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Abstract – Two redox-sensitive metalloids, arsenic (As) and antimony (Sb), are examined here to
determine what can be their help in the deciphering of past depositional conditions. The enrichment factors
of the two elements are compared for a set of geological formations and marine deposits covering a
relatively wide range of paleoenvironmental settings, from oxic to euxinic conditions. This work confirms
that As and Sb are not robust paleoredox proxies but examining their relative enrichment may be useful.
These preliminary results indicate that a co-enrichment of both elements with Sb being more enriched than
As could be the mark of the so-called particulate shuttle effect. Notably, Sb would be more sensitive to Mn-
shuttling than As. If confirmed, this trend could be used to further identify the cause of As-enrichment in
marine sediments impacted by cold seepage fluids.

Keywords: As / Sb / redox / cold seeps / particulate shuttle

Résumé – Enrichissements conjugués en arsenic et antimoine en dépôts marins, utilisés comme
traceurs paléoenvironnementaux : résultats préliminaires. Deux métalloïdes sensibles à
l’oxydoréduction, l’arsenic (As) et l’antimoine (Sb), sont examinés ici pour déterminer quelle peut être
leur aide pour déchiffrer les conditions de dépôt du passé. Les facteurs d’enrichissement des deux éléments
sont comparés pour un ensemble de formations géologiques et de dépôts marins couvrant une gamme
relativement large de milieux paléo-environnementaux, allant des conditions oxiques aux conditions
euxiniques. Ces travaux confirment que As et Sb ne sont pas des traceurs paléo-redox fiables, mais l’examen
de leur enrichissement relatif peut être utile. Ces résultats préliminaires indiquent en effet qu’un co-
enrichissement des deux éléments, tout en ayant Sb plus enrichi que As, pourrait être la marque de l’effet
shuttle (transfert d’éléments chimiques par adsorption, de la colonne d’eau aux sédiments). Notamment, Sb
serait plus sensible au transfert via les oxydes et (oxy)hydroxydes de Mn que ne l’est As. Si elle est
confirmée, cette tendance pourrait être utilisée pour identifier plus aisément la cause de l’enrichissement en
As dans les sédiments marins influencés par les suintements de fluides froids.

Mots clés : As / Sb / redox / suintements froids / transfert par adsorption
1 Introduction

Arsenic (As) and antimony (Sb) are two metalloids often
mentioned together due to their belonging to group V of the
periodic table, which gives them common characteristics
(Tab. 1). They are most often mentioned for problems of
toxicity and pollution of soils, lakes and drinking water supply;
a large literature is available on this subject. On the other hand,
relatively little work has been devoted to the conditions of
accumulation of these two elements in marine sediments, when
they are considered as paleo-environmental markers. Arsenic
is much more studied than antimony in this regard. A recent
ding author: nicolas.tribovillard@univ-lille.fr
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study synthesized the complex geochemistry of sedimentary
As (Tribovillard, 2020) and the behavior of this element in
marine environments can be briefly summarized as follows.
Arsenic is mainly brought to the sediments with (oxyhydr-)
oxides of iron and manganese. If reducing conditions develop
at or below the water-sediment interface, As can react with
sulfide ions to form soluble species that can leave the sediment.
On the other hand, As will remain trapped if it can react with
iron sulfides (pyrite; see details in Tribovillard, 2020 and
references therein). Arsenic and antimony show similarities
and differences in the marine environment (Cutter, 1991;
Cutter and Cutter, 1995, 2006; Cutter et al., 2001; Chaillou
et al., 2008). Both are primarily transferred from the water
column to the sediments by Fe and Mn (oxyhydr-)oxides
(Qin et al., 2019). However, they can have contrasting
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Table 1. Basic values for the two key elements of this work.
Tableau 1. Valeurs de base pour les deux éléments clés de ce travail.

Elements Electronic
configuration

Mean oceanic
concentration

Residence time in the
ocean in years (1)

PAAS (2) Upper Crust (3) Aver.
Shale (4)

As [Ar] 3d1° 4s2 4p3 20 nmol/kg 39 000 1.5 4.8 13
Sb [Kr] 4d1° 5s2 5p3 1.6 nmol/kg 5700 0.2 0.2 1.5

(1) Broecker and Peng, 1982 concentrations in ppm
(2) Taylor and McLennan, 1985

(3) McLennan, 2001 (4) Wedepohl, 1995
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behaviors when subjected to variable redox conditions,
depending on the amount of reactive iron available in the
sediment (Chaillou et al., 2008; Polack et al., 2009; Ye et al.,
2020). Arsenic and Sb are readily incorporated into pyrite
when it can form (Gregory et al., 2015) but if trapping does not
take place, it has been observed that As could be mobile under
reducing conditions whereas Sb was preferably mobile under
oxic conditions (Ye et al., 2020 and references therein).

The goal of this study is to use the behavioral differences
between these two metalloids to progress in paleoenviron-
mental reconstruction based on geochemical data. In a recent
study (Tribovillard, 2020), a set of geological formations of
very different age and depositional environment were
examined to better understand how the enrichments in As
could serve as a paleo-environmental proxy. The formations
for which the data of Sb exist will be examined here and the
relative enrichments in As and Sb will be compared. The
differences and similarities between the distributions of these
two elements will allow us to propose paleoenvironmental
interpretations that can be transposed to many other marine
deposits of the Phanerozoic.

2 Materials and methods

For the present work, the same geological formations as
those examined in Tribovillard (2020) will be studied, except
for the ones with no Sb data available. The formations are
described in Tribovillard (2020) and references therein; the
descriptions are summarized in Table 2. The analytical
methods are also described in Tribovillard (2020). Some of
the results are expressed through the enrichment factors of the
elements. Enrichment factors (EF) were calculated as: X-
EF = [(X/Al)sample/(X/Al)upper crust], where X and Al represent
the weight % concentrations of element X and Al, respectively.
Samples were normalized using the average composition of the
upper continental crust of the Earth (McLennan, 2001). The
aluminum normalization is used to avoid the effects of variable
dilution by carbonate and/or biogenic silica, although certain
pitfalls may (seldom) accompany this approach when
aluminum content is minimal as may be the case with
carbonate rocks (see discussion in Van der Weijden, 2002 and
Tribovillard et al., 2006). Any value larger than 1.0
theoretically indicates the enrichment of an element relative
to its average crustal abundance but, practically, an enrichment
may be considered to be detectable when EF> 3 (Algeo and
Tribovillard, 2009). Aluminum normalization and the
Page 2 o
calculation of enrichment factors have been retained in this
paper because it is a convenient way to compare geological
formations and sediments deposited in very different deposit
contexts. However, this type of standardization is not always a
panacea and the examination of elemental concentrations can
also provide relevant information, especially when the
chemical elements can be carried by particular mineralogical
phases. By way of illustration, we can cite the work of Baux
et al. (2019) who observed that glauconites carried relatively
high concentrations of arsenic in the greenish sands of the Bay
of Seine in Normandy.

3 Results

We will focus here upon the relationships between the
respective enrichment factors in As and Sb, formation by
formation. All the cross plots are illustrated with the Figure 1S
available online (supplementary materials) and the results are
summarized with Table 3. Four situations have been identified:
situation 1 with low enrichments in both As and Sb, the other
three situations with more or less pronounced enrichments in
As and/or Sb. Situation 2 is when As is more enriched than Sb,
situation 3 is when Sb is (slightly) more enriched than As, and
situation 4 is when As and Sb enrichments are marked and
proportional. Most of the time, the formations studied
correspond to one situation only, but the samples of the
Pigmy and Cariaco basins can be grouped in subsets belonging
to two or three situations.

4 Interpretations

For the depositional environments subjected to oxic
conditions (Jurassic Vaca Muerta, Argiles de Châtillon,
Argiles de Wimereux, Cretaceous La Charce, Cenozoic Pigmy
Basin prop parte), low enrichments in As and Sb are observed,
with however enrichments in As a little more pronounced than
those in Sb. This discrepancy may be related to a normalization
bias. In the present work (as well as in Tribovillard, 2020), the
enrichment factors are calculated using the upper crust
composition of McLennan (2001), i.e., 1.5 ppm for As and
0.2 ppm for Sb. This choice wad guided by the fact that the
paper of McLennan (2001) is a widely-used reference in paleo-
environmental reconstructions. The value for Sb is in the range
of those reported by various authors (Hu and Gao, 2008, and
references therein) but the As content is lower than that
reported by Sims et al. (1990), Gao et al. (1998), Rudnick and
f 11
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Table 2. Quick description of the main features of the geological formations or sedimentary deposits examined here with the key references for
further information.
Tableau 2. Description rapide des principales caractéristiques des formations géologiques ou des dépôts sédimentaires examinés ici avec les
principales références pour plus d’informations.

Formations/deposits Descriptions References

The Cariaco Basin, offshore Venezuela This small-dimensioned basin yields several specific
conditions: high, upwelling-stimulated, surface
productivity, and restricted bottom waters prone to
recurrent development of euxinic conditions. The
organic-rich sediments of Pleistocene-Holocene age
are also rich in diatoms and shows annual-type
laminations.

Bout-Roumazeilles et al., 2013;
Riboulleau et al., 2014

The Jurassic formations of the
Boulonnais area (northern France)

Proximal lateral equivalent of the Kimmeridge Clay
Fm., cropping alongshore the French coast of the
English Channel. These sediments accumulated on a
siliciclastic ramp subject to dominantly aerobic
conditions with some episodes of dissolved oxygen
restriction. The Kimmeridgian/Tithonian Argiles de
Châtillon Fm. is made up with dark marls, mudstones
and shales with marine-origin organic-matter. The
Tithonian Bancs Jumeaux Fm. consists of dark marls,
mudstones and siltstones with moderate marine-
organic matter content. The paleoenvironments have
been determined as suboxic. The Tithonian Argiles de
Wimereux Fm. consists of dark marls, mudstones and
siltstones with moderate to low organic-matter
content. The paleoenvironments have been
determined as normally oxygenated to suboxic. Cold
seepage episodes were well recorded in the Bancs
Jumeaux Fm.

Proust et al., 1995; Deconinck et al.,
1996; Hatem et al., 2014, 2016;
Tribovillard et al., 2015

The Vaca Muerta Formation, one of the
most prolific source-rocks of the
Neuquén Basin (Argentina)

This lithostratigraphic unit consists of dark shales,
marls and limestones deposited during the Tithonian-
Valanginian interval, as the result of a rapid and
widespread marine transgression. In the southern part
of the basin (Pic�un Leuf�u Anticline), the Vaca Muerta
Fm. is interpreted as a prograding siliciclastic shelf
with storm and turbidity flows, and with an episodic,
moderate, limitation of marine circulation, at least
during the beginning of the deposition. The Vaca
Muerta Fm. did not record oxygen-limited conditions,
contrary to the rest of the basin, except for the very
base of the formation. In addition, the organic content
of the rocks is rather poor.

Krim et al., 2017, 2019

The “pseudo-biohermes” of Beauvoisin
(S-E France)

The carbonate biohermes of Beauvoisin, in the
Baronnies Mounts (Provence) developed at cold seep
sites debouching at the basin bottom during the
deposition of the Terres Noires Fm. Thick
accumulation (2000m) of monotonous, dark-colored,
hemipelagic marls took place during the Bathonian to
Oxfordian. The bioherms, rich in lucinids, developed
on synsedimentary faults.

Gaillard et al., 1985, 1992; Tribovillard
et al., 2013; Gay et al., 2019

The Frasnian-Famennian boundary
(late Devonian)

Formations encompassing the Frasnian–Famennian
boundary (a major period of biodiversity crisis and
environmental modifications). The formations were
studied in France (La Serre and Coumiac sections,
Montagne Noire), Morocco and Germany. The Upper
Frasnian interval is commonly associated with the

Feist, 1985; Tribovillard et al., 2004;
Averbuch et al., 2005; Riquier et al.,
2005, 2006, 2007, 2010
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Table 2. (continued).

Formations/deposits Descriptions References

deposition of one or two organic-rich units, the so-called
Kellwasser (KW) horizons, deposited in outer shelf and
epicontinental basin settings. Several factors controlling
the KWorganic-rich sediment accumulation have been
proposed, and among them, enhanced productivity
coupled to bottom-water oxygen-depletion. These factors
have been connected to different driving mechanisms
acting separately or combined, such as sea-level
fluctuations, climatic variations, land plants spreading,
volcanism or mountain building.

The Gulf of Mexico Sediments collected in the La Salle, Orca and Pigmy
sub-basinson the northern border of the Gulf of
Mexico (Louisiana continental slope). These sub-
basins record both the terrigenous input from the
North American continent and the tropical oceanic
influences via the Loop Current. The sediments are
dated of the Pleistocene and Holocene. The Orca
Basin is an intra-slope depression that collects
sedimentary particles of terrestrial origin (clastic and
organic particles mainly supplied by the Mississippi
River) and of marine origin (biogenic productivity).
The basin is partly filled with dense brines leached
from salt diapirs cropping out on the sea floor, and is
permanently stratified. A strong pycnocline induces
anoxic bottom conditions. The La Salle and Pigmy
basins collect the same types of sedimentary particles
but they are not stratified, and are thus not exposed
to anoxic bottom conditions.

Tribovillard et al., 2008;
Montero-Serrano et al., 2009, 2010, 2011

The Weddell Sea (ODP leg 113;
70°43.432’S, 13°49.195’W)

ODP Hole 692B was drilled in the eastern Weddell Sea
on the shelf of the Dronning Maud Land. The site is
located on the flank of a submarine canyon (Wegener
Canyon), by 2875m of water. Early Cretaceous black
shales were cored and are described as Unit III,
consisting of black to very dark grey claystone/
mudstone, with varying percentages of clay, carbonate,
and organic matter. Parallel lamination is the dominant
sedimentary structure; bioturbation is occasionally
observed. The sediments are interpreted to have
accumulated in an outer shelf/upper slope environment.

Barker et al., 1988

Adélie Land region of East Antarctica Piston core MD03-2603 was recovered at 3320m
depth, on the distal part of a mound located between the
Cuvier and “D” canyons (Lat. 64°17.12S, Long.
139°22.51E), during the CADO cruise (Coring Adélie
Diatom Oozes, MD130 Images X) on board R/V Marion
DuFresne II. The sediment is composed of diatom ooze
alternating with structureless greenish ooze and
millimeter to centimeter thick green-to-dark seasonal
laminations. Sediment lithology is very fine from clay to
silt fraction.

Denis et al., 2009; Presti et al., 2011

La Charce Section The La Charce Section (Vocontian Basin, SE France)
shows typical pelagic alternations of burrowed, beige
to light-grey limestone beds and medium-grey marls,
deposited during the Hauterivian times, under the
influence of Milankovitch-type climate variations.
Benthic conditions were oxic to suboxic.

Baudin et al., 1999; Van de
Schootbrugge et al., 2000, 2003
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Table 3. Recapitulation of the distribution of the enrichment in As and Sb for the various formations or sediments studied here. Four situations
have been distinguished, numbered 1 to 4. Two of them, namely, situations 2 and 3, are discussed as possible marks of Fe/Mn shuttling or cold-
seep influences, respectively.
Tableau 3. Récapitulation de la distribution des enrichissements en As et Sb pour les différentes formations ou sédiments étudiés ici. Quatre
situations ont été distinguées, numérotées de 1 à 4. Deux d’entre elles, à savoir les situations 2 et 3, sont envisagées comme des signatures
possibles d’influences de transfert par adsorption via les particules de Fe/Mn ou de suintements froids.

Situation 1 Situation 2 Situation 3 Situation 4

low As, low Sb As>Sb Sb>As As % SB

Orca Basin Bancs Jumeaux Fm. Cariaco Basin pro parte Cariaco Basin pro parte

Pigmy Basin pro parte Pigmy Basin pro parte Pigmy Basin pro parte Frasnian-Fammenian
boundary, all sections but BO

E-Antarctica Adelie
La Charce Beauvoisin
Argiles de Wimereux Weddell Sea
Argiles de Châtillon Frasnian-Fammenian boundary, BO section
Vaca Muerta Fm.
Sections 14/2, 12/7, 13/6, 14/1

Vaca Muerta Fm. Sections COV, et VM1

N. Tribovillard: BSGF 2021, 192, 39
Gao (2003) and Hu and Gao (2008). As already pointed out to
by Tribovillard (2020), the low As value of McLennan (2001)
may artificially create an automatic> 1 value when calculating
enrichment factors, thus erroneously suggesting some enrich-
ment whereas such a bias does not occur using the consensual
value of 0.2 ppm for Sb. Consequently, it is concluded here not
to take into consideration the differences in the enrichment
factors observed in the present work for formations deposited
under oxic conditions. We may conclude that no significant
enrichment in As and Sb are observed for sediments deposited
under oxic conditions.

For reducing environments such as those studied here
recording the Frasnian-Fammenian boundary, the respective
enrichments in As and Sb are marked and largely proportional,
except for the euxinic setting of La Serre (Montagne Noire,
France) that yields scattered values. However, the sediments of
the highly confined and anoxic Orca Basin (Gulf ofMexico) do
not show significant enrichments in As and Sb. We have no
explanation for this counter-intuition absence of enrichment
despite reducing conditions: is it related to the over-salinity of
the basin (Tribovillard et al., 2008) or some basin reservoir
effect (Algeo and Lyons, 2006) or the shortage of reactive iron
and manganese (Tribovillard, 2020) or some other unsuspected
factor? However, the idea to be retained is that sediments
deposited under reducing conditions do not all show
co-enrichments in As and Sb. This observation suggests that
these metalloids are not robust redox proxies.

Still considering anoxic and/or euxinic depositional
milieus, the Cariaco basin shows some enrichments in As
and Sb. We observe similar distributions for both elements,
with (1) gradually lower enrichments in As and Sb with
increasing enrichment in molybdenum (Mo), that is, increa-
singly reducing conditions, and (2) a comparatively slightly
higher enrichment in Sb relative to As when both elements are
relatively enriched (Fig. 1). The Cariaco Basin yields a rather
specific conjunction of factors:
Page 5 of
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seasonal upwelling, stimulating a high productivity (Haug
et al., 1998);
–
 highly stratified water column prone to the development of
euxinic conditions (Haug et al., 1998; Aycard et al., 2003;
Quijada et al., 2015, 2016);
–
 high sedimentation rates (Algeo and Lyons, 2006);

–
 active shuttling via Mn and Fe (oxy-hydr)oxides (Algeo
and Tribovillard, 2009);
–
 relatively limited availability of reactive iron (Tribovillard,
2020).
The role of a high sedimentation rate can be discussed to
account for the diminished enrichments in As and Sb when the
basin was highly confined (e.g., Crombez et al., 2020; Liu and
Algeo, 2020). Alternatively highly confined, hence reducing,
conditions may have favored the formation of soluble As
species, explaining why this element could be impoverished in
the sediments (see discussion in Tribovillard, 2020, but this
mechanism is less suitable for Sb). Lastly, the relative lack of
reactive iron under highly reducing conditions may have
limited the efficiency of As and Sb transfer from the water
column to the sediment. The important point is that the Cariaco
Basin is one of the rare situations where Sb is slightly more
enriched than As. This is especially the case for samples
showing relatively lower Mo enrichments, that is, regarding
Cariaco, the samples for which the Mn/Fe shuttling was the
highest.

This influence of the shuttle effect is even more visible in
the case of the Pigmy Basin (Gulf of Mexico). Figure 2 shows
the Pigmy samples in a diagram opposing the respective
enrichments in U and Mo (Algeo and Tribovillard, 2009). The
samples plotting in the area typical of the shuttle effect are also
those with the highest Sb enrichment compared to As (Fig. 1).
Thus, though our dataset regarding settings with a shuttle
effect and available As & Sb data is quite limited, our



Fig. 1. A. Bivariate diagram opposing the enrichment factors of Mo
(x-axis) to those of As and Sb (y-axis) for the Cariaco Basin samples.
B. Box diagram showing the enrichment factors in As and Sb (As-EF
and Sb-EF, respectively) for the sedimentary deposits influenced by
the particulate shuttle effect.
Fig. 1. A. Diagramme opposant les valeurs des facteurs d’enrichisse-
ment enMo (abscisses) à celles desq facteurs d’enrichissement en As et
Sb (ordonnées). B. Diagramme en « boîtes à moustaches »montrant les
facteurs d’enrichissement en As et Sb (As-EF et Sb-EF, respectivement)
pour les dépôts sédimentaires influencés par l’effet navette particulaire.

Fig. 2. A. Diagrams showing that the Pigmy Basin samples with Mo
concentrations above the detection threshold value (A) yield low U
enrichment factors (U-EF) but detectable Mo enrichments (Mo-EF),
which indicates the influenceof shuttling-mediated transfer ofMo to the
sediment. B. The samples with detectable Mo concentrations are also
those with high Sb enrichments (Sb-EF) relative to As values (As-EF).
Fig. 2. A. Diagrammes montrant que les échantillons du Bassin de
Pigmy avec des concentrations de Mo supérieures à la valeur du seuil
de détection (A) montrent de faibles facteurs d’enrichissement en U
(U-EF) mais des enrichissements détectables en Mo (Mo-EF), ce qui
indique l’influence du transfert de Mo au sédiment, par des particules
de Fe/Mn. B. Les échantillons avec des concentrations de Mo
détectables sont également ceux avec des enrichissements élevés en
Sb (Sb-EF) par rapport aux valeurs de As (As-EF).
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preliminary results strongly suggest that a higher Sb
enrichment compared to As could be the mark of the Fe/
Mn shuttling.

Qin et al. (2019) report that As and Sb are commonly
captured by Fe and Mn (oxyhydr-)oxides but Sb is more
reactive than As to the capture by Mn species. In addition, as
reported by He and Hering (2009) and He et al. (2019),
previous studies have reported the potential of manganese
oxides (sensu lato, that, is, hydroxides and oxyhydroxides) in
immobilizing the Sb present in water or sediments (Wang
et al., 2012; Basu et al., 2014). Moreover, the capacity of Mn
oxides for oxidizing and trapping Sb species has been
demonstrated to be much higher than that of Fe oxyhydroxides
(Thanabalasingam and Pickering, 1990; Belzile et al., 2001;
Wang et al., 2012; He et al., 2019). Lastly, As would be less
sensitive to such a Mn-mediated capture, as indicated by the
light enrichment in As observed on Mn species in Mediterra-
nean sapropels (Robertson et al., 2019; see He and Hering
(2009) for a discussion about As solubilization/immobilization
in presence of variable proportions of soluble Mn and Fe).
Such a Mn-related transfer to the sediment may be hard to
decipher after diagenesis because Mn is easily remobilized in
sediments undergoing reducing conditions and released back
to the water column. Iron may also be remobilized under
reducing conditions but it is usually trapped within sediments
in the form of insoluble iron sulfide or pyrite. Manganese is not
so easily trapped: Mn carbonates and sulfides (rhodocrosite
and alabandite, respectively) require specific conditions to be
precipitated authigenically (Calvert and Pedersen, 1993;
Tribovillard et al., 2006). Therefore, Mn-mediated transfer
of Sb and As may be carried out with no discernible Mn
enrichment being recorded, but this shuttling could account for
Sb being more enriched than As in some occurrences. If
confirmed by further studies, this contrasted behavior of As
and Sb could be a clue to detect past transfer of metalloids from
seawater to sediment through Mn oxides (hydroxides and
oxyhydroxides).

Enrichments in As and Sb are occasionally reported for
sediments that underwent the influence of hydrothermal-fluid
circulation or exhalation (plumes; Zeng et al., 2018 and
references therein); however, associations of these two
elements have been seldom mentioned for sediments impacted
by cold (hydrocarbon) seepage (Tribovillard et al., 2013;
Hu et al., 2014; Chen et al., 2016; Wang et al., 2018, 2019a,
2019b; Zwicker et al., 2018). Regarding cold seeps, most
often, analyses are performed on associated authigenic
minerals such as carbonates and/or sulfides, but only rarely
on bulk sediments as is the case in the present study. Such
authigenic substances may yield enrichments in Ba and Sr, as
well as Ni, Co, Cu, Mo and W (Meyer-Dombard et al., 2012;
Wang et al., 2019a) but these enrichments are not systemati-
cally observed (Liang et al., 2017). Consequently, identifying
the chemical signature of cold seepage is not straightforward
for sediments that do not show obvious structures such as
authigenic carbonate/sulfide chimneys, concretions or nodules.
An additional pitfall is that authigenic carbonates may
recrystallize during earliest diagenesis, which expels Mg
and Sr and other trace elements from carbonates (Hatem et al.,
2014, 2016; Smrzka et al., 2017) thus blurring the original
imprint of cold seep fluids. Most often, unobtrusive influences
of cold seepage may be deciphered using C, O and S stable
Page 7 o
isotope composition. Here, our observations show that the
As-Sb covariations may be used as a diagnostic tool allowing
for typifying cold seep signatures. Considering here the
geological formations that undoubtedly underwent cold
seepage influences, namely, the Bancs Jumeaux Fm. and
the pseudo-bioherms of Beauvoisin, we observe no enrich-
ment in Ba or Sr but the samples show enrichments in both As
and Sb, with As-enrichment factors being larger than Sb-
enrichment factors. The same is true for the cold seep-
associated samples examined by Wang et al. (2019a). Lastly
the same is also the case for samples of the VM1 section of
the Vaca Muerta Fm., for which cold seepage influences have
been suspected (Krim et al., 2019). The geological objects
concerned by hydrothermalism discussed here are in fact all
linked to cold seeps. The limestone levels of the Boulonnais
Tithonian Bancs Jumeaux Fm. and the Beauvoisin Oxfordian
bioherms are linked to fluid circulations along synsedimen-
tary faults. These fluids were rich in dissolved organic carbon
(probably methane) and were at the origin of the development
of particular faunas: oysters of small sizes (cm) almost
exclusive in the Boulonnais, when faunas were associated
there with cold seeps; Hatem et al. (2016), and dominant
lucinids in the case of Beauvoisin bioherms. In the work of
Wang et al. (2019a) on the Pliocene of the Chiahsien region
(SW Taiwan), the objects of study were calcareous fluid
conduits accompanied by lucinids. Finally, in the case of the
VM1 section of the vaca Muerta formation, no evidence of
fluid circulation was observed in the field (Krim et al., 2017,
2019).

The enrichment in As of seepage-impacted sediments has
already been reported and discussed at length by Tribovillard
et al. (2013), Hu et al. (2014), Chen et al. (2016), Zwicker et al.
(2018), Wang et al. (2018, 2019b). The debated point is to
identify the driving force causing As enrichment: As-rich
ascending fluids or reactive iron being released at seep sites
and inducing a local shuttling, inducing in turn the capture and
transfer of As? Here we complement the picture with Sb data
and we observe that As is more enriched than Sb in the
sediments of such environments (Fig. 3). From another
standpoint, Bardelli et al. (2011) observed that bacterially-
mediated carbonates can incorporate significant amounts of As
(see also Smrzka et al., 2019, 2020). In (past) cold seep
settings, most of the authigenic carbonates result from bacterial
processes, which could account for As being enriched more
than Sb in the seep-related sediments examined here.

However, Table 3 and Figure 1S show that some
depositional environments yield As enrichment relative to
Sb but no discernible presence of past seep fluids (Weddell
Sea, Vaca Muerta Covunco section, Pigmy Basin pro parte).
We cannot be sure that no seepage occurred for these deposits
but no evidences have ever been observed. Consequently, we
cannot state unambiguously that seepage-impacted sediments
always show As and Sb enrichments with As being more
enriched than Sb. Nevertheless, our results suggest that a
shuttle-mediated enrichment would favor Sb over As
(especially if the shuttling is mediated by Mn and not Fe
alone), whereas the opposite is observed here for the sites of
ascertained seepage influences. Therefore, it is suggested that
shuttling was not the driving force accounted for As and Sb
enrichments at Beauvoisin (pseudo-bioherms) or in the
Boulonnais (Bancs Jumeaux Fm.).
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Fig. 3. Box diagram showing the enrichment factors in As and Sb
(As-EF and Sb-EF, respectively) for the sedimentary deposits
influenced by cold-seep fluids. In such box plots, each box encloses
50% of the data with the median value of the variable displayed as a
line. The top and bottom of the box mark the limits of ± 25% of the
variable population. The lines extending from the top and bottom of
each box mark the minimum and maximum values within the data set
that fall within an acceptable range. Any value outside of this range,
called an outlier, is displayed as an individual point.
Fig. 3. Diagramme en « boîtes à moustaches » montrant les facteurs
d’enrichissement en As et Sb (As-EF et Sb-EF, respectivement) pour
les dépôts sédimentaires influencés par les fluides de suintement
froids. Dans ces « boîtes à moustaches », chaque boîte englobe 50%
des données avec la valeur médiane de la variable affichée sous forme
de ligne. Le sommet et la base de la case indiquent les limites de
± 25% de la population variable. Les lignes qui partent du haut et du
bas de chaque case indiquent les valeurs minimales et maximales de
l’ensemble de données qui se situent dans une plage acceptable. Toute
valeur en dehors de cette plage, appelée valeur aberrante, est affichée
en tant que point individuel.
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5 Conclusion

A recent synthesis illustrated that As cannot be looked at as
a simple-to-use redox proxy (Tribovillard, 2020). The present
work further shows that the combination of As and Sb cannot
reliably help to reconstruct paleoredox situations, although
these metalloids are redox-sensitive elements. However, our
results indicate that As and Sb enrichments may be used to
discuss two paleoenvironmental situations in the sedimentary
record: cold seep-impacted sediments and settings prone to the
particulate shuttle process. For these two types of situations, an
enrichment is As is observed; however, disentangling the very
cause of metal(loid) enrichment in the case of cold seepage is
Page 8 o
not easy: direct enrichment by ascending fluids or shuttling
induced by the seep panache (Tribovillard, 2020 and
discussion therein)? To be further assessed, the preliminary
results presented here need to be tested in a larger number of
cases. Nevertheless, our work suggests that coeval, marked
enrichments in As and Sb with Sb being (slightly) more
enriched than As, could be a signature of Fe/Mn shuttling. If
true, on the basis of the situations studied here, the metalloid
enrichments observed at some seep sites would result from
direct enrichment by seeping fluids rather than from seepage-
released iron and/or manganese, shuttling around seep sites.

Supplementary Material

Fig. 1S. Bivariate diagram illustrating the relationships
between the enrichment factors of As and Sb for the Devonian
sections yielding the samples of the Kellwasser horizons (A),
all the samples but the La Serre section (B), the samples of the
La Serre section (C), the Cariaco Basin (D), the Jurassic
bioconstructions of the Terres Noires Fm. (SE-France) (E), the
Orca and Pigmy basins of the Gulf of Mexico (F), the various
sections of the Vaca Muerta Fm. of Argentina (G), the marl
formations of the Boulonnais area (N-France; AW stands for
Argiles de Wimereux, BJ stands for Bancs Jumeaux and ADC
stands for Argiles de Châtillon) (H), the Weddell Sea (I) and
the Hauterivian La Charce section (J).

Diagramme croisé illustrant les relations entre les facteurs
d’enrichissement de As et Sb pour les coupes dévoniennes
montrant les échantillons des horizons Kellwasser (A), tous les
échantillons sauf ceux de la coupe de La Serre (B), les
échantillons de la coupe de La Serre (C), le Bassin de Cariaco
(D), les bioconstructions jurassiques des Terres Noires (SE-
France) (E), les bassins Orca et Pigmy du golfe du Mexique
(F), les différentes sections de la Vaca Muerta d’Argentine (G),
les formations marneuses du Boulonnais (N-France; AW
signifie Argiles de Wimereux, BJ signifie Bancs Jumeaux et
ADC signifie Argiles de Châtillon) (H), la mer de Weddell (I)
et l’Hauterivien de la coupe de La Charce (J).

The Supplementary Material is available at http://www.bsgf/
10.1051/bsgf/2021034/olm.
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