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Abstract

Accurate electricity demand forecasting is crucial to meet energy security and
efficiency, especially when relying on intermittent renewable energy sources.
Recently, massive savings have been observed in Europe, following an unprece-
dented global energy crisis. However, assessing the impact of such crisis and of
government incentives on electricity consumption behaviour is challenging. More-
over, standard statistical models based on meteorological and calendar data have
difficulty adapting to such brutal changes. Here, we show that mobility indices
based on mobile network data significantly improve the performance of the state-
of-the-art models in electricity demand forecasting during the sobriety period.
We start by documenting the drop in the French electricity consumption during
the winter of 2022-2023. We then show how our mobile network data captures
work dynamics and how adding these mobility indices outperforms the state-of-
the-art during this atypical period. Our results characterise the effect of work
behaviours on the electricity demand.

Keywords: Electricity demand forecasting, machine learning, mobile phone data,
Kalman filter, energy crisis, environmental and energy transitions
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Energy is at the very core of modern economies and politics, powering industry,
transport, residential use, and agriculture [1]. Over the past two years, Europe has
experienced a major energy crisis, with energy prices reaching levels not seen in decades
[2]. Prices began to rise rapidly in the summer of 2021 as the global economy picked
up following the easing of COVID-19 restrictions. Subsequently, the war in Ukraine
led to a significant reduction in gas supplies, pushing gas prices even higher [3]. In
this context, the European Union adopted the Council Regulation 2022/1854 in Octo-
ber 2022 [4]. This regulation established a series of emergency measures to mitigate
the effects of such a crisis, mainly by reducing the electricity demand with a binding
reduction target of 5 % during peak hours. In France, in particular, where a signifi-
cant proportion of the nuclear plants were also offline [5], the government called for
a voluntary mobilisation to reduce energy consumption by 10% over two years and
launched its own energy sobriety plan [6]. Various media have documented a drop
in the French electricity demand in the winter of 2022-2023 [7–9]. Energy saving is
also part of France’s long-term policy of ecological transition and energy sovereignty.
Indeed, the impact of the energy sector on climate change is forcing the adaptation of
consumption patterns, which is fueling a growing interest in energy savings and the
transition to sustainable energy sources [10–13]. In France, electricity is one of the most
important components of the energy mix, accounting for 25% of French final energy
consumption, and the French Ecological Transition Plan is based on a massive elec-
trification driven by decarbonised energy coupled with energy savings [14, 15]. While
adapting human behaviour (e.g. by encouraging remote working) has been identified
as an important axis of the sobriety plan, a better understanding of how this relates
to energy savings is crucial for energy planning.

Recently, artificial intelligence has been recognised as a powerful tool to support
the mitigation of greenhouse gas emissions and tackle climate change [16]. In par-
ticular, machine learning techniques have been applied to electricity load forecasting
to ensure the balance of the electricity grid [17] and to reduce electricity waste. As
electricity storage capacity is limited and expensive, electricity supply must match
demand at all times. As a result, electricity load forecasting at different forecast hori-
zons has attracted increasing interest over the last few years [18]. This article focuses
on the so-called short-term load forecasting, or 24-hour ahead load forecasting, which
is particularly relevant for operational usages in industry and the electricity market
[19, 20]. We address this problem both in terms of feature selection and model design.
Most state-of-the-art models rely on historical data of past electricity loads, calendar
data such as holidays or the position of the day in the week, and meteorological data
such as temperature and humidity [19]. However, such data cannot accurately account
for the complex human behaviours that affect the variability of energy demand, such
as holidays or remote working. As a result, traditional models have struggled to
account for brutal societal events such as the COVID-19 lockdowns, or energy savings
following economic, geopolitical, and environmental crises [21]. New data capturing
consumption behaviours is needed to better model the electricity demand. Over the
last decades, datasets generated from cell phones networks, location-based services
(LBS), and remote sensors in general have emerged to sense human behaviours [22].
Indeed, geolocation from mobile phones makes it possible to precisely characterise
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human flows [23–25]. For example, such data have been used to study disease propaga-
tion [26–29], traffic [30], the impact of human activities on biodiversity [31], and water
consumption [32, 33]. In terms of day-ahead load forecasting, mobility data from Safe-
Graph, Google, and Apple mobility reports were strongly correlated with electricity
load drops in the US during the COVID-19 outbreaks [34, 35], as well as in Ireland
[36] and in France [37]. Although these datasets are very informative about the activ-
ity of urban areas, e.g. in retail stores or train stations, they were not intended to
precisely account for human presence or flows. Indeed, there is an intrinsic bias in the
data collection, corresponding for example to the bias of using a specific application,
which causes the need to adjust the indices.

Thus, the originality of this paper relies on the use of the adjusted high-quality
human presence data provided by the mobile network operator Orange, which repre-
sents between 30% and 40% of the French telephony market share, to model electricity
demand during the sobriety period in France in 2022-2023 [38]. This dataset is based
on traffic volume measurements collected continuously and unobtrusively at the mobile
network level, whereas most LBS data depends on users explicitly agreeing to share
their location with specific applications. As a result, our mobile network based signal
is very stable and suitable for census [39]. In this article, we start by characterising
electricity savings during the sobriety period in France. We then show that our mobil-
ity data from mobile networks are correlated with other well-known socio-economic
indices that capture the spatial dynamics of populations. Furthermore, we show that
models using mobility data outperforms by an order of magnitude of 10% the state-
of-the-art in electricity demand forecasting. Finally, we show that our work index (see
Section 3.2) has a strong and distinctive effect on the electricity demand, making
sense of the drops in electricity demand during holidays. Other human spatial dynam-
ics indices, such as residency and tourism at national levels, did not prove to have a
significant effect on the national electricity demand.

1 Results

1.1 Quantifying electricity savings

To quantify electricity savings, the effect of temperature and time seasonality must be
removed from the French electricity demand. This effect, which we denote by Lôad,
is estimated by a Generalized Additive Model (GAM). Figure 1 shows the residuals
res = Load − Lôad, where Load is the actual value of the electricity demand. This
GAM is trained from 2014-01-01 to 2018-01-01. The residuals are then evaluated
from 2018-01-01 to 2023-03-01. Therefore, residuals measure the gap between the
electricity demand at a given time and the expected demand with respect to its time
and temperature dependency between 2014 and 2018. Negative residuals correspond
to electricity savings. In Figure 1 (left), the blue lines represent the 2-σ variations over
the period spanning from 2018-01-01 to 2020-01-01. They correspond to the typical
variations of the electricity demand around its expected value given the temperature
and the position in the year. The holidays deviate strongly from the expected trend
and correspond to the peaks in the residuals. Note that the 15-day rolling average in
red only leaves this confidence interval during the lockdowns and the winter 2022-2023
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Fig. 1 Electricity demand corrected for the effects of temperature and annual season-
ality.
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Left: Descriptive statistics of the residuals. Right: The 10 most important change points

are represented by a change in the red line. The red line is the mean of the residuals

between the change points.

sobriety period. This means that, during these events, the French electricity load is
significantly lower than its normal values. To quantify these changes in the electricity
demand, we run a change point analysis using the changepoint package [40, 41]. More
specifically, we run the binary segmentation algorithm, which detects and orders the
changes in the mean of the residuals. As a result, the two most important change
points of the 2018-2023 period are the beginning of the sobriety period (2022-10-10)
and the first COVID-19 lockdown (2020-03-15). During the sobriety period running
from 2022-10-10 to 2023-03-01, the residuals have a mean of -10.6 %. This result is
close to the assessment made by the French Transmission System Operator’s estimate
of a 9% decrease in consumption during the winter of 2022-2023 [42]. Figure 1 (right)
shows the 10 most important change points of the 2018-2023 period in the residuals
and presents the mean gap during the corresponding periods. Notice the transition
running from 2022-09-05 to 2022-10-10 between the stable regime of 2021-2022 and
the sobriety period. These results prove that there was a significant drop of 10.6 %
in the French electricity demand during the sobriety period, running from 2022-10-
10 to 2023-03-01, that temperature and calendar data are not sufficient to explain
accurately.

1.2 Mobile phone data and work dynamics

Here, we show how our dataset of aggregated mobile phone data efficiently captures
the spatial dimension of social dynamics. In particular, we focus on its ability to track
changes in the distribution of work-related human presence (hereafter work index )
over time. To investigate the ability of our dataset to characterise such behaviour, we
used the office occupancy index from The Economist’s Normalcy index [43]. This index
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Fig. 2 Comparison of work indices.
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was developed during the COVID-19 pandemic to evaluate the impact of the pan-
demic and government policies on human behaviour. It tracks eight variables (sports
attendance, time at home, traffic congestion, retail footfall, office occupancy, flights,
film box office, and public transport) at national level, which are openly available at
https://github.com/TheEconomist/normalcy-index-data. The office occupancy index
is derived from the Google COVID-19 Community Mobility Reports, which are no
longer being updated as of mid-October 2022. As illustrated by Figure 2, the office
occupancy variable has an 87 % correlation with the 7-day lagged mobile phone index
when excluding weekends and bank holidays. Moreover, as detailed in Appendix A,
our mobile phone index carries more information, because it captures the reduction
in office occupancy during weekends and holidays, and because it is seven days ahead
of the normalcy index.

Indeed, holidays are known to have a significant impact on electricity demand,
while their effect is difficult to evaluate. This often leads to analyse regular days and
of holidays separately [44]. In the appendices, we demonstrate how the tourism trends
are related to another mobile phone index from the same dataset.

1.3 Load forecasting with mobility data

The purpose of this paragraph is to measure the benefits of incorporating mobility
data into state-of-the-art load forecasting techniques (see Appendix B for a more com-
plete description of the models). In this field, the state-of-the-art is generally divided
into three classes of forecasts [45, 46]: statistical models that approximate electric-
ity demand by simple relationships between explanatory variables, data assimilation
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techniques that update a model by using recent observations, and machine learning
methods that are less explainable but model-free. Here, we will focus on the state-of-
the-art in the French load forecasting. To evaluate the benefits of using mobility data
to forecast the French national electricity load, we run a benchmark on the sobriety
period, i.e., evaluated from 2022-01-09 to 2023-02-28. The training period spans from
2013-01-08 to 2022-01-09. Results are presented in Table 1 in terms of Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Bold values
highlights the best forecasts in each category. Overall, they show that incorporating
mobility data improves the performance of the best forecast (aggregation of experts)
by about 15% in RMSE and 10% in MAPE. For a full description of the models and
metrics, please refer to the Methods section. These gains are significant, because they
leave the confidence intervals obtained by bootstrapping. Overall, adding mobility
data improves the performance of all models by an order of magnitude of 10% and the
ranking of the models is consistent with recent studies [21, 47]. Notice how the time
series bootstrap improves the performance of the random forests without mobility
data, confirming the results of [48], but how this is not the case when adding mobil-
ity data. Finally, holidays are known to behave differently from regular days [44].

Table 1 Benchmark with and without mobility data.

Without mobility data With mobility data

RMSE (GW) MAPE (%) RMSE (GW) MAPE (%)

Statistical model
Persistence (1 day) 4.0 ± 0.2 5.5 ± 0.3 N.A. N.A.
SARIMA 2.4 ± 0.2 3.1 ± 0.2 N.A. N.A.
GAM 2.3 ± 0.1 3.5 ± 0.2 2.17 ± 0.08 3.3 ± 0.1

Data assimilation technique
Static Kalman filter 2.1 ± 0.1 3.1 ± 0.2 1.72 ± 0.08 2.5 ± 0.1
Dynamic Kalman filter 1.4 ± 0.1 1.9 ± 0.1 1.20 ± 0.08 1.7 ± 0.1
Viking 1.5 ± 0.1 1.8 ± 0.1 1.24 ± 0.07 1.7 ± 0.1
Aggregation of experts 1.4 ± 0.1 1.8 ± 0.1 1.16 ± 0.07 1.6 ± 0.1

Machine learning
GAM boosting 2.6 ± 0.2 3.7 ± 0.2 2.4 ± 0.1 3.5 ± 0.2
Random forests 2.5 ± 0.2 3.5 ± 0.2 2.0 ± 0.1 2.7 ± 0.2
Random forests + bootstrap 2.2 ± 0.2 3.0 ± 0.2 2.0 ± 0.1 2.7 ± 0.2

Therefore, the same benchmark is run in the appendix and shows that incorporating
mobility data still significantly improves the forecasting performance when excluding
holidays (see Table B1). All these results confirm that adding mobility data leads to
significant gains of approximately 10 % in forecasting the French electricity demand.

1.4 Explaining the impact of mobility

In this section we rely on variable selection to offer insight into the performance of
the forecasts using mobility data. Moreover, we investigate the relation between the
electricity demand and the work feature, being the second most explanatory variable.
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Variable selection

Combining the calendar, meteorological, electricity, and mobile network datasets
results in 38 features. Moreover, some of these features are highly correlated, as
explained in Appendix A.1 for the temperature and the school holidays features. There-
fore, it is necessary to select a smaller number of features, with as uncorrelated effects
as possible, in order to better understand how they relate to the electricity demand.
Nevertheless, the usual variable selection methods based on cross-validation [49–51]
are not directly applicable to time series, because the samples are not independent. To
reduce the dimension of the problem, one solution is to rank the features by order of
importance [52]. In this paper, we consider three such methods: the mRMR ranking,
the Hoeffding D-statistic ranking, and the Shapley value ranking. For multivariate time
series, feature selection can be achieved thanks to the minimum redundancy maximum
relevance (mRMR) algorithm, which consists in selecting variables that maximise the
mutual information with the target [53, 54]. As a result of running the mRMRe pack-
age [55], the most important variables, in decreasing order of importance, are the
temperature, the work index, and the time of year. The Hoeffding D-statistic ranking
and the Shapley value rankings are detailed in Appendix D.1. All three rankings are
consistent, implying that the work index is more important than the calendar data.
As a result of this analysis, the tourism and residents indices do not appear to have
a significant effect on the French electricity demand.

Impact of work dynamics on the electricity demand

Outperforming the state-of-the-art indicates that the mobility data explain what hap-
pened during the sobriety period. However, it does not provide any formal insights
into the future performance of this index, which is why we run a statistical analysis
of the predictive ability of mobility data. Moreover, state-of-the-art data assimila-
tion techniques being difficult to analyse, we restrain ourselves to statistical models
of the electricity demand. Since the effect of temperature is known to be non-linear,
we consider GAMs instead of the usual linear regressions. As suggested by variable
selection methods, we consider the electricity demand corrected for the effect of tem-
perature. Figure 3 shows that the electricity demand increases with the work index,
i.e., the higher the number of people at work, the higher the electricity demand.
Moreover, it manages to combine different dynamics. First, Figure 4 (left) shows how
it accounts for the effect of weekends, thus capturing the weekly seasonality related
to work behaviour. Indeed, notice how working days, Saturdays (in purple), and Sun-
days (in yellow) correspond to different regimes of the work index. Figure 4 (right)
then shows that the work index explains consumption behaviour during the holidays
(in red). Note that they have the same relationship as on regular days. Moreover, the
analysis of the impact of our work index on the electricity demand, when fixing the
day of the week and excluding holidays, shows that lower work dynamics correspond
to a lower electricity demand (see Section D.2 in the appendix). This shows that lower
work dynamics are associated with energy savings. Further studies are needed to distin-
guish the role of remote working from the impact of other socio-economic parameters
such as economic growth and employment rate in this effect. As expected, this effect
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Fig. 3 Effects of the features on electricity demand.
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is more pronounced during working hours. As a result, the work index is more infor-
mative than calendar information alone. In fact, models using the work index perform
better during the atypical event of the sobriety period than models based on calendar
data, which only capture the seasonality in stationary signals (see Table D4 in the
appendix). This suggests that the work index is explanatory of the electricity demand.

2 Discussion

In this work, we have shown that the period spanning from September 2022 to March
2023 was atypical in terms of the French electricity demand. During this so-called
sobriety period, we have observed a decrease in the electricity demand similar to what
happened during the first COVID-19 lockdown. However, this period of significant elec-
tricity savings lasted over six months, which is much longer than the COVID-related
period of one month. These observations are consistent with those of the French media
and of the French transmission system operators. They prove that phenomena other
than the annual seasonality and temperature are responsible for the recent significant
changes in the electricity consumption behaviour.

To better understand this collective energy-saving behaviour, we have introduced
mobility indicators from mobile network data. This is an original and efficient emerging
way of tracking human mobility and assessing its impact on the electricity demand.
Indeed, the vibrancy of places varies over years, but also over the course of a day.
These cycles are strongly linked to the people (both residents and non-residents) who
visit them and to their behaviour. Some areas may be more attractive during the
day or depending on seasons, while being quiet at night. This implies changes in
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Fig. 4 Dynamics captured by the work index.
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the organisation and planning of such areas in terms of services, such as electricity
demand, and more generally in terms of public policy. For instance, following the
COVID-19 lockdowns, remote working has been shown to have a significant impact
on the electricity demand in the 2019-2020 period [56, 57]. Understanding the spatial
practices of human populations is therefore fundamental to operational decisions and
research in many fields. Individuals circulate in many places throughout the day -
on average between 2.5 and 4 per person in French metropolitan areas [58] - month,
and year, whether for housing, work, education, personal relationships, or leisure.
For a long time, the main source of this information has been population censuses,
supplemented by daily and tourist travel surveys, though they suffer from several
limitations, including infrequent sampling, lack of reliability, and cost. One response
has been the processing of digital traces, in particular data from mobile networks. The
quality of these data has evolved with both the development of network technology and
the ability to account for intrinsic biases, such as representation and precision. Our
high quality dataset was designed to precisely quantify human presence over France,
at a very high frequency as compared to census, and has already been studied as such
to account for residential behaviour [39]. Its advantage is that it allows not only to
quantify with a high degree of accuracy the population present at a given time and
place, but also to characterise the way they inhabit it (i.e., residing, working, exploring,
or crossing). Here, we have shown that these indices are highly correlated with other
public datasets, and that they also account for human presence dynamics related to
tourism and work. Such indices could become particularly relevant to track the rapid
changes in work organisation catalysed by the COVID-19 health crisis, which have
the potential to radically shape many aspects of societies and economies [59]. They
also offer a great flexibility in terms of the scale (national, regional, city...) at which
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we study mobility [60]. In fact, in France, the collection of statistical information on
remote working has traditionally been limited to ad hoc flash surveys. It is only from
2021 that questions on remote working will be included in the Continuous Employment
Survey (the main reference statistical survey on the labour market) and from 2022 in
the census, but with much less frequent sampling compared to mobile phone data [60].

As evidenced by our benchmark in Table B1, standard statistical models such
as GAM struggled during the sobriety period. Indeed, for the same state-of-the-art
GAM, the RMSE and the MAPE when excluding holidays are respectively 55% and
87% higher than in the same test period two years earlier (i.e., from September 2019
to March 2020) [21]. However, relying on a benchmark of statistical models, data
assimilation techniques, and machine learning architectures, we have shown that using
these data improves the state-of-the-art performance by an order of magnitude of 10%
during the sobriety period. Although evaluating the cost of load forecasting error is
a difficult task, it has been estimated that a 1 % reduction in load forecasting error
would save an energy provider up to an order of magnitude of one hundred thousand
dollars per year per GW peak [61]. Therefore, the gain of 0.2 % of MAPE resulting
from exploiting mobility data is very promising.

In addition, we have shown that the work index accounts for several dynamics
including the impact of weekends and holidays on the electricity demand. Notice how
these dynamics are not specific to the sobriety period, which suggests that the benefits
of using mobility data would generalise to the post-crisis period. Overall, the higher
the work index, the higher the electricity demand. Future lines of research include
studying the work index at a 1-hour frequency, over longer periods, and at the finer geo-
graphical scale of the French administrative regions. Indeed, as shown in the Appendix
A.1, mobile network data effectively capture human spatial dynamics other than those
related to work, such as residence and tourism. Although in this paper we have not
found a significant effect of such dynamics on national electricity demand, they might
become visible when working at the regional level. Although we have shown that a
reduction in the work index corresponds to a reduction in the electricity demand, fur-
ther studies are needed to disentangle the effect of economic growth, the employment
rate, and remote working in this phenomenon. Moreover, we have focused this work on
mean forecast performance, i.e., on the ability of the forecast to predict the mean value
of the electricity demand. Another interesting topic would be to evaluate the variance
of the electricity demand given the work index, which is useful for practitioners when
acting on the electricity market. Finally, in practice, it would take a few days to clean,
aggregate and adjust the indices. For operational use, further studies are needed to
quantify the impact of a delay in the use of the work index on the performance of
benchmark forecasts, or conversely, to study the predictability of the work index.

3 Methods

3.1 Open calendar, meteorological, and electricity datasets

The reference dataset runs from 2013-01-08 to 2023-02-28. It consists of calendar data
(dates and holidays), meteorological data (temperature), and historical data (electric-
ity power load at different scales). All these data are public and distributed under the
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Etalab open source licence. The calendar data are extracted from the French open
source database [62, 63]. It regroups the holiday periods according to the three French
holiday groups — as in France, the holidays depend on the region you live in—, as well
as the French national holidays. As the holidays are well known French conventions,
this calendar dataset has no missing values. The meteorological data are extracted from
the SYNOP Météo-France database [64]. Météo-France is the French public agency
responsible for the national weather and climate service. The dataset consists of 3-
hourly temperature measurements from 62 meteorological stations located throughout
the French territory. This dataset has many missing values, which are filled as fol-
lows. First, if a station has a missing value at time t and the station’s measurements
are available 3 hours before and 3 hours after t, the missing value is filled with the
mean of these two measurements. Then, if no such values are available, the missing
temperature is approximated by the temperature of the nearest station. Finally, if all
stations in a region have missing values, their temperature is estimated by taking the
mean of the temperature at the same hour the day before and the day after. Finally,
the historical electricity load dataset is extracted from the RTE public releases [65].
RTE (Réseau de Transport d’Electricité) is a the French Transmission System Opera-
tor. It provides high quality data on regional electricity consumption in France, with
a frequency of 30 minutes. The national electricity load has no missing values, which
is valuable since this is the final target all along this article.

3.2 Mobility dataset

The reference dataset is complemented by mobility indices. These mobile phone data
were provided by the Flux Vision business service of Orange [38], in the form of pres-
ence data reports. These include the number of visitors in 101 geographical areas of
mainland France, which represent the second level of national administrative divisions.
For each location and each day, the data are stratified by the type of visitor (resident,
usually present, tourist, excursionist, recurrent excursionist) and origin (foreign, local,
non-local). Mobile phone data have been previously anonymised in compliance with
strict privacy requirements and audited by the French data protection authority (Com-
mission Nationale de l’Informatique et des Libertés). The computation of the presence
data reports is based on the on-the-fly processing of signalling messages exchanged
between mobile phones and the mobile network, usually collected by mobile network
operators to monitor and optimise the mobile network activity. Such messages contain
information about the identifiers of the mobile subscriber and of the antenna han-
dling the communication, the timestamp and the type of event to be recorded (e.g.,
voice call, SMS, handover, data connection, location update). Knowing the location of
the antennas makes it possible to reconstruct the approximate position of the device
in communication. This was then used to compute the total number of visitors, with
no residual information tracing back to the individual users. Each visitor was then
characterised based on the time spent and their origin. More specifically:

• Resident: person whose main area of attendance is in the study area and who has
spent at least 22 nights (not necessarily consecutive) there.
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• Usually present: person who is not a resident of the study area but has been seen in
the study area repeatedly: more than 4 times in different weeks in the last 8 weeks.

• Tourist: person spending the night in the study area who is neither resident nor
usually present.

• Excursionist: person not staying overnight the night before and the night of the
study day, and present less than 5 times during the day in the last 15 days.

• Recurrent excursionist: person who has not spent the night before and the current
night in the study area and who has been present more than 5 times during the day
in the last 15 days.

Moreover, their origin is categorised as follows:

• Foreign: person with a foreign SIM card.
• Local: person with a billing address in the study area.
• Non-local: person with a billing address outside the study area.

This data is then adjusted by Orange Flux Vision to account for spatial and temporal
biases and to be representative of the general population. To do so, they use spatially
stratified market share data, socio-economic data from the national statistics institute
Insee (Institut national de la statistique et des etudes economiques), mobile phone
ownership data from Insee, and customer socio-demographic information provided
upon subscription. From these data, we construct three indices. The work index is
the sum of the the recurrent excursionists. The tourism index is the sum of foreign
and non-local tourists. The resident index is the sum of all the residents and usually
presents. In this article, the mobility dataset covers the periods from 2019-07-01 to
2020-03-01, from 2020-07-01 to 2021-03-01, from 2021-07-01 to 2022-03-01, and from
2022-07-01 to 2023-03-01.

3.3 Benchmark models

Models are then evaluated according to the following test errors. Let Ttest be the test
period, (yt)t∈Ttest

be the target, and (ŷt)t∈Ttest
be an estimator of y. The root mean

square error is defined by RMSE(y, ŷ) = ( 1
Ttest

∑
t=∈Ttest

(yt − ŷt)2)1/2 and the mean

absolute percentage error is defined by MAPE(y, ŷ) = 1
Ttest

∑
t∈Ttest

|yt−ŷt|
|yt| . Both

these errors are useful for operational uses. Since samplings of time series are depen-
dent, confidence intervals are obtained by bootstrapping [66]. All benchmark models
are direct adaptations of state-of-the-art models in the French electricity demand fore-
casting. The GAM is extracted from [21]. The static and dynamic Kalman filters are
inspired from [47]. The Viking algorithm comes from [67]. The GAM boosting param-
eters are from [68]. The random forest and random forest with bootstrap parameters
are taken from [48]. A full description of the models can be found in the appendices.

4 Data and code availability

The source code detailing how to create and update the electric-
ity dataset and all the models used in this article are available at
https://github.com/NathanDoumeche/Mobility data assimilation. Therefore, the
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change point method of Figure 1, as well as the dataset and the benchmarks without
mobility data of Table 1 are directly reproducible for future research and can be
updated to different periods of interest. However, mobility indices are not openly
available.
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[5] RTE. Réactualisation des perspectives pour le système électrique pour
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Appendix A Datasets and features

In this appendix, we provide further insights into the exploratory analysis of the mobil-
ity dataset. We show how the indices also capture holiday dynamics at the regional
level, by comparing the mobile network-based tourism index with official tourism
statistics from Insee, and by studying the temporal evolution of the work index.

A.1 Regional human presence indices

Although for the purpose of the national forecasts we have only relied on national level
indices, mobile network data were also available at a regional level, which helps to bet-
ter understand the data at hand. In order to obtain a preliminary understanding of
the data, we compute the Pearson product-moment correlation coefficient r between
the human presence variables on the one hand and the calendar and meteorological
data on the other, for the different regions of mainland France. This analysis confirms
that our indices follow several well-known human spatial dynamics. In large urban
regions, such as the Île-de-France (IDF), we observe negative correlation between the
residence index and both the calendar variables school holidays and summer holidays
(r = −0.65 and r = −0.84, respectively), as well as temperature (r = −0.70). This
captures how IDF residents leave their region during the holidays and then behave as
tourists. Consistently, in regions that are traditionally popular holiday destinations,
such as the coastal region of Provence-Alpes-Côte d’Azur (PACA), the tourism index
variable is positively correlated with the calendar variables school holidays and sum-
mer holidays (r = 0.58 and r = 0.86, respectively) and the meteorological variable
temperature (r = 0.82). The work index shows a similar behaviour in both cate-
gories of regions, with a negative correlation with the weekly holiday calendar variable
(r = −0.54 in IDF and r = −0.55 in PACA). Seasonal changes in the distribution of
the different categories of population are more evident when looking at the timeline.
To better characterise these patterns according to the specificity of the territories, we
show the evolution of the daily tourism, residence, and work indices in IDF (Figure
A1 - Top) and PACA (Figure A1 - Bottom). In line with the Pearson correlation, in
a region with a high level of economic activity such as IDF, the residence and work
indices tend to increase during the off-peak periods and to decrease during the hol-
idays. We observe the opposite behaviour for the tourism index in PACA, which is
a very touristic region. Moreover, unlike in IDF, the work index in PACA does not
decrease significantly during the summer holidays. This could be explained by the dif-
ferent composition of the labour markets, with a high proportion of workers in tourism
in PACA.

We can also clearly see the effects of the COVID-19 health crisis. In IDF, for
example, the tourism and work indices significantly dropped during the crisis. They
then gradually increased in the post-COVID period, but without reaching the pre-
COVID levels. This is especially pronounced for the work index, probably because of
the changes in work organisation triggered by the health crisis and also as an effect of
the energy crisis. In PACA, on the other hand, we observe a less important impact on
tourism, partly due to a different seasonality and origin (there are more local tourists,
i.e. who do cross the borders) than in IDF. Interestingly, the residence index seems to
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Fig. A1 Regional indices.

7-day rolling average of the mobility indices for the IDF (top) and PACA (bottom) regions.

Indices have been normalised, i.e., subtracted their empirical mean and divided by their

empirical standard deviation. The mobile network dataset only covers the period from July

to March each year. Coloured areas correspond to the region school holidays, and horizontal

grey lines mark the three main COVID-19 lockdowns in France

be gradually increasing since the COVID-19 crisis. This phenomenon of migration to
certain regions of France has been documented by Insee in the report [69], but would
deserve a more in-depth analysis.

A.2 Tourism index from mobile-phone data

Evaluations of the number of tourists and residents has been shown to be slightly
correlated with electricity demand in highly touristic areas [70, 71]. This is why we
have created and studied a tourism index at the national level. Traditionally, most of
these assessments have been carried out on an annual or monthly basis. A strength of
our mobile phone-based tourism index is that it can be calculated at finer temporal and
geographical scales. To further assess its performance as a proxy for tourism activity,
we compare its monthly average with the Insee tourism index [72], as shown in Figure
A2. As a result, we obtain an 87 % correlation between the two signals, showing that
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Fig. A2 Comparison of the Insee and the mobile network tourism indices.

Fig. A3 Residuals as a function of the work index over the years.
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Each point is an observation between 07-2019 and 03-2022.

the tourism index efficiently captures tourism trends. However, our study found that
tourism has no significant impact on French electricity demand (see Appendix D.1).

A.3 Work index and calendar features

As explained in Introduction, several phenomena occurred between 2020 and 2023 that
significantly changed human behaviour and affected the French electricity demand.
To better understand the impact of the work index on the electricity demand, it is
therefore important to see whether this dependence has changed over time. In fact,
Figure A3 shows that the dependence of electricity demand in the work index has
been stationary over the years. This shows that this relationship has been robust to
the aforementioned events, which is an argument to believe that the results of this
article will generalise well to future periods of interest. In addition, as shown in Figure
A4, unlike The Economist’s office occupancy index, our work index from mobile data
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Fig. A4 Comparison of work indices.
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Comparison of the 7-day lagged mobile phone based index and the normalcy office

occupancy index on all days (left), and when excluding weekends and the holidays (right).

Fig. A5 Electricity demand corrected for temperature as a function of the work index
over the day.
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Each point is an observation between 07-2019 and 03-2022. Left: 2 a.m. Right: 10 a.m.

captures the reduction in work activity due to weekends and holidays. Furthermore,
as expected, Figure A5 shows that the work index is only useful for electricity demand
forecasting during working hours. Indeed, the electricity demand corrected for the
temperature effect has a clear dependence in the index at 10 a.m., but not at 2 a.m..
This will be studied in more details in Appendix D.2.

Appendix B Benchmark and models

In this appendix, we detail the framework and the models of Table 1.
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B.1 Handling missing values in mobile network data

There are two types of missing data in our datasets. To begin with, the datasets are
regularly sampled time series with different frequencies. Indeed, recall that the calen-
dar and the electricity datasets have a 30-minute frequency, while the meteorological
dataset has a 3-hour frequency, and the mobile phone dataset has a 1-day frequency.
A common method to deal with differences in sampling frequency is to impute the
missing value by interpolation [73]. The interpolation method for meteorological data
is described in the Methods section of the main paper, while while the Orange indices
are kept constant throughout the day.

Moreover, the mobile network dataset only covers the periods from 2019-07-01
to 2020-03-01, from 2020-07-01 to 2021-03-01, from 2021-07-01 to 2022-03-01, and
from 2022-07-01 to 2023-03-01. Though various techniques have been developed to
tackle samplings irregularities in time series [see, e.g., 74], dealing with large sets of
consecutive missing values is still very challenging. The three main approaches when
studying time series with consecutive missing values are deletion, imputation, and
imputation with masks [73]. Deletion consists of discarding any observation with at
least one missing value. Though this is the simplest way to deal with missing values, it
can introduce a bias if the missing data are not-at-random, i.e., if the missing data are
actually informative about the target [75]. In a regression task, imputation techniques
aim to fill in the missing values. The state-of-the-art in time series imputation is very
broad, and this is an active field of research [see, e.g., 76]. However, the imputation
that maximises the regression models performance is not necessarily the one that
reconstructs the missing values most accurately [77, 78]. This makes it more difficult to
understand and explain the real effect of the imputed features on the target variable.
Imputation with mask consists of imputing the missing values and keeping track of
which observations have been imputed by adding a new feature equal to 1 if the
observation comes from an actual measurement and 0 if it was imputed. In this paper,
the pattern of missing data is regular, spanning each year from March to July, and
does not depend on the explanatory variables (temperature, work index...). Thus, to
simplify the analysis, we have chosen the deletion framework and have not tried to
impute the missing values of the mobile network indices.

In fact, the aim of Table 1 is not only to show that mobile phone indices help
to improve the performance of state-of-the-art forecasting algorithms, but also to
attest that this is still true even when comparing the complete open dataset with the
incomplete mobile phone dataset. Indeed, on the one hand, models ”without mobility
data” are trained on the complete open calendar, weather, and electricity datasets
spanning from 2013-01-08 to 2022-01-09. On the other hand, models ”with mobility
data” are created in two steps, according to the transfer learning framework presented
in [37]. First, a model trained without mobility data from 2013-01-08 to 2022-01-

09 provides an estimate ˆLoad of the electricity demand Load. Then, another model
is trained in the deletion framework to forecast the error err = Load − ˆLoad, also
called the residual, using the mobile phone dataset. This second forecast is denoted
by ˆerr. The final forecast is therefore the sum of the two forecasts ˆLoad+ ˆerr. Notice
that, this framework advantages the reference forecast ”without mobility data”. In
fact, the gains from using mobile phone data are much higher if the training periods
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of all models are restricted to the period for which mobile phone data are available
(although we have not included these results in the paper for the sake of simplicity).
However, the framework we have chosen allows us to assess the interest of using mobile
phone data from an operational point of view. It ensures that the best models trained
using the mobile phone dataset outperform the best models trained on the full open
datasets. Therefore, the gains of 10% we have obtained should be much higher if we
had access to a more complete mobile phone dataset. We have chosen the residual
method to account for the mobile phone data because it gives better results than
directly training models ”with mobility data” on all datasets restricted to the period
for which the mobile phone data are available (once again, we have not included these
results in the paper for simplicity).

B.2 Statistical models

B.2.1 Time series models

Persistence models are the simplest models for time series. They consist of estimating
the target with its own lags. They are common baselines in time series benchmarks
because of their simplicity, their ability to capture trends, their explainability, and their
robustness to ruptures in the data distribution. In Table 1, the persistence estimator
is the 24-hour lag of the electricity demand.

Seasonal Autoregressive Integrated Moving Average (SARIMA) models [79] are
very common for time series analysis. Here, we train one model for each of the 48
half-hours in a day to capture the daily seasonality of the data. Each model is then
fitted with a weekly seasonality by running the auto.arima method of the forecast

package in R.

B.2.2 Generalized Additive Models

Generalized Additive Models (GAMs) are a generalisation of linear regression. Instead
of learning linear coefficients linking some features x = (x1, ..., xd) to a target y,
a GAM learns the nodes and the coefficients of the regression of the features on
the targets with respect to a basis of splines. More precisely, given a target time
series y = (yt)t∈T on a time horizon T , and some time series explanatory variable
x = (xt,1, ..., xt,d)t∈T , the response variable y is decomposed as

yt = β0 +

d∑
j=1

fj(xt,j) + εt ,

where ε = (εt)t∈T are independent identically distributed (i.i.d.) random noises.
Though the target yt at time t is a real number, each explanatory time series
xk = (xt,k)t∈T at time t has a dimension dk > 1. Therefore, non-linear effect of mul-
tiple variables are allowed, such as yt = β0 + f1(xt,1, xt2) + εt. The goal of GAM
optimisation is to find the best non-linear functions f1, . . . , fd to fit y. Thus, each non-
linear effect fj is decomposed on a spline basis (Bj,k)16j6d, k∈N with coefficients βj
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such that

fj(x) =

mj∑
k=1

βj,kBj,k(x) .

where mj corresponds on the dimension of the spline basis. The functions fj ’s are
centred. The coefficients β0,β1, . . . ,βd are obtained by penalised least squares. The
penalty term involves the second derivatives of the functions fj , forcing the effects to
be smooth (see [80]).

The GAM model used in our experiments presented in Table B1 is taken from [21].
As it is usual in load forecasting with GAMs we consider one model per half-hour
of the day, with the 48 half-hour time series considered independently. Therefore, 48
models are fitted, one for each half-hour of the day. Given a half-hour h, our model is

Loadh,t =

7∑
i=1

1∑
j=0

αh,i,j 1DayTypet=i 1DLSt=j

+

7∑
i=1

βh,i Load1Dt 1DayTypet=i + γ Load1Wt (B1)

+ fh,1(t) + fh,2(ToYt) + fh,3(t, Temph,t) + fh,4(Temp95h,t)

+ fh,5(Temp99h,t) + fh,6(TempMin99h,t, TempMax99h,t) + εh,t ,

where the timestamp t is the day, and

• Loadh,t is the electricity load on day t at instant h.
• DayTypet is a categorical variable indicating the type of the day of the week.
• DLSt is a binary variable indicating whether t is daylight saving time or standard

time.
• Load1D and Load1W are the load of the previous day and the load of the previous

week respectively.
• ToYt is the time of year, growing linearly from 0 on the 1st of January 00h00 to 1

on the 31st of December 23h30.
• Temph,t is the national average temperature at time h on day t.
• Temp95h,t and Temp99h,t are exponentially smoothed temperatures of factor

respectively α = 0.95 and 0.99. For example, α = 0.95 corresponds to

Temp95h,t = αTemp95h−1,t + (1− α)Temph,t.

• TempMin99h,t and TempMax99h,t are respectively the minimal and maximal value
of Temp99 on day t on all instants i such that i 6 h.

These models are then implemented in R by using the mgcv library [81]. We have used
the default thin-plate spline basis to represent the fj ’s, except for the time of year
effect f2 for which we choose cyclic cubic splines (see [80] for a full description of the
spline basis). The dimensions of the bases are usually less than 5, except for f2 which
has a basis of dimension 20.
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B.3 Data assimilation techniques

B.3.1 State Space Models

State space models are efficient to capture time-varying structures (as opposed to sea-
sonality) in time series [82]. In particular, the Kalman filter is a powerful mathematical
and algorithmic tool introduced by [83] for state space model estimation. In electricity
load forecasting, Kalman filters are used to adjust the output of a GAM using recent
observations of electricity demand [47].

Following the notation of Equation (B1), let f(xt) = (1, f1(xt,1), ..., fd(xt,d))>

where f j is the normalisation of fj . Our goal is to estimate a time-varying vector

θt ∈ Rd+1 such that E[yt | xt] = θ>t f(xt). This corresponds to adjusting the relative
importance of each nonlinear effect, while preserving their shapes. This is achieved by
considering the state space model

θt − θt−1 ∼ N (0, Qt),

yt − θ>t xt ∼ N (0, σ2
t ),

where N (µ, σ2) is the multidimensional normal distribution with mean µ and variance
matrix σ2, θt is the latent state, Qt the process noise covariance matrix and σ2

t is
the observation variance. Applying the recursive Kalman filter equations as described
in section A of [47] provides us with both θt and the conditional expectation E[yt |
xt], which is known to be the best forecast, i.e., minimising the mean square error
conditional on past observations and exogenous covariates xt. As in [47], we run the
three variants Static, Dynamic, and Viking of the Kalman filter. The Static version
is a degenerate case where Qt is null, which leads to low adaptation. The Dynamic
variant supposes that Qt = Q and σt = σ are constants and obtained by grid search
optimisation on past observation. Finally, the Viking version assumes that Qt and σt
are updated online (see [47] for more details). In Table 1, the GAM model used in
the state space models is the one from [21], while the Static Kalman filter, Dynamic
Kalman filter, and Viking method are from [67].

B.3.2 Online aggregation of experts

Online robust aggregation of experts [84] is a model agnostic technique for time series
forecasting. This approach combines various forecasts (called experts) based on their
past performance in a streaming manner. It allows adaptation to changes in distri-
butions by tracking the best experts. Sequential expert aggregation assumes that the
data are observed sequentially. The target variable Y (here electricity demand) is sup-
posed to be a bounded sequence, i.e., Y1, . . . , YT ∈ [0, B], where B > 0. Our goal is
to forecast this variable step by step for each given time t. At each time t, N experts

offer forecasts of Yt, denoted by
(
Ŷ 1
t , . . . , Ŷ

N
t

)
∈ [0, B]N . These experts can be the

result of any process, such as a statistical model, a physical model, or human-based
expertise. Then, the aggregation algorithm generates a forecast of Yt by the weighted
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average of the N forecasts

Ŷt =

N∑
j=1

p̂j,t Ŷ
j
t ,

where the weight p̂j,t ∈ R depends on the performance of Ŷ j
t over the period {1, . . . , t−

1}. Then, Yt is observed and the next instance starts.
In our study, we run the ML-Poly algorithm, first proposed by [85] and subse-

quently implemented in R in the opera package [86]. This algorithm identifies the best
expert aggregation by giving more weight to the experts producing the lowest regret,
rendering it noteworthy due to the absence of parameter tuning. In Table 1, all the
estimators related to data assimilation techniques are combined, i.e., the GAM, the
static Kalman filter, the dynamic Kalman filter, and the Viking estimator.

B.4 Machine learning

B.4.1 Random forests

Among the most robust machine learning techniques are random forests [87]. They
consist of averaging a given number of decision trees generated by applying classifica-
tion and regression trees [88] to different subsets of the data obtained by bagging and
random sampling of covariates. Each decision tree estimates the target by a series of
logical comparisons on the feature variables. An example of decision tree of depth 3
is ”if temperature > 30°C, if it is 10 a.m., and if it is a Wednesday, then electricity
demand = 6 GW”. Random forest require very little prior knowledge about the prob-
lem, which makes them very attractive for benchmarks in applied machine learning
problems. In Table 1, the random forests all have 1000 trees of depth 6 (the square
root of the number of features). Random forests are usually trained on random subsets
of the training sample. To take advantage of the dependence of samples in time series,
the random subsets can be drawn from a given number of consecutive measures. This
is what is done in the random forest + bootstrap architecture [48].

B.4.2 Gradient boosting

Gradient boosting [89, 90] consists in successively fitting the errors of simple models
called weak learners, and then aggregating them. This is an ensemble technique, like
random forests. It usually performs better, at the cost of more parameters to calibrate.
It has demonstrated excellent performance for regression problems [91] and forecasting
challenges [92]. In tree-based gradient boosting algorithms, weak learners are decision
trees, whereas in GAM boosting algorithms [93], weak learners are spline regression
models.

B.5 Models with mobile-phone data

As explained in Appendix B.1, the forecasts trained on the dataset ”with mobility
data” actually consist of two models. The first model is trained on the entire dataset
”without mobility data”. The second model estimates the error of the first model on
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the dataset ”with mobility data”. The GAM ”with mobility data” is the sum of the
GAM ”without mobility data” and of the following GAM

errh,t =

7∑
i=1

1∑
j=0

α̃h,i,j 1DayTypet=i

+ fh,7(ToYt) + fh,8(Workt) + fh,9(Residencet) + εh,t.

The static Kalman filter, the dynamic Kalman filter, and the Viking estimators ”with
mobility data” are then computed by summing the effects of the two GAMs. The GAM
boosting ”with mobility data” is the sum of the GAM boosting ”without mobility
data” and of a GAM boosting with all variables (calendar, meteorological, electricity,
and mobile phone). The random forest ”with mobility data” is the sum of the random
forest + bootstrap model ”without mobility data” and of a random forest with all
variables. The random forest + bootstrap ”with mobility data” is the sum of the
random forest + bootstrap model ”without mobility data” and of a random forest +
bootstrap with all variables.

B.6 Excluding holidays

As mentioned in Section 1.3 of the main paper, holidays are known to behave differ-
ently from regular days [44]. Therefore, we run the same benchmark here, but excluding
holidays, as well as the days directly before and after holidays, from both training and
testing. Table B1 shows that, when excluding holidays, incorporating mobility data
improves the best performance (aggregation of experts) by 8% in RMSE and 6% in
MAPE. Once again, the global order of magnitude of the performance gains across all
models is 10 %. Note that these gains are significant, because they leave the confidence
interval obtained by bootstrapping.

Table B1 Benchmark excluding holidays.

Without mobility data With mobility data

RMSE (GW) MAPE (%) RMSE (GW) MAPE (%)

Model
Persistence (1 day) 4.0 ± 0.2 5.0 ± 0.3 N.A. N.A.
SARIMA 2.0 ± 0.2 2.6 ± 0.2 N.A. N.A.
GAM 1.70 ± 0.06 2.6 ± 0.1 1.55 ± 0.05 2.43 ± 0.08

Data assimilation technique
Static Kalman filter 1.43 ± 0.05 2.20 ± 0.08 1.07 ± 0.04 1.63 ± 0.06
Dynamic Kalman filter 1.10 ± 0.04 1.58 ± 0.05 0.96 ± 0.03 1.39 ± 0.04
Viking 0.98 ± 0.04 1.33 ± 0.04 0.98 ± 0.03 1.41 ± 0.05
Aggregation of experts 0.96 ± 0.04 1.36 ± 0.04 0.88 ± 0.03 1.28 ± 0.04

Machine learning
GAM boosting 2.3 ± 0.1 3.3 ± 0.2 2.2 ± 0.1 3.1 ± 0.2
Random forests 2.1 ± 0.1 3.0 ± 0.1 1.8 ± 0.1 2.4 ± 0.1
Random forests + bootstrap 1.9 ± 0.1 2.6 ± 0.1 1.8 ± 0.1 2.4 ± 0.1
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Appendix C Change point detection

In this appendix, we detail and justify the use of the model in Section 1.1, as well as
the change point detection algorithm applied on top of it.

C.1 Model for seasonality

The model used in Section 1.1 to capture the dependence of calendar and meteoro-
logical data on electricity demand is the following direct adaptation of the GAM of
[21]

Loadh,t =

7∑
i=1

1∑
j=0

αh,i,j 1DayTypet=i 1DLSt=j

+ fh,1(ToYt) + fh,2(Temp95h,t) + fh,3(Temp99h,t)

+ fh,4(TempMin99h,t, TempMax99h,t) + εh,t.

Notice that this corresponds to removing the dependence in the timestamp t and in
the lags Load1D and Load1W from equation (B1). On the one hand, these features
were removed because they only capture the trend of the signal without explaining
the phenomena at stake, which interferes with the interpretability of the model. On
the other hand, the remaining features account for well-known repeated phenomena,
knowingly the effects of weekends (in DayType), of holidays (in ToY), and of heating
and cooling (in the temperature smoothings). They explain the seasonality of the
signal. This GAM is trained from 2014-01-01 to 2018-01-01. The residuals res = Load−

ˆLoad are then evaluated from 2018-01-01 to 2023-03-01. Between 2018-01-01 and 2020-
01-01, this GAM has an average MAPE of 2.1% and an average RMSE of 1.6 GW. This
is comparable to the performance of the GAM of [21], which has an average MAPE of
1.6% and an average RMSE of 1.2 GW. At the cost of a slightly lower performance,
this GAM is more explainable because it only takes seasonal phenomena into account.
It is therefore a good model to forecast what electricity demand should be over a
multi-year time horizon, assuming that the electricity consumption behaviour will stay
unchanged.

C.2 Descriptive analysis of residuals

In this paragraph, we focus on the period spanning from 2018-01-01 to 2020-01-01.
As shown in Figure C6 (left), the residuals histogram presents a bell shape. Since
we have 2 × 365 × 48 = 35040 observations, we chose the number of breaks in the
histogram to be b

√
35040c = 187. The T-test reveals that the expectation of the

residuals is significantly lower than zero (the p-value is lower than 2.2 × 10−16) and
that it lies in the interval of [−0.16 GW, −0.12 GW] with 95 % confidence. The
empirical mean is −0.14 GW, while the empirical standard deviation is 1.6 GW. The
Anderson-Darling normality test shows that the residuals do not follow a normal law
(the p-value is less than 2.2 × 10−16). Moreover, as shown in Figure C6 (right), the
autocorrelations of the residuals decrease slowly and are significantly higher than zero,
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Fig. C6 Descriptive statistics of the residuals.
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Left: Histogram of the residuals between 2018-01-01 and 2020-01-01. Right:

Autocorrelation function of the residuals between 2018-01-01 and 2020-01-01. Dotted blue

lines draw a confidence interval for the precision of the auto-correlation estimators.

suggesting that the residuals are not stationary. Indeed, this is confirmed by running
the Box-Ljung test with a 1-day window (the p-value is less than 2.2×10−16). Both the
facts that the expectation of the residuals is significantly lower than zero and that the
residuals are not stationary indicate that other phenomena than calendar seasonality
and temperature are involved, although their impact is moderate as the estimator
performs well. This suggests that, even in this period without major breaks such as
COVID-19 or sobriety, other features are useful to understand the electricity demand.

C.3 Ranking changes in the data distribution

The descriptive analysis shows that the residuals are not stationary. Therefore, from
a statistical point of view, it is pointless to look for the ruptures observed in Figure 1
in absolute terms. In fact, the more precise the technique for detecting change points
becomes, the more change points will be detected everywhere. This is why we need
quantitative information about the importance of the change points in order to rank
them and determine which are the most significant change points. Indeed, several
metrics have been developed to measure the importance of change points [41]. To
assess the significance of the number of change points, we sequentially compare the
standard deviation of the residuals with the amplitude of the change points. This
results in 10 change points being considered in the following analysis. The principle
behind offline changing in mean techniques is to segment the signal in such a way that
approximating the signal to its mean at each segment results in the lowest possible
variance. However, finding such an optimum is computationally expensive. Therefore,
faster algorithms have been developed to find approximations to the optimal change
points, such as the binary segmentation algorithm used in Figure 1.
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Appendix D Statistical analysis

In this appendix, we complement the variable selection detailed in the Results section
to further justify the study of the work index in the statistical analysis of Section 1.4.

D.1 Variable selection: Hoeffding D-stastics and Shapley
values

This paragraph complements the mRMR variable ranking performed in the Results
section. To examine the variable selection process more closely, we compute the
Hoeffding D-statistic, as shown in Table D2. It is a distribution-free measure of the
dependence between variables [94]. The closer it gets to 1, the greater the dependence.
We then compute the Shapley values of the same variables using the SHAFF algorithm
[95], as shown in Table D3. Notice that, with the three ranking methods, the 3 most
important variables, in order of importance, are the temperature, the work index,
and then the time of year. Interestingly, the effect of the work index only becomes
clear after correcting the electricity demand from the temperature dependence. Notice
how the importance of tourism and time of year decreases when correcting electricity
demand for temperature, due to their high correlation with temperature. As a result
of this analysis, the tourism and residents indices do not seem to have a significant
impact on the French electricity demand.

Table D2 Hoeffding D-statistic.

Temp95 Work Residence Tourism Toy Dow Holidays

Load 0.29 0.035 0.093 0.19 0.069 0.010 0.000071
Load \ Temp 0.018 0.18 0.010 0.025 0.017 0.091 0.00066
Load \(Temp,Work) 0.0057 0.0067 0.014 0.011 0.038 0.0057 -0.00001

The statistic is computed using all available days from 2019-07 to 2022-03. Load \
(features) stands for the Load corrected for the effects of the features.

Table D3 Shapley values.

Temp95 Work Residence Tourism Toy Dow Holidays

Load 0.31 0.05 0.06 0.14 0.21 0.03 0.002
± 0.05 ± 0.02 ± 0.03 ± 0.01 ± 0.01 ± 0.02 ± 0.003

Load \ Temp 0.041 0.26 0.035 0.072 0.11 0.19 0.04
± 0.007 ± 0.01 ± 0.005 ±0.005 ± 0.02 ± 0.02 ± 0.01

Load \ (Temp, Work) 0.11 0.10 0.06 0.07 0.28 0.04 0.003
± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.008

Shapley values are computed on all available days from 2019-07 to 2022-03. Load \
(features) stands for the Load corrected for the effects of the features.
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D.2 Work index and calendar features

The variable selection analysis in Appendix D.1 shows that the work indicator has
a very strong effect on the electricity demand, being the second most explanatory
variable. To better understand this effect, we compare in Table D4 the performance of
GAMs where we progressively add the features in the order of importance suggested
by the variable selection analysis. The Temp GAM corresponds to the model

Loadh,t = fh(Temp95h,t) + εh,t.

The Temp + Work GAM corresponds to the model

Loadh,t = fh,1(Temp95h,t) + fh,2(Workh,t) + εh,t.

The Temp + Time GAM corresponds to the model

Loadh,t =

7∑
i=1

1∑
j=0

αh,i,j 1DayTypet=i 1DLSt=j

+ β1Holidayst + fh,1(ToYt) + fh,2(Temp95h,t) + εh,t.

The Temp + Time + Work GAM corresponds to the model

Loadh,t =

7∑
i=1

1∑
j=0

αh,i,j 1DayTypet=i 1DLSt=j

+ β1Holidayst + fh,1(ToYt) + fh,2(Temp95h,t) + fh,3(Workh,t) + εh,t.

The Temp + Work + Lags GAM corresponds to the model

Loadh,t = fh,1(Temp95h,t) + fh,2(Workh,t) +

7∑
i=1

αh,i,j 1DayTypet=i Load1Dh,t

+ βLoad1Wh,t + εh,t.

The Temp + Time + Lags GAM corresponds to the model

Loadh,t =

7∑
i=1

1∑
j=0

αh,i,j 1DayTypet=i 1DLSt=j + β1Holidayst + fh,1(ToYt)

+ fh,2(Temp95h,t) +

7∑
i=1

γh,i,j 1DayTypet=i Load1Dh,t

+ λLoad1Wh,t + εh,t.
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The All variables GAM corresponds to the model

Loadh,t =

7∑
i=1

1∑
j=0

αh,i,j 1DayTypet=i 1DLSt=j + β1Holidayst + fh,1(ToYt)

+ fh,2(Temp95h,t) +

7∑
i=1

γh,i,j 1DayTypet=i Load1Dh,t + λLoad1Wh,t

+ fh,3(Workh,t) + εh,t.

The p-values of the Fisher tests assessing the significance of the GAM effects are
less than 5 % for all the GAMs. Notice on Table D4 how replacing calendar data by
the work index is beneficial during atypical events which behaviour differs from the
past, i.e., the sobriety period. Indeed, the time variables are only relevant during the
normal period spanning from July 2023 to September 2023, during which they still
benefit from the work index. During the sobriety period, the time variables —which
only reconstruct past behaviour— are less powerful than the work index, which does
not benefit from being coupled with them.

Table D4 Integration of mobility data in GAMs.

Normal period Sobriety

RMSE (GW) MAPE (%) RMSE (GW) MAPE (%)

Baseline
Persistence (1 day) 3.49 5.36 4.03 5.26

GAM
Temp 3.53 6.78 6.13 9.60
Temp + Work 1.62 3.10 4.98 8.11
Temp + Time 1.33 2.46 5.60 9.62
Temp + Time + Work 1.09 2.02 5.24 9.00
Temp + Work + Lags 1.11 1.92 2.11 3.13
Temp + Time + Lags 0.89 1.52 2.61 4.29
All variables 0.80 1.38 2.60 4.32

This benchmark covers all days, including holidays.

D.3 Work dynamics

In Section 1.4, we explained how the work index captures the effects of both the day
of week and the holidays features. However, in both Section 1.3 and Appendix D.2,
we showed that the work index improves the performance of the forecast, beyond
the effect of the calendar features. The aim of this paragraph is to study this effect.
Therefore, to remove the effects of the time of day and of holidays, we work on a specific
day (here Wednesday) and by removing the holidays. Figure D7 (left) shows how the
electricity demand on Wednesdays is still positively influenced by the work index.
Furthermore, as expected, Figure D7 (right) shows that the effect of the work index is
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Fig. D7 Effect of the work index on a given day at a given hour.

−1

0

1

2

−2 −1 0 1 2
Work index

Lo
ad

 −
 e

ffe
ct

 o
f t

em
pe

ra
tu

re

0.05

0.10

0.15

0.20
level

0 5 10 15 20

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Time of day

Li
ne

ar
 r

eg
re

ss
io

n 
co

ef
fic

ie
nt

●
● ● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

Left: 2d density plots of residuals as function of the work index at 10 am on Wednesdays

between 07-2019 and 03-2022. Right: Regression coefficient of the work index on electricity

demand corrected for the effect of temperature on the training set spanning from 07-2019 to

03-2022.

more important during working hours (from 6 a.m. to 8 p.m.). These results confirm
that on Wednesdays a high work index corresponds to a high electricity demand. This
effect could be due to economic growth (a higher economic activity corresponding to
both more people working which raises the work index, and to a higher electricity
demand) and to the energy saving due to remote working (a lower office occupancy
corresponding both to a lower work index and to a lower electricity demand).
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