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Résumé
Dans le contexte du codage vidéo pour les machines
(VCM), où le contenu visuel est compressé avant d’être
transmis à un algorithme de tâche de vision, un compro-
mis approprié entre le niveau de compression et la per-
formance de la tâche de vision doit être choisi. Dans cet
article, la robustesse aux artefacts de compression d’un
algorithme de segmentation sémantique basé sur des ré-
seaux neuronaux profonds (DNN) est évaluée sur un total
de 1486 configurations de codage différentes. Les résultats
indiquent l’importance de l’utilisation d’une résolution
d’image appropriée pour surmonter les limites du parti-
tionnement des blocs dans les algorithmes de compression
existants, permettant des économies de débit de 58.3%,
49.8%, 33.5% and 24.3% à qualité de prédiction équiva-
lente pour JPEG, JM, x265 et VVenC, respectivement. De
manière surprenante, JPEG peut atteindre une réduction
de 73,41% de débit binaire avec l’inclusion d’images com-
pressées au moment de la formation par rapport au modèle
de test VVC (VTM) avec un DNN entraîné sur des données
non compressées, ce qui implique que la capacité de géné-
ralisation du DNN ne doit pas être négligée.

Mots Clef
Codage Vidéo pour les Machines, communication Machine
à Machine, Segmentation Sémantique

Abstract
In the Video Coding for Machines (VCM) context where
visual content is compressed before being transmitted to
a vision task algorithm, appropriate trade-off between the
compression level and the vision task performance must be
chosen. In this paper, a Deep Neural Networks (DNN) ba-
sed semantic segmentation algorithm robustness to com-
pression artifacts is evaluated with a total of 1486 dif-
ferent coding configurations. Results indicate the impor-
tance of using an appropriate image resolution to over-
come the block-partitioning limitations in existing com-
pression algorithms, allowing 58.3%, 49.8%, 33.5% and
24.3% bitrate savings at equivalent prediction accuracy
for JPEG, JM, x265 and VVenC, respectively. Surprisin-
gly, JPEG can achieve 73.41% bitrate reduction with the

inclusion of compressed images at training time over VVC
Test Model (VTM) with a DNN trained on pristine data,
which implies that DNN generalization ability must not be
overlooked.

Keywords
Video Coding for Machines, Machine-to-Machine commu-
nication, Semantic Segmentation

1 Introduction
Conventional image and video coding aims at achieving an
optimal trade-off between bitrate and perceived quality by
human observers. Many compression standards have been
proposed to fulfill this purpose, such as Joint Photographic
Experts Group (JPEG), Advanced Video Coding (AVC),
High Efficiency Video Coding (HEVC) or Versatile Video
Coding (VVC). However, with the emergence of Machine-
to-Machine (M2M) communications, the receiver of vi-
sual content is no longer necessarily human. According to
Cisco [6], the total amount of M2M connections increased
exponentially from 1 to 3.9 billions in the last five years.
Furthermore, nearly 80% of the world’s total bandwidth
is used for image and video transmission. In 2019, a bits-
tream standardization group called Video Coding for Ma-
chines (VCM) was created by the Motion Picture Expert
Group (MPEG) in order to address M2M transmissions of
multimedia contents [35], where the main objective is to
achieve greater trade-offs between bitrate and vision task
performance compared to the VVC Test Model (VTM).
In order to address a M2M communication scenario, one
could use an encoder expressly designed for a machine re-
ceiver, or a conventional encoder originally designed for
transmission to a human receiver. While older compression
standards such as JPEG or AVC are still wide-spread in em-
bedded systems nowadays, it is reasonable to evaluate their
relevance in a M2M communication context. In this paper,
we propose to assess the suitability of conventional encoder
in a VCM context. Specifically, the robustness to compres-
sion artifacts of a Deep Neural Networks (DNN) seman-
tic segmentation algorithm is evaluated on 1486 different
coding configurations. Coding configurations include mul-
tiple encoders, image quality and resolution, with and wi-



TABLE 1 – Related work. (I) Compressed data at training time. (II) Multiple codecs. (III) Multiple image resolutions. (IV)
Chrominance degradation. (V) Total number of coding configuration.

[12] [10] [25] [30] [22] [20] [21] [27] [1] [3] [14] [34] [16] [31] [18] [26] [24] [15] [17] [19] [28] Ours
(I) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(II) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(III) ✓ ✓ ✓ ✓ ✓ ✓
(IV) ✓ ✓ ✓
(V) 21 432 19 8 8 16 10 69 12 25 20 8 4 24 46 28 14 6 4 12 9 1486
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FIGURE 1 – Pipeline used to evaluate DNN resilience to compression artifacts. An image I , with or without chrominance
channels is first downsampled by a factor δ and encoded with a codec using quality Q . Compressed image Î is obtained by
decoding bitstream B and upsampling reconstructed image by a factor 1/δ. It is then given to the semantic segmentation
algorithm to obtain the prediction.

thout grayscale conversion. The evaluation is performed
using a novel progressive training strategy to enhance DNN
robustness to various artifacts.
Our work is presented as follows. Section 2 reviews exis-
ting works in the literature. The considered evaluation pro-
tocol is detailed in Section 3. Experimental results are in-
troduced and discussed in Section 4, followed by a conclu-
sion.

2 Related Work
In order to reduce the amount of information to transmit
over a M2M connection, redundant information in visual
content must be discarded. Therefore, evaluating DNN ro-
bustness to artifacts is crucial in the context of VCM. It has
been shown that DNN solving vision tasks such as classifi-
cation, object detection or segmentation are highly affected
by distortion in visual data [13, 19, 23].
Many papers in the literature propose to evaluate DNN
robustness to compression artifacts. In order to evaluate
which information is relevant in a VCM scenario, rela-
ted works can be organised in accordance to the follo-
wing criteria : (I) DNN are re-trained on compressed data
to achieve optimal trade-offs between bitrate and vision
task performance. (II) Multiple encoders are evaluated.
(III) Images are encoded at multiple resolutions. (IV) Ex-
periments are conducted on grayscale images. (V) A high
number of coding configurations are considered, which im-
plies to take into account a wide range of image quality.
Table 1 compares related works in the literature accor-
ding to the aforementioned criteria. Note that most related
works do not attempt to perform a large-scale evaluation
of DNN resilience to compression artifacts, but were inclu-
ded because of their proximity to this study. To the best of

our knowledge, there is no related work that meet simulta-
neously all the mentioned requirements.

Regarding (V) the number of considered distortions, exis-
ting studies consider at most 50 coding configurations, at
the exception of Dejean-servieres et al. [10]. This is be-
cause some studies only compare themselves to HEVC
test Model (HM) or VVC Test Model (VTM) with few
Quantization Parameter (QP) after proposing a new me-
thod to reach better trade-offs between vision task per-
formance and bitrate [14–17, 19, 25, 26]. Some papers
also evaluate DNN resilience to JPEG/JPEG2000 com-
pression [10, 12, 15, 18, 21, 24, 27, 28, 30], AVC [1, 31]
or auto-encoders [18, 26, 27], but no paper consider all
mentioned image and video codec generations in a uni-
fied framework (II). Note that older codecs such as JPEG
or AVC achieve lower trade-offs between bitrate and vi-
sion task performance, but their low-complexity compared
to modern codecs makes them more suitable to some ap-
plications using low-power devices [31], especially when
hardware implementation of AVC encoders is still wides-
pread nowadays. Very few papers consider other hyper-
parameters than QP such as (III) lowering image reso-
lution [3, 10, 22, 26] or (IV) removing color informa-
tion [10, 31].

The use of large-scale datasets is also criteria of major im-
portance. A great amount of studies include experiments
on large-scale datasets such as ImageNet [11] or Citys-
capes [8], allowing general conclusion to be drawn with
higher confidence. Note that Dejean-servieres et al. [10]
did not address this point, since a subset of 55 images of
the original ImageNet dataset were used, while the original
database contains over 50000 validations images.

Few papers attempted to (I) use compressed data at training



TABLE 2 – Number of considered coding configurations
per codec.

JPG JPG2K JM x265 VVenC Total
672 352 154 154 154 1486

time in order to improve DNN resilience to compression
artifacts [15, 20, 22, 24, 27, 28, 34]. All studies converge to
show that adding compressed data at training time allows
to reach much higher trade-offs between bitrate and vision
task performance. While training and evaluation with the
same encoding configuration allows to reach the best trade-
offs, training and evaluating with different codec is still be-
neficial for DNN resilience [15, 27, 28].
Note that considering (I) compressed data at training time
while using (V) a large range of coding configurations im-
plies tremendous increase of computational resources. In
Section 3.2, we define explicitly the used training pro-
cedure to reduce training complexity, which allows us to
consider more coding configurations, while achieving bet-
ter trade-offs between bitrate and vision task performance.

3 Benchmark Methodology
3.1 Considered Coding Configurations
In this section, the method used to evaluate DNN robust-
ness to compression artifacts is defined explicitly. Figure 1
illustrates the pipeline used to perform the benchmark that
fulfill criteria presented in Section 2. An image I is first
captured by a camera. Depending on the coding configura-
tion, criteria (IV) is considered by discarding or not image
I chrominance channels according to the ITU-R BT.601
standard. Resulted image is then downsampled by a fac-
tor δ and compressed with one of the considered codecs,
using quality Q . Bitstream B can then be sent to the vision
task side using minimal bitrate since most of the irrelevant
information was discarded. Reconstructed image Î is ob-
tained after decoding bitstream B and applying an upsam-
pling by a factor 1/δ. Finally, reconstructed image Î can
be fed to a vision task algorithm. Note that artifacts may
have been introduced in Î because of grayscale conversion,
downsampling and encoding steps. Therefore, in order to
fulfill criteria (I), the used DNN was trained with images
containing such artifacts, as explained in Section 3.2.
Criteria (II) is met by considering a total of 5 compres-
sion algorithms, namely JPEG, JPEG2000, JM, x265 and
VVenC [4]. JPEG and JPEG2000 are two of the most wi-
dely used lossy image codecs. JM [32], x265 and VVenC
are AVC, HEVC and VVC based video codecs, respec-
tively. Since mentioned datasets are composed of still
images, ALL-Intra configuration is used for these three
video codecs. Note that HM [33] and VTM [2] are not
used in this study, since they are not meant to be used in
a real world scenario due to their extreme complexity. The-
refore, lower complexity codecs such as x265 and VVenC
were used instead. JM-19.0 and VideoLAN organisation

TABLE 3 – Progressive training hyper-parameters used for
experiments.

p0 p∞ ∆p s #e
JPG 100 1 1 0.05 65

JPG2K 0 500 1 0.015 200
JM 0 50 5 0.04 70

x265 0 50 5 0.04 70
VVenC 0 60 5 0.025 72

implementation for x265 [29] are used. Slow and fast pre-
set are selected for x265 and VVenC, respectively. For
JPEG2000, a single tile is considered for the whole image.
Because JPEG2000 do not employ any block-partitioning
within a tile, image downsampling is not considered with
JPEG2000 as it would not bring any gains in terms of rate-
distortion trade-off.
Criteria (III) is also satisfied by taking into account a
wide range of downsampling factor δ, where δ refers
to the factor by which the width and height of the
image are multiplied. A total of #δ = 7 image re-
solutions using bicubic interpolation are evaluated, with
δ ∈ {0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0}. A report of
considered coding configurations is summarized in Table 2.
With a total number of 1486 distortions, the last criteria (V)
is fulfilled.

3.2 Progressive Training Procedure
DNN are not inherently resilient to degradation in vi-
sual content, including compression artifacts. In order to
achieve optimal trade-off between bitrate and vision task
performance, the inclusion of compressed data at training
time must be considered (criterion (I)).
For this purpose, we propose to use a progressive trai-
ning, behind which the key idea is to train one DNN on
a large amount of distortion at once, ranging from undis-
torted to highly distorted. This is done by increasing at
training time the distortion strength progressively, where
the distortion strength parameter start at p0 and end at p∞.
The distortion strength can be characterised by the down-
sampling factor δ, or by the parameter allowing to control
the amount of quantification in each codec, such as QP for
AVC, HEVC or VVC based codecs. At each epoch e, the
distortion strength parameter p is equal to f (e), which is
determined by the following equation :

f (e) = p∞ +∆p⌊ 1

∆p
(p0 − p∞) exp(−se)⌉ (1)

where s ∈ R+∗ controls the speed at which the distortion
level p converges towards p∞, and where ∆p ∈ R+∗ refers
to the step size between two consecutive distortion level p.
The intuition behind our progressive training is that achie-
ving high accuracy on images with distortion strength f (e)
is easier if the DNN is already robust to images of slightly
higher qualities f (e− 1), and so on. Given that converging
to a minima of the DNN loss function is increasingly har-



TABLE 4 – Training complexity and BDR relative to Sepa-
rate Training (ST). Lower BDR values means lower bitrate
at equivalent semantic segmentation accuracy in terms of
mIoU.

Complexity↓ BDR↓
Baseline — 486.57%
ST 100.00% 0.00%
DA 46.99% 21.92%
ours, s = 0.085 26.51% 16.44%
ours, s = 0.045 48.19% 9.51%
ours, s = 0.025 86.75% −2.62%

der as the distortion level p increases, an exponential decay
function is used to decrease the pace at which image qua-
lity is reduced as the training progresses. In order to obtain
model weights for adaptive training initialization, note that
the DNN is trained on uncompressed pristine images be-
fore.
Listed coding configurations in Table 2 vary across dis-
tortions introduced by different types of processing, such
as grayscale conversion, image downsampling or compres-
sion artifacts. Therefore, multiple progressive training are
interlaced together to train the DNN on all considered co-
ding configurations. First, a progressive training with va-
rying downsampling factor δ is done. This training allows
us to obtain model weights θδi for each considered δi by ta-
king DNN model weights at last epoch e where f (e) = δi.
Afterwards, model weights θδi can be used at initializa-
tion for other progressive training with varying compres-
sion strength, where each images are downsampled by a
factor θδi . Such training with varying compression strength
is done for every image resolution on JPEG, JM, x265 and
VVenC codecs, resulting in a total of 4×#δ = 28 progres-
sive trainings.
The described training strategy can be done both on co-
lor and grayscale images. For color images, DNN weights
trained on pristine data are used as initialization for the
progressive training with varying image resolutions. For
grayscale, the same model is first fine-tuned on grayscale
images before being used for initialization. At the end, a to-
tal of 2× (1 + 1+ 4×#δ) = 60 progressive trainings are
done to cover the 1486 coding configurations described in
Table 2. Hyper-parameters p0, p∞, ∆p, s and the number
of epochs #e used by each progressive training are given
in Table 3.

3.3 Used Dataset and Architecture
In the context of this study, the Cityscapes [8] dataset is
considered. Cityscapes is composed of urban landscapes
represented with losslessly compressed images of resolu-
tion 2048× 1024. The lowest image resolution considered
in this study is therefore 512×256 with the downsampling
factor δ = 0.25.
DeepLabV3+ [5] with a ResNet50 backbone, a state-of-
the-art semantic segmentation algorithm is used to evaluate
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FIGURE 2 – Trade-offs between bitrate and mIoU with and
without chrominance channels. From left to right, each plot
correspond to JPEG, JPEG2000, JM, x265 and VVenC.
Criteria (I) and (III) defined in Section 2 are considered
for each curve.

DNN robustness to compression artifacts. MMSegmenta-
tion library [7] was used for DeepLabV3+ implementation,
training, evaluation and model weights. For all training de-
picted in Section 3.2, SGD optimizer with mini-batch size
of 4, a learning rate of 104 and a polynomial decay of 0.9
are used. Note that the learning rate is resetted to 104 at
each epoch ei as long as f (ei−1) ̸= f (ei), based on Eq. 1.
The vision task performance is measured with the mean
Intersection over Union (mIoU) metric.

4 Experiments
4.1 Progressive training evaluation
Firstly, we briefly evaluate the effectiveness of the progres-
sive training procedure by comparing training complexity
and reached accuracy on a small subset of coding configu-
rations. 11 VVenC coding configurations are used for this
experiment, with QP Q ∈ {5n|n ∈ Z, 0 ≤ n ≤ 10}, with
chrominance channels and no image downsampling. Mul-
tiple convergence speed s from Eq. (1) are considered, na-
mely 0.085, 0.045 and 0.025. We compare our method to a
Separate Training (ST) approach that perform one training
per coding configuration. Final complexity of ST strategy
is obtained by adding up the number of epochs required
until converge for each coding configuration. In addition,
Data Augmentation (DA) [15] training procedure is consi-
dered, which consists of training a single model on all co-



TABLE 5 – BDR with mIoU metric comparison. Negative values represent bitrate reduction at equivalent prediction accuracy
in terms of mIoU. Symbol ∗ denotes the use of (III) convex hull curves across considered image resolutions.

JPG JPG∗ JPG2K JPG2K∗ JM JM∗ x265 x265∗ VVenC VVenC∗

JPG 0.0 139.6 52.9 — 53.3 125.7 123.3 178.6 193.8 224.1
JPG∗ −58.3 0.0 −35.1 — −43.1 27.6 −2.7 68.6 26.8 73.0
JPG2K −34.6 54.1 0.0 — −13.1 32.8 29.6 62.2 72.0 88.4
JPG2K∗ — — — — — — — — — —
JM −34.8 75.9 15.0 — 0.0 99.1 71.8 157.5 115.3 179.6
JM∗ −55.7 −21.6 −24.7 — −49.8 0.0 −14.2 34.6 4.3 37.1
x265 −55.2 2.7 −22.9 — −41.8 16.5 0.0 50.3 24.7 63.0
x265∗ −64.1 −40.7 −38.4 — −61.2 −25.7 −33.5 0.0 −19.9 2.0
VVenC −66.0 −21.1 −41.9 — −53.5 −4.2 −19.8 24.9 0.0 32.1
VVenC∗ −69.1 −42.2 −46.9 — −64.2 −27.1 −38.7 −2.0 −24.3 0.0

ding configurations at once by selecting a coding configu-
ration randomly for each image during the training. Pro-
gressive training, ST and DA uses model weights trained
on raw images I at the initialization. Baseline refers to the
model trained on undistorted data, which thus does not va-
lidate criteria (I) from Section 2.
Results are presented in Table 4, where Bjøntegaard-Delta
Rate (BDR) metric represents the average bitrate savings
at equivalent DNN accuracy in term of mIoU. ST achieve
good rate-mIoU trade-offs by considering criteria (I). Ho-
wever, it is at the cost of training complexity since one trai-
ning has to be done for each coding configuration. DA trai-
ning procedure mitigate this issue by training one model on
multiple coding configurations at once, but it is at the cost
of BDR, especially when a very diverse set of coding confi-
gurations is considered. Note that DA and ST could achieve
comparable rate-mIoU trade-offs on a set of similar coding
configurations. The proposed progressive training proce-
dure allows optimal rate-accuracy trade-offs to be reached
with a lower training complexity. Tuning the convergence
speed s parameter from Eq. (1) allows to find a suitable ba-
lance between BDR values and training complexity. With a
convergence speed of s = 0.025, we are able to reduce the
training complexity over the ST procedure approach with
better BDR values.
Based on selected parameters given in Table 3, note than a
total of 4278 epochs are required to cover the 1478 consi-
dered coding configurations using the proposed progres-
sive training strategy. Therefore, to be comparable in terms
of training complexity, the use of ST strategy instead of
the proposed progressive training would have required less
than 3 epochs per coding configuration on average, which
is not enough to converge.

4.2 Coding Configuration Comparison
In this subsection, all considered coding configurations are
compared together as depicted in Section 3.
Table 5 presents BDR values with mIoU as the quality me-
tric between every codec, either with or without the consi-
deration of (III) all image resolutions with the convex hull.
Note that image downsampling is not considered along

with JPEG2000, as explained in Section 3.1.
It can be noted that using appropriate image resolution is
of major importance, saving 58.3%, 49.8%, 33.5% and
24.3% bitrate at equivalent prediction accuracy for JPEG,
JM, x265 and VVenC, respectively. Block-partitioning is
the main limitation of older codecs such as JPEG or JM to
obtain better rate-accuracy trade-offs. As an example, the
fixed 8×8 bloc size of JPEG may be unsuited to areas with
low spatial information such as sky or road, especially on
high resolutions images. If a downsampling is applied on
the same image, a 8 × 8 bloc will correspond to a larger
area, which could be more suited depending on the image
content. Even from codecs such as x265 or VVenC that al-
lows larger blocs to be selected at encoding, BDR savings
can be obtained with the use of convex hull.
We suggest that using (III) appropriate image resolution is
of greater importance compared to using a more complex
codec in terms of rate-accuracy trade-off. When appro-
priate image resolution is used, it can be noted that JPEG,
JM and x265 achieve 43.1%, 14.2% and 19.9% bitrate sa-
vings over JM, x265 and VVenC, respectively. Note that
this observation cannot be extrapolated to datasets contai-
ning smaller images or with higher spatial information,
since larger bloc size may not be desirable in such contexts.
Figure 2 compares rate-mIoU trade-offs with and without
chrominance information. Using grayscale images allows
JPEG and JPEG2000 to achieve greater compromise at lo-
wer bitrates, while the same does not apply for JM, x265
and VVenC video codecs. Note that an accuracy drop is
observable at high bitrate for video codecs. As shown by
Fischer et al. [14], artifacts generated by in-loop filtering
tend to worsen DNN performance, even with near lossless
image quality.
Achievable compression ratio with respect to a minimal
mIoU constraint is provided in Table 6. Multiple threshold
t0 are used to define the minimal acceptable mIoU score.
Among all coding configurations that have greater mIoU
than the constraint, the one with the lowest bitrate is se-
lected to compute the highest achievable compression ratio
with respect to the mIoU constraint. The average bitrate
using PNG compression of 2362.90 kB per image in the



TABLE 6 – Best achievable compression ratio with respect
to a minimal mIoU constraint. Considered DNN achieve
0.8027 mIoU on raw images.

t0 mIoU JPG JPG2K JM x265 VVenC
97.5% 0.783 15.9 5.6 N.A. N.A. N.A.
95.0% 0.763 33.2 18.8 30.2 39.9 43.4
90.0% 0.723 52.6 56.4 66.4 96.6 107.3
80.0% 0.642 172.0 188.9 182.3 231.9 273.9
70.0% 0.562 358.3 N.A. 313.0 507.7 529.3

original Cityscapes dataset is used as the anchor to com-
pute the compression ratio.

4.3 Comparison with CTC
In order to assess the importance of using (I) compressed
data at training time, (III) multiple image resolution and
(IV) chrominance degradation, a comparison with VTM
is provided as recommended by Common Test Conditions
(CTC) from the VCM MPEG standardization group [9].
Convex hull of VTM-12.0 with ALL-Intra configuration is
used as an anchor, where QP ∈ 22, 27, 32, 37, 42, 47 and
downsampling factor δ ∈ {0.25, 0.5, 0.75, 1.0} are consi-
dered.
Table 7 highlights JPEG BDR gains using mIoU metric
compared to VTM anchor. As expected, JPEG performs
poorly compared to VTM when criteria (I), (III) and (V)
are not considered, which results in a bitrate increase
of 644.68% at equivalent DNN performance in terms of
mIoU. Surprisingly enough, the use (I) compressed images
Î at training time allows JPEG to outperform the VTM an-
chor with a bitrate reduction of 4.06%. Bitrate savings can
be further increased to 73.41% if criteria (I) and (III) are
satisfied jointly, which emphasizes the importance of crite-
ria (III) for JPEG codec because of the fixed 8×8 bloc size.
JPEG achieving BDR gains compared to the VTM anchor
highlight the lack of resilience to compression artifacts that
DNN can have if criteria (I) is overlooked. Note that this
experiment was performed with a DNN model trained on
Cityscapes dataset, which does not contain any compres-
sion artifacts. Less extreme results would be obtained with
a dataset that includes compression artifacts, since artifacts
created by different compression algorithms share simila-
rities on which DNN are able to generalize [15, 28]. As
shown by Figure 2, removing (IV) chrominance informa-
tion is beneficial for JPEG at lower bitrates. Therefore, hi-
gher bitrate gains can be achieved by being able to remove
colors. Nevertheless, criteria (IV) appears less detrimental
compared to criteria (I) or criteria (III).

5 Conclusion
In this paper, we evaluate in the VCM context the impact
of compression artifacts on deep based semantic segmen-
tation algorithms at an unprecedented scale. A wide range
of image degradations are considered in order to measure
which distortions allows to maximize DNN performance

TABLE 7 – BDR values using mIoU compared to VTM
anchor using JPEG encoder under various coding configu-
rations. (I) Compressed data at training time. (III) Multiple
image resolutions. (IV) Chrominance degradation.

(I) (III) (IV) BDR
644.68%

✓ −4.06%
✓ ✓ −73.41%
✓ ✓ −25.65%
✓ ✓ ✓ −76.13%

at equivalent bitrate. Experiments showed that using ap-
propriate image resolution is the most crucial parameter to
achieve optimal rate-accuracy trade-off, achieving 58.3%,
49.8%, 33.5% and 24.3% bitrate savings at equivalent pre-
diction accuracy for JPEG, JM, x265 and VVenC, respec-
tively. Significant bitrate reductions can also be obtained
with newer codecs, but at the cost of encoding complexity.
Surprisingly, VVenC achieve a very low bitrate saving over
x265 of 2.00% with optimal image resolution, suggesting
that the main limitation of older codecs is their limited
block partitioning. Removing chrominance channels ap-
pears as an unsuitable strategy, as it can worsen DNN per-
formance even at very low bitrates. At high bitrates, the
poor generalization ability of DNN models to video co-
decs artifacts, such as in-loop filtering, makes them infe-
rior to simpler codecs like JPEG in terms of rate-accuracy
trade-off.
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