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Abstract

In this article, we introduce a kernel-based consensual aggregation
method for regression problems. We aim to flexibly combine individ-
ual regression estimators r1, ..., rM using a weighted average where the
weights are defined based on predicted features given by all the ba-
sic estimators and some kernel function. This work extends the con-
text of Biau et al. (2016) to a more general kernel-based framework.
We show that this more general configuration also inherits the con-
sistency of the basic consistent estimators, and the same convergence
rate as in the classical method is achieved. Moreover, an optimization
method based on gradient descent algorithm is proposed to efficiently
and rapidly estimate the key parameter of the strategy. Various nu-
merical experiments carried out on several simulated and real datasets
are also provided to illustrate the efficiency and accuracy of the pro-
posed method. Moreover, a domain adaptation-like property of the
aggregation strategy is also illustrated on a physics data provided by
Commissariat à l’Énergie Atomique (CEA).

Keywords: Consensual aggregation, kernel, regression.
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1 Introduction
Aggregation methods, given the high diversity of available estimation strate-
gies, are now of great interest in constructing predictive models. To this goal,
several aggregation methods consisting of building a linear or convex combi-
nation of a collection of initial estimators have been introduced, for instance,
in Catoni (2004), Juditsky and Nemirovski (2000), Nemirovski (2000), Yang
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(2000, 2001, 2004), Györfi et al. (2002), Wegkamp (2003), Audibert (2004),
Bunea et al. (2006, 2007a,b), and Dalalyan and Tsybakov (2008). Other than
aggregating, another possible approach is selecting the best estimator among
the candidate estimators which is known as model selection technique (see,
for example, Massart (2007)).

Apart from the usual linear combination and model selection methods, a
different technique has been introduced in classification problems by Mojir-
sheibani (1999). In his paper, the combination is the majority vote among all
the points for which their predicted classes, given by all the basic classifiers,
coincide with the predicted classes of the query point. Roughly speaking, in-
stead of predicting a new point based on the structure of the original input,
we look at the topology defined by the predictions of the candidate estima-
tors. Each estimator was constructed differently so it may be able to capture
different features of the input data and be useful in defining “closeness”. Con-
sequently, two points having similar predictions or classes seem reasonably
having similar actual response values or belonging to the same actual class.

Later, Mojirsheibani (2000) and Mojirsheibani and Kong (2016) intro-
duced exponential and general kernel-based versions of the primal idea to
improve the smoothness in selecting and weighting individual data points in
the combination. In this context, the kernel function transforms the level of
disagreements between the predicted classes of a training point xi and the
query point x into a contributed weight given to the corresponding point in
the vote. Besides, Biau et al. (2016) configured the original idea of Mojir-
sheibani (1999) as a regression framework where a training point xi is “close”
to the query point x if each of their predictions given by all the basic regres-
sion estimators is “close”. Each of the close neighbors of x will be given a
uniformly 0-1 weight contributing to the combination. It was shown theoret-
ically in these former papers that the combinations inherit the consistency
property of consistent basic estimators.

Recently from a practical point of view, a kernel-based version of Biau
et al. (2016) called KernelCobra has been implemented in pycobra python
library (see Guedj and Srinivasa Desikan (2018)). This method has also
been applied in filtering to improve the image denoising (see Guedj and Ren-
got (2020)). Moreover, consensual aggregation methods such as Biau et al.
(2016), Fischer and Mougeot (2019) and the present method are also incor-
porated in a three-step methodology called KFC procedure, which combines
unsupervised clustering and supervised prediction for (energy) data modeling
(see Has et al. (2021)). Such an idea of consensual aggregation was also used
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in unsupervised classification known as Clustering Aggregation (see, for
example, Gionis et al. (2005) and Wu et al. (2012)). On top of that, the ag-
gregation method can also be used to handle the parameter tuning problem
when different types of estimators are considered. It has been shown in Has
(2022) that the method also maintains its good performance on highly cor-
related high-dimensional features of predictions that are plainly constructed
without model selection or cross-validation.

In a complementary manner to the earlier works, we present in this pa-
per a kernel-based consensual regression aggregation method, as well as its
theoretical and numerical performances. More precisely, we show that the
consistency inheritance property shown in Biau et al. (2016) also holds for
this kernel-based configuration for a broad class of regular kernels. Moreover,
evidence of numerical simulation carried out on several simulated models, and
some real datasets, shows that the present method outperforms the classical
one in both accuracy and efficiency.

This paper is organized as follows. Section 2 introduces some notation,
the definition of the proposed method, and presents the theoretical results,
namely consistency and convergence rate of the variance-type term of the
aggregation strategy. An optimization method based on gradient descent
algorithm for estimating the bandwidth parameter is described in Section 3.
Section 4 illustrates the performances of the proposed method through several
numerical experiments computed on different simulated and real datasets.
Next, the conclusion and perspective, followed by the reproducibility of this
study are given in Section 5 and Section 6 respectively. Lastly, Section 7
collects all the proofs of the theoretical results given in Section 2.

2 The kernel-based combining regression

2.1 Notation

We consider a training sampleDn = {(Xi, Yi)
n
i=1} where (Xi, Yi), i = 1, 2, ..., n,

are iid copies of the generic couple (X, Y ). We assume that (X, Y ) is an
Rd × R-valued random variable with a suitable integrability which will be
specified later.

We randomly split the training data Dn into two parts of size ` and k
such that `+ k = n. These are denoted by D` = {(X(`)

i , Y
(`)
i )`i=1} and Dk =

{(X(k)
i , Y

(k)
i )ki=1} respectively (a common choice is k = dn/2e = n− `). The
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M basic regression estimators rk,1, rk,2, ..., rk,M are constructed using only the
data points in Dk. These basic estimators can be any regression estimators
such as linear regression, kNN, kernel smoother, SVR, lasso, ridge, neural
networks, naive Bayes, bagging, gradient boosting, random forests, etc. They
could be parametric, nonparametric or semi-parametric with their possible
tuning parameters. For the combination, we only need the predictions given
by all these basic estimators of the remaining part D` and the query point x.

In the sequel, for any x ∈ Rd, the following notation is used:

• rk(x) = (rk,1(x), rk,2(x), ..., rk,M(x)): the vector of predictions of x.

• ‖x‖ = ‖x‖2 =
√∑d

i=1 x
2
i : Euclidean norm on Rd.

• ‖x‖1 =
∑d

i=1 |xi|: `1 norm on Rd.

• g∗(x) = E[Y |X = x]: the regression function.

• g∗(rk(x)) = E[Y |rk(x)]: the conditional expectation of the response
variable given all the predictions. This can be proven to be the optimal
estimator in regression over the set of predictions rk(X).

• 1{p} =

{
1, if p is true
0, otherwise

: the indicator function.

The consensual regression aggregation is the weighted average defined by

gn(rk(x)) =
∑̀
i=1

Wn,i(x)Y
(`)
i . (1)

Recall that given all the basic estimators rk,1, rk,2, ..., rk,M , the aggregation
method proposed by Biau et al. (2016) corresponds to the following naive
weights:

Wn,i(x) =

∏M
m=1 1{|rk,m(Xi)−rk,m(x)|<h}∑`

j=1

∏M
m=1 1{|rk,m(Xj)−rk,m(x)|<h}

, i = 1, 2, ..., `. (2)

Moreover, the condition of “closeness for all” predictions, can be relaxed to
“some” predictions, which corresponds to the following weights:

Wn,i(x) =
1{

∑M
m=1 1{|rk,m(Xi)−rk,m(x)|<h}≥αM}∑`

j=1 1{
∑M
m=1 1{|rk,m(Xj)−rk,m(x)|<h}≥αM}

, i = 1, 2, ..., ` (3)
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where α ∈ {1/M, 2/M, ..., 1} is the proportion of consensual predictions re-
quired and h > 0 is the bandwidth or window parameter to be determined.
Constructing the proposed method is equivalent to searching for the best pos-
sible value of these parameters over a given grid, minimizing some quadratic
error which will be described in Section 3.

In the present paper, K : RM → R+ denotes a regular kernel which is a
decreasing function satisfying:

∃b, κ0, ρ > 0 such that

{
b1BM (0,ρ)(z) ≤ K(z) ≤ 1,∀z ∈ RM∫
RM supu∈BM (z,ρ)K(u)dz = κ0 < +∞

(4)

where BM(c, r) = {z ∈ RM : ‖c − z‖ < r} denotes the open ball of center
c ∈ RM and radius r > 0 of RM . We propose in equation (1) a method
associated to the weights defined at any query point x ∈ Rd by

Wn,i(x) =
Kh(rk(X

(`)
i )− rk(x))∑`

j=1Kh(rk(X
(`)
j )− rk(x))

, i = 1, 2, ..., ` (5)

where Kh(z) = K(z/h) for some bandwidth parameter h > 0 with the con-
vention of 0/0 = 0. Observe that the combination in equation (1) is computed
based only on D` but the construction of the method depends on the whole
training data Dn as the basic estimators are all constructed using Dk. In our
setting, we treat the vector of predictions rk(x) as anM -dimensional feature,
and the kernel function is applied on the whole vector at once. Note that
the implementation of KernelCobra in Guedj and Srinivasa Desikan (2020)
corresponds to the following weights:

Wn,i(x) =

∑M
m=1Kh(rk,m(X

(`)
i )− rk,m(x))∑`

j=1

∑M
m=1Kh(rk,m(X

(`)
j )− rk,m(x))

, i = 1, 2, ..., ` (6)

where the univariate kernel function K is applied on each component of the
predicted vector rk(.) separately. In this case, the weight Wn,i(x) defined in
equation (6) above is more costly in computing than the one in the proposed
method since the univariate kernel function has to be applied on all the entries
of vectors rk(X`

i )− rk(x) = (rk,1(X
`
i )− rk,1(x), ..., rk,M(X`

i )− rk,M(x)) for all
i = 1, ..., `. This entry-wise operation prevents us from trading off memory
storage for computational complexity. On the other hand, the weights in
equation (5) of the proposed method depend on pair-wise distances between
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the predicted vectors of the training points X(`)
i ’s and the query point x,

d′(rk(Xi), rk(x)), for some distance d′ (associated to the kernel function).
This dependency allows us to trade the memory storage off for computational
complexity, yielding more efficient computation and the implementation of
an optimization procedure based on gradient descent algorithm (section 3).

2.2 Theoretical performance

The performance of the combining estimation gn is measured using the quadratic
risk defined by

E
[
|gn(rk(X))− g∗(X)|2

]
where the expectation is taken with respect to both X and the training
sample Dn. Firstly, we begin with a simple decomposition of the distortion
between the proposed method and the optimal regression estimator g∗(X)
by introducing the optimal regression estimator over the set of predictions
g∗(rk(X)). The following proposition shows that the nonasymptotic-type
control of the distortion, presented in Proposition.2.1 of Biau et al. (2016),
also holds for this case of regular kernels.

Proposition 1 Let rk = (rk,1, rk,2, ..., rk,M) be the collection of all basic es-
timators, and let gn(rk(x)) be the combined estimator defined in equation (1)
with the weights given in equation (5) computed at point x ∈ Rd. Then, for
all distributions of (X, Y ) with E[|Y |2] < +∞,

E
[
|gn(rk(X))− g∗(X)|2

]
≤ inf

f∈G
E
[
|f(rk(X))− g∗(X)|2

]
+ E

[
|gn(rk(X))− g∗(rk(X))|2

]
where G is the class of any function f : RM → R satisfying E[f(rk(X))|2] <
+∞. In particular,

E
[
|gn(rk(X))− g∗(X)|2

]
≤ min

1≤m≤M
E
[
|rk,m(X)− g∗(X)|2

]
+ E

[
|gn(rk(X))− g∗(rk(X))|2

]
.

The two terms of the last bound can be viewed as a bias-variance decom-
position where the first term min1≤m≤M E[|rk,m(X) − g∗(X)|2] can be seen
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as the bias and E[|gn(rk(X))− g∗(rk(X))|2] is the variance-type term (Biau
et al. (2016)). Given all the estimators, the first term cannot be controlled
as it depends on the performance of the best constructed estimator, and it
will be the asymptotic performance of the proposed method. Our main task
is to deal with the second term, which can be proven to be asymptotically
negligible in the following key proposition.

Proposition 2 Assume that rk,m is bounded for all m = 1, 2, ..,M . Let
h→ 0 and `→ +∞ such that hM`→ +∞. Then

E
[
|gn(rk(X))− g∗(rk(X))|2

]
→ 0 as `→ +∞

for all distribution of (X, Y ) with E[|Y |2] < +∞. Thus,

lim sup
`→+∞

E
[
|gn(rk(X))− g∗(X)|2

]
≤ inf

f∈G
E
[
|f(rk(X))− g∗(X)|2

]
.

And in particular,

lim sup
`→+∞

E
[
|gn(rk(X))− g∗(X)|2

]
≤ min

1≤m≤M
E
[
|rk,m(X)− g∗(X)|2

]
.

Proposition 2 above is an analogous setup of Proposition 2.2 in Biau et al.
(2016). To prove this result, we follow the procedure of Stone’s theorem
(see, for example, Stone (1977) and Chapter 4 of Györfi et al. (2002)) of
weak universal consistency of non-parametric regression. However, showing
this result for the class of regular kernels is not straightforward. Most of the
previous studies provided such a result of L2-consistency only for the class
of compactly supported kernels (see, for example, Chapter 5 of Györfi et al.
(2002)). In this study, we can derive the result for this broader class thanks
to the boundedness of all basic estimators. However, the price to pay for
the universality for this class of regular kernels is the lack of convergence
rate. To this goal, a weak smoothness assumption of g∗ with respect to
the basic estimators is required. For example, the convergence rate of the
variance-type term in Biau et al. (2016) is of order O(`−2/(M+2)) under the
same smoothness assumption, and this result also holds for all the compactly
support kernels. In this study, we can derive the same convergence rate for
the class of kernel functions with the tails increase at least of exponential
speed. This main theoretical result is given in the following theorem.
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Theorem 1 Assume that the response variable Y and all the basic estima-
tors rk,m,m = 1, 2, ...,M , are bounded by some constant R. Suppose that
there exists a constant L ≥ 0 such that, for every k ≥ 1,

|g∗(rk(x))− g∗(rk(y))| ≤ L‖rk(x)− rk(y)‖,∀x, y ∈ Rd.

We assume moreover that there exists some positive constants α,RK and CK
such that

K(z) ≤ CK exp(−‖z‖α),∀z ∈ RM , ‖z‖ ≥ RK . (7)

Then, one has

E[|gn(rk(X))− g∗(X)|2] ≤ min
1≤m≤M

E[|rk,m(X)− g∗(X)|2] + C`−
2

M+2 (8)

for some positive constant C = C(b, L,R,RK , CK) independent of `.

From this result, if there exists a consistent estimator named rk,m0 in the list
{rk,m}Mm=1 i.e.,

E[|rk,m0(X)− g∗(X)|2]→ 0 as k → +∞,

then the combining estimator gn is also consistent for all distribution of
(X, Y ) in some classM. Consequently, under the assumption of Theorem 1,
one has

lim
k,`→+∞

E[|gn(rk(X))− g∗(X)|2] = 0.

3 Bandwidth estimation using gradient descent
In earlier works by Biau et al. (2016) and Guedj and Srinivasa Desikan (2020),
the training data Dn is practically broken down into three balanced parts: Dk
for constructing all candidate estimators {rk,m}Mm=1, D`1 for building aggre-
gation defined in equation (1), and D`2 for tuning the key parameters of the
methods. Within these frameworks, the bandwidth parameter h is estimated
by minimizing the following loss,

ϕM(h) =
1

|D`2 |
∑

(Xj ,Yj)∈D`2

[gn(rk(Xj))− Yj]2, (9)

where |D`2| denotes the cardinality ofD`2 , and gn(rk(Xj)) =
∑

(Xi,Yi)∈D`1
Wn,i(Xj)Yi

is given in equation (1). Note that the subscriptM of ϕM(h) indicates the full
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consensus between the M components of the predictions rk(Xi) and rk(Xj)
for any Xi of D`1 and Xj of D`2 . In this case, constructing an aggregation
method gn is equivalent to searching for an optimal parameter h∗ over a given
grid H = {hmin, ..., hmax} i.e.,

h∗ = argmin
h∈H

ϕM(h).

The parameter α of equation (3) can be tuned easily by considering ϕαM(h)
where α ∈ {1/M, 2/M, ..., 1} referring to the proportion of consensuses re-
quired among theM components of the predictions. In this case, the optimal
parameters α∗ and h∗ are chosen to be the minimizer of ϕαM(h) i.e.,

(α∗, h∗) = argmin
(α,h)∈{1/M,2/M,...,1}×H

ϕαM(h).

Note that in both papers, the grid search algorithm is used in searching for
the optimal bandwidth parameter.

In this paper, the training data is broken down into only two parts, Dk
and D`. Again, we construct the basic estimators using Dk, and for any κ
folds F1, ..., Fκ (κ ≥ 2) of D`, we propose the following κ-fold cross-validation
error which is a function of the bandwidth parameter h > 0 defined by

ϕκ(h) =
1

κ

κ∑
p=1

∑
(Xj ,Yj)∈Fp

[gn(rk(Xj))− Yj]2 (10)

where in this case, gn(rk(Xj)) =
∑

(Xi,Yi)∈D`\FpWn,i(Xj)Yi, is computed using
the remaining κ − 1 folds of D` leaving Fp ⊂ D` as the corresponding vali-
dation fold1. We often observe the convex-like curves of the cross-validation
quadratic error on many simulations; and from this observation, we propose
using a gradient descent algorithm to estimate the optimal bandwidth pa-
rameter. The associated gradient descent algorithm used to estimate the
optimal parameter h∗ is implemented as follows:

1In this part, we simply write (Xi, Yi) ∈ D` without the superscript (`).
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Algorithm 1 : Gradient descent for estimating h∗:

1. Initialization: h0, a learning rate λ > 0, threshold δ > 0 and the
maximum number of iteration N .

2. For k = 1, 2, ..., N , while
∣∣∣ ddhϕκ(hk−1)∣∣∣ > δ do:

hk ← hk−1 − λ
d

dh
ϕκ(hk−1)

3. return hk violating the while condition or hN to be the estimation
of h∗.

From equation (10), for any (Xj, Yj) ∈ Fp, one has

d

dh
ϕκ(h) =

1

κ

κ∑
p=1

∑
(Xj ,Yj)∈Fp

2
∂

∂h
gn(rk(Xj))(gn(rk(Xj))− Yj)

where

gn(rk(Xj)) =

∑
(Xi,Yi)D`∈\Fp YiKh(rk(Xj)− rk(Xi))∑
(Xq ,Yq)∈D`\Fp Kh(rk(Xj)− rk(Xq))

.

This implies that

∂

∂h
gn(rk(Xj)) =

∑
(Xi,Yi),(Xq ,Yq)∈D`\Fp

(Yi − Yq)
∂
∂hKh(rk(Xj)− rk(Xi))Kh(rk(Xj)− rk(Xq))[∑

(Xi,Yi)D`∈\Fp Kh(rk(Xj)− rk(Xi))
]2 .

The differentiability of gn depends entirely on the kernel function K. Therefore,
for suitable kernels, the implementation of the algorithm is straightforward. For
example, in the case of Gaussian kernel Kh(x) = exp(−h‖x‖2/(2σ2)) for some
σ > 0, one has

∂

∂h
gn(rk(Xj)) =

∑
(Xi,Yi),(Xq ,Yq)∈D`\Fp

(Yq − Yi)‖rk(Xj)− rk(Xi)‖2×

exp
(
− h(‖rk(Xj)− rk(Xi)‖2 + ‖rk(Xj)− rk(Xq)‖2)/(2σ2)

)
2σ2
(∑

(Xq ,Yq)/∈Fp exp(−h‖rk(Xj)− rk(Xq)‖2/(2σ2))
)2 .

10



This suggests that we only need to store the distance matrices Dp = (d′qj) where
d′qj = ‖rk(Xq) − rk(Xj)‖2 is the squared Euclidean distance between predictions
of the input data from the κ − 1 folds D` \ Fp and the corresponding validation
fold Fp for p = 1, ..., κ. Then, the gradient can be computed straight away for any
smoothing parameter h > 0.

To prevent the algorithm from reaching negative values of the bandwidth pa-
rameter during operation, a few adjustments have been implemented. Firstly, the
predicted features are normalized for example, to be in the range [0, 1]M . Then,
the error is computed at a few randomly selected bandwidth parameters, and the
algorithm begins at the parameter with the lowest error. Additionally, the learning
rate λ is decreased when the parameter takes negative values, which may occur
due to a large learning rate. To handle cases where the error curve is very flat
around the optimal bandwidth, an option has been included to adjust the speed
of the learning rate. This approach has resulted in faster algorithm performance,
without requiring knowledge of the interval containing the optimal parameter, as
with grid search. Moreover, it is possible to estimate the parameter that causes
the gradient of the objective function to vanish. This leads to a well-constructed
aggregation method, as reported in the next section.

4 Numerical examples
This section is devoted to numerical experiments to illustrate the performance of
our proposed method. It is shown in Biau et al. (2016) that the classical method
mostly outperforms the basic estimators of the combination. In this experiment, we
compare the performances of the proposed methods with the classical one and all
the basic regressors. Several options of kernel functions are considered. Most ker-
nels are compactly supported on [−1, 1], taking nonzero values only on [−1, 1], ex-
cept for the case of compactly supported Gaussian which is supported on [−ρ1, ρ1],
for some ρ1 > 0. Moreover to implement the gradient descent algorithm in es-
timating the bandwidth parameter, we also present the results of non-compactly
supported cases such as classical Gaussian and 4-exponential kernels. All kernels
considered in this paper are listed in Table 1, and some of them are displayed
(univariate case) in Figure 1 below.

4.1 Simulated datasets
In this subsection, we study the performances of our proposed method on the same
set of simulated datasets of size n as provided in Biau et al. (2016). The input data

2The naive kernel corresponds to the method by Biau et al. (2016).
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Kernel Formula
Naive2 K(x) =

∏d
i=1 1{|xi|≤1}

Epanechnikov K(x) = (1− ‖x‖2)1{‖x‖≤1}
Bi-weight K(x) = (1− ‖x‖2)21{‖x‖≤1}
Tri-weight K(x) = (1− ‖x‖2)31{‖x‖≤1}
Compact-support Gaussian K(x) = exp{−‖x‖2/(2σ2)}1{‖x‖≤ρ1}, σ, ρ1 > 0

Gaussian K(x) = exp{−‖x‖2/(2σ2)}, σ > 0

4-exponential K(x) = exp{−‖x‖4/(2σ4)}, σ > 0

Table 1: Kernel functions used.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

K
(x
)

Naive
Epanechnikov
Bi-weight
Tri-weight
Gaussian
4-exponential

Figure 1: The shapes of some kernels.

is either independent and uniformly distributed over (−1, 1)d (uncorrelated case)
or distributed from a Gaussian distribution N (0,Σ) where the covariance matrix
Σ is defined by Σij = 2−|i−j| for 1 ≤ i, j ≤ d (correlated case). We consider the
following models:

Model 1 : n = 800, d = 50, Y = X2
1 + exp(−X2

2 ).

Model 2 : n = 600, d = 100, Y = X1X2 +X2
3 −X4X7 +X8X10−X2

6 +N (0, 0.5).

Model 3 : n = 600, d = 100, Y = − sin(2X1) +X2
2 +X3− exp(−X4) +N (0, 0.5).

Model 4 : n = 600, d = 100, Y = X1 + (2X2−1)2 + sin(2πX3)/(2− sin(2πX3)) +
sin(2πX4) + 2 cos(2πX4) + 3 sin2(2πX4) + 4 cos2(2πX4) +N (0, 0.5).
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Model 5 : n = 700, d = 20, Y = 1{X1>0} + X3
2 + 1{X4+X6−X8−X9>1+X14} +

exp(−X2
2 ) +N (0, 0.05).

These first five models are taken from Biau et al. (2016) which allows us to compare
the performance of the methods. Note that by the design, there are not many active
predictors contributing to the target, and most of them act as the noise. To see
how the proposed method behaves on different type of datasets where more active
independent variables are presented, we introduce the following models:

Model 6 : n = 500, d = 20, Y = (
∑5

j=1

∑3
k=0Xj+5k) cos((

∏5
k=1X4k)π/2) +

N (0, 0.25)

Model 7 : n = 600, d = 30, Y =
∑15

j=1 e
0.25−X2

j sin(πXj+15) +N (0, 0.25)

Model 8 : n = 700, d = 50, Y = (
∑
j = 125X2j sin(π/X2j−1))e

∑
k=15X2

10k/10 +
N (0, 0.75)

Moreover, it is interesting to consider some high-dimensional cases as many real
problems such as image and signal processing involve these kinds of datasets.
Therefore, we also consider the following two high-dimensional models where all
the independent variables contribute to the target via the coefficient βj ’s.

Model 9 : n = 600, d = 1500, Y = π +
∑d

j=1 βj
Xj log |5+Xj |

1+eXj
+ N (0, 1), where

βj = 2−(d+1−j)/50 + 3−j/50, j = 1, ..., d.

Model 10 : n = 700, d = 1500, Y = e+
∑d

j=1 βj
Xje

−Xj

1−log |10−Xj | +N (0, 1.25), where

βj = e−j/30

1−e−(d+1−j)/30 , j = 1, ..., d.

For each model, the proposed method is implemented over 100 replications. We
randomly split 80% of each simulated dataset into two equal parts, D` and Dk
where ` = d0.8× n/2e − k, and the remaining 20% is treated as the corresponding
testing data. We measure the performance of any regression method f using root
mean square error (RMSE) evaluated on the 20%-testing data defined by

RMSE(f) =

(
1

ntest

ntest∑
i=1

(ytest
i − f(xtest

i ))2

)1/2

. (11)

Table 2 and 3 below contain the average RMSEs and the corresponding stan-
dard errors (into brackets) over 100 runs of uncorrelated and correlated cases re-
spectively. In each table, the first block contains five columns corresponding to the
following five basic regressors rk = (rk,m)5m=1:
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• Rid: Ridge regression (R package glmnet, see Friedman et al. (2010)).

• Las: Lasso regression (R package glmnet).

• kNN: k-nearest neighbors regression (R package FNN, see Li (2019)).

• Tr: Regression tree (R package tree, see Ripley (2019)).

• RF: Random Forest regression (R package randomForest, see Liaw and
Wiener (2002)).

We choose k = 5 for k-NN and ntree = 300 for random forest algorithm, and other
methods are implemented using the default parameters. The best performance of
each method in this block is given in boldface. The second block contains the last
eight columns corresponding to kernel functions and different types of aggregation
methods. The abbreviations of all the methods in this block are given below:

• COBRA: the classical COBRA by Biau et al. (2016).

• Epan: the aggregation method using Epanechnikov kernel.

• Bi-wgt: the aggregation method using Bi-weight kernel.

• Tri-wgt: the aggregation method using Tri-weight kernel.

• C-Gaus: the aggregation method using Compact Gaussian kernel.

• Gauss: the aggregation method using Gaussian kernel.

• Exp4: the aggregation method using 4-Exponential kernel.

• KCOBRA: the KernelCobra by Guedj and Srinivasa Desikan (2018).

The optimal RMSEs of each model in this block is also written in boldface. For all
the compactly supported kernels, we consider 500 values of bandwidth parameter
h in a uniform grid {10−100, ..., hmax} where hmax = 10, which is chosen to be
large enough, likely to contain the optimal parameter to be searched. For the
compactly supported Gaussian kernel, we set ρ1 = 3 and σ = 1 therefore its
support is [−3, 3]. For the two non-compactly supported kernels, Gaussian and 4-
exponential, the optimal parameters are estimated using gradient descent algorithm
described in the previous section. Lastly, Gaussian kernel is used for KernelCobra,
and the optimal bandwidth is estimated using optimal_kernelbandwidth method
of pycobra library.

In each table, we are interested in comparing the smallest average RMSEs
in the first block to all the columns in the second block. First of all, we can

14
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see that all columns of the second block often outperform the best estimator of
the first block, which illustrates the theoretical result of the combining estimation
methods. Secondly, the proposed methods (second to seventh column of the second
block) always outperform the classical COBRA (first column) and KernelCOBRA
(last column) for almost all kernels. Lastly, the combining estimation method
with Gaussian kernel is the best one in both tables. In addition, Figure 2 below
contains boxplots of RMSEs obtained from 100 independent runs of Model 1 and
10 (correlated and uncorrelated cases), computed on a computational machine with
the following characteristics:

• Processor: 2x AMDOpteron 6174, 12C, 2.2GHz, 12x512K L2/12M L3 Cache,
80W ACP, DDR3-1333MHz.

• Memory: 64GB Memory for 2 CPUs, DDR3, 1333MHz.

These boxplots clearly show that the proposed method is around 3 to 10 times
faster than the classical method by Biau et al. (2016), and is up to hundred times
faster than KernelCOBRA by Guedj and Srinivasa Desikan (2018) with 500 values
of bandwidth parameters.

4.2 Real public datasets
In this part, we consider three public datasets which are available and easily ac-
cessible on the internet. The first dataset (Abalone, available at Dua and Graff
(2017a)) contains 4177 rows and 9 columns of measurements of abalones observed
in Tasmania, Australia. We are interested in predicting the age of each abalone
through the number of rings using its physical characteristics such as gender, size,
weight, etc. The second dataset (House, available at Kaggle (2016)) comprises
house sale prices for King County including Seattle. It contains homes sold be-
tween May 2014 and May 2015. The dataset consists of 21613 rows of houses and
21 columns of characteristics of each house including ID, Year of sale, Size, Loca-
tion, etc. In this case, we want to predict the price of each house using all of its
quantitative characteristics.

Finally, the last dataset (Wine, see Dua and Graff (2017b); Cortez et al.
(2009)), which was also considered in Biau et al. (2016), containing 1599 rows
of different types of wines, and 12 columns corresponding to different substances
of red wines including the amount of different types of acids, sugar, chlorides, PH,
etc. The variable of interest is quality which scales from 3 to 8 where 8 represents
the best quality. We aim at predicting the quality of each wine, which is treated
as a continuous variable, using all of its substances.
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Figure 2: Boxplots of computational times of the three aggregation strategies
implemented on model 1 and 3, with 500 of bandwidth parameters. Note that
“Gauss” corresponds to the proposed method with Gaussian kernel, and the
“Time” axis is in logarithmic scale.

The five primary regressors are Ridge, LASSO, kNN, Tree and Random Forest
regression. In this case, the parameter ntree = 500 for random forest, and kNN
is implemented using k = 20, 12 and 5 for Abalone, House and Wine dataset
respectively. The five regressors are combined using the classical method by Biau
et al. (2016), the proposed method using Gaussian kernel, and the KernelCOBRA
by Guedj and Srinivasa Desikan (2018). In this case, 300 values of parameter h are
considered for the classical COBRA and KernelCOBRA.

The average RMSEs obtained from 100 independent runs, evaluated on 20%-
testing data of the three public datasets, are provided in Table 4 below (the first
three rows). We observe that random forest is the best estimator among all the
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basic estimators in the first block, and the proposed method (Gauss) either out-
performs other columns (Wine and Abalone) or biases towards the best basic
estimator (House). Moreover, the performances of the proposed method always
exceed the ones of the classical COBRA and the KernelCOBRA.

4.3 Real private datasets
In this section, we provide the performances of the aggregation methods on other
two (real) private datasets. The first dataset contains six columns corresponding to
the six variables including Air temperature, Input Pressure, Output Pressure, Flow,
Water Temperature and Power Consumption along with 2026 rows of hourly ob-
servations of these measurements of an air compressor machine provided by Cadet
et al. (2005). The goal is to predict the power consumption of this machine using
the five remaining explanatory variables. The second dataset is provided by the
wind energy company Mäıa Eolis. It contains 8721 observations of seven variables
representing 10-minute measurements of Electrical power, Wind speed, Wind direc-
tion, Temperature, Variance of wind speed and Variance of wind direction measured
from a wind turbine of the company (see, Fischer et al. (2017)). In this case, we
aim at predicting the electrical power produced by the turbine using the remaining
six measurements as explanatory variables. We use the same set of parameters as
in the previous subsection except for kNN where in this case k = 10 and k = 7 are
used for air compressor and wind turbine dataset respectively.

Table 4: Average RMSEs of real datasets.
Model Las Rid kNN Tr RF COBRA Gauss KCOBRA

Abalone 2.20 2.22 2.18 2.40 2.15 2.17 2.13 2.67
(0.07) (0.08) (0.06) (0.07) (0.06) (0.08) (0.06) (0.12)

House 241083.96 241072.97 245153.61 254099.65 205943.77 223596.32 209955.28 650943.60
(8883.11) (8906.33) (23548.37) (9350.89) (7496.77) (13299.93) (7815.62) (29565.23)

Wine 0.66 0.69 0.77 0.71 0.62 0.65 0.62 0.67
(0.03) (0.05) (0.03) (0.03) (0.03) (0.03) (0.02) (0.04)

Air 163.10 164.23 241.66 351.32 174.84 172.86 163.25 1468.30
(3.69) (3.75) (5.87) (31.88) (6.55) (7.64) (3.33) (78.47)

Turbine 70.05 68.99 44.52 81.71 38.89 38.93 37.14 515.41
(4.99) (3.41) (1.67) (4.98) (1.51) (1.56) (1.56) (58.14)

The results obtained from 100 independent runs of the methods are presented
in the last two rows (Air and Turbine) of Table 4 above. We observe on one hand
that the proposed method (Gauss) outperforms the best basic estimators (RF)
and the two other competitors (COBRA and KCOBRA) in the case of Turbine
dataset. On the other hand, the performance of our method approaches the best
basic estimator (Las) and outperforms the other aggregation methods in the case
of Air dataset.
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Moreover, boxplots of 100 runs measured on Wine and Turbine datasets
(computed using the same computational machine as described in section 4.1) are
also provided in Figure 3 below.

Figure 3: Boxplots of computational times of the proposed method and the
two competitors implemented on Wine and Turbine datasets.

4.4 Application on a data of Magnetosphere- Ionosphere
System provided by CEA

This section presents an application of the proposed method on a data provided by
researchers of Commissariat à l’Énergie Atomique (CEA). In a collaboration with
researchers of CEA on a research topic in Magnetosphere-Ionosphere System (see
Kluth et al. (2022)), we are interested in constructing a global machine learning
model of event-driven for estimating a physical quantity called Pitch Angle Dif-
fusion Coefficient (Dαα) using three input data: electron at L-shell L, energy E,
and equatorial pitch angle α. Pitch angle diffusion coefficient is one of the major
mechanisms that drives the structure of the Van Allen radiation belts and causes
the well-known two belt structure. Whistler mode waves which are known to play
a crucial role in thermodynamics, electron acceleration, and electron precipitation
in the atmosphere are also caused by the physical process of pitch angle diffu-
sion. This quantity can be computed from statistical models derived from years of
satellite observations of the hiss waves properties of different missions, or using a
method called event-driven approach (Thorne et al. (2013)). We use in this study
a database of event-driven diffusion coefficients that was generated for the stud-
ies of Ripoll et al. (2019). A very large fully observed dataset containing around
two hundred million observations is available. However, one wants to construct
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predictive models using reasonably small training data, therefore, a 3-dimensional
grid made up of 4 values of L ∈ {2, 3, 4, 5}, 60 values of E and 256 values of α is
considered. This filtering process creates a training dataset of size 61 440, simply
called D0. Then, two training datasets are extracted: high-resolution (DHR) and
low-resolution datasets (DLR). High-resolution dataset is composed of 84 pitch
angles (α) and 60 energies bins (E), thus contains 20 160 data points. The low-
resolution dataset is composed of only 14 pitch angles and 13 energies bins, thus
contains only 728 data points. The table 5 below provides the structure of the
described training datasets.

Data L E α Size
D0 4 60 256 61 440

DHR 4 60 84 20 160

DLR 4 13 14 728

Table 5: The high and low resolution training datasets.

It should be pointed out that the training datasets are noiseless (see Figure 4),
and the relationship of Dαα and α at some fixed couples (L,E) are illustrated in
Figure 4 below.

Figure 4: The relation between Dαα and α at some cuts of L and E values.
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In this part, we considered several regression models, including k-nearest neigh-
bors (kNN), kernel regression (KerReg), regression tree (Tree), bagging (Bag), ran-
dom forest (RF), radial basis (Radial), splines (Spline), and deep neural networks
(DNN). These models were trained separately on the high-resolution (DHR) and
low-resolution (DLR) training datasets.

To evaluate the prediction capability of these models, we extracted three dif-
ferent testing datasets from the fully observed data, which contains two hundred
million observations. By using these testing datasets, we were able to compare the
performance of the different regression models and identify the most effective one
for the task at hand. Table 6 below describes the three testing datasets.

Data Description
DtestHR For testing the models built on DHR.
DtestLR For testing the models built on DLR.

DtestL
Contains more values of L other than {2, 3, 4, 5}.
For testing the models built on both training data.

Table 6: The three testing datasets.

In both cases, the regression estimators were constructed using the entire train-
ing data (DHR or DLR), which left no training data for aggregation. To avoid
violating the independence assumption between the data used to train the indi-
vidual estimators and the data used for aggregation, we randomly divided each
testing dataset into two parts. The first part is used to optimize the bandwidth
parameter h for the aggregation, while the remaining part is used as the actual
testing dataset. The numerical results obtained from 50 independent runs of this
procedure are presented in Figure 5 below.

The kernel-based consensual aggregation method is implemented using Gaus-
sian kernel and is denoted by Gaussian. We observe that the tree-based models
behave similarly and are the weak ones, and DNN is the best individual estimator
as it provides the lowest average testing RMSE. On the other hand, the aggregation
outperforms other basic estimators in the last three cases, and biases towards the
best basic estimator on DtestHR.

Remark 1 As the training data in our study are extracted selectively from the full
observed data, the distributions of the training and testing data are not the same.
For instance, L only takes values in {2, 3, 4, 5} in the training data, while the testing
data may have more decimal values. To overcome this limitation, we split the testing
data into two parts, allowing us to fine-tune the smoothing parameter h and adjust
the weights for predicting new observations coming from a different distribution.
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Figure 5: Boxplots of RMSEs over 50 runs of the algorithm. Note that Radial
is built only on the training data DLR, therefore it is not presented in the two
boxplots on the left-hand side (where the model are built using DHR). The
last boxplot is the performance of the proposed aggregation method using
Gaussian kernel.

This approach is practically useful because the basic models can be built on one
source of an underlying distribution L0 and then used to predict observations from
another source of distribution L1, which may be different from L0. In such cases,
access to a part of the new source is required to adjust the weights in the aggregation,
akin to a domain adaptation-like property. This adaptability of the aggregation
method is a remarkable advantage and can lead to improved performance in diverse
settings.

5 Conclusion
In conclusion, this study extends the context of a naive kernel-based consensual
regression aggregation method to a more general regular kernel-based framework,
and it demonstrates the consistency inheritance property of the method with the
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same convergence rate. Additionally, we propose an optimization algorithm based
on gradient descent to efficiently estimate the key parameter of the method with
the computational speed up to several hundred times faster than the classical grid
search. Our numerical simulations show that the performance of the method is
significantly improved with smoother kernel functions. Furthermore, we demon-
strate, in a real-world project with physics data, that the method exhibits a domain
adaptation-like property, which opens up interesting directions for further study.

In practice, the performance of the consensual aggregation method depends
on both the individual regression estimators and the final combination, which in-
volves kernel functions. Therefore, calibration of hyperparameters in both steps is
critical, and automated machine learning models may be useful for improving the
performance of the global model.

6 Reproducibility of the experiments
For readers interested in reproducing our experiments, we have made some pub-
lic datasets used in this article and the official source codes written in python
and R of the algorithm available on our Github repository: https://github.com/
hassothea/AggregationMethods.

7 Proofs
The following lemma, which is a variant of lemma 4.1 in Györfi et al. (2002) related
to the property of binomial random variables, is needed.

Lemma 1 Let B(n, p) be the binomial random variable with parameters n and p.
Then

1. For any c > 0,

E
[ 1

c+B(n, p)

]
≤ 2

p(n+ 1)
.

2.

E
[ 1

B(n, p)
1B(n,p)>0

]
≤ 2

p(n+ 1)
.
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Proof of Lemma 1 1. For any c > 0, one has

E
[ 1

c+B(n, p)

]
=

n∑
k=0

1

c+ k
× n!

(n− k)!k!
pk(1− p)n−k

=
n∑
k=0

1

k + 1
× k + 1

k + c
× n!

(n− k)!k!
pk(1− p)n−k

≤ 2

p(n+ 1)

n∑
k=0

(n+ 1)!pk+1(1− p)n+1−(k+1)

[n+ 1− (k + 1)]!(k + 1)!

≤ 2

p(n+ 1)

n+1∑
k=0

(n+ 1)!pk(1− p)n+1−k

[n+ 1− k]!k!

=
2

p(n+ 1)
(p+ 1− p)n+1

=
2

p(n+ 1)

2.

E
[ 1

B(n, p)
1B(n,p)>0

]
≤ E

[ 2

1 +B(n, p)

]
=

n∑
k=0

2

k + 1
× n!

(n− k)!k!
pk(1− p)n−k

=
2

p(n+ 1)

n∑
k=0

(n+ 1)!pk+1(1− p)n+1−(k+1)

[n+ 1− (k + 1)]!(k + 1)!

≤ 2

p(n+ 1)

n+1∑
k=0

(n+ 1)!pk(1− p)n+1−k

[n+ 1− k]!k!

=
2

p(n+ 1)
(p+ 1− p)n+1

=
2

p(n+ 1)

�

Proof of Proposition 1 For any square integrable function with respect to rk(X),
one has
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E
[
|gn(rk(X))− g∗(X)|2

]
= E

[
|gn(rk(X))− g∗(rk(X)) + g∗(rk(X))− g∗(X)|2

]
= E

[
|gn(rk(X))− g∗(rk(X))|2

]
+ 2E

[
(gn(rk(X))− g∗(rk(X)))(g∗(rk(X))− g∗(X))

]
+ E

[
|g∗(rk(X))− g∗(X)|2

]
.

We consider the second term of the right hand side of the last equality,

E
[
(gn(rk(X))− g∗(rk(X)))(g∗(rk(X))− g∗(X))

]
= Erk(X)

[
EX
[
(gn(rk(X))− g∗(rk(X)))(g∗(rk(X))− g∗(X))

∣∣∣rk(X)
]]

= Erk(X)

[
(gn(rk(X))− g∗(rk(X)))(g∗(rk(X))− E[g∗(X)|rk(X)])

]
= 0

where g∗(rk(X)) = E[g∗(X)|rk(X)] due to the definition of g∗(rk(X)) and the
tower property of conditional expectation. It remains to check that

E
[
|g∗(rk(X))− g∗(X)|2

]
≤ inf

f∈G
E
[
|f(rk(X))− g∗(X)|2

]
.

For any function f s.t E
[
|f(rk(X))|2

]
< +∞, one has

E
[
|f(rk(X))− g∗(X)|2

]
= E

[
|f(rk(X))− g∗(rk(X)) + g∗(rk(X))− g∗(X)|2

]
= E

[
|f(rk(X))− g∗(rk(X))|2

]
+ 2E

[
(f(rk(X))− g∗(rk(X)))(g∗(rk(X))− g∗(X))

]
+ E

[
|g∗(rk(X))− g∗(X)|2

]
.

Similarly,

E
[
(f(rk(X))− g∗(rk(X)))(g∗(rk(X))− g∗(X))

]
= 0.

Therefore,

E
[
|f(rk(X))− g∗(X)|2

]
= E

[
|f(rk(X))− g∗(rk(X))|2

]
+ E

[
|g∗(rk(X))− g∗(X)|2

]
.

25



As the first term of the right-hand side is nonnegative thus,

E
[
|g∗(rk(X))− g∗(X)|2

]
≤ inf

f∈G
E
[
|f(rk(X))− g∗(X)|2

]
.

Finally, we can conclude that

E
[
|gn(rk(X))− g∗(X)|2

]
≤ E

[
|gn(rk(X))− g∗(rk(X))|2

]
+ inf
f∈G

E
[
|f(rk(X))− g∗(X)|2

]
.

We obtain the particular case by restricting G to be the coordinates of rk, one has

E
[
|gn(rk(X))− g∗(X)|2

]
≤ E

[
|gn(rk(X))− g∗(rk(X))|2

]
+ min

1≤m≤M
E
[
|rk,m(X)− g∗(X)|2

]
.

�

Proof of Proposition 2 The procedure of proving this result is indeed the proce-
dure of checking the conditions of Stone’s theorem (see, for example, Stone (1977)
and Chapter 4 of Györfi et al. (2002)) which is also used in the classical method by
Biau et al. (2016). First of all, using the inequality: (a+ b+ c)2 ≤ 3(a2 + b2 + c2),
one has

E
[
|gn(rk(X))− g∗(rk(X))|2

]
= E

[∣∣∣ ∑̀
i=1

Wn,i(X)Yi − g∗(rk(X))
∣∣∣2]

= E
[∣∣∣ ∑̀

i=1

Wn,i(X)[Yi − g∗(rk(Xi))]

+
∑̀
i=1

Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]

+
∑̀
i=1

Wn,i(X)g∗(rk(X))− g∗(rk(X))
∣∣∣2]

≤ 3E
[∣∣∣ ∑̀

i=1

Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]
∣∣∣2]

+ 3E
[∣∣∣ ∑̀

i=1

Wn,i(X)[Yi − g∗(rk(Xi))]
∣∣∣2]

+ 3E
[∣∣∣g∗(rk(X))

∑̀
i=1

(Wn,i(X)− 1)
∣∣∣2].

26



The three terms of the right-hand side are denoted by A.1, A.2 and A.3 respectively,
thus one has

E
[
|gn(rk(X))− g∗(rk(X))|2

]
≤ 3(A.1 +A.2 +A.3).

To prove the result, it is enough to prove that the three terms A.1, A.2 and A.3
vanish under the assumptions of Proposition 2. We deal with the first term A.1
in the following proposition.

Proposition A.1 Under the assumptions of Proposition 2,

lim
`→+∞

E
[∣∣∣ ∑̀

i=1

Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]
∣∣∣2] = 0.

Proof of Proposition A.1 Using Cauchy-Schwarz’s inequality, one has

A.1 = E
[∣∣∣ ∑̀

i=1

Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]
∣∣∣2]

= E
[∣∣∣ ∑̀

i=1

√
Wn,i(X)

√
Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]

∣∣∣2]
≤ E

[(∑̀
i=1

Wn,i(X)
)∑̀
i=1

Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]2
]

= E
[∑̀
i=1

Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]2
]

def
= An.

Note that the regression function g∗ satisfies E[|g∗(rk(X))|2] < +∞, thus it can be
approximated in L2 sense by a continuous function with compact support named g̃
(see, for example, Theorem A.1 in Devroye et al. (1997)). This means that for any
ε > 0, there exists a continuous function with compact support g̃ such that,

E[|g∗(rk(X))− g̃(rk(X))|2] < ε.

Thus, one has

An = E
[∑̀
i=1

Wn,i(X)[g∗(rk(Xi))− g∗(rk(X))]2
]
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≤ 3E
[∑̀
i=1

Wn,i(X)[g∗(rk(Xi))− g̃(rk(Xi))]
2
]

+ 3E
[∑̀
i=1

Wn,i(X)[g̃(rk(Xi))− g̃(rk(X))]2
]

+ 3E
[∑̀
i=1

Wn,i(X)[g̃(rk(X))− g∗(rk(X))]2
]

def
= 3(An1 +An2 +An3).

We deal with each term of the last upper bound as follows.

• Computation of An3: applying the definition of g̃,

An3 = E
[∑̀
i=1

Wn,i(X)[g̃(rk(X))− g∗(rk(X))]2
]

≤ E
[
|g̃(rk(X))− g∗(rk(X))|2

]
< ε.

• Computation of An1: denoted by µ the distribution of X. Thus,

An1 = E
[∑̀
i=1

Wn,i(X)|g∗(rk(Xi))− g̃(rk(Xi))|2
]

= `E
[
Wn,1(X)|g∗(rk(X1))− g̃(rk(X1))|2

]
= `E

[ Kh(rk(X)− rk(X1))∑`
j=1Kh(rk(X)− rk(Xj))

|g∗(rk(X1))− g̃(rk(X1))|2
]

= `EDk
[
E{Xj}`j=1

[ ∫ Kh(rk(v)− rk(X1))∑`
j=1Kh(rk(v)− rk(Xj))

|g∗(rk(X1))− g̃(rk(X1))|2µ(dv)
∣∣∣Dk]]

= `EDk
[
E{Xj}`j=2

[ ∫ ∫
|g∗(rk(u))− g̃(rk(u))|2×

Kh(rk(v)− rk(u))

Kh(rk(v)− rk(u)) +
∑`

j=2Kh(rk(v)− rk(Xj))
µ(du)µ(dv)

∣∣∣Dk]]
= `EDk

[ ∫
|g∗(rk(u))− g̃(rk(u))|2×

E{Xj}`j=2

[ ∫ Kh(rk(v)− rk(u))µ(dv)

Kh(rk(v)− rk(u)) +
∑`

j=2Kh(rk(v)− rk(Xj))

∣∣∣Dk]µ(du)
]

= `EDk
[ ∫
|g∗(rk(u))− g̃(rk(u))|2 × I(u, `)µ(du)

]
.
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Fubini’s theorem (Folland (1999)) is employed to obtain the result of the
last bound where the inner conditional expectation is denoted by I(u, `). We
bound I(u, `) using the argument of covering RM with a countable family of

balls Bdef= {BM (xi, ρ/2) : i = 1, 2, ....} and the facts that

1. rk(v) ∈ BM (rk(u)+hxi, hρ/2)⇒ BM (rk(u)+hxi, hρ/2) ⊂ BM (rk(v), hρ).

2. b1{BM (0,ρ)}(z) < K(z) ≤ 1,∀z ∈ RM .

Now, let

– Ai,h(u)
def
= {v ∈ Rd : ‖rk(v)− rk(u)− hxi‖ < hρ/2}.

– B`
i,h(u)

def
=
∑`

j=2 1{‖rk(Xj)−rk(u)−hxi‖<hρ/2}.

Thus, one has

I(u, `)
def
= E{Xj}`j=2

[ ∫ Kh(rk(v)− rk(u))µ(dv)

Kh(rk(v)− rk(u)) +
∑`

j=2Kh(rk(v)− rk(Xj))

∣∣∣Dk]
≤ E{Xj}`j=2

[ +∞∑
i=1

∫
v:‖rk(v)−rk(u)−hxi‖<hρ/2

Kh(rk(v)− rk(u))µ(dv)

Kh(rk(v)− rk(u)) +
∑`

j=2Kh(rk(v)− rk(Xj))

∣∣∣Dk]
≤ E{Xj}`j=2

[ +∞∑
i=1

∫
Ai,h(u)

supz:‖z−hxi‖<hρ/2Kh(z)µ(dv)

supz:‖z−hxi‖<hρ/2Kh(z) +
∑`

j=2Kh(rk(v)− rk(Xj))

∣∣∣Dk]
≤ E{Xj}`j=2

[ +∞∑
i=1

∫
Ai,h(u)

supz:‖z−hxi‖<hρ/2Kh(z)µ(dv)

supz:‖z−hxi‖<hρ/2Kh(z) + b
∑`

j=2 1{‖rk(v)−rk(Xj)‖<hρ}

∣∣∣Dk]
≤ 1

b
E{Xj}`j=2

[ +∞∑
i=1

∫
Ai,h(u)

supz:‖z−hxi‖<hρ/2Kh(z)µ(dv)

supz:‖z−hxi‖<hρ/2Kh(z) +
∑`

j=2 1{‖rk(Xj)−rk(u)−hxi‖<hρ/2}

∣∣∣Dk]
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≤ 1

b

+∞∑
i=1

E{Xj}`j=2

[supz:‖z−hxi‖<hρ/2Kh(z)µ(Ai,h(u))

supz:‖z−hxi‖<hρ/2Kh(z) +B`
i,h(u)

∣∣∣Dk].
Note that B`

i,h(u) is a binomial random variable B(` − 1, µ(Ai,h(u))) under
the law of {Xj}`j=2. Applying part 1 of lemma 1, one has

I(u, `) ≤ 1

b

+∞∑
i=1

2 supz:‖z−hxi‖<hρ/2Kh(z)µ(Ai,h(u))

`µ(Ai,h(u))

≤ 2

b`

+∞∑
i=1

sup
w:‖w−xi‖<ρ/2

K(w)

=
2

b`

+∞∑
i=1

sup
w∈BM (xi,ρ/2)

K(w)

≤ 2

b`

+∞∑
i=1

sup
w∈BM (xi,ρ/2)

K(w)

≤ 2

b`λM (BM (0, ρ/2))

+∞∑
i=1

∫
BM (xi,ρ/2)

sup
w∈BM (xi,ρ/2)

K(w)dy

≤ 2

b`λM (BM (0, ρ/2))

+∞∑
i=1

∫
BM (xi,ρ/2)

sup
w∈BM (y,ρ)

K(w)dy

≤ 2κM
b`λM (BM (0, ρ/2))

∫
sup

w∈BM (y,ρ)
K(w)dy︸ ︷︷ ︸

= κ0 by (4)

≤ 2κMκ0
b`λM (BM (0, ρ))

def
=

C(b, ρ, κ0,M)

`
< +∞

where λM denotes the Lebesque measure on of RM , κM denotes the num-
ber of balls covering a certain element of RM , and the constant part is de-
noted by C(b, ρ, κ0,M) depending on the parameters indicated in the bracket.
The last inequality is attained from the fact that the overlapping integrals∑+∞

i=1

∫
BM (xi,ρ/2)

supz∈BM (y,ρ/2)K(z)dy is bounded above by the integral over
the entire space

∫
supz∈BM (y,ρ/2)K(z)dy multiplying by the number of cover-

ing balls kM . Therefore,
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An1 ≤ `
C(b, ρ, κ0,M)

`
EDk

[ ∫
|g∗(rk(u))− g̃(rk(u))|2µ(du)

]
= C(b, ρ, κ0,M)E

[
|g̃(rk(X))− g∗(rk(X))|2

]
< C(b, ρ, κ0,M)ε.

• Computation of An2: for any δ > 0 one has

An2 = E
[∑̀
i=1

Wn,i(X)|g̃(rk(Xi))− g̃(rk(X))|2
]

= E
[∑̀
i=1

Wn,i(X)|g̃(rk(Xi))− g̃(rk(X))|21{‖rk(Xi)−rk(X)‖≥δ}

]
+ E

[∑̀
i=1

Wn,i(X)|g̃(rk(Xi))− g̃(rk(X))|21{‖rk(Xi)−rk(X)‖<δ}

]
≤ 4 sup

u∈Rd
|g̃(rk(u))|2E

[∑̀
i=1

Wn,i(X)1{‖rk(Xi)−rk(X)‖≥δ}

]
+ sup
u,v∈Rd:‖rk(u)−rk(v)‖<δ

|g̃(rk(u))− g̃(rk(v))|2

Using the uniform continuity of g̃, the second term of the upper bound of An2
tends to 0 when δ tends 0. Thus, we only need to prove that the first term
of this upper bound also tends to 0. We follow a similar procedure as in the
previous part:

E
[∑̀
i=1

Wn,i(X)1{‖rk(Xi)−rk(X)‖≥δ}

]
= EDk

[∑̀
i=1

EX,{Xj}`j=1

[
Wn,i(X)1{‖rk(X)−rk(Xi)‖≥δ}

∣∣∣Dk]]
= EDk

[∑̀
i=1

E{Xj}`j=1

[ ∫ Kh(rk(v)− rk(Xi))1{‖rk(v)−rk(Xi)‖≥δ}∑`
j=1Kh(rk(v)− rk(Xj))

µ(dv)
∣∣∣Dk]]

= `EDk
[
E{Xj}`j=2

[ ∫ ∫ Kh(rk(v)− rk(u))1{‖rk(v)−rk(u)‖≥δ}µ(du)µ(dv)

Kh(rk(v)− rk(u)) +
∑`

j=2Kh(rk(v)− rk(Xj))

∣∣∣Dk]]
= `EDk

[ ∫
J(u, `)µ(du)

]
.
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Fubini’s theorem is applied to obtain the last equation where for any u ∈ Rd,

J(u, `)
def
= E{Xj}`j=2

[ ∫ Kh(rk(v)− rk(u))1{‖rk(v)−rk(u)‖≥δ}µ(dv)

Kh(rk(v)− rk(u)) +
∑`

j=2Kh(rk(v)− rk(Xj))

∣∣∣Dk]
≤ E{Xj}`j=2

[ +∞∑
i=1

∫
v:‖rk(v)−rk(u)−hxi‖<hρ/2

Kh(rk(v)− rk(u))1{‖rk(v)−rk(u)‖≥δ}

Kh(rk(v)− rk(u)) +
∑`

j=2Kh(rk(v)− rk(Xj))
µ(dv)

∣∣∣Dk]
≤ E{Xj}`j=2

[ +∞∑
i=1

∫
Ai,h(u)

supz:‖z−hxi‖<hρ/2Kh(z)1{‖z‖≥δ}

supz:‖z−hxi‖<hρ/2Kh(z) +
∑`

j=2Kh(rk(v)− rk(Xj))
µ(dv)

∣∣∣Dk]
≤

+∞∑
i=1

sup
z:‖z−hxi‖<hρ/2

Kh(z)1{‖z‖≥δ} × E{Xj}`j=2

[ ∫
Ai,h(u)

µ(dv)

supz:‖z−hxi‖<hρ/2Kh(z) + b
∑`

j=2 1{‖rk(Xj)−rk(v)‖<hρ}

∣∣∣Dk]
≤

+∞∑
i=1

sup
z:‖z−hxi‖<hρ/2

Kh(z)1{‖z‖≥δ} × E{Xj}`j=2

[ ∫
Ai,h(u)

E{Xj}`j=2

[ µ(dv)

supz:‖z−hxi‖<hρ/2Kh(z) + b
∑`

j=2 1{‖rk(Xj)−rk(u)−hxi‖<hρ/2}

∣∣∣Dk]
≤

+∞∑
i=1

sup
z:‖z−hxi‖<hρ/2

Kh(z)1{‖z‖≥δ}µ(Ai,h(u))×

1

b
E{Xj}`j=2

[ 1

supz:‖z−hxi‖<hρ/2Kh(z) +B`
i,h(u)

∣∣∣Dk]
≤ 1

b

+∞∑
i=1

2 supz:‖z−hxi‖<hρ/2Kh(z)µ(Ai,h(u))1{‖z‖≥δ}

`µ(Ai,h(u))

≤ 2

b`

+∞∑
i=1

sup
w:‖w−xi‖<ρ/2

K(w)1{‖w‖≥δ/h}.

Thus, one has

E
[∑̀
i=1

Wn,i(X)1{‖rk(Xi)−rk(X)‖≥δ}

]
≤ ` 2

b`

+∞∑
i=1

sup
w∈BM (xi,ρ/2)

K(w)1{‖w‖≥δ/h}
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When both h → 0 and δ → 0 satisfying δ/h → +∞, the upper bound series
converges to zero. Indeed, it is a non-negative convergent series thanks to
the proof of I(u, l) in the previous part. Moreover, the general term of the
series, sk = supw∈BM (xk,ρ/2)

K(w)1{‖w‖≥δ/h}, satisfying limδ/h→+∞ sk = 0
for all k ≥ 1. Therefore, this series converges to zero when h → 0, δ → 0
such that δ/h→ +∞.

In conclusion, when ` → +∞ and ε, h, δ → 0 such that δ/h → +∞, all the three
terms of the upper bound of An tend to 0, so does An.

�

Proposition A.2 Under the assumptions of Proposition 2,

lim
`→+∞

E
[∣∣∣ ∑̀

i=1

Wn,i(X)[Yi − gn(rk(Xi))]
∣∣∣2] = 0.

Proof of Proposition A.2 Using the independence between (Xi, Yi) and (Xj , Yj)
for all i 6= j, one has

A.2 = E
[∣∣∣ ∑̀

i=1

Wn,i(X)[Yi − gn(rk(Xi))]
∣∣∣2]

=
∑

1≤i,j≤`
E
[
Wn,i(X)Wn,j(X)[Yi − gn(rk(Xi))][Yj − gn(rk(Xj))]

]

= E
[∑̀
i=1

W 2
n,i(X)|Yi − gn(rk(Xi))|2

]
= E

[∑̀
i=1

W 2
n,i(X)σ2(rk(Xi))

]
where

σ2(rk(x))
def
= E[(Yi − gn(rk(Xi)))

2|rk(x)].

Thus, based on the assumption of X and Y we have σ2 ∈ L1(µ). Therefore, σ2

can be approximated in L1 sense i.e., for any ε > 0,∃σ̃2 a continuous function with
compact support such that

E[|σ2(rk(X))− σ̃2(rk(X))|] < ε.

Thus, one has

A.2 ≤ E
[∑̀
i=1

W 2
n,i(X)σ̃2(rk(Xi))

]
+ E

[∑̀
i=1

W 2
n,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
≤ sup

u∈Rd
|σ̃2(rk(u))|E

[∑̀
i=1

W 2
n,i(X)

]
+ E

[∑̀
i=1

W 2
n,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
.
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Using similar argument as in the case of An1 and the fact that Wn,i(x) ≤ 1,∀i =
1, 2, ..., `, thus for any ε > 0, one has

E
[∑̀
i=1

W 2
n,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
≤ E

[∑̀
i=1

Wn,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|
]

< C(b, ρ, κ0,M)ε.

Therefore, it remains to prove that E[
∑`

i=1W
2
n,i(X)] → 0 as ` → +∞. As

b1{BM (0,ρ)}(z) < K(z) ≤ 1,∀z ∈ RM with the convention of 0/0 = 0, for a fixed
δ > 0, one has ∑̀

i=1

W 2
n,i(X) =

∑̀
i=1

( Kh(rk(X)− rk(Xi))∑`
j=1Kh(rk(X)− rk(Xj))

)2
≤

∑`
i=1Kh(rk(X)− rk(Xi))(∑`
j=1Kh(rk(X)− rk(Xj))

)2
≤ min

{
δ,
1{

∑`
j=1Kh(rk(X)−rk(Xj))>0}∑`

j=1Kh(rk(X)− rk(Xj))

}
≤ min

{
δ,
1{

∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}>0}

b
∑`

j=1 1{‖rk(X)−rk(Xj)‖<hρ}

≤ δ +
1{

∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}>0}

b
∑`

j=1 1{‖rk(X)−rk(Xj)‖<hρ}
. (12)

Therefore, it is enough to show that

E
[1{∑`

j=1 1{‖rk(X)−rk(Xj)‖<hρ}>0}∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}

]
`→+∞−−−−→ 0.

One has

E
[1{∑`

j=1 1{‖rk(X)−rk(Xj)‖<hρ}>0}∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}

]
≤ E

[1{∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}>0}∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}

1{rk(X)∈B}

]
+ µ({v ∈ Rd : rk(v) ∈ Bc})

= E
[
1{rk(X)∈B}E

[1{∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}>0}∑`
j=1 1{‖rk(X)−rk(Xj)‖<hρ}

∣∣∣X]]+ µ({v ∈ Rd : rk(v) ∈ Bc})

≤ 2E
[ 1{rk(X)∈B}

(`+ 1)µ({v ∈ Rd : ‖rk(v)− rk(X)‖ < hρ})

]
+ µ({v ∈ Rd : rk(v) ∈ Bc})
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where B is a M -dimensional ball centered at the origin chosen so that the second
term µ({v ∈ Rd : rk(v) ∈ Bc}) is small. The last inequality is attained by applying
part 2 of lemma 1. Moreover, as rk = (rk,m)Mm=1 is bounded then there exists a
finite number of balls in B = {BM (xj , hρ/2) : j = 1, 2, ...} such that B is contained
in the union of these balls i.e., ∃Ih,M finite, such that B ⊂ ∪j∈Ih,MBM (xj , hρ/2).

E
[ 1{rk(X)∈B}

(`+ 1)µ({v ∈ Rd : ‖rk(v)− rk(X)‖ < hρ})

]
≤

∑
j∈Ih,M

∫
u:‖rk(u)−xj‖<hρ/2

µ(du)

(`+ 1)µ({v ∈ Rd : ‖rk(v)− rk(u)‖ < hρ})

+ µ({v ∈ Rd : rk(v) ∈ Bc})

≤
∑

j∈Ih,M

∫
u:‖rk(u)−xj‖<hρ/2

µ(du)

(`+ 1)µ({v ∈ Rd : ‖rk(v)− xj‖ < hρ/2})

+ µ({v ∈ Rd : rk(v) ∈ Bc})

=
∑

j∈Ih,M

µ({u ∈ Rd : ‖rk(u)− xj‖ < hρ/2})
(`+ 1)µ({v ∈ Rd : ‖rk(v)− xj‖ < hρ/2})

+ µ({v ∈ Rd : rk(v) ∈ Bc})

=
|Ih,M |
`+ 1

+ µ({v ∈ Rd : rk(v) ∈ Bc})

≤ C0

hM (`+ 1)
+ µ({v ∈ Rd : rk(v) ∈ Bc}) (13)

`→+∞,h→0−−−−−−−−→
hM `→+∞

µ({v ∈ Rd : rk(v) ∈ Bc}).

It is easy to check the following fact,

|Ih,M | ≤
C0

hM
for some C0 > 0. (14)

To prove inequality (14), we consider again the cover B = {BM (xj , hρ/2) : j =
1, 2, ...} of RM . For any ρ > 0 fixed and h > 0, note that the covering number
|Ih,M | is proportional to the ratio between the volume of B and the volume of the
ball BM (0, hρ/2) i.e.,

|Ih,M | ∝
Vol(B)

Vol(BM (0, hρ/2))

∝ Vol(B)

(hρ/2)M

≤ C0

hM

35



for some positive constant C0 proportional to the volume of B. Finally, we can
conclude the proof of the proposition as we can choose B such that µ({v ∈ Rd :
rk(v) ∈ Bc}) = 0 using the boundedness of the basic regressors.

Remark 2 The assumption on the boundedness of the constructed estimators is
crucial. This assumption allows us to choose a ball B which can be covered using a
finite number |Ih,M | of balls BM (xj , hρ/2), therefore makes it possible to prove the
result of this proposition for this class of regular kernels. Note that for the class
of compactly supported kernels, it is easy to obtain such a result directly from the
begging of the evaluation of each integral (see, for example, Chapter 5 of Györfi
et al. (2002)).

�

Proposition A.3 Under the assumptions of Proposition 2,

lim
`→+∞

E
[∣∣∣g∗(rk(X))

(∑̀
i=1

Wn,i(X)− 1
)∣∣∣2] = 0.

Proof of Proposition A.3 Note that |
∑`

i=1Wn,i(X)− 1| ≤ 1 thus one has

∣∣∣g∗(rk(X))
(∑̀
i=1

Wn,i(X)− 1
)∣∣∣2 ≤ |g∗(rk(X))|2.

Consequently, by Lebesque’s dominated convergence theorem, to prove this propo-
sition, it is enough to show that

∑`
i=1Wn,i(X) → 1 almost surely. Note that

1−
∑`

i=1Wn,i(X) = 1{
∑`
i=1Kh(rk(X)−rk(Xi))=0} therefore,

P
[∑̀
i=1

Wn,i(X) 6= 1
]

= P
[∑̀
i=1

Kh(rk(X)− rk(Xi)) = 0
]

≤ P
(∑̀
j=1

1{‖rk(X)−rk(Xj)‖<hρ} = 0
)

=

∫
P
(∑̀
j=1

1{‖rk(x)−rk(Xj)‖<hρ} = 0
)
µ(dx)

=

∫
P
(
∩`j=1 {‖rk(x)− rk(Xj)‖ ≥ hρ}

)
µ(dx)

=

∫ [
1− P

(
{‖rk(x)− rk(X1)‖ < hρ}

)]`
µ(dx)
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=

∫ [
1− µ

(
{v ∈ Rd : ‖rk(x)− rk(v)‖ < hρ}

)]`
µ(dx)

≤
∫
e−`µ(Ah(x))µ(dx)

=

∫
e−`µ(Ah(x))1{rk(x)∈B}µ(dx) + µ({v ∈ Rd : rk(v) ∈ Bc})

≤ maxu{ue−u}
`

∫
1{rk(x)∈B}

µ(Ah(x))
µ(dx) + µ({v ∈ Rd : rk(v) ∈ Bc})

where
Ah(x)

def
= {v ∈ Rd : ‖rk(x)− rk(v)‖ < hρ}. (15)

Therefore,

P
[∑̀
i=1

Wn,i(X) 6= 1
]
≤ e−1

`
E
[ 1{rk(X)∈B}

µ({v ∈ Rd : ‖rk(v)− rk(X)‖ < hρ})

]
+ µ({v ∈ Rd : rk(v) ∈ Bc}).

Following the same procedure as in the proof of A.2 we obtain the desire result.

�

Proof of Theorem 1 Choose a new observation x ∈ Rd, given the training data
Dk and the predictions {rk(Xp)}`p=1 on D`, taking expectation with respect to the

response variables {Y (`)
p }`p=1, it is easy to check that

E[|gn(rk(x))− g∗(rk(x))|2|{rk(Xp)}`p=1,Dk]

= E
[∣∣∣gn(rk(x))− E[gn(rk(x))|{rk(Xp)}`p=1,Dk]

+ E[gn(rk(x))|{rk(Xp)}`p=1,Dk]− g∗(rk(x))
∣∣∣2∣∣∣{rk(Xp)}`p=1,Dk

]
= E[|gn(rk(x))− E[gn(rk(x))|{rk(Xp)}`p=1,Dk]|2|{rk(Xp)}`p=1,Dk]

+ |g∗(rk(x))− E[gn(rk(x))|{rk(Xp)}`p=1,Dk]|2

def
= E1 + E2.

On one hand by using the independence between Yi and (Yj , Xj) for all i 6= j, we
develop the square and obtain for any δ > 0:
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E1
def
= E

[∣∣∣gn(rk(x))− E[gn(rk(x))|{rk(Xp)}`p=1,Dk]
∣∣∣2∣∣∣{rk(Xp)}`p=1,Dk

]
= E

[∣∣∣ ∑̀
i=1

Wn,i(x)(Yi − E[Yi|rk(Xi)])
∣∣∣2∣∣∣{rk(Xp)}`p=1,Dk

]
= E

[∑̀
i=1

W 2
n,i(x)(Yi − E[Yi|rk(Xi)])

2
∣∣∣{rk(Xp)}`p=1,Dk

]
=
∑̀
i=1

W 2
n,i(x)EYi [(Yi − E[Yi|rk(Xi)])

2|rk(Xi)]

= V[Y1|rk(X1)]
∑̀
i=1

W 2
n,i(x)

(12)

≤ 4R2

b

(
δ +

1{
∑`
j=1 1{‖rk(x)−rk(Xj)‖<hρ}>0}∑`
j=1 1{‖rk(x)−rk(Xj)‖<hρ}

)
where the notation V(Z) stands for the variance of a random variable Z. Therefore,
using the result of inequality (13), one has

E(E1) ≤
4R2

b

(
δ +

C0

hM (`+ 1)

)
(16)

for some C0 > 0. On the other hand, set

– C`h(x)
def
=
∑`

j=1 1{‖rk(Xj)−rk(x)‖<hρ}.

– D`
h(x)

def
=
∑`

j=1Kh(rk(Xj)− rk(x)).

The second term E2 is much harder to control as it depends on g∗(rk(.)), that is
why a weak smoothness assumption of the theorem is made. Using this assumption
and Jensen’s inequality (Jensen (1906)), one has

E2
def
=
∣∣∣g∗(rk(x))− E[gn(rk(x))|{rk(Xp)}`p=1,Dk]

∣∣∣2
=
(∑̀
i=1

Wn,i(X)(g∗(rk(x))− E[Yi|rk(Xi)])
)2
1{D`h(x)>0} + (g∗(rk(x)))21{D`h(x)=0}

(Jensen)
≤

∑̀
i=1

Wn,i(x)(g∗(rk(x))− E[Yi|rk(Xi)])
21{D`h(x)>0} + (g∗(rk(x)))21{D`h(x)=0}
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≤
∑̀
i=1

Kh(rk(x)− rk(Xi))(g
∗(rk(x))− g∗(rk(Xi)))

2∑`
j=1Kh(rk(x)− rk(Xj))

1{D`h(x)>0} + (g∗(rk(x)))21{D`h(x)=0}

≤ L2
∑̀
i=1

Kh(rk(x)− rk(Xi))‖rk(x)− rk(Xi)‖2∑`
j=1Kh(rk(x)− rk(Xj))

1{D`h(x)>0} + (g∗(rk(x)))21{D`h(x)=0}

≤ L2
[∑̀
i=1

Kh(rk(x)− rk(Xi))‖rk(x)− rk(Xi)‖21{‖rk(x)−rk(Xi)‖<RKhβ}∑`
j=1Kh(rk(x)− rk(Xj))

+
∑̀
i=1

Kh(rk(x)− rk(Xi))‖rk(x)− rk(Xi)‖21{‖rk(x)−rk(Xi)‖≥RKhβ}∑`
j=1Kh(rk(x)− rk(Xj))

]
1{D`h(x)>0}

+ (g∗(rk(x)))21{C`h(x)=0}

def
= E1

2 + E2
2 + E3

2 .

for any β > 0 chosen arbitrarily at this point. Now, we bound the expectation of
the three terms of the last inequality.

• Firstly, E1
2 can be easily bounded from above by

E1
2 = L2

∑̀
i=1

Kh(rk(x)− rk(Xi))‖rk(x)− rk(Xi)‖2∑`
j=1Kh(rk(x)− rk(Xj))

1{D`h(x)>0}1{‖rk(x)−rk(Xi)‖<RKhβ}

≤ L2h2βR2
K

∑̀
i=1

Kh(rk(x)− rk(Xi))∑`
j=1Kh(rk(x)− rk(Xj))

1{D`h(x)>0}

= L2h2βR2
K .

Therefore, its expectation is simply bounded by the same upper bound i.e.,

E(E1
2) ≤ L2h2βR2

K (17)

• Secondly, we bound the second term E2
2 using the tail assumption of the kernel

K given equation (7), thus for any h > 0:

E2
2 = L2

∑̀
i=1

Kh(rk(x)− rk(Xi))‖rk(x)− rk(Xi)‖21{D`h(x)>0}∑`
j=1Kh(rk(x)− rk(Xj))

1{‖rk(x)−rk(Xi)‖≥hβRK}

≤ L2h2
∑̀
i=1

Kh(rk(x)− rk(Xi))‖(rk(x)− rk(Xi))/h‖21{D`h(x)>0}∑`
j=1Kh(rk(x)− rk(Xj))

×

1{(‖rk(x)−rk(Xi))/h‖≥RK/h1−β}
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≤ h2L2

b

∑̀
i=1

CKe
−‖(rk(x)−rk(Xi))/h‖α‖(rk(x)− rk(Xi))/h‖2∑`

j=1 1{‖rk(x)−rk(Xj)‖<hρ}
×

1{‖(rk(x)−rk(Xi))/h‖≥RK/h1−β}1{C`h(x)>0}.

As for any α > 0, t 7→ λ(t) = t2e−t
α is strictly decreasing for all t ≥

(2/α)1/α. Thus, for h > 0 small enough such that RK/h1−β ≥ (2/α)1/α, one
has

E2
2 ≤

h2L2CK
b

∑̀
i=1

(RK/h
1−β)2e−(RK/h

1−β)α1{‖(rk(x)−rk(Xi))/h‖≥RK/h1−β}∑`
j=1 1{‖rk(x)−rk(Xj)‖<hρ}

1{C`h(x)>0}

≤
h2βL2CKR

2
Ke
−RαKh

−α(1−β)

b

∑̀
i=1

1{
∑`
j=1 1{‖rk(x)−rk(Xj)‖<hρ}>0}∑`
j=1 1{‖rk(x)−rk(Xj)‖<hρ}

≤
`h2βL2CKR

2
Ke
−RαKh

−α(1−β)

b
×
1{

∑`
j=1 1{‖rk(x)−rk(Xj)‖<hρ}>0}∑`
j=1 1{‖rk(x)−rk(Xj)‖<hρ}

.

Applying the result of inequality (13), one has

E(E2
2) ≤

`h2βL2CKR
2
Ke
−RαKh

−α(1−β)

b
× C0

hM (`+ 1)

≤ C1h
2β−Me−R

α
Kh
−α(1−β)

(18)

for some C1 > 0.

• Lastly with Ah(x) defined in (15), we bound the expectation of E3
2 by,

E(E3
2) ≤ E

[
(g∗(rk(x)))21{C`h(x)=0}

]
≤ sup

u∈Rd
(g∗(rk(u)))2E

[
1{C`h(x)=0}

]
= sup

u∈Rd
(g∗(rk(u)))2(1− µ(Ah(x)))`

≤ sup
u∈Rd

(g∗(rk(u)))2e−`µ(Ah(x))

≤ sup
u∈Rd

(g∗(rk(u)))2
`µ(Ah(x))e−`µ(Ah(x))

`µ(Ah(x))

≤ sup
u∈Rd

(g∗(rk(u)))2
maxu∈Rd ue

−u

`µ(Ah(x))
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≤ sup
u∈Rd

(g∗(rk(u)))2
e−1

`µ(Ah(x))

≤ C2

`µ(Ah(x)))
(19)

for some C2 > 0.

From (16), (17), (18) and (19), one has

E[|gn(rk(X))− g∗(rk(X))|2] ≤
∫
Rd

E[|gn(rk(x))− g∗(rk(x))|2]µ(dx)

≤
∫
Rd

E(E1 + E1
2 + E2

2 + E3
2)µ(dx)

≤
∫
Rd

[4R2

b

(
δ +

C0

hM (`+ 1)

)
+ L2h2βR2

K

+ C1h
2β−Me−R

α
Kh
−α(1−β)

+
C2

`µ(Ah(x)))

]
µ(dx).

Therefore, by following the same procedure of proving inequality (13), one has

E[|gn(rk(X))− g∗(rk(X))|2]

≤ 4R2

b

(
δ +

C0

hM (`+ 1)

)
+ L2h2βR2

K + C1h
2β−Me−R

α
Kh
−α(1−β)

+

∫
Rd

C2µ(dx)

`µ(Ah(x)))

≤ 4R2

b

(
δ +

C0

hM (`+ 1)

)
+ L2h2βR2

K + C1h
2β−Me−R

α
Kh
−α(1−β)

+
∑

j∈Jh,M

∫
‖rk(x)−xj‖<hρ

C2µ(dx)

`µ({v ∈ Rd : ‖rk(v)− rk(x)‖ < hρ})

≤ 4R2

b

(
δ +

C0

hM (`+ 1)

)
+ L2h2βR2

K + C1h
2β−Me−R

α
Kh
−α(1−β)

+
∑

j∈Jh,M

∫
‖rk(x)−xj‖<hρ

C2µ(dx)

`µ({v ∈ Rd : ‖rk(v)− xj‖ < hρ})

≤ 4R2

b

(
δ +

C0

hM (`+ 1)

)
+ L2h2βR2

K + C1h
2β−Me−R

α
Kh
−α(1−β)

+
C2

`

∑
j∈Jh,M

µ({v ∈ Rd : ‖rk(v)− xj‖ < hρ})
µ({v ∈ Rd : ‖rk(v)− xj‖ < hρ})

≤ 4R2

b

(
δ +

C0

hM (`+ 1)

)
+ L2h2βR2

K + C1h
2β−Me−R

α
Kh
−α(1−β)

+
C2|Jh,M |

`

≤ 4R2

b

(
δ +

C0

hM (`+ 1)

)
+ L2R2

Kh
2β + C1h

2β−Me−R
α
Kh
−α(1−β)

+
C ′2
hM`
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where |Jh,M | denotes the number of balls covering the ball B (introduced in the proof
of A.2) by the cover {BM (xj , hρ) : j = 1, 2, ...}. Similarly, one has |Jh,M | ≤ C0

hM

for some constant C0 > 0 proportional to the volume of B. Since δ > 0 is chosen
arbitrarily and the third term of the last inequality decreases exponentially fast when
h→ 0 for any β ∈ (0, 1), hence, it is negligible comparing to other terms. Finally,
with the choice of h ∝ `−1/(M+2β), one has

E[|gn(rk(X))− g∗(rk(X))|2] ≤ C̃1

hM`
+ C̃2h

2β ≤ C`−2β/(M+2β).

for some C > 0 independent of ` and for any positive β < 1 chosen arbitrarily.
Thus, by letting β → 1, we obtain the desire result:

E[|gn(rk(X))− g∗(rk(X))|2] ≤ C`−2/(M+2).
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