTR will take 5.8 days on the same

settings, that is still less than the weekly re-calibration deadline.

The inference delay of BERT4CTR is close to cascading, and

Shallow Interaction framework, and much less than NumBERT, e.g.,
BERT4CTR can reduce inference delay by 52% (resp., 29%) on Bing

Ads data (resp., KDD CUP 2012 data), compared with NumBERT.

5046

BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

(a) Training Cost

Framework Model

Average Median 90th Percentile 95th Percentile

Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP

Shallow Interaction

Framework (Two-steps)

Shallow Interaction

- 1 Layer

19.72 7.69 19.66 7.67 19.76 7.72 19.87 7.75

Shallow Interaction

- N Layers

20.54 8.24 20.42 8.22 20.66 8.26 20.75 8.33

NumBERT Framework NumBERT 60.50 12.36 60.11 12.29 60.61 12.45 60.89 12.58

BERT4CTR Framework (Two-steps) BERT4CTR 22.06 8.69 21.88 8.64 22.32 8.77 22.45 8.85

(b) Inference Cost

Framework Model

Average Median 90th Percentile 95th Percentile

Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP Bing Ads KDD CUP

Cascading Framework

Wide & Deep 6.09 2.79 6.06 2.76 6.19 2.88 6.30 2.98

DeepFM 6.18 2.81 6.14 2.78 6.27 2.91 6.39 3.00

NN+GBDT 6.14 2.81 6.12 2.77 6.23 2.90 6.35 3.01

Shallow Interaction Framework

Shallow Interaction

- 1 Layer

6.05 2.82 6.01 2.78 6.13 2.87 6.29 2.96

Shallow Interaction

- N Layers

6.57 3.08 6.52 3.04 6.66 3.13 6.75 3.22

NumBERT Framework NumBERT 14.73 4.72 14.70 4.68 14.83 4.81 14.88 4.92

BERT4CTR Framework BERT4CTR 7.05 3.36 7.03 3.32 7.19 3.42 7.31 3.51

Table 7: Time-cost performance (ms/sample) of BERT4CTR compared with representative models in use on two data sets

The results from Table 6 and Table 7 give strong evidences that

BERT4CTR can achieve both high accuracy and low training and

inference delay for CTR prediction.

4.4 Online Performance
The BERT4CTR model with 6-Layers has already been passed the

online A/B testing over 1% of the whole traffic of Microsoft Bing

Ads recommender system, where the control flight is based on

BERT-6 with Shallow Interaction. During the online A/B testing in

a one-month period, the treatment flight brought a 1.4% gain on

click yields, compared to the control flight, with only 0.5% increase

on display yields. It is noteworthy that 1% increase on click yields

and display yields can be seen as a significant change in practice.

5 DISCUSSION
Although, we used in this paper the CTR prediction with numer-

ical features as our main application scenario, the framework of

BERT4CTR is applicable to other settings mixing textual and non-

textual features. For example, one can extract the representative

embedding from images through VGGNet [25], ResNet [9] etc. to
replace the token 𝐸𝐸 in Figure 4 and calculate the uni-attentions.

Besides, Knowledge-Distillation approach [10], where a light

model handling textual and non-textual inputs, with uni-attention

and dimensionality reduction, is learned under the supervision of

predicted scores from a well-trained BERT4CTR model with deep

layers, can be adapted here.

6 CONCLUSION
In this paper, we designed an efficient framework for CTR predic-

tion that combines pre-trained language model with non-textual

features. We started from NumBERT, the classical technique to

integrate textual and numerical features in pre-trained language

model, and introduced three gradual improvements, uni-attention,

dimensionality reduction and two-steps joint-training, resulting

into a novel framework, BERT4CTR. Comprehensive experiments

on both commercial data and public data showed that BERT4CTR

can achieve significant prediction accuracy gains while keeping low

training and inference time-costs. It therefore provides a promising

solution for CTR prediction, and more largely for any applications

needing multi-modal input features in real world.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior

sequence transformer for e-commerce recommendation in alibaba. In Proceedings
of the 1st International Workshop on Deep Learning Practice for High-Dimensional
Sparse Data. 1–4.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li.

2019. MOBIUS: towards the next generation of query-ad matching in baidu’s

sponsored search. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2509–2517.

[6] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[7] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[8] Weiwei Guo, Xiaowei Liu, Sida Wang, Huiji Gao, Ananth Sankar, Zimeng Yang,

Qi Guo, Liang Zhang, Bo Long, Bee-Chung Chen, et al. 2020. Detext: A deep

text ranking framework with bert. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 2509–2516.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[11] Bernard J Jansen and Tracy Mullen. 2008. Sponsored search: an overview of the

concept, history, and technology. International Journal of Electronic Business 6, 2
(2008), 114–131.

[12] Yunjiang Jiang, Yue Shang, Ziyang Liu, Hongwei Shen, Yun Xiao, Wei Xiong,

Sulong Xu, et al. 2020. BERT2DNN: BERT Distillation with Massive Unlabeled

5047

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, & Qi Zhang

Data for Online E-Commerce Search. arXiv preprint arXiv:2010.10442 (2020).
[13] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning

of language representations. arXiv preprint arXiv:1909.11942 (2019).
[14] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.

2017. Model ensemble for click prediction in bing search ads. In Proceedings of
the 26th International Conference on World Wide Web Companion. 689–698.

[15] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-

task deep neural networks for natural language understanding. arXiv preprint
arXiv:1901.11504 (2019).

[16] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[17] Edward H Livingston. 2004. Who was student and why do we care so much

about his t-test? 1. Journal of Surgical Research 118, 1 (2004), 58–65.

[18] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. TwinBERT: Distilling Knowledge

to Twin-Structured Compressed BERT Models for Large-Scale Retrieval. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge
Management. 2645–2652.

[19] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, et al. 2013. Ad click

prediction: a view from the trenches. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1222–1230.

[20] Andrew W Moore. 2001. Information gain. School of Computer Science, Carnegie
Mellon University, http://www. cs. cmu. edu/˜ awm/tutorials (2001).

[21] Aashiq Muhamed, Iman Keivanloo, Sujan Perera, James Mracek, Yi Xu, Qingjun

Cui, Santosh Rajagopalan, Belinda Zeng, and Trishul Chilimbi. 2021. CTR-BERT:

Cost-effective knowledge distillation for billion-parameter teacher models. In

Proceedings of the 35th Conference on Neural Information Processing Systems
(NeurIPS). 1–7.

[22] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm

up cold-start advertisements: Improving ctr predictions via learning to learn id

embeddings. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 695–704.

[23] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.

2016. Product-based neural networks for user response prediction. In 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE, 1149–1154.

[24] Lalita Sharma and Anju Gera. 2013. A survey of recommendation system: Re-

search challenges. International Journal of Engineering Trends and Technology
(IJETT) 4, 5 (2013), 1989–1992.

[25] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[26] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. 2019.

Vl-bert: Pre-training of generic visual-linguistic representations. arXiv preprint
arXiv:1908.08530 (2019).

[27] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid.

2019. Videobert: A joint model for video and language representation learning.

In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7464–
7473.

[28] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin

Tian, Danxiang Zhu, Hao Tian, and Hua Wu. 2019. Ernie: Enhanced representa-

tion through knowledge integration. arXiv preprint arXiv:1904.09223 (2019).
[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[30] Dong Wang, Shaoguang Yan, Yunqing Xia, Kavé Salamatian, Weiwei Deng, and

Qi Zhang. 2022. Learning Supplementary NLP Features for CTR Prediction

in Sponsored Search. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 4010–4020.

[31] Fang Wang, Warawut Suphamitmongkol, and Bo Wang. 2013. Advertisement

click-through rate prediction using multiple criteria linear programming regres-

sion model. Procedia Computer Science 17 (2013), 803–811.
[32] ZheWang, Rundong Shi, Shijie Li, and Peng Yan. 2020. GBDT and BERT: a Hybrid

Solution for Recognizing Citation Intent. Studies 55 (2020), 12c2a39230188.
[33] Puxuan Yu, Hongliang Fei, and Ping Li. 2021. Cross-lingual Language Model

Pretraining for Retrieval. In Proceedings of the Web Conference 2021. 1029–1039.
[34] Xikun Zhang, Deepak Ramachandran, Ian Tenney, Yanai Elazar, and Dan Roth.

2020. Do language embeddings capture scales? arXiv preprint arXiv:2010.05345
(2020).

5048

BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

A APPENDIX
For the purpose of reproducibility, we provide the details of the

experiments on the public KDD CUP 2012 data set, including the

data description, the settings on textual and non-textual part, and

the pseudocode of uni-attention.

A.1 Data Details
The data set contains 235 million search ads impressions sampled

from session logs of Tencent search engine Soso.com. Each sample

in this data set contains five components:

• Query text: which is a list of anonymous tokens hashed from

natural language;

• Ad text: which includes ad title and ad display URL and are

also lists of anonymous tokens;

• CTR prediction features: there are 56 CTR prediction features

including sparse features such as UserID, AdID, user’s gender

etc., and dense features such as historical CTRs, number of

impressions per Ad/Query/User etc.;
• Position feature: a special feature which indicates the im-

pressed position of this ad;

• Click label: where 1 means this ad has been clicked and 0 is

not clicked.

The 56 non-textual CTR features used in BERT4CTR are generated

as below:

• ID features: each raw ID attribute (such as AdID, QueryID,

UserID, Gender, Age etc.) appearing in training data ismapped

to an ordinal number. To consider the situation where new

IDs not appearing in the training data, appear later, we used

robust training approach, i.e., we randomly removed 5% of

IDs in training data and set them as “Missing”, which is

mapped to a special number. We also set, during inference,

the new IDs in validation data, as “Missing” to make the

model work well;

• Historical features: we calculated the historical CTRs and

number of impressions from different perspectives, including

the Ad-level, User-level, Query-level, Gender-level and Age-

level etc.;
• Length features: these length features include Query Length,

AdTitle Length, AdDesription Length and Keyword Length

etc.;
• Semantic features: we calculated TF × IDF value for each

token (such as Query tokens, AdTitle tokens, AdDescription

tokens etc.) provided in training data, as a type of semantic

feature.

As there is no time information in this data set, it is impossible

to use the impression time to split the data into the training and

validation data. Alternatively, we randomly selected 1/11 of sam-

ples as validation data and the remaining as training data. Table 8

summaries the statistics of training data and validation data.

Impressions Clicks CTR

Training Data 216,038,149 7,550,609 0.0349

Validation Data 19,544,730 667,024 0.0341

Table 8: Statistics for KDD CUP 2012 data set

A.2 Settings on Textual Part
We choose BERT-12 model as initial model, where query and ad title

concatenated with ad display URL are used as two input sentences.

For the purpose of privacy protection, each textual token in KDD

CUP 2012 data set is anonymized into one hash ID and therefore,

it is difficult to map the hash ID from data to vocabulary ID of

pre-trained language models. To solve this issue, we treat these

anonymous tokens as new words, where we calculate the TF ×
IDF for each one of the anonymous token and choose the top 300

thousand of them to build a new vocabulary. The masking rate

is 15% for MLM task and Adam optimizer with learning rate of

1 × 10−4 is used in both pre-training and fine-tuning phase. After

two epochs of pre-training and four epochs of fine-tuning with this

new vocabulary, the AUC of BERT model can achieve 75.91% on

ALL slice. This shows the effectiveness of our approach.

A.3 Settings on Non-textual Part
As described in Section 3, the processing methods for sparse fea-

tures and dense ones are different. For sparse features, we extend

each input to a 32-dimensional embedding. While for dense fea-

tures, we normalize them with max-min normalization at first and

then expand each normalized value into 101-dimensional one-hot

vectors based on 0.01 buckets. Afterward, the 32-dimensional em-

bedding is generated by looking up the embedding table. Totally

a 1792-dimensional embedding is generated by concatenating all

of 56 32-dimensional sub-embeddings (excluding the embedding

from position feature) and then a 512-dimensional hidden layer is

followed as the final embedding layer to calculate uni-attention.

For uni-attention, we set the dimension of hidden layer in Equa-

tion 3, denoted as 𝑑𝑎 , as 64. The resulting network to calculate the

attention alignment score between Query and Key in uni-attention

(based on BERT-12) is depicted in Figure 6.

Figure 6: The network to calculate the attention alignment
score between Query and Key in uni-attention

A.4 Implementation of Uni-Attention
We also provide the details on the implementation of uni-attention,

which is the core of BERT4CTR. In one layer of BERT4CTR, the

output from the non-textual token after dimensionality reduction

can be denoted as 𝑋 ∈ R𝑑𝑋 ×1, where 𝑑𝑋 is the dimension of output

for this non-textual token (512 in our experiment). Besides, the

outputs from textual tokens can be denoted as 𝑌 ∈ R𝑑𝑌 ×𝑙𝑌 , where

5049

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, & Qi Zhang

𝑑𝑌 is the dimension of output for each textual token (768 in our

experiment) and 𝑙𝑌 is the maximum sequence length of textual

input (64 in our experiment). We also use the same Attention-Mask

mechanism as the one used in textual part, for the calculation of

uni-attention, where𝑀𝑎𝑠𝑘 ∈ [0, 1]𝑙𝑌 .
The pseudocode for uni-attention based on additive attention is

shown in Algorithm 1, in which𝑊𝑞 , 𝑏𝑞 ,𝑊𝑘 , 𝑏𝑘 ,𝑊𝑣 , 𝑏𝑣 ,𝑊𝑎 , 𝑏𝑎 ,𝑊𝑖

and 𝑏𝑖 are trainable parameters.

Algorithm 1 𝑈 ← 𝑈𝑛𝑖𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋,𝑌,𝑀𝑎𝑠𝑘)

Input: 𝑋 ∈ R𝑑𝑋 ×1, 𝑌 ∈ R𝑑𝑌 ×𝑙𝑌 ,𝑀𝑎𝑠𝑘 ∈ [0, 1]𝑙𝑌
Output: 𝑈 ∈ R𝑑𝑋 ×1
1: function UniAttention(𝑋 , 𝑌 ,𝑀𝑎𝑠𝑘)

2: 𝑄 ←𝑊𝑞𝑋 + 𝑏𝑞1𝑇 ⊲𝑊𝑞 ∈ R𝑑𝑋 ×𝑑𝑋 , 𝑏𝑞 ∈ R𝑑𝑋
3: 𝐾 ←𝑊𝑘𝑌 + 𝑏𝑘1𝑇 ⊲𝑊𝑘 ∈ R𝑑𝑌 ×𝑑𝑌 , 𝑏𝑘 ∈ R𝑑𝑌
4: 𝑉 ←𝑊𝑣𝑌 + 𝑏𝑣1𝑇 ⊲𝑊𝑣 ∈ R𝑑𝑋 ×𝑑𝑌 , 𝑏𝑣 ∈ R𝑑𝑋
5: 𝑅𝑒𝑝𝑒𝑎𝑡 (𝑄, 𝑙𝑌) ⊲ 𝑄 ∈ R𝑑𝑋 ×𝑙𝑌
6: 𝑀 ← 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑄,𝐾) ⊲ 𝑀 ∈ R(𝑑𝑋 +𝑑𝑌)×𝑙𝑌
7: 𝐻 ← 𝑇𝑎𝑛ℎ(𝑊𝑎𝑀 + 𝑏𝑎1𝑇) ⊲ 𝐻 ∈ R𝑑𝑎×𝑙𝑌
8: 𝑆 ←𝑊𝑖𝐻 + 𝑏𝑖1𝑇 ⊲ 𝑆 ∈ R1×𝑙𝑌
9: ∀𝑆𝑖 ∈ 𝑆, 𝑖 𝑓 ¬𝑀𝑎𝑠𝑘 [𝑖], 𝑡ℎ𝑒𝑛 𝑆𝑖 ← −∞
10: 𝑈 ← 𝑉 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝑇) ⊲ 𝑈 ∈ R𝑑𝑋 ×1
11: return𝑈
12: end function

5050

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-modal Inputs Handling
	2.2 Models for CTR Prediction
	2.3 Application of Pre-trained Language Models in CTR Prediction

	3 Description of BERT4CTR
	3.1 Problem Statement
	3.2 Model Design

	4 Experiments and evaluations
	4.1 Experimental Settings
	4.2 Performance of Components in BERT4CTR
	4.3 Comparison of BERT4CTR with Other Multi-modal Frameworks
	4.4 Online Performance

	5 Discussion
	6 Conclusion
	References
	A appendix
	A.1 Data Details
	A.2 Settings on Textual Part
	A.3 Settings on Non-textual Part
	A.4 Implementation of Uni-Attention

