N

N
N

HAL

open science

Strong stationary times for finite Heisenberg walks

Laurent Miclo

» To cite this version:

Laurent Miclo. Strong stationary times for finite Heisenberg walks. ESAIM: Probability and Statistics,
2023, 27, pp.515 - 557. 10.1051/ps/2023008 .

hal-04219557

HAL Id: hal-04219557
https://hal.science/hal-04219557v1

Submitted on 19 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04219557v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ESAIM: PS 27 (2023) 515-557 ESAIM: Probability and Statistics
https://doi.org/10.1051/ps /2023008 WWW.esalm-ps.org

STRONG STATIONARY TIMES FOR FINITE HEISENBERG WALKS

LAURENT MicLob2*1

Abstract. The random mapping construction of strong stationary times is applied here to finite
Heisenberg random walks over Zjs, for odd M = 3. When they correspond to 3 x 3 matrices, the strong
stationary times are of order M®, estimate which can be improved to M* if we are only interested in
the convergence to equilibrium of the last column. Simulations by Chhaibi suggest that the proposed
strong stationary time is of the right M? order. These results are extended to N x N matrices, with
N = 3. All the obtained bounds are thought to be non-optimal, nevertheless this original approach
is promising, as it relates the investigation of the previously elusive strong stationary times of such
random walks to new absorbing Markov chains with a statistical physics flavor and whose quantitative
study is to be pushed further. In addition, for NV = 3, a strong equilibrium time is proposed in the
same spirit for the non-Markovian coordinate in the upper right corner. This result would extend to
separation discrepancy the corresponding fast convergence for this coordinate in total variation and
open a new method for the investigation of this phenomenon in higher dimension.
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1. INTRODUCTION

The investigation of the quantitative convergence to equilibrium of random walks on finite groups has lead
to a prodigious literature devoted to various techniques, see for instance the overview of Saloff-Coste [22] or the
book of Levin, Peres and Wilmer [14]. One of the most probabilistic approaches is based on the strong stationary
times introduced by Aldous and Diaconis [1]. Diaconis and Fill [7] presented a general construction of strong
stationary times via intertwining dual processes, in particular set-valued dual processes. It was proposed in [17]
to obtain the latter processes through the resort of random mappings, in the spirit of Propp and Wilson [21].
Here we apply this method to deduce strong stationary times for finite Heisenberg random walks. It will illustrate
that the random mapping technique can be effective in constructing strong stationary times in situations where
they are difficult to find and have lead to numerous mistakes in the past. While there is room for improvement
in our estimates, we hope this new approach will help the understanding of the convergence to equilibrium of
related random walks, see for instance Hermon and Thomas [11], Breuillard and Varju [2], Eberhard and Varji
[9] or Chatterjee and Diaconis [5] for very recent progress in this direction.
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To avoid notational difficulties, we begin by presenting the case of 3 x 3 matrices. For M > 3 and M odd,
let Hj; be the Heisenberg group of matrices of the form

lzz
01y
001

where z,y, 2 € Zps. Such matrices will be identified with [z,y, 2] € Z3,, the multiplication corresponding to
[z,y,2] - [, ¢, | =[x+ 2"y + ¥, 2 + 2" + 2¢/]

for any [z,v, 2], [2, v, 2] € Z3,.

Consider the usual system of generators of Hys, {[1,0,0],[—1,0,0],[0,1,0], [0, —1,0]}, as well as the random
walk [X,Y, Z] = ([Xn, Y0, Zn))nez, , starting from the identity [0,0,0] and whose transitions are obtained by
multiplying on the left by one of these elements, each chosen with probability 1/6. With the remaining probability
1/3, the random walk does not move. The uniform distribution & on H), is invariant and reversible for the
random walk [X,Y, Z]. A finite stopping time 7 with respect to the filtration generated by [X,Y, Z], possibly
enriched with some independent randomness, is said to be a strong stationary time if

e 7 and [X,,Y;, Z,] are independent,
e [X. Y., Z,] is distributed as U.

The tail probabilities of a strong stationary time enable to estimate the speed of convergence of the law
L[Xn, Y, Zn] of [Xn,Yn, Z,] toward U, in the separation sense, as shown by Diaconis and Fill [7]. More
precisely, recall that the separation discrepancy s(m, ) between two probability measures m and p defined on
the same measurable space is defined by

dm
s(m,p) =esssupl — —
Iz dp

where dm/dy is the Radon-Nikodym density of m with respect to p.
For any strong stationary time 7 associated to [X,Y] Z], we have

VneZy,  s(L[Xn, Y, Zn],U) < P[r > n]

It justifies the interest the following bound:

Theorem 1.1. There exists a strong stationary time T for [X,Y, Z] such that for M large enough,

Vr=0, Plr = r] < 3exp (_I’YTW)

Taking into account the invariance of the transition matrix of [X,Y, Z] with respect to the right (or left)
group multiplication, the above result can be extended to any initial distribution of [Xy, Yy, Zy]. Note that
(X,Y) is a lazy random walk on the finite torus Z3,, so it needs a time of order M? to reach equilibrium in the
strong stationary time sense. This estimate will be made more precise in Lemma 3.1.

Nevertheless, the puzzling feature of the 3 x 3 Heisenberg model over Z); is the fast convergence of Z,
mixing more rapidly than (X,Y’), at a time that should be of order M, up to possible logarithmic corrections.
In the total variation sense, this is known to be true, see e.g. [3, 4] and the references given there. We believe
this also holds in the separation sense and that the new approach presented here can be refined to go in this
direction. More precisely, a strong equilibrium time for (the non-Markovian) Z is a finite stopping time 7 for
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[X,Y, Z] (and with respect to possible independent randomness) such that 7 and Z; are independent and Zz
is distributed according to the uniform law on Zj;. In Remark 4.8 (¢), such a time 7 is proposed and believed
to be of order M. Simulations programmed by Chhaibi [6] suggest it is at most of order M.

Up to our knowledge, no strong stationary time can be found in the literature for finite Heisenberg models.
So the main point of this paper is to show that such a strong stationary time can be constructed via the random
mapping method of [17], even if it is sub-optimal. Indeed in Theorem 1.1 the right order should be M2, the same
as for the usual random walk (X,Y) on Z3,, the extra time for Z being expected to be negligible as said above.
Nevertheless, we will be led to new interesting models of absorbing Markov chains with a statistical physics
flavor whose investigation should be pushed further to get the desired estimate, see Remark 4.8 in Section 4.

If one is only interested in the convergence to equilibrium of the Markovian last column (Y, Z), the same
approach gives a better result, even if it remains sub-optimal according to the above observations. Nevertheless
simulations by Chhaibi [6] hint the strong stationary time below is of the optimal order M?2.

Theorem 1.2. There exists a strong stationary time T for (Y, Z) such that for M large enough,

r
Vr0,  PF>r]<3exp (-

r [T =7] exp ( — {737

One could think that once the equilibrium has been reached for (Y, Z), it is sufficient to wait for a supple-
mentary time for X of order M? to equilibrate to get a strong stationary time for the whole chain [X,Y, Z].
But one has to be more careful with this kind of assertions, see Remark 5.1 in Section 5 for more details.

These considerations can be extended to the N x N Heisenberg Hy as group model over Zy,. It consists in
the matrices of the form

lzioz13 T, N21 TN
0 1 x3--m2N—1 2N

00 1 --~a23N-1 Z3N
00 0 -+ 1 2av_1nN
o0 0 --- 0 1

where z; € Zp for 1 < k <1 < N, the group operation corresponds to the matrix multiplication. Such matrices
will be identified with [2]1<k<i<N € ZAA/[N, where Ay = {(k,1) : 1 <k <1< N}. Consider the usual system of
generators of Hy ar, {€0¢7,741) : 1 € [N —1] and € € {£1}}, where §(7 141) is the element of ZAA/IN whose entries
all vanish, except the one indexed by (I, + 1) which is equal to 1. We used the notation [k] = {1,2,...,k}
for any k € Z,, and more generally for any k,l € Z, we will denote [k,I] == {k,k + 1,...,1} (which is empty by
convention if k > [). Let [X] = ([X](n))nez, = ([Xr,1(n)])1<k<i<N, nez, be the random walk starting from the
identity [0];<x<i<n and whose transitions are obtained by multiplying on the left by one of the generators, each
chosen with probability 1/(3(N — 1)). With the remaining probability 1/3, the random walk does not move.
The invariant measure is the uniform distribution on Hy, ps. We have a result similar to Theorem 1.1:

Theorem 1.3. There exists a strong stationary time T for [ X] such that for M large enough,

2r
vrz0o Frerlsses <_ 17(N - 1)MN<N—1>>

More generally it is possible to exploit the upper diagonal structure of the model. Introduce for [x] € Hy as
and b € [N — 1], the bth upper diagonal dy[x] := (g ktb)re[n—s], as well as dpyp[z] = (dp[x])kepp). Note that
[z] = diy—17[z]. Similarly, for b€ [N — 1], we can associate the stochastic chains Dy := (dp[ X (n)])nez, as well
as Dy = (dppp[X (n)])nez,. to the Markov chain [X]. It is not difficult to see that Dy is a Markov chain itself
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(but Dy is not). We will see that for any b € [2, N — 2], there exists a strong stationary time 7, for Dy of
order at most NMYPN=0=1) see Theorem 6.3 in Section 6. The estimate of Theorem 1.3 does match exactly
that of Theorem 1.1 when N = 3, because we looked for a faithful generalization to facilitate reading. Again,
all these bounds are very rough and we hope they are a preliminary step toward the conjecture that the order
of convergence for the (non-Markovian) up-diagonal Dj should be M?"? for fixed N and b e [N — 1] (see for
instance [3]).

Theorem 1.2 has equally an extension. Denote C'n[X] the last column of [X] and remark this is a Markov
chain.

Theorem 1.4. There exists a strong stationary time T for Cn|[X] such that for M large enough,

N 2r
V’I"ZO, P[TZT]S?)GXP (_17(N_1)M2(N1)>

The plan of the paper is as follows. In the next section, as a warming-up computation and to recall the
approach of [17], we construct strong stationary times for quite lazy random walks on the finite circle Zs (no
longer assuming that M > 3 is odd). This construction is extended in Section 3, through a kind of tensorization,
to produce a strong stationary times for the Markov chain (X,Y) on the finite torus Z3,, extracted from
[X,Y, Z]. This procedure is itself distorted in Section 4 to prove Theorem 1.1. The underlying idea is an
optimization over the choice of some sign functions, to get random mappings spreading and retracting as
much as possible the subset-valued dual chains. Section 5 presents the modification needed for Theorem 1.2,
it corresponds in fact to the simplest illustration of the method we are proposing. A general roadmap of the
latter is presented at the beginning of Section 6, before working out the extensions to random walks on higher
dimensional Heisenberg groups. Finally, Appendix A ends the investigation of random walks on the finite circle
Zys by treating the remaining cases, when the level of laziness is weak, and Appendix B provides an index of
the main notations.

2. STRONG STATIONARY TIMES FOR FINITE CIRCLES

Here we construct strong stationary times for certain random walks on discrete circles (the remaining cases
will be treated in Appendix A). It will enable us to recall the random mapping approach, as developed in [17].

We start by presenting the general situation of random walks on discrete circles with at least 3 points. Let
M e N\{1,2} and a € (0,1/2] be fixed. We consider the Markov kernel P on Z); given by

a Jify=z+1lory=a-1
Y x,y€ Zy, P(z,y) =1 1—2a,ify=2a
0 , otherwise

We are looking for strong stationary times for the corresponding random walk starting from 0 (or from any

other initial point by symmetry). From Diaconis and Fill [7], it is always possible to construct such strong
stationary times, except when a = 1/2 and M is odd, then the random walk has period 2 and does not converge
to its equilibrium (instead, we will recover in this case a dual process related to the discrete Pitman’s Thm.
120)).

More precisely, since a > 0, the unique invariant probability associated to P is 7w the uniform distribution
on Zys. It is even reversible, so that the adjoint matrix P* of P in L?(n) is just P* = P. In the sequel and in
Appendix A, we will consider certain sets U consisting of non-empty subsets of Zj; and containing the whole
state space Zps. There will be three instances for U, depending on the values of a and M (a fourth one will be
considered in Sect. A.3). Here we will deal with the simplest case, when a € (0,1/3]. We will then take U = 7,
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the set of intervals in Zj; which are symmetric with respect to 0, namely
J:={B(0,r) : re[0,|M/2]]}

where |-] is the usual integer part and B(0,r) := [—r, —r] is the (closed) ball centered at 0 and of radius r,
for the usual graph distance on Z,;. Here we extended the notation for discrete segments introduced before
Theorem 1.3 to their “projections” on Zjps. For the other definitions of 20, when a € (1/3,1/2], we refer to
Appendix A. These cases, while instructive, will not be helpful for the next sections. For the sake of the general
arguments below, just assume that we have chosen a U consisting of “nice” subsets of Zy,.

For any S € U, we are looking for a random mapping vg : Zy; — Zjs satisfying two conditions:

e the weak association with P* = P, namely

VaeZy, VyeS, Pw@@y:ﬂ:%éﬁpww) (2.1)

where £(5) > 0 is a positive number.
e the stability of U: the set

U(9) = ¢5'(5) (2:2)

belongs to U u {}.

The interest of such random mappings is that they enable to construct a 2U-valued intertwining dual process,
and a strong stationary time if the latter ends up being absorbed in the whole set Z;;. Indeed, introduce the
Markov kernel A from U to Zj; given by

VSeU,Yaxely, A(S,z) = —=1g(x)

where 1g is the indicator function of S. Consider next the U x U-matrix B given by

§(5)m(S")

VS, Sey, PSS = ~(5)

P[T(S) = 5] (2.3)

We have shown in [17] that B is a Markov kernel and that it is intertwined with P through A:
BPA = AP

Note that Zy; is absorbing for 93, since we always have U(Z ) = Zjps and §(Zps) = 1 (by summing with respect
to y € Zps in (2.1)). Let X := (X,,)nez, be a Markov chain on U starting from {0} and whose transition kernel
is B. Consider t its absorbing time:

t=inf{neZ, : X, =Zy} € Nu{x}

Let X = (Xn)neZJr be a Markov chain on Zj; starting from 0 and whose transition kernel is P. As in the
introduction, a finite stopping time 7 for the filtration generated by X (and maybe some additional independent
randomness) is said to be a strong stationary time for X if 7 and X, are independent and X is distributed
according to m. According to Diaconis and Fill [7], if t is almost surely finite, then it has the same law as a
strong stationary time for X, since it is possible to construct a coupling between X and X such that t is a
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strong stationary time for X (see also [17], where this coupling is explicitly constructed in terms of the random
mappings).

Except when a = 1/2 and M is even, the t we are to construct here and in Appendix A will be a.s. finite.
Furthermore, when a € (0,1/3], t will be a sharp strong stationary time, in the sense that its law will be
stochastically dominated by the law of any other strong stationary time. As a consequence, we get that

VneZy, s(L(Xp), m) =Pt > n] (2.4)
Indeed, this sharpness is a consequence of Remark 2.39 of Diaconis and Fill [7] and the fact that
VSel{Zu},  AS|M/2]) =0 (2.5)

This relation, with S € B\{Zy,}, will not be satisfied by the constructions of Appendix A, so we will not be
able to conclude to sharpness when a € (1/3,1/2) or a = 1/2 and M odd.

For the remaining part of this section we assume M > 3 and a € (0,1/3]. Let us construct the desired random
mappings (¢s)sey. We distinguish S = {0} from the other cases.

2.1. The random mapping g}

The construction of 1y, is different from that of the other 1, for S € J\{{0}}. Choose two mappings
G0+ Ly — Ty satisfying respectively 9(0) = 0 = ¢(—1) = (1) and P(z) # 0 for x € Zp\[-1,1], and
¥(0) = 0 and t(x) # 0 for x € Zp\{0}. Take 1)p to be equal to ¢ with some probability p € [0,1] and to 3
with probability 1 — p. Let us compute p so that Condition (2.1) is satisfied, which here amounts to the validity
of

Pl () = 0] = ﬁpmm (2.6)

for all x € Z; and for some £({0}) > 0.

e When z ¢ [—1, 1], both sides of (2.6) vanish.
e When z = 0, the Lh.s. of (2.6) is 1, while the r.h.s. is (1 — 2a)/£({0}). This implies that £({0}) = 1 — 2a.
e When z € {—1, 1}, (2.6) is equivalent to

and this number p does belongs to (0,1] for a € (0,1/3].

Next we must check that for this random mapping 1oy, (2.2) is satisfied, namely ¥({0}) € J u {}. This is
true, because ¢~ ({0}) = [—1,1] € J and =1 ({0}) = {0} € 3.

2.2. The other random mappings

We now come to the construction of the random mappings ¢g, for S € J\{{0}}, which is valid for all a € (0, 1/2]
and does not depend on the particular value of S € J\{{0}}. So let us call this random mapping ¢. It will takes
five values {¢1, 2, @3, b4, P5}, and to describe them it is better to discriminate according the parity of M.

When M is odd. Here is the definition of the mappings ¢;, for [ € [5].
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e ¢ is defined by
x+1,ifxe[-(M-1)/2,-1]
VxeZly, d1(x) =141 ,ifx =0
x—1,ifzxefl,(M—-1)/2]
® ¢ is defined by

x+1,ifxe[-(M—-1)/2,—-1]
VaxeZy, po(x) =< -1 ifz=0
x—1,ifxe[l,(M—-1)/2]
e ¢3 is defined by

x—1,ifxe[—(M-1)/2,-1]
V{,CEZ]V[, ¢3(:L‘) = 1 ,if$=0
x+1,ifxefl,(M—-1)/2]
e ¢4 is defined by

x—1,ifxe[-(M-1)/2,-1]
YV x€Zy, pa(x) =< -1 ifz=0
z+1,ifze[l,(M—-1)/2]
e 5 is just the identity mapping

The random mapping ¢ is taking each of the values ¢1, ¢2, 3 and ¢4 with the probability a/2 and the value ¢5
with the remaining probability 1 — 2a. It is immediate to check (2.1) can be reinforced into

VayelZy,  Pls(z) =yl = Pz,y) (2.7)

(called the strong association condition with P* = P in [17]). Furthermore, we have for any r € [(M —1)/2—1],

¢, 1(B(0,7)) = B(0,r + 1)

¢y 1(B(0,7)) = B(0,r + 1)

¢3(B(0,7)) = B(0,r — 1) (2.8)
¢4 (B(0,7)) = B(0,r —1)

o5 (B(0,7)) = B(0,7)

It follows that J is left stable by the random mapping ¥ defined in (2.2) (since the remaining set Zj5 =
B(0, (M — 1)/2) is left stable by any mapping from Zpys to Zyy).

When M is even. The previous mappings have to be slightly modified, due to the special role of the point
M /2. More precisely, ¢1, ¢2, d3, ¢4 and ¢5 are defined in exactly the same way on Zy,\{M/2} and in addition:

o1(M/2) = M/2+1
a(M/2) = M/2 -1
$p3(M/2) = M/2 +1
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pa(M/2) = M/2 -1
¢5(M/2) = M /2

The random mapping ¢ is taking each of the values ¢, @2, ¢3, ¢4 and ¢5 with the same probabilities as in the
case M odd. The strong association condition (2.7) as well as the stability of J by ¥ are similarly verified ((2.8)
is now true for r € [M/2 — 1]).

2.3. The Markov transition kernel B

To simplify the description of 9B given in (2.3), let us identify [—r,r] with r, for » € [0,[M/2]]. Then it
appears that 93 is the transition matrix of a birth and death chain:

1—3a,ifk=0=1
3¢ ,ifk=0andl=1

2041 Cif e [1,|M/2| —1] and |k —1] = 1
Ve [0, (M/2ll, Pkl — | ‘2T Re L M2l =1 and k=]

1—2a,ifke[l,|M/2]—1] and k =1

1 Jifk=|M/2| =1

0 , otherwise

.

Since P enables to reach the absorbing point |M /2] from all the other points, the absorbing time t is a.s. finite
and due to (2.5), its law is the distribution of a sharp strong stationary time for X, namely the tail probabilities
of t correspond exactly to the evolution of the separation distance between the time marginal distribution
and m, see (2.4). Since the starting point Xy = {0}, identified with 0, is the opposite boundary point of the
absorbing point | M /2], Karlin and McGregor [13] described explicitly the law of t in terms of the spectrum of
P (see also Fill [10] or [8] for probabilistic proofs via intertwining relations). In particular when this spectrum
is non-negative, t is a sum of independent geometric variables whose parameters are the eigenvalues (except 1)

of PB.

Remark 2.1. When a = 1/3, Diaconis and Fill [7] gives another illustrative example of a sharp strong stationary
time for P, see also Section 4.1 of Pak [19].

Remark 2.2. We could have first projected Zy; on [0, | M/2|] (sending 0 to 0, —1 and 1 to 1, etc.) and lump
X to obtain a birth-and-death process X. Its transition matrix P satisfies P(0,1) = 2a, P(1,0) = a, P(1,2) =

a, etc. (note that P(|M/2],|M/2] — 1) is equal to a or 2a, depending on the parity of M). Constructing
a corresponding set-valued intertwining dual, we would have ended with the same strong stationary time.
Accordlng to Proposition 4.6 of Diaconis and Fill [7] (where we take into account that P is reversible and
that Xy = 0), there exists a dual process to X taking values in {[0,2] : z € [0,|M/2]]} if and only if X is
monotone. It is easy to check that X is monotone if and only if a € (0,1/3] (compare P(0,[1,|M/2]]) = 2a
with P(1,[1,|M/2]]) = 1 — a, this special role of 0 is related to the difference between Sections 2.1 and 2.2).
This explains the critical position of @ = 1/3 and justifies the different treatment of the case a € (1/3,1/2] in
Appendix A.

Remark 2.3. If we had chosen for ¢(5; a random mapping satisfying the strong association condition (2.7)
instead of the weak association (2.1), then we could not have achieved the stability condition ¥(J) c J. Indeed,
the condition P[t(;(0) = 0] = 1 — 2a would have implied that P[¥({0} 3 0] = P[¢){0;(0) =0] =1—2a < 1
and thus with positive probability U({0}) must take values in the subsets not containing 0. Nevertheless, it
is possible to choose a random mapping verifying (2.7) and such that the only additional value of W({0}) is
the empty set, so that U({0}) € {&,{0},{—1,0,1}}. Due to the fact that necessarily B({0},-)A = AP(0,-) =
P(0,) = (1 —2a)dop + a(d—1 + d1) (where 0 stands for the Dirac mass), we then end up with the same B({0},-)
and thus the same kernel ‘B.
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If with positive probability ¥({0}) takes other values than &, {0} and {—1,0,1}, and if we keep the same
¢ for the other random mappings, then t will not be sharp (if is a.s. finite at all, cf. Rem. A.1), as it can be
deduced from Appendix A.

2.4. Ilustration for a = 1/3 and M odd
When a = 1/3, the transition matrix 9 is given on [0, (M — 1)/2] by

( Jifk=0=1
Jifk=0andl=1

0
1
12041 if ke [1,(M —3)/2] and |k — 1| =1
Yk, leo,[M/2]], P(k,l) = { 32k+1° .
L Jifke[l,(M-3)/2] and k =1
1
0

=

Vifk=(M—1)/2=1

, otherwise

\
Let t be the time a Markov chain ¥ associated to 9 and starting from 0 hits (M — 1)/2. Consider W a random
walk on Z, starting from 0, whose transition probabilities of going one step upward, one step downward or to
stay at the same position are all equal to 1/3. Let ¢ be the hitting time by W of the set {—(M —1)/2, (M —1)/2}.

Since for k € [1, (M — 3)/2], we have P(k,k + 1) > 1/3 and P(k,k — 1) < 1/3, a simple comparison with the
random walk W enables us to see that t is stochastically dominated by ¢. This elementary observation leads to:

Corollary 2.4. The strong stationary time t for the random walk on the circle Zy; corresponding to a = 1/3,
constructed as the absorption of the above Markov chain X, has tail distributions satisfying for M large enough,

Vr>0, Plt=rM?] <2exp(—r/4)
Proof. 1t is sufficient to prove the same bound for ¢: for M large enough,

Vr>0, P[s = rM?] < 2exp(—r/4) (2.9)
For any « € R, define

14+e % +e”
Po = ———

We have for any ne€ Z,,
E[e®Wr+t|g(W,, W1, ..., W1, Wy = 0)] = pae®™Vn
and as a consequence, the process (M, )nez, defined by
VneZy, — M,:=e"Wnean
is a martingale. Note that by symmetry and since ¢ is independent from sgn(W.), we have

E[M] = E[e’l(M—l)/Q_m(p“)qlwg:(M71)/2] + E[B—O&(M—l)/Z—ln(pa)g]lW<:7(M71)/2]
= cosh(a(M — 1)/2)E[€71n(pa)§]
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Furthermore, (My, n¢)nez, is a bounded martingale (since p, > 1), so the stopping theorem gives us E[M,] =
E[My] =1, and we get

L 1
Elpa’l = cosh(a(M —1)/2)

By analytic extension, this equality is still valid if « is replaced by ai (where i € C, i2 = —1), as long as
|a|(M —1)/2 < 7/2, and we get

8 KH;@)] = =T/

Apply this equality with « = 1/M, to deduce that for large M,

E[(uzcogwm)g] ~ D

For r > 0, remarking that cos(1/M) < 1, we get

(4250) " e (reaian) |

Ly
cos(1/2) 3M?

1

= m exp(—r(1 +0(1))/3)

Pls > er]

/N

Taking into account that 1/cos(1/2) ~ 1.139, we see that (2.9) is satisfied for M large enough. O

3. A STRONG STATIONARY TIME FOR THE FINITE TORUS

Here we construct a set-valued dual process associated to the random walk [X, Y, Z] on the Heisenberg group
H)s described in the introduction, where the odd number M > 3 is fixed. In some sense it is just a tensorization
of the construction of the previous section. It will provide a strong stationary time for the random walk (X,Y)
on the torus, but not for [X,Y, Z] as we are to see. The main interest of this section is to serve as a link
between the considerations of Sections 2 and 4, justifying the construction that will be done there. Except for
this pedagogical purpose, this section is not needed in the sequel.

Denote by P the transition kernel of [X,Y, Z]. The uniform probability measure &/ on Hj, is reversible with
respect to P, so that P* = P, where P* is the adjoint operator of P in L?({). As in the previous section, we are
looking for a dual process X = (X,,)nez, taking values in a set 2 of non-empty subsets of Hj;, whose transition
kernel 8 is intertwined with P through:

PA = AP (3.1)

where the Markov kernel A from U to Hy, is given by

VQeW, VueH,)y, AQ,u) =
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Since [X,Y, Z] is starting from [0, 0, 0], we will require furthermore that Xy = {[0,0,0]}. The construction of
P will follow the general random mapping method described in [17] and already alluded to in the previous
section. More precisely, for any € € U, we are looking for a random mapping v : Hy; — H), satisfying two
conditions:

e the weak association with P* = P, namely

VueHy, VveQ, Plya(u) =v] = ﬁP(u,v) (3.2)

where £(£2) > 0 is a positive number.
e the stability of U: the set

T(Q) =195 () (3-3)

belongs to U u {}.
It is shown in [17] that the Markov kernel defined on U by

vQQ'ey, PQQ) =

satisfies (3.1). Note that the whole state space Hjy, is absorbing for B, so if
t=inf{neZ, : X, =H)p} € Nu {0}

is a.s. finite, then it has the same law as a strong stationary time for [X,Y] Z], as a consequence of Diaconis
and Fill [7].

Let us now describe U and the corresponding random mappings (1q)aesw- The set U consists of subsets
Q) c Hy, of the form

Q5.4 ={[z,y,2]€eHp : x€ B(r), y€ B(s), z€ A(z,y)} (3.4)

where r € [0,(M —1)/2], s € [0,(M —1)/2], B(r) := [—r,r] seen as the closed ball of Zj; centered at 0 and of
radius r, and A is a mapping from B(r) x B(s) to the non-empty subsets of Z,;. We call A a special field
going from the base space B(r) x B(s) to the fiber space consisting of the non-empty subsets of Zj;. In the
next section, this notion will be relaxed into that of a field, which is a mapping F' from a finite set S to the
set of subsets (the empty set included) of another finite set S’ and serves to describe subsets of S x S’ via the
representation

{(z,y) e S xS : ye F(x)}
In order to construct our random mappings (1¥q)aew, we need to introduce the following 7 mappings, inspired

by the considerations of the previous section. Denote Zy, = [—(M — 1)/2,—1] and Z}, := [0, (M — 1)/2], seen
as subsets of Zy;. We define the mapping sgn on Zj; via

—1,ifxeZy,

YzeZy, sgn(zx) = _
1 ,ifzxe ZL

Here are the mappings that will be the values of the random mappings (1q)qex:
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e The mapping ¢

. 0.y.2—ay] . ifze{—1,0,1
Ve, 2 ey, 6O,y 2]) :z{{xzz] " ;fizi—l 0 1§

e The mapping (;Ab(o)

~ 507 ] if _1’0’1
Y [2,y,2] € Har, ¢WMWJD:{Eyi%;§§L10$

e The mapping ¢1):
Vg, 2leHy,  ¢M([wy 2]) = [z —sgn(z),y, 2 — sen(z)y]
e The mapping qAS(l)
Vlzy 2 ey,  0W([wy,2]) =2,y — sgn(y), 2]
e The mapping 5(2)
Vieyzlely, (v, 2]) =[x +sgn(@),y, 2 +sgn(z)y]

e The mapping ¢
Viry e Hy, 6P ([ y 2]) = [z.y +sen(y). 2]
o #® is just the identity mapping on H,,.

We can now define the family (¢n)oey. Again we fix a set 2 := Q, ; 4 as in (3.4). The underlying probability
depends on €2 through the following cases.

o If r = s = 0. The random mapping g takes with the values 5(0) and $(0) with probability 1/2 each. The
weak association with P is satisfied with £(Q2) = 1/3: for any [z,y, 2] € Hps and [2/, ¢/, 2] € Q,

P[’l/)g([]?, Y, Z]) = [.’L‘/, ylv Z/]] = 3P([:I:, Y, Z]’ [x/’ ylv ZI]) (3.5)

Indeed, first note that

£
have (z,y) € {(~1,0), (I,
Consider the case ( Y)

T

Y, 2'] € Qo,0,4 implies that ' = 3y’ = 0. Next, both sides vanish if we do not
0)

(0,1),(0, -1, (0,0)}, and &/ = 2.
(0,0), we have for any z € Zy,

]P[’L/JQ([O,O,Z]) = [07072]] =
P([0,0,Z], [07072]) = 1/3

o (3.5) is satisfied.
When (z,y) = (—1,0), we have for any z € Z,y,

P [vq([—1,0,2]) = [0,0,2]] = Plva = V] = 1/2
P([-1,0,z],[0,0,z]) = 1/6
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so (3.5) is satisfied again. The other cases are treated in the same way.

e Ifr = 0and s # 0. The random mapping ¢ takes with the value QNS(O) with probability p, qAS(l) and (5(2) each
with probability ¢, and ¢ with probability 1 — p — 2q, where p, ¢ € [0, 1] are such that 1 —p —2¢ € [0,1].
Let us find p, ¢ such that furthermore the weak association with P is satisfied with some £(2) > 0: for
any [x,y,z] € Hy and [2,y/, 2] € Q,

IP)[d)Q([‘rvva]) = [xlvyl7zl]] = ﬁP([x,y,z], [xlvylvzl]) (3‘6)

First note that [2',y/, 2'] € Q5,4 implies that 2’ = 0. Next we have

Plyalley. 2D) = (0.4, 21 = P Goytaep-to.o1 + IO Lo —l0.0.21)
4Lz (g, =0y =1 T =P = 20156 1y )= 0 21

Let us first investigate the possibility (E(O)([ac, y,z]) = [0,v’, 2’]. Necessarily, z € {-1,0,1}, y = ¢/, 2’ = 2 —
xy. Whatever z € {—1,0,1}, since ¢V ([z,y, 2]) # [0,, 2] and ¢ ([z,y, 2]) # [0,y, 2'] (due to sign(y) #
0), we have

Plya.y.2) = 10,4,2'1] = PLigo (o yep=fops—anny T 1 =P = 20050 (oy.e)=o.0,5-a20)

_fp ,ifxe{-1,1}
T 11-2q,ifz=0

On the other hand, we have

P([a:,y&]v [O’y’z]) = { };g : g z e:{()_l’ 1}

thus we end up with the conditions 1 — 2¢ = 2p and £(Q2) = 1/(6p).
Next we consider the possibility ¢ ([z,y,2]) = [0,7/, 2] (the symmetric case ¢ ([z,y,z]) = [0,7/, 2]
is similarly treated). Necessarily = 0, 2’ = z and y = ' £+ 1, depending on y € Z}, or y € Z;,;. With
these values, it follows that the Lh.s. of (3.6) is ¢ and the r.h.s. is 1/(6£(2)), leading us to the equation
q = 1/(6£(12)). Putting together all the equations between p, ¢ and £(2), we get that p = ¢ = 1/4 and
£(2) = 2/3. It is then immediate to check that (3.6) is true.

e If r # 0 and s = 0. The random mapping ¥ takes with the values $(0),$(1),$(2) and $(3), each with
probability 1/4. The treatment of this case is similar to the previous one.

e If » # 0 and s # 0. The random mapping v takes the value qg(?’) with probability 1/3 and each of the
values ¢, 6D 32 and ¢ with probability 1/6. This situation is the simplest one, we clearly have for
any [z,y,z] € Hy and [2/,y,2'] € Q,

]P)[wﬂ([xayvz]) = [x/’ylazl]] = P([x,y,z], [Ilvylwzl])

Our next task is to check that the random mapping ¥ associated to the family (1¥q)aey lets U stable and
moreover to describe its action. Fix some 2 := Q, s 4 € U, we are wondering in which set it will be transformed
by W. Again we consider the previous situations.

o If r = s = 0. Then (1) is equal either to (¢(0)~1(Q2) or to ($(0))_1(Q). Let us consider the first case. By
definition, we have

~

(6 Q) = {[2 ¢, T e Har = §O([2', ¢/, 2']) € Q)
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[2/,y, 2] € Hyr ¢ 3 [, y, 2] € Q, with 5(0)([93',1/',2']) = [z,y, 2]}

[,y 2] € Hy ¢ 3 z € A0,0), with ¢ ([2', 3/, 2']) = [0,0, 2]}

[2,y, 2] € Hp + 3 2 € A0,0), with 2’ € {—1,0,1} and [0,7/, 2 — 2'y'] = [0,0, 2]}
[2,0,2'] e Hps ¢ 2’ € {—1,0,1} and 2’ € A(0,0)}

where A’ is defined by:
V('y) e B(1) x {0},  A'(a',y’) = A(0,0)

Similarly, we get (¢(©)~1(Q) = Qg1 4.
e If r =0 and s # 0. There are four possibilities for ¥(Q): (¢(2)"1(Q), (6)~1(Q), (#*)"1(Q) or
(¢3)~1(Q). The same computation as above shows that

()71 (2)

={[2',y,7 ] €Hy : Fye B(s),3I 2€ A(0,y), with 2’ € {—1,0,1} and [0,y/, 2" — 2'y'] = [0,y, 2]}
={[".y/, 2] e Hy : 2" € {-1,0,1}, ¥’ € B(s) and 2" € A(0,y) + 2"y'}

= Ql,s,A’

where A’ is defined by:
V(2',y") e BQ) x B(s),  A'(a'.y) = A0,y) + 2"y

Next consider (¢(1))=1(Q):

(M) 7HQ) = {[«, ¢/, 2| € Har : 3y € B(s),3 z € A(0,y) with 2’ = 0, y —segn(y’) =y, 2’ = 2}

= Q0,s+1,A’
where A’ is defined by:
V(e y)e{0} x B(s+1),  A(z",y) = A0,y —sgn(y'))
Similarly, (¢()~1(Q) = Q0,5—1,47, with another set-valued mapping A’:
V(' y)e{0} xB(s—1),  A'a'.y) = A0,y + sgn(y"))
Of course, we have ($(3))’1(Q) =Q.
e The other cases where r # 0 are treated in a similar way. For instance for r # 0,(M —1)/2 and s # 0, we
have (¢()~1(Q) = Q41 5,4 with
V(«,y) e B((r+1) A (M —1)/2)) x B(s),  A(«,y) = A2’ —sgn(a’), y) + sgn(a’)y’
Let B the transition kernel induced by the above family of random mappings (1q)qey and consider X :=
(X5)nez, an associated Markov chain starting from {[0,0,0]}. For any n € Z,, let us write X,, = Qg s, 4,

with the previous notation. Define

o=inf{neZ; : Ry=(M-1)/2=5,}
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Taking into account the considerations of Section 2, ¢ is a.s. finite and we have
Vnzo, R, =M-1)/)2 =85,
Nevertheless, this Markov chain has a serious drawback:
VneZy,VaeB(R,),Yye B(S,), |[Ap(z,y)| =1 (3.7)
Indeed, from the above construction, we deduce that
VneZy,Va' € B(Ryy1),Vy € B(Sug1), 3z € B(R,), 3y e B(Sy) : |Ans1(z',y)| = |An(z,y)|

This observation is true for any initial condition Xy. When Xy = {[0, 0, 0]}, the fiber-valued component of X; is
only {0} and has size 1. The latter property is inherited by all the following values of X,, for n € Z, justifying

(3.7). For the fiber-valued components of X to reach the whole state space Z ), we need to change our strategy.
Before doing so in the next section, let us estimate the tail probabilities of o, taking into account Corollary 2.4:

Lemma 3.1. For M large enough, we have
Vr>=0, Plo > rM?] < 5exp(—r/10)

Proof. Let X = ()Z'n)neZJr and Y = (?’n)nem be two independent random walks on Zj,; as in Section 2.4. Let
(Bn)nez, be a family of independent Bernoulli variables of parameter 1/2 (independent from ()N( , 17)) and define

V?’LEZ+, 0y = 2 B,

me[n]
The chain (X,Y") has the same law as ()?0”,}7”70”)7152 + and from the above construction, it appears that

oc=inf{neZ; : 6, =2t and n— 0, >t}

where t; (respectively tg) is the strong stationary time constructed as in Section 2.4 for X (resp. }7) It follows
that for any n e Z,

since (6,,t;) and (n — 0,,t2) have the same law. According to Corollary 2.4, we have for the conditional
expectation knowing 6,, and for large M:

P[0, < t1]0,] < ZGXP(_en/(4M2))
so that

P[6,, < t1]

/N

2E [exp(—0,,/(4M?))]
= 2E[exp(—B1/M?)]"
.y (1 + exp(—l/(4M2))>n

2
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It follows that if n is of the form [rM?] for some r > 0, then

) 1+ exp(—1/(4M2))\ "™
]P’[JZTM]$4< ) )

< 5exp(—r/10)

for M large enough (uniformly in r > 0). O

Note that o is a strong stationary time for the random walk (X,Y) on the torus Z3,. Thus Lemma 3.1
enables to recover the order M? for the speed of convergence to equilibrium of (X,Y) in separation.

4. A STRONG STATIONARY TIME FOR THE FINITE HEISENBERG WALK

Here we modify the family of random mappings considered in the previous section, in order to construct
another set-valued dual process associated to the random walk [X,Y, Z], with better spreading properties. The
basic idea is to play with the signs which appeared in the definitions of qS (,b n ¢(2), qﬁ( ) (in fact they
were already present in the construction of Section 2.2, even if they were not ertten explicitly). In Section 3,
these signs simply depended on either the coordinate x or y. Below they will be allowed to depend on the
whole element [z,y,z]. We will first consider general sign functions, denoted ¢4 and @4 in (4.1) and (4.2),
and compute their action on fields. Then we will optimize over the choice of these sign functions to insure the
creation of fields as large as possible (and consequently also of fields as small as possible).

We begin by presenting a representation of the subsets of Hj, in terms of fields. A field is mapping A from
Z3, to the set of subsets of Zy;. The set of fields is denoted A. To any field A := (A(@, ¥))(@,y)ez2, € A, we
associate the subset Q24 < Hj, via

O ={[z,y,z] eHps : z€ A(z,y)}

This relation is in fact a bijection between A and the set of subsets of Hys. The subsets A(z,y), for (z,y) € Z2,,
will still be called the fibers. The special fields considered in the previous section are the fields such that the
non-empty fibers are exactly indexed by sets of the form B(r) x B(s), for some r,s € [0, (M — 1)/2]. Here it
will be more convenient to work with fields than with the subsets of H ;. The main difference between our new
family of random mappings (14) aca and that (¢q)qew of Section 3 consists in replacing the function sign that
was acting on the first coordinates of Hj; by a much more general mapping. More precisely, let us fix a field
A€ A. Assume that for any z,y € Zys, we are given two partitions of Zy; into two disjoint subsets respectlvely

B;xyuBAxy and BAmyuBAxy,that depend on A, z and y. We define corresponding functions ¢4 and @4
on H,, via
~1,ifz€ By
v [xayaz] € HMa &A(xvyaz) = e Azy (41)
1 leEBAxy
- 1fzeB
VY [z,y, 2] € Hyy, Galz,y,z) = Ay 4.2
[z,y,2] € Hu Pal(z,y,2) {1 fzeB; . (4.2)

Next we replace 5(1), <Z(2), qg(” and $(2) respectively by

v [x,y,z] € Hp, %S)([xayvz]) = [ & (Z‘ Y,z ) - &A('r’yaz)y]
VieyzleHy, 65 ([ry.2) = [+5($%)yﬂ+¢ﬂ 2)y]
v [ﬁU,y,Z] € Hp, (gféll)([ma%z]) = [ Y — @ (1' Y,z )7 ]
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Vizy 2 ey, 6Dy, 2]) = [2,y+ Pale,y, 2), 2]

The random mapping ¥4 is constructed as the corresponding ©q in the case r # 0 and s # 0. Namely, the
random mapping ¥4 takes the value ¢(3) with probability 1/3 and each of the values <Z)E41), (bfql), qbff) and qbff)
with probability 1/6. There is no difficulty in checking that 14 is associated to P:

V[zy2]eHy, ¥ [2y, 2 1€, Plallz.y,2]) = [y, 2] = P(lz,y, 2], [¢,y',2'])

(note that qNS(O) and qAS(O) are no longer required, they were only useful to initiate the spread of the evolving sets
associated to (¥q)aey on the base space Zjys x Zps corresponding to the two first coordinates of Hjy).
Consider the random mapping ¥ associated to the family (14)aca and let us describe its action. Fix some

A € A, we are wondering what is U(€24), namely we have to compute ((75541))_1(9,4), (a(l))_l(QA)7 (5542))_1(9,4)
and (¢?)~1(Q,4). Let us start with

@) Q) = {[2', ¢, 2] € Hyr = 3 [y, 2] € Qa, with 3 ([, o/, 2']) = [y, 2]}

The belonging of [z, y, z] to 24 means that z € A(z,y), and the equality 5541)([58/, y',2']) = [z,y, 2] is equivalent
to

!

r — &A(II’ y/7 Z/)

x
!

Yy
=z

Y
Y

RN
Thus [2/,y, 2’] belongs to ((ij))_l(QA) if and only if
2 e Ala' = gala,y,2'),y) + Pala,y', 2)y
namely, either
Palz’,y',2') = —land 2’ € A2’ +1,9) — (4.3)
or
Palx’,y,2) = land 2/ € A2 —1,9) +v (4.4)

Thus defining the new field A1) via

V() eZd,  AV@.Y) = (A + 1Y) =) 0 Baay, ) v ((A@ = 1y) +y) 0 Bl L)
we get that

(5541))71(914) = Q0

The other cases are treated in a similar way and we get
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BD) () = Qg

where for any (2/,vy') € Z3,,

AV (! o) = (A(x’,y' +1)n E?g@,,y,) U ((A(x’, y=1n BZ,Igy')
A y) = (AW +1y) =) 0 Bl ) v (A6 = 1y) +4) 0 Bra,)

~

A2y = (A(x',y’ +1)n ézx,’y,) v ((A(gg”y/ —1)n §Z7m,7y,)

Let 9 be the transition kernel induced by the above family of random mappings (¢4)aca as in (2.3). More
precisely, it is given by

A 1 1 1 1 1
04,4 = 1 (G300 () + G130 () + G () + G500 (4) + 314(4))

for any fields A, A’, where A € A\{(J} (where ¢F is the field whose fibers are all empty) and where for any field
A, the thickness of A is defined by

A= ) Ay

T,YEL M

It corresponds to the cardinal of the subset of Hj; associated to the field A. Note in particular that transitions
to & have the probability 0. Markov chains whose transitions are dictated by Q will be denoted (A, )nez, , they
start from an initial field Ag € A\{@} and stay afterward in A\{}.

Our next task is to make an appropriate choice of the partitions Zy; = EZ,m,y U é;{xy and Zp; = é;ﬁm’y U

B’Z’x,y so that the Markov chain (A, )nez, ends up at the full field A, defined by

Vx)?'/EZMa A?C(xyy):ZM

(note that this field is absorbing). A guiding principle behind such a choice should be that there is a chance to
get a “big” field (measured through its thickness). It leads us to following choice:

By, =Al+1,y) -y

§+ = ZM\§7
VAeA VY axye Ly, e Ay

By ,,=Ay+1)

~

+ — n—
Bhey = ZM\BA,z,y

We get that for any A € A and any (z,y) € Z2,,

(,y) :
A (z,y) (45)
AD(2,y) = A(z,y +1) U Az,y — 1)
A®)(z,y) = A,y +1) n A(z,y — 1)
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Remark 4.1. The fact that xz(l)(x,y) (respectively A(l)(my)) is the biggest possible has to be compensated
by the fact A (z,y) (resp. A®(z,y)) is the smallest possible. But we should not worry so much about this
feature, as Q promotes bigger fields.

Let us check that this choice of dual process goes in the direction of our purposes.

Proposition 4.2. The Markov kernel Q associated to (4.5) admits only one recurrence class which is {Aq},
i.e. the Markov chain (Ay)nez, ends up being absorbed in finite time at the full field.

Proof. Let be given any Ao € A\{(, A, }. It is sufficient to find a finite sequence (A;);epz) with Le N, Ap = A,
and

VZEHO,L—l]], Q(AZ,AI_H) >0

Here is a construction of such a sequence, in two times. First we get a field whose fibers are all non-empty and
next we obtain the full field. Denote T' (respectively T) the mapping on fields corresponding to the transition
A AD (resp. A — A(l)).

First step. Since Ay is not empty, there exists xo,yo € Z%; such that Ag(zo,yo) # &. For any n € [0,[M/2]],
denote

Vo = {y € Zar = T"[Al(wo,y) # B}
Note that yo € Vy and that next

{yo—Lyo+1} =W
{y0_27y0_17y07y0+17y0+2} CV2
{yO_37y0_2>y0_17y07y0+17y0+27y0 +3} CV?)

Lt = Vipmy2
Next, for any n € [[M /2] + 1,2[M/2]], denote
Vo= {z€Zp i Y aeZy, T[T (2,y) # &)
From the above argument, we have zo € V[p/2) and we deduce

{zo — 1,20 + 1} © Vinr/2)+1
{ZCO = 2,20 — Lwo, 20 + 1,20 + 2} < V[M/2]+2
{zo —3,m0 — 2,20 — 1, 20,70 + 1,20 + 2,70 + 3} < Vasr/2]+3

Ly = Vo[prya

thus showing that all the fibers of 71M/2] [IA“ [M/21] are non empty.
Second step. In view of the previous step, we assume now that all the fibers of Ay are non-empty. We
begin by constructing Al, Ay, As and Ay by successively applying 7', T, T and 7. Fix (z,y) € Z?\/[ as well as

z € Ao(z,y). Applying T', we get that z +y € Ay(z +1,y) and z —y € A;(z — 1,y). Applying T, we have that
z+yeAy(z+1,y+1)and z—y e As(x — 1,y +1). Next T insures that 2z — 1 =24y —(y+1) € Az(xz,y +1)
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and z+1=z—y+ (y+1) € As(z,y + 1). Finally, under T, we get that z — 1 € Ay(z,y) and z + 1 € Ay(z,y).
Successively applying again f, f, T and f, we construct As, Ag, A7 and Ag. By the above considerations, we
deduce that z — 2, z and z + 2 belong to Ag(x,y). Let us successively apply M — 3 more times T, T, T and T, to
get Ag, ..., Ay(ar—1)- It appears that Aypr—1)(z,y) contains 2 — M + 1,2 —M +3,...,2+ M —3,z+ M — 1. Due
to the fact that M is odd, the latter set is just Zys. Thus we get that for any (z,y) € Z3,, Agv—y(x,y) = Zr,
namely Ayns—1) = As. It provides the desired finite sequence with L = 4(M — 1). O

Remark 4.3. The successive applications of f, f, T and T is not without recalling the construction of the
bracket of two vector fields in differential geometry. The latter is used to investigate hypo-ellipticity, see for
instance the book of Hérmander [12], the continuous Heisenberg group being a famous instance. Our objective
of showing that the full space is covered by the dual process is a discrete analogue of the property of hypoelliptic
diffusions to admit a positive density at any positive time (see also [16] for another link between hypoellipticity
and intertwining dual processes).

From the above results, we can construct a strong stationary time for the random walk on Hj,;. Consider 7
the the hitting time of the full field. From [17], we get that 7 has the law of a strong stationary time for the
random walk on Hj,. This ends the qualitative construction of a strong stationary time. To go quantitative,
the hitting time 7 has to be investigated more thoroughly. More precisely, our goal is to prove Theorem 1.1.

Fix A e A\{} for the two following results.

Lemma 4.4. We have
(|Z<1>| — 4] = |21<1>|) A= A,
Proof. So let us assume that
[AD] = 4] = [AD)] (4.6)

For any (z,y) € Z3,, we have

and we get

Due to (4.6), the previous inequality must be an equality, and we deduce that

V (z,y) € Z3;, ‘(A(rﬂ,y)—y) v (A(x—l,y)er)‘ =|A(z + 1,y) — y
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namely

VY (z,y) € Z2,, (A(x+1,y)—y) v (A(a:—l,y)—i—y) =Alx+1,y)—y

Similarly, we get

VY (z,9) € Z3,, (A(x—i— 1,y) —y) V) (A(m —1,y) +y) =A(lxr—1,9)+y
so that
Y (z,y) € Z3,, Alz+1,y)—y=Alz—1,9) +y (4.7)
The same reasoning with AW instead of AWM Jeads us to
VY (z,y) € Z2,, Az, y+1) = A(z,y — 1)

or equivalently

V(zy)eZy,  Aley+2)=Az,y)
Since M is odd, the mapping Z; 3 y — y + 2 has only one orbit, which by consequence covers Zy;. It follows
that for any fixed x € Zys, the set A(z,y) does not depend on y, let us call it A(x). Coming back to (4.7), we
get

Y (z,y) € Z3,, A(z +2) = A(z) + 2y
Since any element z € Zj; can be written under the form 2y for some y € Z);, we deduce

VY (z,2) € 7%, Alx+2) = A(x) + =
Iterating M times this relation in z, we obtain

VY (x,2) € Z%, A(z) = A(x) + 2

and this relations implies that A(x) = Zp,. This amounts to say that for any (z,y) € Zy, A(x,y) = Zpr, namely
A=A,. O

Here is a quantitative version of the previous lemma:

Corollary 4.5. When A # A.., then either
|AD] = A+ 1 or [AD] > |A] +1
Proof. When A # A, then either [A®)| > |A]| or |f/1\(1)| > |Al, since the proof of Lemma 4.4 shows that we

always have |A(| > |A| and |f/1\(1)| > |A|, and that |[A)| = |A| = |ﬁ(1)| implies that A = A,. It remains to
take into account that thicknesses are integer numbers. O

Define the stochastic chain R = (Ry)nez, via

VTLEZ+, Rn = |An|
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The following result is the crucial element in the proof of Theorem 1.1:

Lemma 4.6. We have

1
VneZs, E[Rn41|An] = R + 6R. on {1 >n}

(where the filtration (Ap)nez, is generated by (An)nez, )-

Proof. By the Markov property, for any n € Z,, we have E[R,.1]|A,] = E[R,41|A,]. Furthermore, for any
Ae A\{}, we have

E[Rpi1]An = Al = )| Q(A,A4)|A

A’EA\{Q}
/ 712
|A| D R(A, AN A (4.8)
A’eA
where 8 is the kernel on A defined by
/ 1 ! 1 I 1 7 1 / 1 /
R(A,A) = 5 Lam (A7) + 6]1,3(1)(14 )+ gLie (A) + g Lie (A) + gﬂA(A)
Recall that
v Ae A\{d}, D) R(A, ANA = |A] (4.9)
A’eA

as a consequence of the Markovianity of Q. We deduce that

1
E[Rp+1]|A, = A] — |A| = A (Z R(A, AN|A']2 — |A|2>

A’eA

2
:le' ST R(A, A)|AP? - <Zﬁ A7) A”|>

A’eA AeA

D R(A,A) (4]~ |A])?

A’eA

IAI

Assume now that A # A,. With the above notation, it means that A, # Ay, i.e. 7> n. According to
Corollary 4.5, either |A(V| > |A| 4+ 1 or [A®| > |A] + 1. Whatever the case, we deduce that

| =

D, RA,A) (A~ |A])?

A’eA
and the desired bound follows. O
The next result goes in the direction of Theorem 1.1, by proving in a weak sense that 7 is of order M.

Proposition 4.7. We have

E[r] < 6M°
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Proof. According to Lemma 4.6, the stochastic chain (R;an — 375 (T A 1))nez, is a submartingale. It follows
that

VneZy, E[Rrn]>——

Letting n go to infinity, we get, by dominated convergence in the l.h.s. and by monotone convergence in the
r.h.s.,

1

>
E[R;] = GMBE[T]
To conclude to the desired bound, note that
= M3

We can now come to the

Proof of Theorem 1.1. Traditional Markov arguments enable to strengthen the weak estimate of Proposition 4.7
into a stronger one about the tail probabilities of 7. More precisely the previous computations did not take into
account that the Markov chain (A, )nez, starts from a particular non-empty field Ag. In fact they are valid for
any initial field Ay # . So whatever Ay # &, we have

E[7]
6
P[r = 6eM°] < VG
1
s —
e
By the Markov property we deduce
YV neZ+, P[r > 6enM®] < e "
For any r > 0, writing
r
> | —— | 6eM®
" [GeM‘)J €
(where |-] stands for the integer part), we get
1< gl
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Remark 4.8. (a) Lemma 4.6 cannot be essentially improved under its present form, because it is almost an
equality when A, is very close to A,.. Away from the latter end, there is a lot of room for improvements.
Nevertheless, it will not be really helpful, since we think that much of the time needed by R to go from 1 to
M3 is the time required to go from, say M?3/2, to M3. For a field A such that M3/2 < |A| < M3, it is likely
that the conditional variance

1

E[(RnJrl - Rn)2|An = A] = m

D QA A) (4]~ |A]?

A’eA

is of order 1. Thus the evolution of R could be compared to that of a diffusion p := (p¢)i=0 solution of the
stochastic differential equation

!
dpy = cdBy + < dt
Pt

where ¢, ¢’ are two positive constants and 8 = (5¢):>0 is a Brownian motion. It appears that p is a Bessel process
(up to a linear time change). Taking into account its scaling property, it takes a time of order M® for p to go
from M?3/2 to M3.

(b) In view of the above observation, it seems hopeless to get a bound on 7 of order M? up to logarithmic
corrections, which is the kind of results we are looking for. We believe that only working with the thickness is not
sufficient for this purpose, as there is more structure than just the size in this problem. This is illustrated by the
proof of Lemma 4.4, where the translations of the fibers of the field A induced by A™) played an important role
for the “diversification” of the fibers. But this feature is lost in Corollary 4.5 and Lemma 4.6, where only the size
is taken into account. Better estimates in Theorem 1.1 (and by consequence in Theorem 1.2 and Theorem 1.3,
whose proofs will follow the same pattern) would require to investigate more carefully this point.

(c) If we are only interested in the speed of convergence to equilibrium of the component Z, we should
introduce another hitting time 7. More precisely, to any field A € A\{}, associate the probability distribution
na of z when [z, y, z] is sampled uniformly on Q4. It is given by

1
Y z € Zyy, na(z) = m Z LA,y (2)

T, YL M

Let B be the set of A € A\{F} such that n4 is equal to the uniform distribution on Zj;. Note that the full
field belongs to B. Define 7 as the hitting time of 8. The interest of 7 is that Z is uniformly distributed (and
independent from 7, as seen via the classical arguments of Diaconis and Fill [7]). We conjecture that 7 is of
order M, the simulations of Chhaibi [6] suggesting it is at most of order M!-5. In particular, it would justify
that Z goes to equilibrium much faster than (X,Y’) in the separation sense.

5. A REDUCED STRONG STATIONARY TIME

In this section, we indicate the changes in the above arguments needed to prove Theorem 1.2. It will give us
the opportunity to give a broad view of the whole approach by revisiting it.

First note that (Y, Z) is indeed a Markov chain, whose state space is Z3, and whose generic elements will be
denoted [y, z]. The associated transition matrix P is given by

1/6,if [y, 2] e {[y £ 1, 2], [y, 2 L y]}
v [yaz]’ [yl’zl] € Z?\/b P([yvz]v [y/’zl]) = (1)/3 , if Ey/vz/] = [y,z]
, otherwise
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and the corresponding reversible probability is the uniform distribution on Z3,. To construct a corresponding

set-valued intertwining dual X as in [17], we are to specify a set U of non-empty subsets of Z3, and a family of
random mappings (1q)oey compatible with P, namely satisfying the weak association and stability conditions
recalled in Section 2. Every subset 2 © Z3, is uniquely determined by a field A := (A(y))yez,, of subsets of Zy,
such that

[y,2] € Q & 2 € A(y)
Denote A the set of such fields. Given A = (A(y))yez,, € A, the corresponding subset of Z3, is
Q= {ly, 2] € Ziy : z€ Aly)}
In the sequel, we identify Q = Q24 with A and U with A\{J}, where ¢F is the field corresponding to the empty
subset of Z3,. For any given A € A, the description of the random mapping 14 follows the pattern given in

Section 4. More precisely, it corresponds to forgetting the z-component there. Thus we consider the following
sign functions

~ —1,if ze A(y) —
Viy,2leZy,  Paly,2):= {1 if 2 ¢ Agg —ly/
~ —1,ifze A(y+1
v [y,Z]EZ?W, oaly, z) = {1 ifz¢AEz+1;
as well as the corresponding mappings acting on Z3,
ViyaleZi,  0ally,2)) = v,z — Baly. 2)y]
v [y7 Z] € Z?\J’ ¢jg([yv Z]) = [y7 z+ &A(ya Z)y]
Viy.21eZi,  oa(ly,2]) = [y — Paly, 2). 7]
Viy.21eZi, okl 2]) = [y +@aly,2). 2]

The random mapping 4 takes each of the 5;,5;,%;,&; with probability 1/6 and the identity mapping

5(0) with the remaining probability 1/3. As in Section 4, we check that ¥, is weakly associated to P, with
&(A) = 1. It is also stable, since A corresponds to the whole set from subsets of Z32,. Furthermore, we have

(67) H(A) = A, (%) 1(A) = A¥, (97)"1(A) = A~ and (¢})'(A) = A*, where by definition

A=) = (Aw) —v) v (4@) +v)
vpezy, AATW=(40)=y) 0 (40 +y)

A (y) = Aly+1) v Ay —1)

At(y) = Aly+1) 0 Aly - 1)

From the family of random mappings (1)4)aea, construct the field-valued dual A = (A(n))nez, , as in [17].
Its transition kernel £ is given, for any fields A, A’ by

N AL o e Yo o+ R a4t
QA A" = A 6]1A_(A)+61A+(A)+61A_(A)+61LA+(A)+3ILA(A)
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where for any field A, the thickness of A is defined by

A= 3] 1AW

YELM
Consider the full field A, = (Zas)yez,, and the associated hitting time
T=inf{neZ; : A(n) = A}
According to the general intertwining theory of Diaconis and Fill [7], the absorption time 7 has the same law
as a strong stationary time for (Y, Z). It remains to investigate the tail probabilities of 7 to prove Theorem 1.2.
Our first task is to check that £ leads to the a.s. absorption at A, from any starting field. In this direction the

proof of Lemma 4.4 is still valid and even simpler: it is sufficient to remove the first component x in the fields.
It follows that for any field A,

(A1 =14 = 1A ) =4 = 4,
As a consequence, Corollary 4.5 and Lemma 4.6 provide exactly the same estimates: When A # A, then either

A7 = |Al+1 or |[A7| = |A|+1

and
Vn<T E[R |AL] = R, + L
T, n+1 n| = n 6Rn
1
=z Ry + ——
R, + e
where

Vn€Z+, Rn = |ATL|

and where the filtration (Ay)nez, is generated by (Ay)nez, . Since |[Ay| = M? instead of M3, we get as in
Proposition 4.7,

E[7] < 6M*

The proof of Theorem 1.1 can then be transposed to show Theorem 1.2.

Remark 5.1. Coming back to the whole finite Heisenberg Markov chain [X,Y, Z], we could think that after
the strong stationary time 7 defined above, [X,Y, Z] will reach equilibrium after a new strong stationary time
of order M?. This is not clear from our approach, since at time 7 we don’t know how X and (Y, Z) are linked.

6. EXTENSION TO HIGHER DIMENSIONAL HEISENBERG WALKS

Here we explain how the constructions of the two previous sections can be extended to deal with higher
dimensional Heisenberg random walks. The goal is to prove Theorem 1.3 (in fact directly the extension mentioned
after its statement, see Theorem 6.3 below) and Theorem 1.4.

The roadmap is the same as in the previous section. But now the state space of the (primal) Markov chains
of interest consists of the set of the bth first above diagonals, for a fixed b € [2, N] (or their restrictions to the
last column, i.e. its last b entries, for Thm. 1.4). Since our goal is to construct a set-valued dual Markov chain,
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we first need a convenient description of the subsets 2 of the state space of the primal Markov chain. Again
we will resort to fields, which give the set (called fibers) of (b + 1)th above diagonals that can be concatenated
to any prescribed bth first above diagonals (whose set is called the base space), to get an element of . Thus,
the starting subset being a singleton, it corresponds to a field whose all fibers are empty, except one which is a
singleton. The absorbing set is the whole state space of the primal Markov chain and corresponds to the field
whose all fibers are the set of all possible bth diagonals. Next we consider mappings associated to the primal
Markov chain which act in a clean way on the fields, by taking shifts, unions and intersections of neighboring
fibers (two elements of the base are neighbors if they are transformed one into another by elementary moves of
the primal Markov chain, namely the F7 . defined below for I € [N — 1] and € € {—1,1}). These nice random
mappings are obtained by optimally (respectively to the enlargement of fields) choosing joint signs for adding
or subtracting rows (Lems. 6.1 and 6.2). This description allows to investigate the evolution of the size of the
evolving subsets via a submartingale property (Lemma 6.6). A classical argument leads to the desired estimate
on the time of absorption of the dual chain. The case of Theorem 1.3 corresponds to b = N. The investigations
for the different b are independent as no iteration is required, so the reader only interested in Theorem 1.3 can
replace b by N in the following arguments.

More precisely, recall that in the introduction we associated to any [z] = [zk,]1<k<i<n € Hy,am and to any
be [N — 1], the b upper diagonal dy[x] := (@), k+b)ke[n—b]- Denote D, the set of such elements, i.e.

Dy = Z%[k,kw) - ke[N—b]}

We also write

dppy[2] = (deleDrepy € Dpy = ] D
ke[b]

Let do be the usual diagonal consisting only of 1, when necessary, we will also see elements of Dy, as elements

of | keqo,5) Di» where Do = {do}. Note that Djy_y identifies with Hy /. Similarly, for b € [N — 1], we intro-
duced after Theorem 1.3 the Markov chains Dy = (Dy(n))nez, = (dp[Xn])nez, and Dy = (Dpj(n))nez, =
(dpp[Xn])nez, , respectively taking values in D and Dpy. In particular, Dpy_ij is the Markov chain [X] on
Hpy,p. Our goal here is to construct strong stationary times for these Markov chains, via set-valued dual pro-
cesses. The case b = 1 is simpler and will only be quickly treated in Lemma 6.8 below. Until then, we fix
be 2, N —1]. Again we apply the random mapping method described in [17] and recalled in the previous
sections. So our main ingredients will be a set Uy, of non-empty subsets of Dy}, and for any € € Uy, a random
mapping ¥o : Dy — Dppp. The set By, is very simple: it is the collection of all non-empty subsets of Dpj. As in
the last two sections, a subset Q < Dy is described by a field, which is the family A := (A(dp—_17))
of subsets of Dy, where

dp—11€Dp—1]

d[[bfl]] [z]e eV d[[b—l]] € D[[b—l]]7 dp[z] € A(d[[bfll]) (6.1)

As before, the sets A(dpp_17), for dpp_1] € Dpp—q], are called the fibers of the field A. To simplify the already
heavy notations, we will also write [x] = [#x,1]1<k<i<k+b for the elements of Dy, instead of dpp[z]. To describe
the random mappings ¢q, for € U;, another notation is required. For I € [N —1] and € € {1}, let Fy . be the
mapping acting on Hy ps by adding (respectively subtracting) the (I + 1) row to the I*" row, if € = 1 (resp.
e = —1). We will also see Fy . as a mapping acting on the Dy, for [ € [NV — 1] (and this is the only reason for
the addition of the diagonal dy to D).

For fixed Q € Uy, 1q is defined as follows. The field corresponding to €2 is denoted A = (A(d[p—17))
Aside from the identity, the values of ¥ are the ¢q 1., for I € [N — 1] and € € {£1}, where

dip—17€Dp—17 "

V [z] € Dpyp, ba.1.([2]) = Fr e 1,127 ([2])
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where @4 (I, [z]) € {—1,1} will be defined below. Each ¢q, ;. will be chosen with probability 1/(3(N — 1))
and the identity with the remaining probability 1/3. It remains to define the quantity @4 (Z,[x]). The index
I € [N —1] is assumed to be fixed now. Let be given a family (Ba(Z,d[p-1]))dy,_,jepp_yy Of subsets from Dy,
whose dependence on the field A will be specified later on. Consider an element [x] € Dy, it can be naturally
decomposed into dp,_1j[x] € Dyg_17 and dy[x] € Dy. The quantity pa (7, [z]) has the form:

1, if dy[z] € Ba(I,dp-1[z])
—1, otherwise

et [a]) = {

Since Uy, is the whole set of subsets of Dy, the stability property is automatically fulfilled. Let us investigate
the action of the mappings ¢q s, with Q € Uy, I € [N — 1] and € € {—1,1}. Here is a first case:

Lemma 6.1. For any Q € U, and any I € [N — 1], @ = ¢5,11,1(Q) is described by the field A’ =
(A'(dgp—17))dg,_1yepy_y whose fibers are given by

v d[[b—l]] € D[[b—l]]a Al(d[[b_l]]) = ([A(F]’l(d[[b_l]])) - Ql[dbfl]] N BA(I, d[[b—l]])) V)
([A(Fr,—1(dp-17)) + O1[dp—1]] ~ Ba(I, dpp—17)°)

where Or[dy_1] is the element of Dy, whose coordinates vanish, except the I'™ one, which is equal to the (I +1)th
coordinate of dy_1 (with the convention that 0;[dy—1] = 0 if this coordinate does not exist, i.e. [ +1 > N —b+1).

Proof. An element [2'] € Dy belongs to Q' if and only if there exists [x] €  such that ¢q r1([2']) = [z].
Namely, [z] being defined by

/! I / / 'f — I
V1<k<l<k+b, xkl:{xf,l+¢A( 7[x])‘rk+l,l71 k ] (62)
’ zy , otherwise
must satisfy (6.1). Note that (6.2) can written in terms of the upper diagonals:
Vie],  dlz] = dlz']+pall, [2')0:[di-1[2]] (6.3)

We distinguish two cases.
o If dy[2'] € Ba(1,dpp—1[2']), then (6.3) implies

dplz] = dp[2'] + 01 [dp—1[2"]]
Taking into account that
dp—1lz] = Frpa 1) @p-13[2']) = Fra(dp—q[z'])
the condition dy[z] € A(dp—17[z]) translates into
dy[z'] € A(Fr1(dpp-1p[2'])) — Or[do—1[2"]]

and we get

dy[2'] € (A(F11(dpp—1p[2']) — Or[dy—1[2"]]) 0~ Ba(I,dpp_1y[="])
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Conversely, this inclusion implies dy[x] € A(dp—17[z]), since the above arguments can be reversed. o If dj[2'] ¢
Ba(I,dp—17[2']), then similar considerations lead to the equivalence of dy[x] € A(dpp—qp[z]) with

dy[2'] € (A(Fr,—1(dp-y[2']) + Or[dy-1[2']]) N Ba(L,dpp1p[2'])°

It follows that we can take A’(dp,_1]) equal to

([A(Fr1(dpp—17)) = O1ldy-1]] n Ba(I,dpp—17)) v ([A(F1,-1(dgp—17)) + 0:[do—1]] 0 Ba(I, dpp—17)°)

Similar arguments, or replacing the sets B4 ([, dp_17) by their complementary sets, leads to

Lemma 6.2. For any Q € U, and any I € [N — 1], Q' = ¢s_2,11,71(9) 1s described by the field A’ =
(A'(dgy—17))dgy—1yeppp_yy whose fibers are given by

Y dp-1 € Dpp_1j, A(dpp—1y) = ([AF1,-1(dpp—17)) + 01[dp-11] A Ba(I,dp—1p)) U
([A(Fra(dp-17)) = O1[do—1]] n Ba(I, dpp—17)°)

Due to the guideline recalled in Remark 4.1, we are lead to choose
VIe [[N - 1]], N d[[b—l]] € ]D)[[b—l]]a BA(I,d[[b_l]]) = A(Fl,l(d[[b—l]])) — 01[db_1] (64)

It follows from Lemma 6.1, that the fibers of Q' = gbs_)’ll’l(Q) are given by

Vdp_1) € Dppap, A'(dp—1g) = (A(Fra(dp-11)) — 0r[do—1]) v (A(F7,-1(dpp—17)) + Or[dp—1])

From Lemma 6.2, we deduce that the fibers of Q' := (/557117_1((2) are given by

Vdp_1) € Dppap, A'(dp—1y) = (A(Fra(dp-1))) — 0:[do—1]) n (A(F1—1(dpp—17)) + Or[dp—1])

As in the two previous sections, we identify a subset with its field. Denote A o, the field whose fibers are all
equal to Dy, equivalently, it corresponds to {2 = Dpj. Denote X the subset valued Markov chain associated to
the random mappings (¥q)oew,- It is clear from Lemmas 6.1 and 6.2 that X, is absorbed at Ay 5. Define

t, = 1nf{n € Z+ : f{b(n) = Ab,oo}

In particular, t, has the same law as a strong stationary time for Dpj according to [17]. It is the 7 of Theorem 1.3
when b = N — 1. Here is the extension of Theorem 1.3 mentioned in the introduction.

Theorem 6.3. Forbe [2,N — 1] and M odd and large enough (uniformly in b and N ), we have

2r
Vr=0, P[tb = ’/‘] < 3exp <_ 17(N _ 1)Mb(2Nb1)>

As in Section 4, this result is to be proven by getting an estimate on the tendency of X,(n) to grow. With
this respect, introduce for any field A, the quantity

A= > JA(dp-1)| (6.5)

dp—17EDp—17
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where in the r.h.s. |- | corresponds to the cardinality. We have again |A| = ||, when A corresponds to Q. To
any field A = (A(dp—1]))dy,_,yepy,_,; Of subsets of Dy, and to any I € [N — 1], associate the new fields AV =

(AU’I(d[[b—l]]))d[[b,l]]eDﬂb,l]] and Am’l = (Am’j(d[[b—l]]))dﬂb,l]]ED[[E,,I]] defined by taking for any d[[bfl]] € D[[b,l]],
AN (dp_qy) = (A(F11(dpp-1))) — Or[dp—1]) U (A(Fr—1(dpp—17)) + 01[do—1])

AN (dp1y) = (A(F11(dp-1))) — 0r[dp—1]) ~ (A(Fr,-1(dp—17)) + 01[dp—1])

The following result is the generalization of Lemma 4.4,

Lemma 6.4. We have
VIE[N—1],  |A%|> ||
and if for all I € [N — 1], |[AYI| = |A|, then A = Ay .

Proof. Concerning the first point, for any dp,_1) € Dpp—1j and I € [V — 1], we have

1AV (dpp—1p)| = | (A(F1,1(dpp—1))) — Orldp—1]) v (A(Fr—1(dpp—1])) + Or[de—1]) |
= |A(F11(dp-11)) — Or[do—1]] (6.6)
|ACET 1 (dpp—17))]

so that

AT = 3 AV (dpop)]
dip—11€Dp—17

> 2 |A(F7 1(dp—17))|
dpp-11€D[p-1]

= Z |A(d[[b71]])|
dp—17€Dp—17
= 4]
where we used that the mapping F7 1 is a bijection on Dp,_;j, with inverse mapping given by F7 1. Assume

next that the field A is such that |AY| = |A], for any I € [N — 1]. According to the above computation, we
must have for any dp,_1] € Dp_qj,

| (A(Fr1(dpp—17)) — O1[dp—1]) v (A(Fr,—1(dp—17)) + O1[do—1]) | = [A(F11(dp—17)) — 01 [dp—1]]

namely
(A(Fr1(dpp-17)) = Orldp-1]) U (A(Fr,—1(dpp—11)) + O1ldo1]) = A(Fra(dpp—1y)) — O1ldp1]
Similarly, replacing (6.6) by
| (A(Fr1(dpp-11)) = Orldp—1]) v (A(F1,-1(dpp-11)) + Or[do—1]) | = |A(Fr,-1(dpp17)) + O1[dp-1]]

we get for any dp,_q1) € Dpp_qp,

(A(Fra(dp-1p)) = Or[dp-1]) U (A(Fr—1(dpp—17)) + O1[do—1]) = A(Fr—1(dpp—17)) + O1[dp—1]
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and we deduce

A(Fra(dp—1p)) = 0rldy—1] = A(Fr,~1(dpp—17)) + Orl[dp—1]
i.e.

A(dpp—1y) = A(F1,—1 0 Fy{ (dpp—17)) + 20:[(F; 1 (djp—17))p-1]
= A(F7 _(dpp—1y)) + 20:[(Fr, 1 (dpp—17))p-1]

where F7 _, is the composition of Fy _; with itself. Recall from its definition in Lemma 6.1 that if I > N —b+1,
then the 0; [(F1,-1(dp—17))s—1] vanishes. First consider the case I = N — 1, where this condition is satisfied, so
that

A(dpp-17) = A(FR -1, -1 (dpp-17)) (6.7)

Let us write [zx,1]1<k<i<kib-1 = dp—1] and [.’E;€7l]1gk<lgk+b,1 = F]%,_L_l(d[[b_l]]) € Dy—17. We have :r}w =
w1, except for (k1) = (N — 1, N), where 2%y | y = ry_1 nx — 2. Since the mapping Zy 3z +— 2 —2€ Zy is a
bijection, it follows from (6.7) that A(d,—1]) does not depend on the coordinate x_1,x of dp—17. Next assume
that b > 3 and take I = N — 2. We have

A(dpy-1p) = A(F{_2, 1 (dpp-17)) (6.8)

Writing [Zr,1]1<k<i<k b1 = dpp—q] and [xk Jisk<ickio—1 = F% 71(d[[b 1]), these coordinates coincide, except
that oy 9 N-1 = TN-2,N-1 —2and oy _ 9N = IN-2,N — 2z 5_1,n. Since both side of (6.8) do not depend on
TN—1,N, it follows that they also do not depend on the coordinate zy_o n. Resorting again to the bijectivity of
the mapping Zys 3 z — z — 2 € Z);, we see they equally do not depend on xnx_2 ny—1. By iteration, considering
successively I = N —3, ..., [ = N — b+ 1, it appears that A(d[,—1]) does not depend on the coordinates xy;,
where k> N —b (and k <! <k +b—1). For I = N —b, we have

Aldpp-1)) = A(FR_p, 1 (dpp-17)) + 20N o[ (Fn—b,—1(dp—17))p—1] (6.9)

Note that the diagonal Fy_p —1(dp—1]))s—1 € Dp—1 is different from d;_; only in the last-but-one coordinate. It
follows that GN—b[(FN—b,—l(d[[b—l]]))b—l] = aN—b(db—l) = (0,0, ---7OaIN—b+1,N) € Db, with the above notation.
Denote y := (TN —p41,N—b+2: EN—b+1,N—b+3: ---» LN—b+1,N—1). We have that
e the set A(d[,—1]) does not depend on y nor on xy 41,n, since as mentioned above (6.9), it does not
depend on the coordinates xy,;, where k > N — b+ 1,
e the set A(F%_ p1(d[p-1])) @ priori depends on y, but not on xN_p11,N,
e the vector 205 _ b[(FN—b,—l(d[[bfl]]))b—l] only depends on TN—b+1,N-

It follows that A(dp,—17) is preserved by the translations by vectors of the form (0,0, ...,0, z) € Dy, with z € Zy;.
Namely, we can write A(dp_1]) = Al )(d[[b 1]) X Zar, where Al )(d[[b 17) is a subset of Z{(k bak):he[N—b-1]}
Coming back to (6.9), we deduce that A1) (dp,_1]) does not depend on y (nor on the rows indexed by [N — b+

1, N of dpy—17. The previous arguments can be iterated with / = N —b—1, ..., I = 1. At the end we get that
A(dpp—17) = Dy, as desired. O

The next result is the generalization of Corollary 4.5.

Corollary 6.5. When A = (A(d[p—1]))dg,_1jeDgy_1y # Abow, there exist I € [N — 1] such that

|AT] = |A] +1
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Proof. Lemma 6.4 shows that when A # A, ., there exists I € [N — 1] such that |AY!| > |A]. It remains to
take into account that the cardinals are integer-valued. O

Let us keep following the path of Section 4 by presenting the generalization of Lemma 4.6. We need the
following notations:

-An = 0(36;,(0), 3€b(1), ,%b(n))

YneZy,
i {Rn = |%,(n))|

Lemma 6.6. We have for any n € Z, such that Xp(n) # Ap,q,

1

E[R7z+1|-’4n] = Rn + 6(N — 1)Mb(2N—b—1)/2

Proof. From the general theory developed in [17], from Lemmas 6.1 and 6.2 and from the choice (6.4), the
conditional law of the field A’ representing X;(n + 1) knowing A,,, in particular knowing the field A standing
for X,(n), is given by

QA A" = %5,4(14’) + ﬁ Ie[[%:_l]] ||AA/||(5Au.I(A') +04n1(A"))

This is a Markov kernel on Ay, the set of fields A with |A| = 1. As in the proof of Lemma 4.6, the kernel 9 is
the modification through the cardinal weights of the kernel & defined by

1

ﬁ(A, AI) = %(SA(AI) + m

D Gavr(A) +6amr(A))
Ie[N-1]

Note that since 9 is a Markov kernel, we have for any A € Ay,

A/
S (AN = 14] T 8.0
A’EA}] A’EAb
= 4] Y} (4,4
Alehy,
= 4] (6.10)

With the above notations, it follows that
1
E{Rue1lAn] = B = Tp ) R(4, 40(14 - 14))7
Alely

From Corollary 6.5, when A # A; ., there exists I € [N — 1] such that &£(4, AY1) > 1/(3(N —1)) and |[AY1] —
|A] = 1, so that

1

E[Rn+1|An] —R, > m

Note that

Al < [Ap,0
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= |Dpp—17|Dy|

_ M(N71)+(N72)+~-~+(N7b+1)M(Nfb)
— pb@N—b-1)/2

it follows that

1

E[Rn+1|~'4n] - R’n 2 3(N — 1)Mb(2N—b—1)/2

We deduce a weak estimate on t;, as in Proposition 4.7:

Proposition 6.7. We have, for be [2,N — 1],
E[t,] < 3(N — 1)MPEN=b=1)

Proof. According to Lemma 6.6, the stochastic chain

1
(R~ syt » ”)>
is a submartingale. It follows that
1
VneZs, E[Rian] = SE[ts A n]

3(N — 1)Mb(2N—b—1)/

547

Letting n go to infinity, we get, by dominated convergence in the l.h.s. and by monotone convergence in the

r.h.s.,

1
3(N — 1) MPEN-b-1)/2

E[Ry,] > Elty]

To get the first announced bound, note that
E[Rtb] _ |Ab,TL| _ Mb(QNfbfl)/Z
so that

E[t,] < 3(N — 1)MPEN=0=1)/2 fb(N=b=1)/2
=3(N — 1)Mb(2N7b—1)

O

Note that the quadratic mapping R 3 b — b(2N — b — 1) attains its maximum value at b = N — 1/2. So on
[N — 1] its maximum value is attained at b = N — 1. It follows that the bound of Proposition 6.7 is increasing
in be[2,N —1] (as it should be) and its largest value is 3(N — 1)MNN=1_ Theorem 6.3 is now obtained via

the Markovian arguments recalled in the proof of Theorem 1.1.

In turn, Theorem 6.3 implies Theorem 1.3 and provides the justification of the assertions made after its
statement. Theorem 6.3 is only valid for b > 2, but for b = 1 a direct argument is available, close to the proof

of Lemma 3.1. We get:
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Lemma 6.8. For M large enough, we have

N
VN=3,¥Yr=0  Plty=r]<5

7o (s

(the factor 5/2 is here just to recover Lem. 3.1 when N = 3).

Proof. Consider ()N(;g)ke[[N,ll] = ()N(k (n))nez,, ke[N—1], N — 1 independent random walks on Z s as in Section 2.4.
Let (By)nez, be a family of independent variables uniformly distributed on [N — 1] (and independent from the

Xy, for k € [N —1]) and define

VEe[N—-1],VneZ,, Ou(n)= Y Ip, _n

me[n]

The chain [ Xy x11(n)]ke[n—1], nez; = (d1[X](n))nez, has the same law as ()~(k((9k(n)))keﬁz\/,l]LneZJr and from
the above construction, it appears that

ti =inf{neZ, : Vke [N —1], 0r(n) =t}

where for any k € [N — 1], 1, is the strong stationary time constructed as in Section 2.4 for X. Tt follows that
for any ne Z,

Plty >n] < ) Plox(n) <]
ke[N—1]

= (N = 1P (n) <H]

since the (65 (n), t,) have the same law for all k € [N — 1]. According to Corollary 2.4, we have for the conditional
expectation knowing 0 (n) and for large M:

P61 (n) < t1|01(n)] < 2exp(—61(n)/(4M?))
so that

Elexp(—01(n)/(4M?))]
exp(—]l{31:1}/M2)]n
_y (N — 24 ez>(p(—1/(‘l-7\/-’2)))n

N-1

-9 <1 N exp(—1]<[(4_]\/‘i2)) _ 1>n

n
<2exp |~ s
exp( 5(N—1>M2)

for M large enough, uniformly in n € Z, and in N € N, N > 3. As a consequence, for any r > 0, we have
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< 2(N — 1) exp (—M)
< 2(N —1)exp (W) exp (—5(N_Tl)MQ>
N-—1

.
< —
STy e ( 5(NV

—1)1\42)

since we have 2exp(1/(5 x 2 x 32)) ~ 2.02234613753 < 5/2. O

The above estimate implies the more telling bound, for M large enough and uniformly in N e N, N > 3,
Vr>0, P[ty=5NIn(N)M?+rNM?] < 5exp(—r/5)

To end this section, let us mention the modifications required by the proof of Theorem 1.4. They extend to
higher dimensions the arguments of Section 5. It is possible to consider an extension in the spirit of Theorem 6.3,
namely to construct a strong stationary times for [ Xy n]pepn—b,n—1], for b€ [2, N —1]. But up to removing
the N —b — 1 first rows of matrices from Hy s, this is the same Markov chain, except for the time spent to
changing the removed rows.

First note that the last column Cn[X] = [ Xy n]re[n—1] is indeed a Markov chain, whose state space is Zyt
and whose generic elements will be denoted [z] := [2¢]re[n—1]- The associated transition matrix P is given by

its entries for any [z], [+'] € Z} 7',

1/(6(N — 1)), if [2'] = Fr[x] for some I € [N — 1] and e € {£1}
P([x], [+]) = { 1/3 Af [2] = [2]

0 , otherwise

where for any [z] = [z4]reqv-17 € Z3; ', 1€ [N —1], I € [N — 1] and € € {#1}, the Ith coordinate of Fy [z]
is given by

[ LT
(FI,E[m])l = {fﬂl +expyq ifl=1

with the convention zn = 1. The transition kernel P admits the uniform distribution on Z]A\/[I_l as reversible
probability. The method of [17] is applied with 2 being the whole collection of non-empty subsets of ZAN[l.
Let us describe the family of random mappings (1q)oew. As usual, note that any subset Q of Zﬁ_l is uniquely
determined by a field A = (A(JU[[2,N—1]]))I[[2 gz of subsets of Zy (still called fibers) such that

[z] € Q & x1 € A(z[2,N-1])

(with the traditional notation xj y—_1] = (@k)ref2,n—1])- The construction of the random mappings is similar
to the one presented earlier in this section, just keeping the effects on the last column. As before, the subsets
are identified with their representative field A. Given such a field

A= (A(IHQ,N,]_]])) [2,N—1] (611)

T2, N-1]1€Zy,
and I € [N — 1], associate two other fields AY"! and A™! defined by taking for any T2,N-1] € Z[J[\Z’Nfll],

AV (@ n-1)) = (AF11(zpN-1))) — 01(Da2) U (A(Fr 1 (zp2,n-17))) + 61(1)2)
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AV (@ n-1)) = (AF1 1 (zpN-1))) — 01(Da2) N (A(Fr 1 (zp2,n-17))) + 61(1)2)

where 01 (I) is the Kronecker symbol whose value is 1 if I = 1 and 0 otherwise.

Let A be the set of fields of the form (6.11) corresponding to non-empty subsets of Zj\N[l, i.e. elements of U.
They are the fields whose fibers are not all empty. Following meticulously the method described in the first part
of this section, we are led to investigate Markov chains (A(n))nez, on A whose transition kernel 9 is given by

/ NS S 1 | 4’| , :
VAAEA QA A) = 0a(A) + SV =T Ie[[%_lﬂ a (8401 (A") + 8 4n1(A"))

where

VAeA, |A| = D |A(z2,n—17)]

TPV I=/A P

Specifying Lemma 6.4 to the last column of the objects considered there, it appears that (A(n)),ez, ends
up being absorbed into A.., the element of A whose fibers are all equal to Zj;. Denote t the corresponding
absorbing time. Our approach relies on the possibility to estimate the tail probabilities of t. Here is the equivalent
of Theorem 6.3:

Proposition 6.9. For any initial distribution of Ao, we have for M large enough (uniformly in N ),

2r
V?"ZO, [P’[’LZT]S?)GXP <_17(N_1)M2(N1)>

The proof of these bounds is similar to that of Theorem 6.3. The difference is that the index set is Z%]\Pw
(instead of Dp,—yp) and that the fibers are included into Zj; (instead of Dy) so we replace |Dy|[Dpy—1p| by
1ZI2N |z | = MV e, 1/MPCN=0=D/2 by 1/M¥=1 in Lemmas 6.5 and 6.6, and M*@N=b=1) by Nf2(N=1)
in Proposition 6.7. This ends the proof of Theorem 1.4, since t has the same law as a strong stationary time
for Cn[X], according to [17].

Remark 6.10. An estimate for a strong stationary time for the coordinate X _; n is provided by the analogue
of Lemma 6.8, where the factor NV — 1 in the r.h.s. can be removed, since we don’t have to wait for the whole
first upper diagonal to reach equilibrium.

Remark 6.11. Remark 4.8 (c) admits a natural extension to the present higher dimension situation, to get a

strong equilibrium time for the right-up component X; x, believed to be of order M 1/(N=1)

APPENDIX A. THE FINITE CIRCLE: REMAINING CASES

In the context of the beginning of Section 2, we deal here with the remaining cases where a € (1/3,1/2].
To construct the sets U and the corresponding random mappings (1¥g)sey satisfying the conditions of weak
association with P and of stability of 2, we distinguish two situations, depending on the parity of M € N\{1, 2}.

A.1 When M is even

For a € (1/3,1/2], we need to add new kinds of sets in U, in addition to the segments from J. More precisely,
for r € [0, M /2], let B_(0,r) be the set of z € B(0,r) which have the same parity as r (there is no ambiguity in
the definition of the parity in Zs, since M is even). Consider

J_={B_(0,r) : re[1,M/2]}
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YP:=TJuJ_

Note that the only subset of the form B_(0,r) that belongs to J is B_(0,0) = {0}, which does not belong to
J_.

A.1.1 The random mapping Yo

When a € (1/3,1/2], the construction of g given in Section 2.1 is no longer valid. So here is another
construction (an alternative one will be provided in Sect. A.3.1). Choose two mappings 15712 Ly > Ly
satisfying respectively 9(0) = 0 = ¢(—1) = 9(1) and () # 0 for 2 € Zy\[-1,1], and ¢(—1) = 0 = ¢(1) and
1;(.1‘) # 0 for 2 € Zp\{—1,1}. Take v40y to equal to ¢ with some probability p € [0,1] and to ¥ with probability
1 — p. Let us compute p so that Condition (2.1) is satisfied, which here still amounts to (2.6).

e When z ¢ [—1, 1], both sides of (2.6) vanish.
e When z € {—1,1}, the Lh.s. of (2.6) is 1, while the r.h.s. is a/£({0}). This implies that £({0}) = a.
e When z = 0, (2.6) is equivalent to

_1—2a
T oa

p

and this number p does belongs to [0, 1] for a € (1/3,1/2].

Next we must check that for this random mapping v}, (2.2) is satisfied, namely W({0}) € ¥ = JuJ_. This is
true, because 1~ ({0}) = [-1,1] € J and $71({0}) = {~1,1} = B_(0,1) e J_.

A.1.2 The other random mappings and the Markov transition kernel 3

For S € 3 uJ_\{0}, take the same random mapping 1s = ¢ defined in Section 2.2. It is clear that (2.7) is
still satisfied, since the proof is valid for any a € (0,1/2] (and any M > 3). Concerning the stability of J 1 J_
by ¢, note that in addition to (2.8), we also have for any r € [1, M /2],

¢, (B_(0,7)) = B_(0,7 + 1)

¢3{(B_(0,7)) = B_(0,r +1)

¢31(B_(0,7)) = B_(0,r — 1) (A.1)
¢, (B-(0,7)) = B_(0,r —1)

¢5 ' (B-(0,r)) = B_(0,7)

(where M /2 + 1 has to be understood as M /2 — 1).

As in Section 2.3, we identify B(0,r) with r, for r € [0, M /2], and furthermore, for r € [1, M /2], we identify
B_(0,r) with —r. It appears that P is also the transition matrix of a birth and death chain, but this time on
[—M/2, M /2]:

(1 —2a,ifk=0andl=1
3a—1,ifk=0and=—1

agity Jifk>1, k# M/2and [k—1| =1
Vkile[-M/2,M/2],  PBk1) = a‘i'lfl Jifk<—1,and [k—1] =1

1—2a,if k| =1, k#M/2and k=1

1 Jifk=M/2=1

0 , otherwise

|



552 L. MICLO

(we used that |[B_(0,7)| = r + 1, for r € [0, M /2]).

When p € (1/3,1/2), B enables to reach the absorbing point M /2 from all the other points, thus the absorbing
time t is a.s. finite and its law is the distribution of a strong stationary time for X. A different feature is that
the starting point X = {0}, identified with 0, is at the middle of the discrete segment [—M /2, M /2] and the
left boundary is not absorbing.

When p = 1/2, the transition from 0 to 1 is forbidden: §3(0,1) = 0. Starting from 0, the Markov chain X
stays on the irreducible state space [—M/2,0] and never reaches M /2, i.e. t = o0 a.s. This result could have
been guessed, as due to the periodicity of order 2, X does not converge to 7 in large times. The Markov chain
—X is a finite equivalent of the process on Z, introduced by Pitman in [20] (see also [17] for an approach via
random mappings).

Remark A.1. It is important that vy is different from the random mapping ¢ considered in Sections 2.2
and A.1.2. Indeed, whatever a € (0,1/2], if we had taken vy = ¢, we would have ended up with X; €
{{-1,1},{0}} and from (A.1), we can deduce that for any n € Z., we would have X,, € {{0}} uJ_. In particular
t = 400 when M is even.

A.2 When M is odd

In this situation, we enrich the set Z_. For r € [0, (M — 1)/2], B_(0,r) is defined as at the beginning of
Section A.1. Now the parity of an element x € Z is the parity of its representative in [—(M —1)/2, (M —1)/2)].
Furthermore, for r € [(M + 1)/2, M — 1], we consider

B_(0,7) = B_(0,(M —1)/2) U B(—(M —1)/2,7 — (M — 1)/2) U B(M —1)/2,r — (M — 1)/2)

namely this subset contains all the points encountered when going clock-wise from r» — (M — 1) to M —1 —r, and
all the other points which have the parity of r — (M — 1). In particular when r = M — 1, we get B_(0, M — 1) =
Zpr. We take

Il
~

I_:

B_(0,r) : re[1,M —1]}
pij J_

U

I
(S

Note that the only element in the intersection of Z and Z_ is the whole state space Zy; = B(0,(M —1)/2) =
B_(0, M — 1), nevertheless, it will be convenient to see B(0,(M — 1)/2) and B_(0, M — 1) as different (i.e. to
interpret 20 as a multiset, with Zy; of multiplicity 2), namely to write U = J 1 J_.

We consider the same random mappings as those constructed in Section A.1: The random mapping 9oy is
the one of Section A.1.1 and for S € V\{{0}}, s = ¢, defined in Sections 2.2 and A.1.2. It follows that (2.1)
holds (with £({0}) = a and &(S) = 1, for S € V\{{0}}). Furthermore, due to the fact that M is odd, we get
that (A.1) is still true for r € [1, M — 1], with the convention that B_(0,M)) = Z;. Now we identify B(0, r)
with r, for r € [0, (M —1)/2], and B_(0,r) with —r, for r € [1, M — 1]. In accordance with the multiplicity 2
of Zp; mentioned above, the whole state space Zys is seen as the two points (M — 1)/2 and —(M — 1). This
identification enables us to see P as the transition matrix of a birth and death chain on [—(M — 1), (M —1)/2]:

1—2a,ifk=0andl=1
3a—1,ifk=0and!= -1

Vkle[—(M—-1),(M-1)/2], k) =< 2k+ g

= i /2, D oty ik <=1k~ —(M—1)and k-1 =1
1 Jifk=1le{—(M—1),(M—1)/2}
0

, otherwise
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(we used that |[B_(0,7)| =+ 1, for r € [0, M — 1]).

When p € (1/3,1/2), B enables to reach the two absorbing points (M —1)/2 and —(M — 1) from all the other
points, thus the absorbing time t is a.s. finite and its law is the distribution of a strong stationary time for X.
The Markov chain X still starts from 0 and ends up being absorbed in one of boundary points (M — 1)/2 or
—(M —1).

When p = 1/2, the transition from 0 to 1 is still forbidden: J3(0, 1) = 0. Starting from 0, the Markov chain X
stays on the irreducible state space [—(M — 1), 0] and ends up being absorbed at —(M — 1). Thus t is a.s. finite
and X admits a strong stationary time, it was expected as there is no problem of periodicity when M is odd.

A.3 Alternative random mappings, still for a € [1/3,1/2)

The constructions of the previous subsections could also have been obtained by first lumping X (see Rem. 2.2,
whose “projection” is valid for all a € (0,1/2]). Here we propose another construction which is no longer compat-
ible with this procedure. We take for U the set of all balls B(z,r), for z € Zy; and r € [0, [ M /2]]. All these balls
are different, except that B(x,|M/2|) = Zp for any « € Zjs. The space U can be seen as a wheel: the tyre is the
discrete circle consisting of the B(z,0) = {z} for z € Z,;. For any fixed € Zy, the set {B(x,r) : r € [0,|M/2]}
is a ray going from the tyre to the center of the wheel, represented by Zj;. The Markov kernel B that we are
to construct will respect this wheel graph.

A.3.1 The alternative random mappings Yy, for v € Zy

Fix some x € Zjs. We sightly modify the random mapping considered in Section A.1.1 (after rotating Z,s by
—z). Choose three mappings ., ¥, ¥, : Za — Zy satisfying respectively

o Gul@) =2 = Pz — 1) = Pulx + 1) and Ju(y) £ 2 for y e Zap\[x — 1,z +1]
o Uy (z—1) =z and ¢ (y) # z for y € Zp\{x — 1}
o Yp(z+1) =2z and Uy(y) # z for y € Zp\{z + 1}

Take 1),y to equal to ¥, with some probability p € [0,1] and to each of ¥, and ¥, with probability (1-p)/2.
Let us compute p so that Condition (2.1) is satisfied, which here amounts to

1
v Z P =z|=—=P A2
e When y ¢ [z — 1,2 + 1], both sides of (A.2) vanish.

e When y € {x — 1,z + 1}, the Lh.s. of (A.2) is 1 — (1 — p)/2, while the r.h.s. is a/{({z}). This implies that

§({z}) = 2a/(1 + p).
e When y = z, (A.2) is equivalent to

(1 —-2a)(1+p)

p= 2a

namely p = (1 — 2a)/(4a — 1), which belongs to [0,1) for a € (1/3,1/2].
For the computations of the next section, note that according to (2.3),
P(zh {r -1z, 2 +1}) = 3({z})p
o 2a (1—=2a)(1+p)

S T 14p 2a
= 3(1 — 2a)
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and

Pz} {z —1}) = P({z} {z + 1))
_ 1 _m({z}a {:17 — 1,$,£ZZ + 1})
2

=3a—1

Next we must check that for this random mapping 9.y, (2.2) is satisfied, namely v, ({x}) € . This is true,
because 7 ({}) = Bz, 1), 97" ({}) = Bz — 1,0) and 5 ({z}) = B(x +1,0).

A.3.2 The other random mappings and the Markov transition kernel 3

For any x € Zys, the mappings @1z, 92,2, 93,2, P4 and ¢s ., as well as the random mapping ¢, are con-
structed as ¢1, @9, @3, ¢4, d5 and ¢ in Sections 2.2 and A.1.2, but are centered at x instead of 0. Then we
take ¥g = ¢, for any S = B(z,r), with r € [1,|M/2]|]. By the same proofs as before (“rotated” by —x), we
get that these random mappings are strongly associated to P and that (2.2) is satisfied, since we have for any
re [1,[M/2]],

ii(B(x,r)) = B(z,r + 1)
;i(B(x,r)) = B(z,r + 1)
;i(B(x,r)) = B(z,r — 1)
;i(B(x,r)) = B(z,r — 1)
52(B(z,1)) = B(,7)

(where B(z,|M/2|) = B(z,|M/2] + 1) = Zpr). The corresponding Markov kernel P is compatible with the
wheel structure of U and we have for any S, S’ € ¥ which are neighbors in this graph, and where z is the center
of S,

3a—1,if S={z}and ' ={z+1} or 8" ={z —1}
3—6a,if S={zr}and ' ={z—1,2,2 + 1}

P(S, ") = aZtt | if S = B(x, k) and S = B(z,l) with k€ [1,|M/2] —1] and |k —1] =1
1—2a,if S = B(x,k) =5 with x € Zy; and k € [1,|M /2] — 1]

1 Lif S =5 =7y

For a corresponding Markov chain, X starting from {0}, we are interested in the absorption time t in Zy;, since
its distribution is the law of a strong stationary time for X. Note that we can again come back to a birth and
death chain: for any ball S € U, denote p(S) its radius (with p(Zys) = [M/2]). Remark that p(X) is a birth and
death chain, starting from 0, absorbed at |M /2] and whose transition matrix is:

(3a—1,iffk=0=1
3—6a,ifk=0andl=1

24l Cif ke [1,|M /2] — 1] and |k —1| = 1
ke [0 M/, ki) =4 T [1,[M/2] - 1] and [k — ]
1—2a,ifke[l,|M/2]—1] and k =

1 Jif k= |M/2] =1

0 , otherwise

\
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The absorption time of p(X) at | M /2] has the same law as t and Karlin and McGregor [13] enable to compute
it in terms of the spectrum of Q.

APPENDIX B. INDEX OF NOTATIONS

The notations being sometimes quite heavy, a listing of the main ones is provided here.

State spaces

o the 3 x 3 Heisenberg group Hj,: 516

o the N x N Heisenberg group Hy s: 517

o the set Dy, of (b + 1)th diagonals and the set Dy, of the first (b 4 1)th diagonals : 541
Subsets

o generic family U of subsets: 518

o centered intervals J: 519

o the sets €. 5 4: 525

o the sets Q4: 530, 539

o even/odd centered intervals J_: 551

Fields

special fields: 525

(general) fields A € A: 530, 539

AW AW AR) ~A2); 531, 532

full field A.: 532, 540

A= A+ A-, A*: 539

(A(dﬂb—ll]))dﬂb—l]]em[[bfl]]: 541

A'(dp-1): 542, 543

AVl and A1 544

(A(@p2,N—1]))ap, 1y : 549

Markov kernels

o P for the primal chain: 518, 524, 539, 549

o link A from the dual state space to the primal state space: 519
o P for the dual chain: 519, 522, 523, 552, 553, 554
o 1 for fields: 532, 540, 546, 550

o unweighted R for fields: 536, 546

o the last column Cn[X]: 549

Markov chains

[X,Y,Z] on Hjp,: 516

[X] = [Xk]i<k<i<ny, nez, on Hy ar: 517

the dual chain X: 519, 524

the primal chain X: 519

the primal chains Dy, and Dy respectively on D, and Dppp: 541
the dual chain Xp, to Dpyp: 543

Strong stationary/equilibrium times

o 7 for [X,Y, Z] or [X]: 516, 517

o 7 for Z: 516

o 7 for (Y, Z) or for the last column of [X]: 517, 518
(e}

(e}

O 0O 0O o o o o o o

O O O O O O

t for the random walk on Zy; or Hy,: 523, 525

t, for D[[b]]i 543
Random mappings
o generic Pg or ¥q for particular subsets Q: 519, 526
o oy 520, 551
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é1a¢27¢37¢4 521 - ~

d’(o) ¢, o) ¢ 925 @), ¢, ¢ 526, 526
04,04, 070 . 6 531
s~1gn~func~t10rls DA, pa: 530, 539

Gus 0k, Oa, P4t 539

base set transformations Fy .: 541

Q/)Q’]’e: 542

sign functions @ (7, -): 542
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