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Driving Towards Energy Efficiency: A Novel Torque Allocation Strategy
for In-Wheel Electric Vehicles

Fadel Tarhini1, Reine Talj1 and Moustapha Doumiati2

Abstract— Electric vehicles (EVs) with four independent in-
wheel motors are classified as over-actuated systems, granting
unprecedented possibilities to meet the total driving torque and
yaw moment demands through an infinite number of feasi-
ble torque combinations. Ensuring an energy-efficient torque
distribution among the motors is indispensable for mitigating
energy consumption and extending the driving range. This
is a pivotal factor in promoting eco-friendly and sustainable
transportation solutions. This work focuses on the low-level
control of a proposed multi-objective control architecture, en-
compassing longitudinal, lateral, stability, and maneuverability
control. A novel configuration method for torque allocation
is established, followed by developing and contrasting four
multi-objective-based strategies. An energy-saving criterion is
further developed, and the energy-efficient allocation strategies
are carried out within the frameworks of online and offline
optimization, based on the Sequential Quadratic Programming
(SQP) algorithm. The proposed architecture is tested and
validated in a joint simulation between Simulink/MatLab and
SCANeRTM Studio vehicle dynamics simulator. The simulation
outcomes demonstrate that implementing the suggested torque
allocation can lead to enhancements in the energy efficiency,
driving comfort, and stability of the electric vehicle.

I. INTRODUCTION

The adoption of electric power as a means of transporta-
tion is increasingly gaining momentum in mitigating the
adverse effects of traditional combustion engines and fossil
fuels on the environment. Electric vehicles have devoted con-
siderable attention to many due to their efficient energy use,
emission-free operation, and exceptional driving capabilities.
On the other hand, statistical data show that 90% of accidents
occur as a result of driver incompetence [1]. Hence, research
studies are moving towards Autonomous Vehicles (AVs) to
improve road safety.

Electric vehicles equipped with four in-wheel motors have
attracted enormous attention in the literature and industry
because of their actuation flexibility [2] and potential for re-
ducing energy consumption [3]. These vehicles benefit from
an over-actuated system that allows for independent control
of each actuator, serving both traction and braking purposes.
As a result, leveraging the unique features of such systems
opens up possibilities for designing advanced controllers
that can enhance vehicle performance while simultaneously
reducing energy consumption.

The development of autonomous vehicles is rapidly ad-
vancing, and the focus is shifting toward optimizing their
energy efficiency by integrating in-wheel motors. One widely
applied and effective method to control such systems is
torque allocation. This method involves regulating the ve-
hicle’s motion by allocating torques on the wheels using
independent in-wheel motors and solving constrained control
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allocation problems to minimize various cost functions. The
cost function may prioritize safety [4], energy consumption
[5], or multi-objective criteria [6]. Thus, it is a concise and
modular approach to optimizing dynamic trade-offs between
vehicle performance and energy efficiency.

To effectively distribute torques among the four indepen-
dent in-wheel motors, Control Allocation (CA) strategies
often leverage optimization algorithms. Notably, there are
several approaches that target energy-efficient control. For
instance, the energy-efficient control in [7] is classified as a
minimization of both the tire friction loss and the power con-
sumption of the electric motor. An energy optimal trajectory
tracking control for an autonomous in-wheel driven vehicle
considering maximizing battery State Of Charge is done in
[8]. A hybrid model predictive control is implemented by [9]
to minimize the drive-train power loss while ensuring vehicle
stability. Particle Swarm Optimization (PSO) is employed in
[10] to solve a real-time optimal distribution strategy with the
aim of maximizing the motors’ utilization in high-efficiency
zones. [11] proposed an energy-efficient and real-time im-
plementable torque allocation strategy based on minimizing
power losses using offline optimization. An Energy Efficient
Cruise Control is developed in [12] to operate the EV’s power
train close to its peak efficiency region. Other strategies
considered different objectives. For instance, [13] presented
a control allocation strategy to optimize the tire forces of a
hybrid EV. Whilst, an integrated control strategy is developed
in [14] to improve energy economy and longitudinal driving
stability. However, traction torques are distributed to handle
stability on low-adhesion roads independently of energy
economy which is promoted on high-adhesion roads.

Literature shows that the control of the vehicle perfor-
mance is often treated independently of the energy aspects,
whereas electric AVs have a significant potential for reducing
energy consumption. In this paper, a multi-objective control
architecture is developed. As the work considers a fully
autonomous vehicle, lateral control conjugated with longi-
tudinal control is established at the high level, in addition to
the stability and maneuverability control objectives [15]. The
paper focuses on the low level where the desired objectives
are achieved by physical actuators, including the four In-
wheel Motors and the Active Front Steering (AFS). The high-
level control inputs are assumed to be generated at each time
step and sent to a torque allocation unit, where a novel torque
allocation method is proposed to distribute the traction and
braking torques among the motors. An energy consumption
optimization criterion is illustrated based on a developed
consumption model. Then, four multi-objective strategies are
developed and contrasted to examine the energy consumed
by each one. Each strategy presents an optimal allocation
considering its corresponding objectives, where the online
and offline strategies are executed using the SQP method
based on an utter energy economy objective.



The paper contributions are stated as:
• Establishment of a novel approach for torque allocation,

by imposing the constraints on the low level control.
• Development of an energy consumption model, with a

criterion to determine the saved energy based on a con-
structed performance index.

• Development and comparison of four strategies for optimal
torque distribution considering multi-objectives.

The paper is structured as follows: Section II illustrates the
multi-objective control architecture, by exposing the high
level and introducing the allocation strategy at the low
level. Section III presents the energy-saving criterion based
on a proposed energy performance index. The four multi-
objective-based strategies are revealed in Section IV. Finally,
a discussion of the results is presented in Section V, followed
by a conclusion.

II. MULTI-LAYER CONTROL ARCHITECTURE

A. Decentralized Control Architecture
The complete developed control architecture is given in

Fig. 1. Aside from the perception and localization part, it
consists of three layers: decision and control at the high level,
and actuators coordination at the low level. The architecture
is structured based on a decentralized control [16], where
control commands representing the desired objectives are
generated. The objectives originated in this study are lateral
and longitudinal control, as well as maneuverability and
stability control. Lateral control is achieved by regulating
the steering angle δc of the Active Front Steering (AFS)
actuator. Longitudinal control is executed by controlling the
longitudinal velocity Vx of the vehicle, by distributing a
generated total driving torque Tm among the four in-wheel
motors. Lastly, stability and maneuverability are switched
according to the driving situation. A risk of instability is
detected by a decision-layered stability monitor, directly pro-
moting the stability objective while relaxing maneuverability.
Stability is restored by controlling the side-slip angle β,
while maneuverability control is attained by controlling the
yaw rate ψ̇ of the vehicle. The latter objectives are realized
by generating a corrective yaw moment Mz using the Direct
Yaw Control (DYC). The generated driving torque and the
yaw moment are received by a torque allocation unit to
generate four driving and four braking torques among the
motors. Finally, the controlled steering and the generated
torques are fed into the fully dynamic “Callas” vehicle of
the SCANeRTM Studio simulator.

B. High Level Control
The high level is composed of three decentralized con-

trollers based on the Super Twisting Sliding Mode Control
(STSMC), which generates control inputs in order to control
independently, the vehicle’s lateral and longitudinal dynam-
ics, as well as its stability and maneuverability. This work
builds upon our previous publication on high-level control
[15], so it will not be elaborated on in this paper. The reader
can refer to [17] for method implementation.

C. Low Level Control
Following the generation of the control inputs for lateral,

longitudinal, stability/maneuverability control objectives at
the high level, δc is realized by AFS at the low level. Mz is
achieved using the DYC by distributing the torques among
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Fig. 1: Schematic diagram of the proposed architecture

the motors, along with Tm within a torque allocation unit. To
benefit from the advantages of the system’s over-actuation,
torques must be dispersed using the maximum possible
degrees of freedom (DOF). Indeed, there are 4 driving and
4 braking torques that can be realized by the actuators,
however, there is a set of constraints to be imposed on the
distribution configuration, hence decreasing the number of
possible DOF. To avoid interference with the generation of
Mz , every wheel on the same axle must receive similar
torques, and the sum of the four driving torques must be
equal to Tm (1).

Tm = Td,rl + Td,rr + Td,fr + Td,fl
Td,il = Td,ir

(1)

where Td,ij is the driving torque acting on the wheel ij,
and i, j = [rear (r), front (f)], [right (r), left (l)]. Imposing
these constraints on Td,ij , the driving torques allocation (2)
resulted. Therefore, the total motor torque Tm is weighted
by a variable p on the front axle, and (1 − p) on the rear
one. {

Trl = Trr = Tm

2 (1− p)

Tfl = Tfr = Tm

2 (p)
where 0 ≤ p ≤ 1 (2)

The constraints (1) are imposed into the variable p and
modulated as p between 0 and 1. To enable the development
of Mz utilizing the four wheels, its generation is split
between the vehicle’s front and rear sides, resulting in two
centers of rotation, one on each of the front and rear axles.
This is done by weighting Mz by a parameter k on the rear
axle and (1− k) on the front one. The moment is converted
into wheel torque by multiplying it by the ratio of the wheel
effective radius r over the half track tr. Therefore, Mz is
formed by generating two total torques Tr and Tf on the
rear and front axles respectively.{

Tr = −r
tr
kMz

Tf = −r
tr

(1− k)Mz
where 0 ≤ k ≤ 1 (3)

Assuming small δ and considering a counter-clockwise (ccw)
Mz generation,

Mz

tr
= −Fx,rl + Fx,rr − Fx,fl + Fx,fl (4)

where Fx,ij is the wheel ij longitudinal force. Tr and Tf are
distributed between the left and right sides by a combination
of deceleration and acceleration on the vehicle’s both sides
according to the direction of Mz . In order to avoid excessive
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Fig. 2: Proposed torque allocation for a ccw Mz

acceleration/braking, Tr and Tf are distributed such that
wheels on the same side receive the same sense of torque
(acceleration or braking), and the wheels on the same axle
receive opposite torque senses. These constraints, along with
(4) are imposed in the parameters k, q, n. The distribution
between both sides of the vehicle is done by weighting
the total rear torque Tr by q for braking and (1 − q) for
accelerating. Similarly, Tf is weighted by n for decelerating
and (1− n) for accelerating.

Tb,rr = qTr
Tb,fr = nTf
Td,rl = (1− q)Tr
Td,fl = (1− n)Tf

where q, n ∈ [0, 1] (5)

The distribution depends on the direction of Mz . If the
required Mz is in cw direction, torques are distributed as
in (5). Otherwise, distribution is done according to (6).

Tb,rl = qTr
Tb,fl = nTf
Td,rr = (1− q)Tr
Td,fr = (1− n)Tf

where q, n ∈ [0, 1] (6)

where Tb,ij represent the wheel ij braking torque. Combin-
ing (2, 3, 5, 6) leads to the allocation (7) for ccw Mz and
(8) otherwise, where p, k, q, n ∈ [0, 1].

Tb,rl = q−r
tr
kMz

Tb,fl = n−r
tr

(1− k)Mz

Tb,rr = Tbfr = 0

Td,rl = (1− p)Tm

2

Td,rr = (1− p)Tm

2 + (1− q)−r
tr
kMz

Td,fl = pTm

2

Td,fr = pTm

2 + (1− n)−r
tr

(1− k)Mz

(7)



Tb,rr = q r
tr
kMz

Tb,fr = n r
tr

(1− k)Mz

Tb,rl = Tbfl = 0

Td,rr = (1− p)Tm

2

Td,rl = (1− p)Tm

2 + (1− q) r
tr
kMz

Td,fr = pTm

2

Td,fl = pTm

2 + (1− n) r
tr

(1− k)Mz

(8)

Therefore, the traction and braking torques are distributed
according to the illustrated configuration Fig 2, depending

Fig. 3: In-wheel motor efficiency: motoring (ηd)

Fig. 4: In-wheel motor efficiency: regenerative braking

on four parameters p, k, q, n. Imposing the constraints on
the low level to be directly carried by the four parameters
reduces the computational time of the allocation, simplifies
the problem formulation, and clarifies the feasibility of the
optimization problem defined later.

III. ENERGY CONSUMPTION MODEL

A. Power Consumption

The power consumption of the four motors can be defined
as (9) in dependence on the efficiency of each motor. As
the power loss of the battery is considered negligible, the
output power of the battery Pbo equates to the total power
consumption of the motors. Thus:

Pbo =

4∑
i=1

Pi =

4∑
i=1

Tiωi

η
sign(Ti)
k,i

(9)

where ηk = ηd corresponding to motoring/driving efficiency
if Ti ≥ 0, whilst ηk = ηb corresponding to regenerative
braking efficiency otherwise. The motor efficiency depends
on the torque generated by the motor and its angular velocity.
The relation η = f(T, ω) is denoted by the motor efficiency
MAP. Due to the high order and nonlinearity of the motor
system, obtaining an explicit form of efficiency is extremely
difficult. Thus, the efficiency estimation is performed using
Look-Up Tables (LUTs) visualized in the form of MAPs.
The efficiency MAPs for the PD18 DC electric in-wheel
motor [18] are constructed for motoring (traction torques)
and for regenerative braking (braking torques) in Figures 3,
4 respectively. Finally, the efficiency η is estimated through
the LUT based on a linear point-slope interpolation using the
binary search method.
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B. Accumulated Energy Consumption

The process of accumulation of energy consumption is a
way to determine the amount of energy consumed by the
battery in a sustained manner. It is the entire consumed
energy from the initial instant t0 until the current instant
ti. It can be determined by accumulating the pre-consumed
energies at each interval (Fig. 5).

C. Percentage Energy Gain

The criterion to determine the amount of energy saved
as a result of the optimization is to compute the relative
change in energy consumption from a vehicle with optimized
torque distribution to a vehicle without. The comparison is
performed with a reference vehicle (denoted by “classical
vehicle”), which is distinguished by distributing the traction
torques uniformly on the four wheels and generating Mz

using half-traction/ half-braking on the vehicle’s opposite
sides. Adapted to the proposed strategy, the classical vehicle
torque distribution is: p = k = q = n = 0.5. Therefore, the
criterion is to apply the performance energy index Eg (see
Fig. 6) on the accumulated energy consumption of the two
vehicles, where EmOP

and Em are respectively, the energy
consumed by the vehicle with optimized torque distribution
and the classical vehicle.

Energy gain Eg depicts the percentage of energy saved
by virtue of distributing the torques optimally, considering
minimizing the energy consumption. The total energy gain
represents the overall saving percentage, specified by the
final instant tf at the end of the test.

D. Energy Consumption Optimization

The high-level constraint that torque allocation is depen-
dent on control inputs generated at the current time instant
limits power consumption to be instantaneous and drives its
realization to be unanticipated.

Etot =

∫
Pbo dt =

∫ 4∑
i=1

Tiωi

η
sign(Ti)
k,i

dt (10)

The objective function desired to be minimized is the total
energy given in (10). Since the power consumption can’t
be predicted, the integration of the battery power couldn’t
be formalized. Hence, instead of minimizing the energy
consumption over a time zone, it is sufficient to minimize
the instantaneous power consumption. Therefore, the mini-
mization of Etot is equivalent to minimizing Pbo per sample
time (11). This concept is held when the power loss of the
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Eg = 100 Eg = - 100
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Fig. 6: Proposed energy performance index Eg (%)

battery is neglected [19].

min

∫
Pbo dt⇔ min Pbo (11)

Hence, the problem is transformed into an instantaneous op-
timization problem of determining Ti satisfying (12), i.e. the
optimization problem turns into finding the four parameters
p, k, q, n at each instant, that minimizes a cost function which
resembles the power consumption.

min
Ti(p,k,q,n)

4∑
i=1

Tiωi

η
sign(Ti)
k,i

(12)

IV. MULTI-OBJECTIVE-BASED STRATEGIES

The reduction of the vehicle’s energy consumption entails
finding the optimal parameters’ values that minimize a cost
function that reflects the desired objectives. Any set of values
for p, k, q, n that satisfies their constraints [0, 1] represents
a feasible solution for the optimization problem (12). Four
strategies are developed considering multi objectives, where
the energy consumption is studied in each case.

A. Constant Parameters: “Constant Strategy”
The term “constant parameters” refers to the practice of

keeping the allocation parameters p, k, q, and n at fixed,
unchanging values. This term is derived from the idea of
setting these parameters as constants:

p =
lr

lf + lr
; k =

lf
lf + lr

; (13a)

q =
tr

tf + tr
; n =

tf
tf + tr

, (13b)

where lr and lf are the distances from the center of gravity
to the rear and front axles respectively, and tr and tf are
the half-rear and half-front tracks respectively. In this paper,
the tested vehicle has similar tracks (tr = tf ) which in
terms effectuate assigning q, n as 1/2, forcing the sum of
the longitudinal forces acting on the wheels to become 0.
This minimizes interference with the longitudinal dynamics.

B. Dynamic Load Distribution: “Dynamic Strategy”
The Tire Working-Load Usage (TWU) (14) as defined in

[20] represents the edges of the friction circle. The basic
idea behind the friction circle is to impose a limit on the
longitudinal forces Fx,i acting on the wheels due to the
existence of the lateral forces Fy,i. As TWU is smaller i.e.
the friction circle of the wheel is larger, as the wheel has



more adhesion to the ground, thus has the ability to have
larger torques.

TWU =

4∑
i=1

F 2
x,i + F 2

y,i

(µFz,i)2
(14)

The load distribution ratio κ is defined as

κ =
Fz,f

Fz,r
=
Fz,fr + Fz,fl

Fz,rr + Fz,rl
(15)

The strategy is to make the ratio of the longitudinal forces
proportional to the loads Fzi, between the rear and front
sides of the vehicle. Hence, κ is reformulated as

κ =
Fx,f

Fx,r
=

pTm/r

(1− p)Tm/r
(16)

Therefore, the allocation parameters are formulated as

p =
Fz,f

Fz,f + Fz,r
=

κ

1 + κ

k = 1− p =
1

1 + κ

q = n =
1

2

(17)

where q and n are assigned as 0.5 to preserve the longitudinal
dynamics. Note that for an on-road vehicle, the tire normal
forces can be estimated in real-time by implementing an
Extended Kalman Filter observer (see [21]).

C. Online Optimization: “Online Strategy”

Numerical optimization is a process that involves gener-
ating a sequence of estimates of the solution, culminating
either in arriving at the solution or coming sufficiently close.
Solving this problem requires a set of tools or methods in-
cluding the SQP algorithm. The SQP method can be viewed
as a generalization of Newton’s method for unconstrained
optimization in that it finds a step away from the current point
by minimizing a quadratic model of the problem. The general
form of a nonlinearly constrained optimization problem is
given in (18).

min
x∈Rn

f(x) subject to

{
ci(x) = 0 ∀ i ∈ E
ci(x) ≥ 0 ∀ i ∈ I (18)

where f and ci are smooth scalar functions over A ⊂ Rn,
E denotes the set of equality constraints and I the set
of inequality constraints. The SQP algorithm replaces the
objective function with the quadratic approximation (19), and
replaces the constraint functions with linear approximations.

qk(d) = ∇f(xk)T d+
1

2
dT∇2

xxL (xk, λk)d (19)

where the step d is calculated by solving the quadratic
subprogram (20) (which is easier to solve and its objective
function can reflect the nonlinearities of the original prob-
lem).

min {qk(d) : ci(xk) +∇ci(xk)T d ≤ 0, i ∈ I;
ci(xk) +∇ci(xk)T d = 0, i ∈ E}

(20)

The computation of ∇2
xxL (xk, λk) is replaced by the

BFGS (Broyden-Fletcher-Goldfarb-Shanno) approximation
Bk, which is updated at each iteration [22]. The local conver-

gence of the SQP approach is satisfied when (x∗, λ∗) satisfies
the second-order sufficiency conditions. If the starting point
x0 is sufficiently close to x∗, and the Lagrange multiplier es-
timates λk remain sufficiently close to λ∗, then the sequence
generated by setting xk+1 = xk + d (k is an iteration index)
converges to x∗ at a second-order rate. The implementation
consists of consecutive stages of updating the Hessian matrix,
Quadratic Programming solution, Initialization, and Line
Search and Merit Function (see [23]).
The method is implemented by minimizing a cost function
f(x), representing a quantitative measure of the performance
of the system under study. Since the constraints are already
imposed at the low level and carried by the parameters p, k, q,
and n, one can define the optimization problem as

min
x
f(x) subject to

{
Ax ≤ b

lb ≤ x ≤ ub
(21)

where x = [p k q n]T , represents the vector of the optimiza-
tion variables. lb = [0 0 0 0]T and ub = [1 1 1 1]T are the
lower and upper bounds for x respectively. x0 is initialized
by assigning 0.5 to each variable as a midway between lb and
ub. The cost function reflects the total power consumption
of the motors (22). The acceleration torques depend on Tm
and p, while the deceleration torques are a function of Mz

and k, q, n. When reformulating, f(x) is converted into an
equation governed by the high-level generated control inputs,
and function of the optimization parameters.

f(x) =

4∑
i=1

Ti(x) ωi

η
sign(Tm)
k,i

where x = [p, k, q, n] (22)

A fast fluctuation between 0 and 1 is observed in p,
translated by assigning the traction torques to the axle whose
wheels have lower angular velocities. The oscillation exhib-
ited no effect on the chassis, after the study of the behavior of
κ, pitch and roll angles, and the load transfer ratio. However,
the high-frequency signals are naturally filtered by the motor
actuator. The rapid switching between the front and rear
wheels won’t be entirely realized. A simplified first-order
electric model is applied (23), to study the effect of the
natural filtering of the motor actuator as in [24].

T ∗
ij =

1

1 + Lm

Rm
s
Tij (23)

where Lm and Rm are respectively the motor’s internal
inductance and resistance, Tij is the requested torque at
the low level, and T ∗

ij corresponds to the motor-generated
torque. Parameters q and n carried a singular value 1,
reflecting the generation of Mz through braking torques
only. Its justification lies in the regenerative braking system
(RBS), where the system favors activating DYC through
braking, in order to gain energy instantaneously. However,
by braking repeatedly, the chassis loses its inertia and will
be forced to re-accelerate to compensate for the errors on
Vx, consequently losing energy. To solve this problem, the
online optimization problem is divided into two steps.

Proposed Two-Step Multi-Objective Algorithm:
In the first step, q, n parameters are assigned according

to multi objectives, then p, k parameters are determined in
the second step. The DYC controller is always active, either



Algorithm Two-Step Optimization

procedure GET-Q,N(Mz)
if |Mz| ≤ Mz then

Activate DYC using traction torques only
else if Mz < |Mz| ≤ Mz then

Activate DYC 1
2 traction/ 1

2 braking torques
else

Activate DYC using braking torques only
end if

end procedure
procedure GET-P,K(T (x), ω, η, q, n)

x = argmin
x

f(T(x), ω, η (T, ω)) ▷ x = [p, k]

end procedure

for maneuverability or stability. Hence, if Mz is always
generated by braking, it will cause driving discomfort and
wear on the wheels. Therefore, for low |Mz| (< Mz),
reflecting normal driving, step 1 favors operating DYC by
traction torques only. This helps avoid wear of the wheels,
assists in a comfortable drive, and provides higher Vx. For
mid |Mz|, imposing the vehicle in low error on the side-
slip angle or high yaw rate error, step 1 favors the genera-
tion of Mz by half traction/braking. This will preserve the
longitudinal dynamics, providing a counterbalance, earning
some energy, and avoiding excessive acceleration/braking.
Lastly, if |Mz| > Mz , the vehicle is in a critical situation
and exposed to high stability error. This often happens when
facing a high cornering, or a sudden steering. To ensure
safety, the vehicle must be slowed down and the traction
torques must be averted. Hence, Mz is generated by braking
torques only, consequently earning high energy. In the second
step, p, k are determined by minimizing the cost function,
considering the preassigned values for q, n.

D. Offline Optimization: “Offline Strategy”
An offline data-driven optimization is executed based on

historical data and using the same methodology as in online
optimization. Data (Mz, Tm, ωi, etc..) are extracted prior to
optimization by simulating the motion of the controlled ve-
hicle. Then for each vehicle position, correspondent data are
processed offline to determine the set of parameters p, k, q, n.
Finally, re-input the optimized parameters corresponding
to each position, under the same conditions. This offline
method can be implemented with a Model Predictive Control
(MPC) controller, in which the latter anticipates the vehicle
situation in the near future, allowing to draw out some data.
The offline processing of data, broke the time-dependency
of the optimization parameters, meaning the instantaneous
distribution won’t affect the vehicles’ parameters. In this way,
therefore, the oscillation behavior of p, k will be averted.

V. SIMULATION RESULTS

The proposed allocation strategy is implemented in the
control architecture and tested in a co-simulation between
Simulink/MatLab and SCANeRTM Studio vehicle dynamics
simulator. In order to contrast the four proposed strategies,
several simulations are conducted in the same testing envi-
ronment. The accumulated energy consumption is marked
in each strategy as it is the main cost variable in the
comparison. Since the strategies are multi-objective-based,
the corresponding advantages are highlighted in each case.

-100 -50 0 50 100

-100

-50

0

50

100

Fig. 7: Vehicle trajectory on the reference map
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Fig. 8: Longitudinal velocities of the strategies

The autonomous vehicle is driven on the “infinity loop”
track given in Fig. 7, representing a hard road geometry.
The desired reference velocity is set 60 km/h, while the
vehicle started the test at 54 km/h. The longitudinal velocity
of each strategy is presented in Fig. 8. It can be observed
that the velocities of the constant and dynamic strategies
are the most conserved. The traction and braking torques of
each motor corresponding to the constant strategy are shown
in Fig. 9. The distribution of the torques in this strategy is
performed based on a static load distribution by taking the
wheelbase as a factor. Aside from the part of the traction
torques dedicated to the yaw moment generation, the ratio
of the torques between the front and rear axles is constant yet
never 1. For the dynamic strategy, the torques are given in
Fig. 10. The allocation is biased towards the front axle as the
load distribution ratio κ varies around 1.5. As this strategy
accounts for the dynamic transfer of the load between the rear
and front axles, it is more robust to road-changing situations
and more stable during high cornering. And since it considers
a criterion for the minimization of the tire utilization rate,
it is the most stable strategy against lateral skidding that
results from tire saturation. The driving/braking torques of
the online strategy are shown in Fig. 11. The exhibited
oscillations arise due to the switching between the rear and
front drive. This is a cost associated with using instantaneous
optimization rather than optimizing over a time horizon.
Observably, the implementation of the two-step optimization
approach in the online strategy leads to a reduction in braking
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Fig. 9: In-wheel motor torques: constant strategy
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Fig. 10: In-wheel motor torques: dynamic strategy
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Fig. 11: In-wheel motor torques: online strategy

torques. The oscillations accompanying the optimization are
prohibited in the offline strategy, where the torques are
given in Fig. 12. The optimal allocation in this case results
in an enhanced performance than the non-optimized case
over a time horizon. Note that in order to fully use the
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Fig. 12: In-wheel motor torques: offline strategy
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Fig. 13: In-wheel motor efficiency: dynamic strategy
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Fig. 14: Comparison of strategies: energy consumption

advantages of the offline strategy, an MPC controller could
be implemented where the optimization is executed on fixed
predicted horizons and progressively updated. The estimation
of the driving and regenerative braking efficiencies ηd and



ηb respectively is shown for the dynamic strategy only
due to lack of space. Fig. 13 displays the variation of ηd
and ηb as a function of motor rotational speed (ω) and
its corresponding total traction/braking torque (T ). When
the demanded torque is traction, no regenerative braking is
presented (ηb is minimum) and vice versa. Moreover, since
the front axle motors generated torques higher than the rear
axle motors, they have operated in higher efficiency zones.

The procedure of determining the amount of energy saved
as a result of optimization entails calculating the total accu-
mulated energy of the vehicle with optimal allocation and
contrasting it with the classical strategy. Fig. 14 presents the
accumulated energy consumption of all strategies. The clas-
sical strategy of uniformly utilizing the motors for traction
and braking has marked the highest consumption. Followed
by the constant, dynamic, offline, and the least energy
consumption for online optimization. Finally, applying the
energy performance index, and with respect to the classical
strategy, the amount of energy saved in the constant strategy
is 2.09 %. As for the dynamic, offline, and online strategies
are respectively 2.8 %, 14.7 %, and 21.3 %. Although their
objectives are independent of reducing energy, the constant
and dynamic strategies have revealed an energy economy.
This demonstrates that an optimal allocation considering a
balanced load transfer (static or dynamic) is effective in
preserving energy.

The configuration of the torque distribution plays an
important role in the total performance of the vehicle. It
has been demonstrated that the variation of the strategy to
assign values for p, k, q, n, results in a diverse demeanor of
the vehicle. This manifests the effectiveness of the proposed
torque allocation strategy that encloses the problem into find-
ing the parameters’ values representing the optimal merits
that correspond to the desired objectives.

VI. CONCLUSION

This paper presents the development of a multi-objective
control architecture aimed at achieving lateral, longitudinal,
stability, and maneuverability control. The study focuses on
achieving these objectives through a novel torque allocation
method at the low level, which distributes braking/traction
torques through the four independent in-wheel motors. Fur-
ther, an energy consumption model is developed based on
constructed efficiency MAPs, introducing new notions that
assist the criterion of determining the saved energy through a
proposed energy index. Four multi-objective-based strategies
are developed and compared with a classical strategy to
differentiate vehicle performance and energy consumption
reduction. As a future study, the proposed torque allocation
strategy will be tested on real-world testing platforms.
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