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Abstract

The ability to understand and explain the outcomes of data analysis methods, with regard
to aiding decision-making, has become a critical requirement for many applications. For
example, in operational research domains, data analytics have long been promoted as a way
to enhance decision-making. This study proposes a comprehensive, normative framework to
define explainable artificial intelligence (XAI) for operational research (XAIOR) as a recon-
ciliation of three subdimensions that constitute its requirements: performance, attribution,
and responsible analytics. In turn, this article offers in-depth overviews of how XAIOR can
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be deployed through various methods with respect to distinct domains and applications.
Finally, an agenda for future XAIOR research is defined.

Keywords: Decision analysis, XAI, explainable artificial intelligence, interpretable
machine learning, XAIOR

1. Introduction

Through digitization, data have become resources that create value for the operational
research (OR) domain (Duan et al., 2020). In turn, abilities to analyze, understand, and
leverage data–or analytics competencies–have become critical success factors for OR projects
(Conboy et al., 2020; Hindle et al., 2020; Vidgen et al., 2017). According to the official
INFORMS definition, analytics reflect a scientific process of transforming data into insights,
in ways that support better decision-making (INFORMS, 2015). As the trend of analytics
articles published since 2010 indicates (Figure 1), attention to analytics in OR journals was
limited until 2014, after which, and possibly in response to calls for papers (Hindle et al.,
2020; Mortenson et al., 2015; Ranyard et al., 2015), analytics gained substantially more
traction.

Figure 1: Counts of publications related to analytics/AI and explainable AI published in OR journals
between 2010 and 2023 (until September 1st, 2023). Values refer to 30 scientific journals in Clarivate’s Oper-
ations Research & Management Science category with the highest 5-year Journal Impact Factor, according
to the 2022 Journal Citation Reports. These papers list analytics- or explainability-related keywords in their
titles and abstracts. The search details are available on request.

Growing interest in analytics has also led to a plethora of methodologies and algorithms
that claim the ability to solve increasingly complex tasks (Choi et al., 2018). In partic-
ular, pattern recognition (Nieddu and Patrizi, 2000), data mining (Olafsson et al., 2008),
machine learning (Bengio et al., 2021), and deep learning (Kraus et al., 2020) have become
predominant algorithmic paradigms. Such vastly growing complexity makes it difficult to
understand the mechanisms by which predictions or decision outcomes emerge. In response,
some researchers actively work to develop methods to increase the interpretability and deci-
sion transparency of algorithms (Molnar, 2022). For example, Goerigk and Hartisch (2023)
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recently presented a framework for interpretable optimization algorithms. Thus, we confront
a trade-off between operational performance and decision explainability that is salient for
various AI-driven OR applications in fields such as healthcare (e.g., Davies et al., 2003) or fi-
nance (e.g., Baesens et al., 2003). Such trade-offs become even more acute when we attempt
to account for the interrelated but sometimes conflicting requirements and expectations of
internal and external stakeholders, such as:

• Organizational perspective. Organization decision-makers strongly stress the importance of
adhering to algorithm-provided decisions rather than relying on business logic or intuition
(Martens, 2008) and seek the power to take direct strategic, tactical, or operational action
based on acquired insights (Coussement and Benoit, 2021).

• Regulatory perspective. The General Data Protection Regulation (GDPR) and Digital
Markets and Digital Services Acts enforce customer privacy, data integrity, and security
principles as legal regulations that curb companies’ discretion to leverage and analyze
customer data.

• Ethical perspective. Ethical considerations involving the environmental impact and fairness
of analytics have inspired debates and policies (De-Arteaga et al., 2022; Martens, 2022).
Offering the term responsible analytics, Vidgen et al. (2020) also proposes a business
ethics canvas to help organizations plan and manage their analytical projects ethically.
The results of a recent survey by Rao and Greenstein (2022) indicate that 98 percent of
decision-making respondents planned to invest in responsible AI in 2022.

To encapsulate all these perspectives, expectations, and requirements, we adopt the term
explainable artificial intelligence (XAI) herein. It represents an important challenge and
opportunity for the OR community, especially considering how the volume of high-quality
manuscripts related to explainable AI in the OR journals while growing, is still limited (see
Figure 1).

To further define the term explainable AI in the OR domain, we ground our paper in the
highly relevant review paper by Mortenson et al. (2015), which discusses the origin of the role
of analytics in the operations management domain. They argue that OR decision-making
must be based on data and evidence rather than on heuristics and intuition. Their view on
analytics fits perfectly within the broader evolution of what is called diaonetic management.
They argue in favor of preserving operations research as a unique management discipline and
academic field where analytics is embraced to maximize impact during operational research
decision-making. This study proposes an explainable AI framework tailored toward the OR
domain that builds further on

1. review papers on analytics published in the OR field, but do not address explainable
AI (Choi et al., 2018; Nieddu and Patrizi, 2000; Olafsson et al., 2008) or do so only in
a limited fashion (Kraus et al., 2020), such that no OR-oriented definitions of analytics
or explainable AI exist; and

2. review papers published outside the OR field that investigate explainable AI solely
from a methodological (Barredo Arrieta et al., 2020; Linardatos et al., 2021) or gen-
eral (Islam et al., 2022) perspective, with a domain-agnostic approach, focused primar-
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ily on identifying the subdimensions of explainability and methods, without offering
applications relevant for improving OR decision-making.

Noting these gaps in extant literature, we seek to define explainable AI for OR (XAIOR)
by a framework which we define in Section 2, where explainable AI is a must-have besides
other forms of analytics like performance and responsible analytics when successfully devel-
oping and deploying advanced analytics that turn data into insights for improved managerial
decision-making. This paper thus takes a broader stance than solely looking at explainable
AI but also reviews the most important aspects of performance and responsible analytics.
We answer the following four broad questions related to explainable AI for OR (XAIOR) in
subsequent sections:

• What is XAIOR? In Section 2, we provide a domain-specific definition of XAIOR and
introduce a comprehensive, normative framework of XAIOR and its three dimensions:
performance analytics (PA), attributable analytics (AA), and responsible analytics (RA).

• How should XAIOR be implemented? We present a non-exhaustive overview of critical
XAIOR methodologies in Section 3, including experimental design and data selection,
feature engineering and data preparation, algorithmic design and choice, post-hoc inter-
pretation methods, and evaluation strategies and metrics.

• Where should XAIOR be deployed? In Section 4, we outline key applications of XAIOR,
focusing on important OR domains such as forecasting, risk analysis, inventory control,
marketing, and supply chain management.

• What is the future of XAIOR? We develop an agenda for further research in Section 5.

2. Defining Explainable AI for Operational Research

We define XAIOR as the conceptualization and application of advanced methods for trans-
forming data into insights that are simultaneously performant, attributable, and responsible
for solving OR problems and enhancing decision-making. This definition underlies a more
elaborate framework of XAIOR, as presented in Figure 2. The framework comprises three
dimensions, reflecting the three overarching principles that guide the conceptualization of
XAIOR. They explain the inner workings of analytical methods and the reasons for any
proposed decisions. These three dimensions align with the three types of analytics, as we
explain next.

1. Performance analytics (PA). In the XAIOR framework, the final solution can make
valid, reliable decisions in a scalable manner.

2. Attributable analytics (AA). For companies around the world that are building analyti-
cal competencies and skills, a need arises to transform their heuristic, experience-based,
and often subjective decision-making strategy into a data-driven approach. Therefore,
decision-makers need to understand how the methods function in a way that enables
them to intuit concrete action points.

3. Responsible analytics (RA). Organizations and decision-making instances must comply
with legal, ethical, and financial requirements for analytics development.
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We zoom in on these definitions, underlying dimensions, target audiences, their organiza-
tional priority, and scope of the three types of analytics, as represented in Figure 2.

Figure 2: Defining XAIOR

2.1. Performance Analytics

Turning to the first dimension of the XAIOR framework in Figure 2, we define PA as
the development or improvement of advanced methods for transforming data into insights
to solve operational or managerial problems effectively and efficiently and thus enhance
decision-making. The OR community is inherently interested in ways to boost the perfor-
mance of methods and solutions. A minimum requirement of a XAIOR solution is optimized
performance, which often is the responsibility of operational departments like data science,
operations, or IT. To achieve such optimization, they mainly focus on improving effective-
ness and efficiency. Effectiveness depends on the proportion of recommended solutions to a
given OR problem that are either correct or consistent with the preferences of the decision-
maker. An analytical solution is efficient if the run times to produce the solutions do not
increase drastically with more observations and variables in the input data set. Cousse-
ment and Buckinx (2011), in their evaluation of a new probability-mapping approach for
calibration (i.e., the process of adjustment of posterior probabilities output by a classifica-
tion algorithm toward the true prior probability distribution of the target classes), use a
log-likelihood metric to gauge the effectiveness of the calibration approaches. Fleszar (2022)
proposes a new mixed-integer linear programming (MILP) model and two heuristics for a
bin packing problem with conflicts and item fragmentation. The proposed model produces
better and faster solutions than any other benchmark. He assesses the effectiveness of the
final proposed model according to average percentage (optimality) gaps and its efficiency as
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the average and maximum computation time in seconds. If effectiveness represents consis-
tency between the model and the decision-makers’ preferences, it likely requires preference
learning from decision examples (Corrente et al., 2013). But efficiency is still important in
this context because the decision-maker must be in the loop of the learning process and
receive understandable feedback about any model changes without undue delay.

2.2. Attributable Analytics

The second dimension in the XAIOR framework, AA, refers to the development or im-
provement of advanced methods that can transform data into insights, establish clear rea-
soning for decision-making, and achieve understandability, justifiability, or actionability.
Such analytics are required for any XAIOR solution to bridge the gap with organizational
decision-makers. The arrows in Figure 2 suggest the conditional relations among under-
standability, justifiability, and actionability dimensions; each preceding dimension works as
a precondition of each subsequent dimension. Furthermore:

• Understandability represents a basic level and refers to the analytical solution’s ability to
allow human users to understand the method’s functioning and the decisions reached. For
our study context, we use this term interchangeably with comprehensibility, interpretabil-
ity, and transparency. When Mitrović et al. (2018) examines which features and feature
types to retain to achieve the best solutions from prepaid and postpaid churn prediction
models, they showcase not only which features are important but also how they relate to
customer churn behavior. Similarly, De Caigny et al. (2018) propose a hybrid, segmented
modeling approach based on logistic regression and decision trees that can clarify for mar-
keting managers why customers churn based on insights into the main churn drivers in
each segment.

• Justifiability pertains to whether the outcomes produced by the method are in line with
the intuition of domain experts. It helps ensure that the decision-maker trusts the models
developed. With their RULEM method, Verbeke et al. (2017) produce monotonic, ordinal
rule-based classification models, which they subject to two justifiability evaluation metrics
to determine the degree to which a classification model aligns with domain knowledge,
expressed in the form of monotonicity constraints. B laszczyński et al. (2021) also de-
rives monotonic decision rules from bank data, seeking to explain fraudulent behaviors by
customers in a way that makes sense to lenders.

• Actionability implies that a method can pinpoint, for the decision-maker, how and where
to allocate resources to solve the problem. For instance, da Costa et al. (2023) propose a
dynamic traveling maintainer problem with alerts that always approximates the optimal
policy to act upon when given access to complete condition information to avoid downtime
of industrial assets. Another example, Baykasoǧlu and Özbakir (2007) proposes MEPAR-
miner, a multi-expression program for association rule mining, that can discover effective
and actionable IF-THEN classification rules, which in turn improve decision accuracy
while also giving problem domain experts a helpful means to extract knowledge from the
data and take related action.
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2.3. Responsible Analytics

This third and final dimension in the XAIOR framework, RA, is defined as the devel-
opment or improvement of advanced methods for transforming data into insights in pursuit
of compliance with societal expectations, such as ethical, legal, or frugal norms. A recent,
growing trend in the OR domain embraces corporate social responsibility (CSR), prompting
much more OR research as well. Even if RA is a recommended, rather than a required,
dimension of XAIOR solutions, it is extremely beneficial to create solutions that external
stakeholders trust. Liu et al. (2022b) cite the impact of CSR leadership in a multi-tier
supply chain setting, for example. The increased pressure from public and private organi-
zational stakeholders for firms to comply with ethical, legal, and frugal standards defines
the dimensions of this third type of analytics in the XAIOR framework, as we detail further
here:

• Ethical responsibility. Solving the ethical challenges resulting from the development and
deployment of new methods to support decision-making generally requires RA. Growing
interest centers particularly on the ethical aspects of method development, often related
to method fairness (De-Arteaga et al., 2022). Research in this domain investigates biased
decision-making in an effort to understand and prevent it. Fair analytics avoid imposing
any discrimination during the method development and decision-making process, regard-
less of the potential origin of that discrimination (e.g., age, gender, race, sexual orientation,
religion). A well-known example involves the gender bias created by the algorithm used to
allocate credit limits for the credit card issued by Apple (Satell and Abdel-Magied, 2020).
Customers apply online, during which they receive an automated offer for a certain credit
limit; it quickly emerged that men were being offered significantly higher credit limits
than women, even if they had identical financial positions and credit risks. Among the
various articles that investigate and propose measures of algorithm fairness to detect and
avoid these unfair decisions, Kozodoi et al. (2022) revisit statistical fairness metrics and
empirically investigate their adequacy for credit scoring decisions.

• Legal compliance. Advanced methods and analytical solutions must comply with the
law. Credit scoring professionals working under BASEL or IFRS 9 regulations must
provide clear insights into the probability of default, loss-given default, or exposure at
default. Accordingly, Drenovak et al. (2017) proposes a mean capital requirement portfolio
optimization method that incorporates the capital requirements for market risk established
by BASEL 2.5. When their optimization features the Basel 2.5 formula in the objective
function, the results are superior to those obtained using the old (Basel II) formula in stress
scenarios. The General Data Protection Regulation (GDPR; implemented May 25, 2018)
also establishes that every individual consumer has the right to receive an explanation of
any decision made by an algorithm, as well as the right to privacy. Li (2018), seeking to
build an online invitation response prediction model, proposes a novel, privacy-friendly
mixture cure model with Bayesian networks. The predictive accuracy improves by 24%
but still accounts for privacy considerations in relation to the input data.

• Frugality. The field of deep learning has become well-embedded in the OR domain, applied
to various uses, such as credit scoring (e.g., Stevenson et al. (2021)), order picking (e.g.,
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van der Gaast and Weidinger (2022)), and bankruptcy prediction (e.g., Mai et al. (2019)).
However, optimizing deep learning architectures requires substantial resources, such that
many organizations consider the environmental impacts of their use of analytics. This
focus on frugal criteria during method development informs some new ways to build RA.
A prominent example comes from transfer learning; a method built for a given application
might work for another application, as when De Moor et al. (2022) use a deep Q-network to
manage perishable inventories and, rather than starting to train the method from scratch,
employ existing heuristics as a starting point to ensure the stability of their transfer
learning approach.

3. Implementing XAIOR

In this section, we provide an overview of methodological options that can be deployed
to contribute to XAIOR and its three dimensions. Figure 3 depicts the structure of our
discussion.

Figure 3: Implementing XAIOR

3.1. Experimental design & data selection

The deployment of analytics in OR includes various types of data, depending on their
availability and relevance. In some cases, data scientists depend solely on structured (tabu-
lar) data; others leverage unstructured (e.g., images, video, audio, network) data to optimize
operational decision-making. The nature of the collected data determines the methodolog-
ical options available in subsequent steps. For example, unstructured data require adapted
data preparation methods (Section 3.2) and learning algorithms (Section 3.3.1).
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Beyond the type of data, the experimental design is pertinent; in some cases, an analytical
project must gather existing data, but in others, the creation of new data is necessary to
support any subsequent analysis. We distinguish three types of data that might be collected:

• Observational data. These data are readily available, stemming from the adoption of infor-
mation systems and technology to administer or automate operations. Although typically
abundant and inexpensive, these data also can be biased and insufficiently representa-
tive of the population of interest. They also might not be independent or identically
distributed. Using observational data to obtain insights and drive decision-making may
hinder the achievement of PA, AA, and RA. In credit risk modeling, for example, frequent
rejections of loan applications by customers with low creditworthiness create biased ob-
servational data sets, such that using those data to develop a credit application scorecard
would lead to poor performance and questionable attributability (Banasik et al., 2003).
Moreover, the use of observational data can maintain or even reinforce prejudices and thus
raise ethical issues. Data that reflect historical job hiring decisions possibly suffer from
bias, for example (Tambe et al., 2019).

• Experimental data. The active collection of experimental data often involves surveys or
experiments, such as randomized, controlled trials that have been purposefully designed
and carefully executed. The level of control over the data collection process and the pre-
cise considerations typically taken when designing an appropriate experiment imply that
experimental data can support straightforward analyses and achieve satisfactory perfor-
mance. In many settings, experimental data are collected explicitly to explain something
(Shmueli, 2010) or establish exact relations between independent and dependent vari-
ables rather than to predict or prescribe operational decision-making. Collecting data
purposefully also appears critically important for ensuring that analytical models are si-
multaneously performative, attributable, and responsible. For example, direct feedback
loops, as arise when “models directly influence the selection of their own future training
data” (Sculley et al., 2015), can be addressed with experimental data. In marketing, it
is common practice to create control groups and then collect data to gauge the effect
of marketing campaigns (Radcliffe, 2007). Similarly, financial institutions can conduct
experiments in which they accept loan applications that normally would be rejected for
the purpose of collecting data to improve their credit risk model development (Kozodoi
et al., 2020). Obtaining experimental data can be prohibitively costly though, and in
some settings, experiments may be infeasible, whether due to practical limitations or ethi-
cal considerations. For example, in organ transplant settings, recipients cannot be selected
randomly, as would be required for experimental validity, due to medical and ethical con-
siderations (Berrevoets et al., 2020). In such settings, the only data that are available are
observational, so more advanced analytical methods are needed.

• Synthetic data. A viable alternative to experimental or observational data relies on (semi-
)synthetic data, generated by a simulator that needs to be representative to ensure the
eventual result of the analysis is useful. This approach is very common in certain OR
domains and also expanding, particularly in scientific fields, due to its ability to accom-
modate privacy concerns and achieve reproducibility. For example, when working with
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Table 1: Data preparation method categories and their relations to XAIOR dimensions
XAIOR Support

Method Category Examples PA AA RA

Missing value treatment
Mean/median/mode imputation, (k-) Nearest Neighbors im-
putation, MICE, VC-DRSA

X

Outlier detection Winsorization, Isolation Forest X
Feature extraction PCA, ICA, kernel PCA X
Sampling Oversampling, Undersampling, SMOTE, ADASYN X

Feature transformation
Normalization, Standardisation, Box-Cox transformation,
Logarithmic transformation, One-hot encoding

X

Feature selection
Filter-based (e.g., ReliefF), Fair feature selection, Wrappers
(e.g., Stepwise procedures)

X X X

Feature engineering RFM, Embeddings, SAFE-ML X X X

Notes: PA = performance analytics; AA = attributable analytics; RA = responsible analytics. References that
describe these methods in detail can be found in Table A.1 in Appendix A.

small or necessarily imbalanced data samples, adding (semi-)synthetic data can improve
model performance (e.g., SMOTE, ADASYN).

3.2. Feature engineering & data preparation

Data preparation refers to the process of cleaning and transforming raw data prior to
processing and analysis. Table 1 lists several data preparation method categories and re-
veals how they relate to the XAIOR dimensions. Many methods reflect a narrow focus on
increasing effectiveness or efficiency; that is, they primarily support PA. Yet the potential
for increased performance through effective data preparation is well-acknowledged in OR
(Coussement et al., 2017; Crone et al., 2006), particularly in relation to the following:

• Missing value treatment with univariate imputation methods, such as mean, median, or
mode imputation; multivariate imputation methods, such as nearest neighbor imputation
or multiple imputations by chained equations (MICE); or robust learning methods such
as VC-DRSA that are able to handle missing values directly (Szela̧g et al., 2017).

• Outlier detection like winsorization or isolation forests.
• Feature extraction methods such as principal component analysis (PCA), independent

component analysis (ICA), kernel PCA, and neural network-based embedding methods.
• Sampling methods such as random over- and undersampling, as well as related methods

that generate synthetic data, such as SMOTE and ADASYN. These options are especially
relevant in the case of imbalanced data sets, for which predictive methods often struggle
to learn the patterns of the minority class, so resampling methods exert great impacts
on the models’ performance, as demonstrated using imbalanced data sets in both churn
prediction and credit scoring settings (Soares De Melo Junior et al., 2019; Zhu et al.,
2018).

• Feature transformation, such as scaling through normalizing or standardization, as well as
the one-hot encoding for categorical features.

• Feature selection, such as ReliefF, a filter-based feature selection method.

In contrast, the creation and selection of some features can serve and enable PA, AA,
and RA simultaneously. In particular, we highlight feature selection and feature engineer-
ing. First, feature selection entails identifying and removing redundant features through
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filter- or wrapper-based methods, which can improve model performance and facilitate in-
terpretation. Moreover, the removal of sensitive features, such as gender, race, and other
features that correlate strongly with them, is critical to fair machine learning. Regarding fair
credit scoring, Kozodoi et al. (2022) provides a systematic overview of fairness techniques
and compares different fairness processors; they identify nine fairness preprocessing proces-
sors. Biswas and Rajan (2021) also demonstrates the impact of various data preprocessing
methods, including PCA, SMOTE, and scaling, with the finding that certain methods cause
models to exhibit unfairness. For example, data filtering and missing value removal change
the data distribution and thereby introduce biases. Unbalanced data demand a means to
ensure that all minority classes are adequately represented. Finally, feature selection can
support model frugality by reducing the computational costs of analytical learning methods.

Second, feature engineering relies on raw data to enhance the performance, attributabil-
ity, and responsibility of analytical models. It can be manual, automated, or hybrid:

• Manual feature engineering relies on domain knowledge, so it contributes to understand-
ability, justifiability, and actionability. Recency, frequency, and monetary value (RFM)
features are often obtained from transactional data, for example (Cheng and Chen, 2009),
and product usage trends can be obtained from customer lifetime value modeling (Glady
et al., 2009). Óskarsdóttir et al. (2022) augment tabular data about insurance fraud with
manually identified features that can characterize clients’ network data on the basis of
centrality measures and link-based features.

• Automated feature engineering is becoming more common, especially for dealing with un-
structured data, such as text, images, and network data. The popular feature engineering
method TF–IDF counts the frequency of words in a text; word embedding models trans-
form raw text into dense real-valued vectors while encoding the meaning of the words (e.g.,
word2vec). Powerful language models such as BERT can even gauge customer satisfaction
expressed in text samples (Aldunate et al., 2022). Network data also can be automatically
feature-engineered to extract structural information about observations in the network in
relation to neighbors and positions based on learning of the node embeddings with neural
network-based methods, such as node2vec and graphSAGE (Óskarsdóttir et al., 2020; Van
Belle et al., 2022).

• Hybrid feature engineering methods combine manual and automated feature engineering.
Gosiewska et al. (2021) propose SAFE ML: A complex supervisor model that engineers
interpretable features that subsequently get added to an easily interpretable model.

3.3. Algorithmic design & choice

In this section, we present methods to deploy XAIOR, distinguishing between methods
for supervised versus unsupervised learning.

3.3.1. Supervised learning

Supervised learning methods represent efforts to learn about a model or function that
maps input features to one or more outcome variables of interest. In OR, supervised learning
techniques are commonly deployed for classification and regression purposes when the target
variable is categorical or numerical, respectively. A comprehensive discussion of the many
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available taxonomies is beyond the scope of this paper. Instead, we outline six major method-
ological families that are especially relevant to supervised learning in XAIOR: (1) Statistical
regression analysis, (2) machine learning (ML), (3) rule-based and tree-based learning, (4)
deep learning, (5) time-series forecasting and (6) methods for uncertainty quantification.
Classes (3) to (6) can be characterized as subclasses of (1) and (2) but are discussed sep-
arately due to their relevance to OR and XAIOR. In each category, our overview includes
both black-box and white-box methods. Briefly, black-box methods provide great predictive
performance (i.e., focus on PA), but their inner functioning is not readily interpretable.
White-box or glass-box methods instead, are inherently interpretable and tend to prioritize
AA or RA over PA. Table 2 provides algorithm examples from each family as they relate to
XAIOR.

Table 2: Supervised learning methods and their relation to the XAIOR framework.
XAIOR Support

Method category Subtype Method examples PA AA RA

Statistical
regression analysis

Linear GLM X X
Nonlinear Nonlinear regression, GAM, GPR with local explanation X X
Regularization LASSO regression, ridge regression, elastic net X X

Machine learning Classic methods kNN, SVM, Naive Bayes X
Ensemble learning Bagging, AdaBoost, RF, RotF, XGBoost X
Hybrid methods RuleFit, LLM, SRE, PLTR X X
Domain-specific ProfLogit, ProfTree, B2Boost, uplift LLM X X
Fair ML Fair regression, generative adversarial networks X X X

Rule-based and
tree-based learning

Decision rules RIPPER, CORELS X X
Decision trees ID3, CART, C4.5, C5.0 X X
Monotonic rules Dominance-based Rough Set Approach (DRSA) X X

VP-DRSA, VC-DRSA, RULEM, AntMiner+ X X
Monotonic trees MID, VC-MDT, ICT, REMT X X

Deep learning Architectures MLP, CNN, RNN, GNN, LSTM, Transformers X
Interpretable ANN Neural additive models X X
Post-hoc analysis Integrated gradients, layer-wise relevance propagation X X
Bias reduction Fair adversarial debiasing, FADE X X X
Transfer learning BERT, RoBERTa, VGG16 X X X
Knowledge
distillation

Adversarial, Multi-teacher, Cross-modal X X X

Time-series
forecasting

Econometric and
statistical methods

ARIMA, Holt-Winters, Box-Jenkins X X

Deep learning LSTM, Temporal fusion transformers X X
Ensemble learning Forecast combination, forecast reconciliation X X
Plots Residuals, Seasonal decomposition X

ACF/PACF, Confidence intervals X
Uncertainty
quantification

Regression analysis GPR, quantile regression X
Ensemble learning Deep ensembles X X
Deep learning Monte Carlo drop-out, Bayesian neural networks X X

Notes: PA = performance analytics; AA = attributable analytics; RA = responsible analytics. References that describe
these methods in detail can be found in Table A.2 in Appendix A.

Statistical regression Analysis

Statistical regression methods are popular choices for supervised learning. They rely
on strong assumptions about data distributions and functional model forms. As a result,
these methods tend to be highly interpretable (i.e., white-box). Notable representatives of
this family include generalized linear models (GLMs). Formally, given a set of p predictor
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variables X ∈ Rp, and an outcome variable Y , the model takes the form:

g(E(Y |X)) = β0 +

p∑
j=1

βjXj (1)

where g is the link function, and its argument is a linear predictor, reflecting the weighted
sum of the input features determined by the coefficients βj associated with variable Xj, with
β0 as the offset or intercept. In GLM, associations between input features and the outcome
variable are additive and linear, which ensures monotonicity and facilitates interpretation.
Two influential example configurations of GLMs are linear regression for continuous outcome
variables (g(µ) = µ) and logistic regression for binary classification (g(µ) = logit(µ)).

Some notable extensions relax data distribution and linearity assumptions or penalize
the loss function in pursuit of stronger generalizability and interpretability, including:

• Nonlinear regression and generalized additive models (GAM), which are viable when the
relationship between the variables and the outcome is nonlinear (Hastie et al., 2008).

• Gaussian process regression (GPR) and its variants, such as a GPR with local explanation
derived from sample-wise feature weights (Yoshikawa and Iwata (2021)).

• Penalized regression methods impose shrinkage by adding a constraint to the loss func-
tion. Prominent examples include LASSO regression, ridge regression, and elastic net
regularization.

Machine learning

Machine learning methods learn as effectively and efficiently as possible. As a result,
this category features black-box methods that have been widely adopted in OR, such as:

• Classic nonparametric methods such as k-nearest neighbors (k-NN), support vector ma-
chines, and naive Bayes;

• Neural networks and deep learning, which are particularly prominent in modern OR ap-
plications, as we discuss in Section 4;

• Ensemble learners such as bagging, random forest (RF), rotation forest (RotF), AdaBoost,
and extreme gradient boosting (XGBoost).

As illustrated by their emphasis on model accuracy, these black-box methods primarily
enhance the PA dimension. In addition, a wide array of purposefully established white-
box machine learning methods exists, which are highly interpretable and seek AA or RA
explicitly, including:

• Hybrid versions, such as a logit leaf model (LLM) (LLM; De Caigny et al., 2018) that
combines clustering and classification, rule ensembles (RuleFit) and penalized logistic
tree regressions (PLTR) that reconcile rule-based learning and regularized regression, and
spline-rule ensembles (SRE; De Bock and De Caigny, 2021) that combine rule ensembles
with penalized cubic regression splines to enhance performance as well as understandabil-
ity.

• Context-specific or domain-optimized methods, such as cost-sensitive ensemble learning
(De Bock et al., 2020), profit-driven classifications, or uplift models (Devriendt et al.,
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2021). Instead of optimizing a statistical measure of model fit, methods such as ProfTree
or ProfLogit maximize the average profit that drives the implementation of a classifier.

• Fair machine learning methods (De-Arteaga et al., 2022; Mehrabi et al., 2021).
• Rule-based and tree-based methods, which we discuss separately, due to their particular

relevance to OR (see Section 3.3.1).

Rule-based and tree-based learning

Decision rules and trees are frequently used in OR, particularly in multi-attribute classifi-
cation problems. Multiple reviews summarize these models and their learning (e.g., (Bodria
et al., 2021)). They are suitable for both PA and AA. According to Semenova et al. (2022),
they also provide simple, accurate models that can be superior to accurate, more complex
models in terms of understandability. We listed some notable examples of these algorithms
in Table 2.

For this section, we focus specifically on decision rules and trees learned from ordinal
data. In OR, the assessment of alternative decisions usually involves multiple attributes
with ordinal or cardinal scales. For this reason, in OR, data submitted to analytics are
usually ordinal, which explains our focus. Multi-attribute assessments entail a multidimen-
sional decision problem and involve a dominance relation in the set of alternative decisions.
This relation is the only objective information derived from the statement of a multidimen-
sional decision problem. The dominance relation makes, however, a weak partial order in
the set of alternatives, thus leaving some alternative decisions incomparable, especially if
assessments across multiple dimensions are conflicting (i.e., improvement to one dimension
causes deterioration in others). Incomparability prevents unambiguous recommendations for
optimization, classification, or ranking, which are the main classes of decision problems con-
sidered in OR. Thus, the decision-aiding methodologies developed within OR mainly focus
on aggregating multiple dimensions into a preference model, which makes the alternatives
more comparable in light of users’ preferences.

Modeling users’ preferences is essential to decision-aiding in OR. In the framework of
ordinal data analytics it proceeds through learning preference patterns from holistic pref-
erence information about users’ judgments. The preference patterns explain users’ past
decisions and predict future ones. They imply a monotonic relationship between conditions
and decisions (e.g., an alternative that is better on considered attributes is higher in quality).

The best-known preference patterns are monotonic decision rules (Greco et al., 2001),
composed of logical statements that relate conditions on particular attributes with some
decision, such as, “if gi(a) ⪰ ri & gj(a) ⪰ rj & ... gk(a) ⪰ rk, then alternative a →
Class t or better” for classification, or else, “if gi(a) ⪰≥h(i) gi(b) & gj(a) ⪰≥h(j) gj(b) & ...
gp(a) ⪰≥h(p) gp(b), then a ⪰ b” for best choice or ranking, where ⪰ is a weak preference
relation; ri, rj, . . . , rk are threshold values on selected attributes {gi, gj, . . . , gk} ⊆ G induced
from data; G is the set of all considered attributes; ⪰≥h(·) is a weak preference relation with
intensity in degree at least h(·); and h(i), h(j), . . . , h(p) are degrees of preference intentsity
for cardinal attributes {gi, gj, . . . , gp} ⊆ G, also induced from the data.

In addition, the rule model of preferences has been compared at an axiomatic level with
two earlier preference models (S lowiński et al., 2002):
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• Multiple attribute utility theory (MAUT) (Keeney and Raiffa, 1979), according to a value
function that assigns, to each alternative a ∈ A, a real value, such as the weighted sum of
performances U(a) =

∑
i ∈ G ki × gi(a), or a more general additive function

U(a) =
∑

i ∈ G ui[gi(a)], where ui are marginal value functions, or non-additive integrals
that can handle interactions among attributes, such as the Choquet integral for cardinal
attributes or the Sugeno integral for ordinal attributes (Grabisch, 1996).

• Outranking models (Roy, 2005) that use systems of binary relations, including the outrank-
ing relation S = {∼,≻w,≻s}, where ∼ means indifference, ≻w indicates weak preference,
and ≻s is strong preference, such that relation a ⪰ b reads: “alternative a is at least as
good as alternative b.”

The comparison then establishes that the rule model requires the weakest axioms, which
means that the value function or outranking model can represent particular preferences if
and only if the rule model can (see also Greco et al. (2004)). Moreover, the rules identify
values that drive users’ decisions; each rule represents an intelligible scenario of a causal
relationship between performance on a subset of attributes and a comprehensive judgment.

The rules are induced from preference information obtained from users, in the form of
decision examples (i.e., users’ past judgments or judgments elicited by request). Yet deci-
sion examples may be inconsistent with the dominance principle that is commonly accepted
for multi-attribute decision problems. Such inconsistency arises, e.g., in the case of ordinal
classification, if alternative a has been assigned to a worse decision class than alternative b,
but a is at least as good as b on all the considered attributes (i.e., a dominates b). Inconsis-
tency has many sources, including missing attributes in the descriptions of the alternatives,
unstable preferences, or conflicts between users. Handling these inconsistencies is critical to
preference learning; they cannot be dismissed as noise or error that needs to be eliminated
from data, nor should they be amalgamated with consistent data through the use of some
averaging operators. They need to be identified and presented as uncertain patterns.

The concept of a rough set (Pawlak, 1982) is useful for handling data inconsistency,
though originally, it was limited to inconsistency with respect to the indiscernibility prin-
ciple. To deal with inconsistencies pertaining to the dominance principle, as are typical
for ordinal data, Greco et al. (2001) generalized the original rough set concept by substi-
tuting the indiscernibility relation with a dominance relation in a rough approximation of
preference-ordered decision classes. The resulting methodology, the dominance-based rough
set approach (DRSA), is able to infer users’ preferences in the form of monotonic decision
rules induced from data structured by the dominance-based rough approximations.

Depending on which classification examples support the induced rules, they can be char-
acterized by different values of the adopted interestingness measures. Greco et al. (2016)
consider some recommended rule interestingness measures according to Bayesian and likeli-
hood confirmation assessments. The interestingness measures then can help to classify new
alternatives according to whether those alternatives are matched by no rule, exactly one
rule, or several rules (even if they are contradictory). Such a classification scheme has been
proposed by B laszczyński et al. (2007).

Two parametric versions of DRSA also have been proposed, which relax the original
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definition of rough approximations in various ways. They include variable-precision DRSA
(Inuiguchi et al., 2009) and variable-consistency DRSA (B laszczyński et al., 2009). Sta-
tistical interpretations of these two parametric DRSA from an empirical risk minimization
perspective (as is typical of machine learning) are available from Kusunoki et al. (2021).
A stochastic DRSA model also has been presented by Kot lowski and S lowiński (2008) and
Kot lowski et al. (2008).

Algorithms for inducing decision rules from rough approximations include a minimal-
cover strategy that offers a minimal set of rules that represents the users’ preferences in the
most concise way (B laszczyński et al., 2011). A recent trend integrates several rule classifiers,
called base classifiers, into ensembles or committees of classifiers (Kot lowski and S lowiński,
2009). Various methods of generating differentiated base classifiers for their integration into
the ensemble classifiers were proposed. The best known are bagging (B laszczyński et al.,
2010) and boosting (Dembczyński et al., 2010), which modify the set of alternatives by
sampling or weighting particular examples and use the same learning algorithm to create
base classifiers.

Ordinal data analytics involving monotonic decision rules induced by DRSA for other
multi-attribute decision problems was described in (S lowiński et al., 2020). For a charac-
terization of other methods of learning monotonic decision rules and trees, see Cano et al.
(2019).

Deep learning

In the past decade, artificial neural networks (ANN) have achieved promising results for
various OR applications, often outperforming traditional ML models in terms of predictive
performance (Kraus et al., 2020). In particular, the flexible design of deep learning archi-
tectures supports the derivation of models that process input data, especially unstructured
data, in a natural way. Some well-established architectures include the following:

• Convolutional neural networks (CNNs) exploit spatial relations across adjacent inputs,
such as pixels in images (He et al., 2022).

• Recurrent neural networks (RNNs) sequentially process data and keep a memory of pro-
cessed time series, which is commonly needed in finance (Krauss et al., 2017).

• Graph neural networks (GNNs) naturally process graph data.
• Transformer neural networks learn to attend to specific parts of sequential data, such as

in text (Kriebel and Stitz, 2022).

Within the XAIOR framework, the design of highly complex neural networks with millions
or billions of parameters is closely linked to PA. Yet certain characteristics of neural net-
works also can be used to account for AA, such as (1) the differentiability of common neural
networks, which supports assessments of gradient information; (2) their stacked architec-
tures, so it is possible to follow the propagation of information through the model, layer by
layer; and (3) the general idea of connecting neurons, which implies architectures that are
intrinsically interpretable.1, as we discuss in Section 3.4.

1Model-agnostic interpretability methods, such as SHAP, are also widely used to analyze deep learning
models
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We present three strategies that exploit these characteristics to gain insights into the
functioning of deep learning models and contribute to AA. First, the effect of a change in
an input feature on the ANN output can be determined by using information about the
partial derivatives of the model with respect to the inputs. Let f be the optimized ANN
and x = (x1, . . . , xp) be its inputs. Then the partial derivative δf

δxi
(x̂i) describes the rate

of change for model input xi at feature value x̂i. The assumption that inputs with large
partial derivatives are the ones most relevant for the ANN output does not hold though;
the effects of inputs quickly saturate. That is, the effects of inputs on the neural network
output increase sharply within a small range of inputs but remain constant outside of this
range. As a remedy, integrated gradients can assess the effect of an input feature on the
ANN output (Kosasih and Brintrup, 2022). The partial derivatives between a base vector
b (e.g., black image, zero-valued vector) and the actual input vector x̂ get integrated, such
that

(x̂i − bi)

∫ 1

α=0

δf(b + α (x̂− b))

δxi

dα. (2)

Second, it is also possible to exploit the layered architecture of ANNs to explain model
predictions and propagate the effects from the model output to the inputs. This approach
helpfully propagates more interpretable patterns, usually learned by neurons in later layers,
to the input. Notably, layer-wise relevance propagation sends the model output backward
to the inputs, using different propagation strategies for early, middle, and later layers in the
ANN. Relevance R is defined and initialized with the model output’s activation, such that
Rtotal = f(x̂). For the layer connected to the output, relevance then gets distributed among
the r neurons, with respect to their activation, a1, . . . , ar, and the weights that connect the
neurons, wout,1, . . . , wout,r. For neuron k, relevance can be computed as:

Rk =
|ak wout,k|∑r
j=1 |aj wout,j|

, (3)

which describes the share of information that each neuron adds to computing the model
output’s activation. By propagating relevance from the model output to its input, layer
by layer, the data scientist obtains relevance scores for the inputs, which then explain the
model prediction.

Third, another option is to design neural networks in such a way that their intrinsic
functioning can be assessed easily without any additional post hoc analyses. The resulting
family of models is called generalized additive models, and they have been applied success-
fully in OR (Djeundje and Crook, 2019). By removing interactions between input features,
these models take the following form:

f(x) = f1(x1) + f2(x2) + . . . + fm(xm), (4)

where each fi describes a subneural network that maps the i-th input to the output. These
neural additive or explainable neural networks (Yang et al., 2021) offer the advantage of
eliminating the need for a post hoc analysis because the effect of an input xi on the output
is fully described by the subneural network fi.
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With its clear focus on PA, research into deep learning only partially addresses challenges
pertaining to RA. However, the versatile design of neural network architectures and the
optimization problem can contribute to addressing such challenges. For example, Kozodoi
et al. (2022) shows that adversarial debiasing using neural networks can increase fairness in
credit scoring. Adversarial debiasing involves training a neural network with the following
objective (Zhang et al., 2018):

min
f

L(f(x), y) + αPI, (5)

where L(f(x), y) is a general loss function, α denotes regularization strength, and PI repre-
sents the prejudice index that quantifies the degree of unfairness. Incorporating additional
regularization terms can be appealing, but they are soft constraints and cannot fully prevent
unwanted bias in model learning.

Optimizing powerful deep learning models requires large amounts of data and many op-
timization steps due to the high number of parameters. This consumes significant energy,
resulting in notable environmental impacts. To evaluate neural networks with frugal crite-
ria like emissions, some firms have adopted new RA approaches. For example, for transfer
learning, an already optimized neural network model serves as the starting point, which
gets optimized for the desired task. Thus, Kriebel and Stitz (2022) use a so-called language
model as a starting point and then optimize it to predict credit defaults from user-generated
text in peer-to-peer lending. Such transfer learning reduces optimization time, and environ-
mental impacts, and improves model performance by leveraging knowledge from the original
language model to solve specific problems more accurately.

In a similar vein, researchers propose techniques to reduce the resources required to
evaluate and infer deep learning models, such as after deployment. Knowledge distillation
implies transferring knowledge from a large model to a simpler one. Although large models
(such as deep learning models) have a much greater knowledge capacity than small models,
they might not be fully utilized, such that a small model could provide similar predictive
performance at a much lesser computational cost. In addition to being less expensive to
evaluate, smaller models can be deployed on less powerful hardware (e.g., mobile phones).

Time-series forecasting

Time-series forecasting is a particular form of regression in which the covariates are
lagged variables of the outcome. This intrinsically interpretable task, even when using
machine learning models, plots the main series along with the fitted model and the forecast
in a two-dimensional chart (Hyndman and Athanasopoulos, 2021). Beyond the fitted model
and the forecast, seasonal decomposition plots, partial autocorrelation function (PACF)
plots, and confidence intervals represent useful visualization tools for decision-making, too
(Hyndman and Athanasopoulos, 2021). Figure 4 illustrates some examples, revealing, for
example, why the seasonal decomposition and PACF plots are useful tools for understanding
seasonal and autoregressive patterns, whereas the confidence intervals of the forecast give
insights into the accuracy and uncertainty of the prediction.

Time-series forecasting methods include:
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Figure 4: Four different visualization methods for decision-making in time-series forecasting using the NYC-
Births data set

• Econometric and statistical methods, such as ARIMA and Box-Jenkins. Variations such
as seasonal autoregressive integrated moving average (SARIMA) and triple exponential
smoothing model from the Holt-Winters family (Hyndman and Athanasopoulos, 2021)
can depict three main aspects of a series: trend, seasonality, and autoregressive patterns.

• Machine learning methods capable of modeling nonlinear interactions. In terms of visual-
ization capabilities, they are limited by their inability to derive confidence intervals and
the variables’ contributions. Therefore, recent forecasting literature seeking to address
these limitations proposes Bayesian models to account for uncertainty and to model con-
fidence intervals (Zeng and Li, 2021). Alternatively, novel regularization strategies, such
as the group LASSO, might be designed to identify the contributions of lagged variables
in high-dimensional time-series (Nicholson et al., 2020).

• Ensemble methods, which combine multiple forecasting models, are also used increasingly
to enhance forecast accuracy (Cang and Yu, 2014; Kang et al., 2022; Winkler and Makri-
dakis, 1983), taking forms such as:

– Forecast combination. Multivariate, often high-dimensional, time-series settings can
extract time-series features that determine the weights of candidate forecasting models
in a subsequent combination step (Ma and Fildes, 2021; Montero-Manso et al., 2020).

– Forecast reconciliation. This method combines multivariate time-series forecasting with
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a hierarchical dependency structure, such as sales data related to products in the
same category or consumption/demand data grouped by geographic region (Panagiotelis
et al., 2021).

– Other approaches. Some studies relax requirements for the relatedness of the time series
and demonstrate the superiority of a global model to forecast multiple time series over
developing local, time-series-specific models even when the set cannot be considered
related (Montero-Manso and Hyndman, 2021). Given an effort to extract information
from one set of time series to forecast another set, it is worth noting the connections
between forecast reconciliation and transfer learning, which has become a de facto stan-
dard for natural language processing (NLP) and computer vision (Lecun et al., 2015).

• Deep learning methods, and in particular, architectures such as transformers and long
short-term memory (LSTM) enhance forecasting due to their ability to model data as
a sequence of information. Understandable approaches depict and interpret attention
weights in ways that produce valuable decision-making insights (Ding et al., 2020).

• Probabilistic methods for forecasting estimate the full conditional distribution of the target
variable rather than a specific moment (e.g., conditional mean) (Gneiting and Katzfuss,
2014). They extend the confidence intervals to support improved decision-making (AA
and actionability). These models often rely on Bayesian methods (Frazier et al., 2019),
though more recently, approaches based on deep learning, such as DeepAR, also have been
proposed.

Uncertainty quantification

A special category of methods that we opt to identify separately is suitable for uncertainty
quantification. Beyond generating predictions, such methods quantify the confidence of
models in the prediction. The enhanced interpretability and actionability of these estimates
contribute to AA. As seen in Table 2, these methods emerge from some of the methodological
families outlined above. Examples are Gaussian process regression, quantile regression,
ensemble learning, and practices such as Monte Carlo drop-out found in deep learning.

3.3.2. Unsupervised learning

The objective of unsupervised learning is to recognize patterns or structural properties in
data without an associated label. An aspect of this process involves clustering, which aims
to group similar observations in the same cluster whereas dissimilar observations should
belong to different clusters. In this subsection, we outline some categories of key algorithms
and how they support XAIOR (Table 3). A more comprehensive overview is available from
(Saxena et al., 2017). Classical clustering methods include:

• Centroid-based clustering minimizes the distances between observations and class proto-
types. Examples are k-means clustering and partitioning around medoids (PAM).

• Hierarchical clustering entails two major variations: agglomerative and divisive (Saxena
et al., 2017). The former starts with each observation as its own cluster and iteratively
merges clusters until one cluster emerges, comprised of the entire set of observations. The
latter approach starts with the entire data set as one cluster and divides them in each
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Table 3: Unsupervised learning methods and their relation to the XAIOR framework.
XAIOR Support

Method category Method examples PA AA RA
Centroid-based clustering K-means, PAM X
Hierarchical clustering Agglomerative clustering X

Divisive clustering X
Density-based clustering DBSCAN, OPTICS X
Distribution-based clustering GMM/EM X
Other clustering paradigms SVC X

Dynamic clustering X X
Semi-supervised clustering X X
Clustering under uncertainty X X X
Subspace clustering X X X

Association rule learning A priori, FP-growth X X

Notes: PA = performance analytics; AA = attributable analytics; RA = responsible analytics. References that
describe these methods in detail can be found in Table A.3 in Appendix A.

iteration. Several enhancements to hierarchical clustering have been proposed (see, e.g.,
Saxena et al., 2017).

• Distribution-based clustering, which assumes a model that can describe the observations’
distributions and optimizes the respective model’s parameters, such as the EM algorithm
for estimating a Gaussian mixture model (GMM) (Xu and Wunsch, 2005).

• Density-based clustering includes methods such as DBSCAN and OPTICS, which assign
instances in high-density spatial areas to clusters.

• Support vector clustering (SVC), perhaps the most relevant method for maximum margin
clustering, determine support vectors situated on the margin of each cluster.

Clustering supports AA by nature. Centroid-based clustering methods clarify a po-
tentially huge set of high-dimensional observations by determining clusters’ centers. Such
information is very useful for customer segmentation; the centers provide an interpretation
of the respective segments. Clustering paradigms that have more particular relevance for
PA and RA include:

• Clustering under uncertainty, such as probabilistic, fuzzy, possibilistic, rough, and granular
clustering, as reviewed by (D’Urso, 2017).

• Dynamic clustering, which reveals changes to a cluster solution, is useful when timely
reactions are necessary. Several methods employ dynamic clustering cycles (Saltos et al.,
2017), such that a methodology to update a cluster solution augments the base clustering
algorithm. A taxonomy of dynamic clustering is presented by (Peters and Weber, 2018).

• Semi-supervised clustering uses background knowledge to guide otherwise unsupervised
learning processes used in traditional clustering. Adding constraints leads to constrained
clustering. For example, in geographical information systems (GIS), certain geographical
elements, like streets and rivers, may not be assigned to the same cluster, regardless of
their proximity in the feature space (Ruiz et al., 2010).

• Subspace clustering determines clusters in subspaces of the original data space, so it pro-
vides a means to treat high dimensionality effectively, ensure the interpretability of results,
and provide scalability and usability (Agrawal et al., 2005).
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Subspace clustering and dynamic clustering are particularly relevant for PA, given their
focus on efficiency. Subspace clustering in particular creates more efficient predictive models
because it uses fewer variables per cluster (Wang et al., 2015). Dynamic clustering updates
a cluster solution iteratively, instead of starting each time from scratch, which increases
efficiency. For example, dynamic rough-fuzzy support vector clustering (dynamic RF-SVC)
provides a base method within a dynamic clustering cycle to explain changing cluster struc-
tures. Adequate treatment of uncertain phenomena has an especially important role in
dynamic clustering because the changes lead to uncertainty. The dynamic RF-SVC can
detect modifications such as the creation, elimination, movement, merging, and splitting of
clusters, as well as the traceability of outliers (Saltos et al., 2017).

Unsupervised learning also can accomplish RA. First, because semi-supervised clustering
adds constraints, it represents a means to include explicit ethical or legal considerations.
The detection of fake reviews represents such an application (Rathore et al., 2021). Second,
subspace clustering can preserve privacy, in that it identifies segments without using all
available features (Wang et al., 2015). Community detection among the social networks
of criminals, combined with topic modeling of victims’ narratives, could offer useful hints
for prosecution. An example is the methodology developed by Troncoso and Weber (2020),
which has been applied to detect criminal associations within a network of suspects. Third,
clustering using uncertainty modeling deployed for outlier detection could address ethical
issues, such as unfair exclusions of minority populations (Deepak and Abraham, 2021), as
well as legal concerns, such as fraud detection (e.g., Carcillo et al., 2021).

It should be noted that unsupervised learning includes tasks beyond clustering. One is
association rule mining which aims to uncover relationships across variables. Notable algo-
rithms for this task are the Apriori and FP-growth algorithms. Another problem addressed
by unsupervised learning is dimensionality reduction, which includes feature extraction meth-
ods such as PCA and ICA (see Section 3.2).

3.4. Post-hoc interpretation methods

Post-hoc explanation methods are meant to explain the predictions of existing supervised
learners. Such methods contribute to AA directly since they aim to make model predictions
and decisions understandable. This understandability enables other subdimensions of AA
as well as RA. Any explanation has three defining components: explaining (a) a prediction
(a score or a decision), (b) made by a prediction model, (c) on some set of instances.

• Starting with what is being explained: a prediction score or a predicted class. Data
scientists often operate in environments where the threshold applied to convert prediction
scores to decisions is dynamic. Consider, e.g., credit scoring. During uncertain times like
the start of the COVID-19 pandemic or during a war, banks will become more cautious in
their lending practices. This results in them lowering the threshold for credit scores that
determine whether someone is approved or rejected for a loan. There will, therefore, be a
preference of data scientists to evaluate and explain prediction scores rather than decisions
(which come from applying a threshold to a prediction score), which sheds light on the
popularity of post-hoc methods such as LIME and SHAP, which are explained in more
detail next. However, this does not necessarily reflect the requirements of the end-users:
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a loan applicant is more interested in understanding why credit was denied rather than
explaining why a certain score was given.

• The second defining component refers to the prediction model itself. Some explanation
methods use this model as a black-box model that, given an input, provides an output,
while other methods explicitly make use of a particular inner structure or defining charac-
teristics of the prediction model, such as the architecture of a neural network, the support
vectors in an SVM, or the gradient of the scoring function. The former, model-agnostic
ones, can easily be applied to any black-box model. In contrast, the latter, model-specific
ones, are tailored towards specific models, often with a superior performance yet less broad
applicability.

• The last defining component looks at whether an individual prediction is to be explained,
leading to instance-based or local explanation methods, or whether an explanation is
needed over the complete set of predictions, known as global explanation methods. A
taxonomy of methods according to this component has been proposed by Martens (2022),
which also looks at the dimension of what the explanation looks like: does it provide the
importance of features, does it provide plots of feature values, or does it provide rules.
Before detailing the primary approaches, note the irony of these post-hoc explanation
techniques: to explain complex models, we are adding more complex algorithms to explain
the predictions made by the initial models. This irony has led to some researchers arguing
for the importance of inherently comprehensible models (Rudin, 2019), which conflicts
with the use of well-performing black-box models as trained by popular deep learning and
ensemble methods.

The following overview primarily involves methods designed to explain supervised learning
models. Many of them originate from, or build upon, the broader literature stream on
sensitivity analysis (Borgonovo and Plischke, 2016), aimed at generating insights in model
mechanisms and output iton response to changes in model inputs.

Table 4: Post-hoc explanation methods and their relation to the XAIOR framework
XAIOR Support

Scope Method category Method examples PA AA RA

Local Feature importance analysis LIME, SHAP, LRP X
Feature effect analysis ICE X
Example-based explanations Counterfactuals, Anchors X

Global Feature importance analysis
PI, SHAP, Sobol' indices ,
Shapley effects

X

Feature effect analysis PDP X
Rule extraction RIPPER, ANN-DT, DeepRED X X

Notes: PA = performance analytics; AA = attributable analytics; RA = responsible analytics. References that describe
these methods in detail can be found in Table A.4 in Appendix A.

3.4.1. Local explanation methods

LIME, SHAP, LRP, and ICE are four popular explanation methods that explain an
individual instance’s prediction score.

• LIME (Ribeiro et al., 2016) does so by creating a set of artificial data points around
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the instance to be explained and having the black-box model provide a prediction score.
Next, a linear regression model is trained on this data. As we now have an inherently in-
terpretable model, the coefficients of this linear model are shown, ranked by their absolute
value, to indicate the most important features for that instance’s prediction score.

• SHAP further expands on this by ensuring that the importance weights correspond to
Shapley values (Lundberg and Lee, 2017).

• Layer-wise Relevance Propagation (LRP) (Binder et al., 2016) similarly provides a weight
to each input but is made explicitly for explaining predictions made by artificial neural
networks on image data. The result is a heat map, where the color of each pixel indicates
its importance for the prediction.

• Individual Conditional Expectation (ICE) plots indicate how the prediction score changes
as the value of a certain feature is changed while keeping the values for the other features
constant (Goldstein et al., 2015).

Notice again that the previous instance-based methods explain a prediction score, not a
decision. A counterfactual explanation of a classification of a data instance provides an
irreducible set of evidence present in the data instance to be explained such that removing
that evidence would change the decision (Martens and Provost, 2014). For example, an
explanation of why a Facebook app user in the US is targeted for a display advertisement
for the Democrat party could be: If the user would not have liked the Facebook pages NBC,
Barack Obama, and Greenpeace, then the user’s inferred political leaning would change from
democrat to neutral. Chen et al. (2017) argue that these counterfactual explanations can
help decide which Facebook likes should be cloaked to suppress the prediction.

Terminology-wise, the counterfactual is the data instance that leads to a different clas-
sification (for example, a resume with certain words removed), while the explanation is the
difference between the data instance to be explained and the counterfactual (for example, the
words to be removed in the resume). Counterfactuals had been used in philosophy for a long
time (Schock, 1962) and were introduced in the predictive modeling domain by Martens and
Provost (2014) for textual data and further popularized by Wachter et al. (2017) for tabular
data. The counterfactual approach has gained lots of attraction, as it explains a decision,
which arguably is what end-users most often care about, and does so without disclosing the
entire model (Barocas et al., 2020).

3.4.2. Global explanation methods

Global explanation methods explain a model’s prediction over an entire data set. A
commonly used approach is to look at what features are most ‘important’ for the model
prediction. Breiman (2001) arguably first popularized these permutation-based feature im-
portance scores, or simply permutation importances (PI), in his seminal paper on random
forests. Randomly changing a feature’s value across the entire dataset and assessing the
impact on the model’s predictive accuracy gives an indication of how important that fea-
ture is to the prediction. Local methods such as SHAP can also be used as global feature
importance methods, by averaging instance-level values over the data set at hand. Related
methods proposed for global feature importance analysis are Sobol indices and Shapley
effects.
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Table 5: Evaluation metrics and evaluation strategies and their relation to the XAIOR dimensions
XAIOR Support

Method
category

Subtype Method examples PA AA RA

Evaluation
metrics

Error PCC, MSE, MAD X
Ranking AUC, Lift, Pearson correlation X

Profit and loss
Maximum profit criterion, EMPC, Expected mis-
classification cost

X X

Uncertainty Calibration curve X X
Privacy K-anonymity, L-diversity, T-closeness X

Fairness
Statistical parity, Demographic parity, Equalized
opportunity

X

Model
evaluation
strategies

Model validation
Out-of-sample, Out-of-period, Out-of-universe
validation

X X X

Monitoring Field testing X X X

Self-learning methods
Online learning methods, Bandit algorithms, Re-
inforcement learning

X X X

Notes: PA = performance analytics; AA = attributable analytics; RA = responsible analytics. References that
describe these methods in detail can be found in Table A.5 in Appendix A5.

Partial dependency plots (PDP) further elaborate on such explanations by providing
two-dimensional plots (Friedman, 2001). The marginal (average) effect on the prediction
score is given on the vertical axis at the feature value shown on the horizontal axis. Such
plots illustrate the relationship between a feature and the output score over the entire range
of possible feature values and can be used to visualize interaction effects.

Finally, rule extraction provides a set of rules that mimic how the black box model
makes its predictions (Craven and Shavlik, 1996; Martens et al., 2009). In its basic form,
one can apply any rule induction technique on the original training data, with the class labels
changed to the black box predicted labels. Examples are RIPPER, ANN-DT and DeepRED.
Substituting a black box model with one obtained through rule extraction results in efficiency
gains and thus contributes to PA.

3.5. Evaluation strategies & metrics

A critical step prior to deploying an analytical solution concerns a comprehensive eval-
uation across the relevant dimensions of the XAIOR framework in Figure 2. To this end,
an evaluation strategy is to be designed that aligns with the applicable user requirements
by selecting appropriate metrics and procedures, depending on the problem characteristics
and context. In Table 5, various types of evaluation approaches are classified in terms of
the relevant dimensions in the XAIOR framework.

As mentioned in Section 2.1, the OR community has inherently been interested in boost-
ing the performance of methods and solutions. Consequently, various evaluation procedures
and metrics have been proposed and adopted for assessing and optimizing performance.
For each task, e.g., classification, regression, or clustering, a range of performance measures
allows for assessing the ability of the obtained solution to optimize decision-making. Spe-
cialized, application-dependent measures often exist that allow fine-tuning the evaluation to
take into account problem-specific characteristics, such as a highly skewed class distribution
(e.g., in fraud detection (Baesens et al., 2015)) or error-dependent and stochastic costs (e.g.,
in churn prediction (Verbraken et al., 2013)).
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The AA dimension in the XAIOR framework identifies three dimensions, i.e., under-
standability, justifiability, and actionability. Whereas the understandability of an analytical
solution typically depends on the analytical method that is applied (e.g., a decision tree and
logistic regression typically yield interpretable models, whereas deep learning does not), the
justifiability of a solution is to be evaluated. To this end, domain knowledge can often be
expressed in terms of constraints that apply. For instance, based on domain knowledge, a
positive relation could be expected between a predictor and a target variable in a binary clas-
sification model. Given a logistic regression model, it is straightforward to evaluate whether
this constraint is satisfied by inspecting the sign of the coefficient of the predictor, which
should be positive. To assess the uncertainty of model outcomes, calibration curves can be
deployed. For more complex models, e.g., decision trees, rule sets, or ordinal classification
models, more advanced metrics may be adopted for evaluating justifiability, as proposed in,
e.g., Verbeke et al. (2017). Assessing the actionability of an analytical solution is a highly
complex task and is typically done qualitatively.

Finally, as to RA, evaluation metrics may be applied to assess the privacy of the dataset,
in terms of k-anonymity, l-diversity or t-closeness, or the fairness to sensitive groups us-
ing measures such as statistical parity, or of the model with metrics such as demographic
parity or equalized opportunity (Martens, 2022, pp.175-176). Additionally, robustness and
sustainability may be assessed quantitatively, although no agreement exists in the literature
on standard evaluation approaches and metrics.

Prior to deployment, in addition to adopting commonly used methods to simulate the
future performance of the solution, such as out-of-sample evaluation or cross-validation, a
small-scale field test or experiment, such as an A/B test, may be set up to assess real-
world performance. Once an analytical solution is deployed, the operational performance
typically needs to be monitored continuously. To this end, the same evaluation metrics
may be adopted during the development process, resulting in an out-of-time or out-of-
universe validation. Monitoring may be performed at three levels depending on the problem
characteristics and the solution’s architecture:

• At the first level, the population stability can be monitored (e.g., in terms of the population
stability index or deviation index (Baesens et al., 2016)), which involves a comparison of
the sample that was used to develop the model and the current population on which the
solution is applied. If the sample is no longer representative of the population, the solution
may need to be updated.

• A second level involves using the estimates produced by the solution for decision-making,
e.g., in the case of binary classification, to classify entities in groups, which is called the
discrimination power of the solution.

• A third level concerns the calibration of the estimates, e.g., in binary classification, whether
the estimated probabilities match the realized proportions.

Note that some solutions have built-in monitoring procedures and can continuously learn
from new data, such as online learning methods, bandit algorithms, and reinforcement learn-
ing.
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4. Deploying XAIOR

This section provides a non-exhaustive overview of analytical applications in the most
important OR domains and their link to the XAIOR framework. Figure 5 gives an overview
of the most important deployment areas in OR, i.e., forecasting, risk analysis, inventory
control, marketing, and supply chain management.

Figure 5: Deploying XAIOR

4.1. Forecasting

As discussed in Section 3.3.1, time-series forecasting is the use of a model to predict
future values based on previously observed time-stamped values. It is a crucial part of
operational decision-making (Ma and Fildes, 2021). This section discusses the state of the
XAIOR dimensions by exemplifying time-series forecasting applications in OR.

• Performance analytics. PA is well covered with many OR papers examining the merits of
developing new methods for improved accuracy across various applications like demand
and sales forecasting (Seyedan and Mafakheri, 2020) or financial market modeling (Sezer
et al., 2020). Recent examples include recurrent neural networks or tree-based algorithms
(Fischer and Krauss, 2018). Further, the quest for higher performance has also inspired
adapted model evaluation criteria through, e.g., asymmetric loss functions.

• Attributable analytics. AA has experienced considerable coverage in extant OR literature
across various domains like transportation (Li Long et al., 2021), energy (Gürses-Tran
et al., 2022), health care (Yang, 2022), and risk management (Bastos and Matos, 2022).

27



We further zoom into the understandability, justifiability, and actionability aspects of this
XAIOR dimension.

– Traditional time-series forecasting methods naturally address understandability by chart-
ing the actual and predicted target over time (see Fig. 4). Methods to decompose the
forecast error into interpretable components provide further insight (Nikolopoulos et al.,
2007). It is noteworthy that many time series forecasting methods are intrinsically inter-
pretable. For instance, the famous Box-Jenkins methodology (Hyndman and Athana-
sopoulos, 2021) designs a forecasting model such that an auto-regressive part, a seasonal
and/or trend component, exogenous predictors, and their influence on the target are ex-
plicitly discounted. Further, time-series causality methods such as the Neural Granger
causality model (Tank et al., 2022) also provide rich insights into co-movements and
the dependency structure of time-series.

– Forecasting literature has paid much attention to justifiability. Extant literature often
examines the interplay between statistical forecasts and organizational stakeholders’
opinions in the form of human expert adjustments to statistical forecasts (Perera et al.,
2019). Many studies offer insight under which conditions human adjustments are ef-
fective (Khosrowabadi et al., 2022) and guide how to incorporate expert knowledge in
statistical forecasts (Hewage et al., 2022) to address justifiability concerns.

– It is fair to say that actionability deserves more attention in the forecasting literature.
This dimension is only covered in specific applications such as spare parts and inter-
mittent demand forecasting (Boylan and Syntetos, 2016). It is well known that the
large fraction of zero values in an intermittent (demand) time series complicates fore-
casting and requires a tailor-made methodology (Goltsos et al., 2022). Several papers
addressing this requirement stress the interplay between the forecasting method and
inventory management optimization (Ye et al., 2022). Studies on the calculation of
inventory levels based on the forecast errors and their distribution (Teunter et al., 2017;
Turrini and Meissner, 2019) exemplify this research stream and, more generally, how
a holistic methodology for decision support - encompassing all steps from past data,
over a demand forecast, to a concrete recommendation of how to act - may be crafted.
Some scholars coin this paradigm as predict-and-optimize and contrast it with the more
traditional approach of addressing forecasting and optimization independently, that is
predict-then-optimize (Elmachtoub and Grigas, 2022). Recent advances in causal fore-
casting (Grecov et al., 2022) are a promising step in this direction, offering a higher
degree of decisional guidance.

• Responsible analytics. RA has received the least recognition in the forecasting literature.
Requirements concerning RA are much more likely to occur in the context of a concrete
application setting. Studies on financial risk management, as reviewed in Section 4.2, are
a good example. Another explanation for the scarcity of RA in forecasting is that many
popular applications do not involve (personal) data of human subjects. This reduces the
necessity of regulatory oversight.
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4.2. Risk analysis

Risk analysis is the process of identifying and assessing factors that negatively impact the
success of critical organizational projects. A plethora of OR techniques has been developed
and studied for qualifying, estimating, and managing various types of risk, such as credit
risk (Baesens et al., 2016), fraud risk (Baesens et al., 2015), market risk (Drenovak et al.,
2017), operational risk (Mitra et al., 2015), and marketing risk (De Caigny et al., 2018). We
kindly refer the reader to Doumpos et al. (2023) for a recent review on the usage of AI in
risk analysis and banking as a whole. As we illustrate below, many of these developments
reported in OR literature almost organically grew in time throughout the dimensions of the
XAIOR framework.

• Performance analytics. Extant literature has heavily focussed on PA, with many early-
stage developments centered around maximizing performance metrics such as accuracy,
recall, precision, top decile lift, or the area under the Receiver Operating Characteristics
(ROC) curve. More recent research has re-focused on including profit around three major
themes:

1. The development of tailored performance metrics that especially focus on the profit
dimension of the risk type considered. For example, in Verbraken et al. (2013),
the Expected Maximum Profit for Churn (EMPC) was introduced, which was later
extended to a credit risk setting in Verbraken et al. (2014).

2. Profit performance metrics were subsequently adopted directly in optimizing the an-
alytical techniques themselves rather than optimizing business irrelevant cost func-
tions. For instance, ProfLogit (Stripling et al., 2018) and ProfTree (Höppner et al.,
2020) are extensions of logistic regression and decision trees, respectively, both di-
rectly optimizing the EMPC measure in a churn risk context. Other examples of
profit-driven analytical techniques are cslogit (based on logistic regression) and cs-
boost (based on gradient tree boosting), both optimizing an instance-dependent cost
measure in a fraud risk context (Höppner et al., 2022).

3. Researchers conducted various benchmarking studies contrasting recently introduced
analytical techniques (e.g., deep learning, XGBoost) with traditional methods (e.g.,
regression or decision trees) in terms of both statistical as well as profit-driven mea-
sures (Gunnarsson et al., 2021; Lessmann et al., 2015). One striking finding of many
studies is that, often, traditional methods still perform very competitively with their
newer counterparts both in terms of statistical as well as profit-based performance
metrics.

• Attributable analytics. AA has gained substantial importance in risk analysis in recent
years. For example, in a credit risk setting, regulatory guidelines issued by central bank-
ing authorities (e.g., the Basel Accords, IFRS 9) require the adoption of white box, inter-
pretable analytical models such that credit decisions can always be properly explained and
justified to both customers and regulators. Further, fraud detection models should also be
complemented with explanatory facilities such that well-targeted fraud prevention mech-
anisms can be put in place. Interpretability in risk analysis is obtained in two ways. The

29



first option is to use white-box techniques like regression or decision trees. A second way
is to use a complex algorithm (e.g., XGBoost or deep learning) and complement it with
explanatory post-hoc facilities. Examples are partial dependence plots, ICE plots, LIME
or Shapley values (see Section 3.4 for an overview). Using these post-hoc interpretability
techniques will contribute to making analytical risk models not only interpretable and
justifiable but also actionable.

• Responsible analytics. RA is under-investigated in extant literature, but it is more relevant
than ever. Various new data sources have emerged to better quantify different types of
risk such as online behavioral data originating from Google, Facebook, or Twitter, call
detail record (CDR) data from telecommunication providers, or Internet of Things data
from smartwatches or telematics devices. These new data sources are very interesting and
predictive for credit risk and (insurance) fraud risk prediction (see, e.g., Óskarsdóttir et al.,
2019). However, the collection and crunching of these data obviously come with ethical,
fairness, and legal challenges which are the topic of debate to many researchers, regulators,
and governments nowadays. In fact, predictive models might result in algorithmic bias,
yielding outcomes that reinforce inequalities in society, as discussed in Kordzadeh and
Ghasemaghaei (2022). Kozodoi et al. (2022) empirically study the profit-fairness trade-off
in credit scoring. Figure 6 provides empirical evidence of this trade-off between profit (Y-
axis) and separation as a fairness metric (X-axis) on seven credit scoring data sets using
the concept of Pareto frontiers. Figure 6 reveals that the unfairness can be substantially
reduced at a relatively low cost. For instance, according to Figure 6, reducing the difference
in error rates below 0.2 is possible while sacrificing less than €0.01 profit per EUR issued.

Figure 6: Profit-fairness trade-off (Kozodoi et al., 2022)

Further research is needed about the frugal aspect. This is important to consider, espe-
cially with the emergence of powerful analytical techniques with a heavy ecological carbon
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footprint in terms of both model estimation and deployment.

4.3. Inventory control

Inventory control is the problem faced by a firm that must decide how much to order
in each period to meet the demand for its products while minimizing costs. Using (data)
analytics in inventory control is not new (Erkip, 2022). The classical approach for solving
data-driven inventory decisions is “predict, then optimize”. Here, the model and/or demand
parameters are estimated in the first stage, and then, its predictions are utilized in an
optimization problem for decision-making in the second stage. The prediction can rely
on statistical modeling or more advanced supervised machine learning algorithms (Bastani
et al., 2022).

An alternative approach directly prescribes (i.e., predicts and subsequently optimizes) the
inventory decisions using data. One such technique in this category is reinforcement learning
(RL). RL is different from (un)supervised learning: rather than describing or predicting an
outcome, it directly prescribes which decision or action to take, based on the current state of
the system, while taking the future impact of these decisions into account. Mathematically,
it formulates a problem as a Markov decision process, in which an action taken in a given
state transitions the system to a new state and generates a reward (or cost). RL requires
further training for the algorithm to learn how to optimize its actions. However, instead of
comparing the output directly to the ‘correct’ answers (as in supervised learning), training an
RL algorithm relies on trial and error by simulating sequences of states, actions, and rewards.
These simulations can be fed by either observational data or simulated data, conditional on
an accurate data generation engine (Boute and Udenio, 2021). Just like neural networks are
now well-established in (deep) supervised learning, they are also applied in RL, known as
deep reinforcement learning (DRL), which can also be applied to inventory control (Boute
et al., 2022). In this section, we will explain the dimensions of the XAIOR framework in
light of (D)RL applications in inventory control.

• Performance analytics. PA has been extensively addressed in inventory control literature
as it comes closest to its heart, i.e., effectively solving inventory problems and enhancing
inventory decision-making. For instance, Gijsbrechts et al. (2022) provides a rigorous per-
formance evaluation of DRL for the lost sales, dual sourcing, and multi-echelon inventory
management problem. In contrast, van Jaarsveld (2020) focuses on the lost sales inventory
problem. They demonstrate that their DRL algorithms can outperform the performance
of state-of-the-art heuristics and other approximate dynamic programming methods. Liu
et al. (2022a) apply a multi-agent DRL-based framework to 50,000 product references for
Alibaba, the largest e-commerce platform in China. They present evidence that their DRL
algorithms outperform human buyers in reducing out-of-stock rates and inventory levels.
Moreover, their algorithms are more effective and robust, including during unexpected
extreme situations such as COVID-19 outbreaks and lockdowns.

• Attributable analytics. AA, in search of understandability of the DRL policies, is especially
relevant to gain intuition behind the inventory policies obtained through DRL. Unfortu-
nately, although neural network policies are flexible and performant, they are notoriously
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difficult to interpret. This sharply contrasts with the often highly intuitive character of
inventory policies obtained via classical analytical methods. For instance, Vanvuchelen
et al. (2020) provides an attempt to gain intuition behind the DRL policies by visualizing
the inventory decisions in each situation and comparing them against the optimal ones
(for small-scale problems) and benchmark heuristics (for realistic-sized problems). They
demonstrate how the algorithm approaches the optimal policy structure compared to the
benchmark heuristics. Future research is needed to help explain and interpret DRL poli-
cies. When models provide managers with the intuition behind the action, the adoption
of DRL in practice will be fostered. Likewise, we could use DRL to learn the structure of
well-performing solutions, which may lead to new heuristic policies for challenging prob-
lems that have, until now, resisted precise or approximate analysis (Boute et al., 2022).

• Responsible analytics. The value of DRL stems from its ability to (semi-)autonomously
process data to produce inventory control prescriptions. These are typically used to op-
timize operational parameters, such as customer service levels or inventory costs. The
same characteristics also make DRL a powerful tool to improve other objectives, notably
sustainability development goals. For instance, Gijsbrechts et al. (2022) apply their DRL
algorithm on a real data set of a consumer goods company to combine multiple transport
modes in parallel, where part of the shipment is shipped using a slow but more carbon-
friendly transport mode such as rail- or waterways, and part of the shipment is shipped
using a more responsive mode such as road or air freight. Their results can be help-
ful to stimulate a modal shift to low-emission transport modes without adverse impact
on service levels or costs. De Moor et al. (2022) apply transfer learning from existing,
well-performing heuristics to stabilize the training process and improve the performance
of DRL in inventory control. They apply potential-based reward shaping to improve the
performance of DRL to manage the inventory of perishable goods. Examples are fresh
foods or drugs with an expiry date. The optimal inventory policy is notoriously complex,
as it is a function of both the inventory position and the age distribution of the inven-
tory. When the latter is ignored, it will result in more waste. Transferring knowledge
embedded in existing heuristic inventory policies improves DRL performance and, con-
sequently, reduces the waste of perishable inventory. Whereas these works focus on the
environmental aspects of sustainability, Vanvuchelen et al. (2022) use DRL to improve
the social dimension. They use DRL to improve the accessibility to malaria medicines
in Zambia’s public pharmaceutical supply chain. They show how lateral trans-shipments
between health facilities can further reduce the variation of service levels across facilities
and improve the equity of access to essential medicines in Zambia. It shows that DRL, as
a tool to improve inventory control, can foster environmental and social improvements.

4.4. Marketing

The marketing field analyses customer data to describe and predict customer behavior
in various stages of the customer journey, i.e., the acquisition, development with cross- and
upselling activities, and retention stage. This section highlights noteworthy research in these
areas across the three dimensions of the XAIOR framework.
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• Performance analytics. Two important business characteristics explain the prevalence of
PA in marketing.

1. The evolutive nature of business contexts. For instance, marketing budgets and tar-
get class distributions may vary over time. E.g., digital ad targeting is a function of
evolving factors such as product lifecycle stage, available budget, expected conver-
sion rate, etc. Such changing contexts imply that the decision threshold to target
someone with an ad also will vary. This example motivates the ongoing popularity of
performance curves in marketing, such as ROC curves in assessing the performance
of predictive models, which show the performance across the entire range of decision
thresholds (Brook and Arnold, 2019).

2. Marketing accountability. The benefits and costs of marketing actions are often
available. For instance, the cost of sending out a marketing offer and the reward of
accepting an offer is often known. This facilitates using expected profit and profit
curves as evaluation metrics and predictive models that directly optimize these. For
instance, (Martens et al., 2016) provides profit curves for response modeling in a
banking setting, while (Verbeke et al., 2012) discusses a profit-driven approach for
churn prediction.

• Attributable analytics. The marketing field has focused heavily on making customer an-
alytics models attributable. First, global explanation methods like rule extraction were
proposed previously for churn prediction and response modeling (Verbeke et al., 2017).
Furthermore, there is a stream of hybrid modeling approaches where homogeneous seg-
ments are first identified in the customer base. Subsequently, segment-specific models
are trained. This approach was found to enhance both predictive performance and un-
derstandability. For instance, Table 6 visualizes the logit leaf model (LLM) approach
proposed by De Caigny et al. (2018) on the publicly available cell2cell customer churn
prediction dataset. The LLM consists of two steps. In the first step, customer segments
are identified using decision rules, and in the second phase, a logistic regression model is
created for every leaf of this tree. The authors show in an extensive benchmarking exper-
iment that LLM’s predictive performance is competitive to SOTA benchmark algorithms.
At the same time, the interpretability is drastically increased through the identification of
segment-specific churn drivers, as seen in column ”2nd step: logistic Regression” in Table
6.

Furthermore, it is worth noting that the marketing domain often uses textual and be-
havioral data characterized by high dimensions and sparseness (Ramon et al., 2020).
Traditionally, interpretable models, such as linear ones, become black boxes due to the
massive dimensionality of the features. This motivates the use of post-hoc instance-based
explanation approaches for marketing applications, such as LIME, SHAP, and counter-
factuals (Ramon et al., 2020). These methods automatically map the model to the few
relevant features for the model’s prediction.
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Table 6: Visualization of the cell2cell logit leaf model for customer churn prediction (based on De Caigny et al., 2018)

1st step: decision tree 2nd step: logistic regressions

Intercept Shared features Segment-specific features

Seg. Rule 1 Rule 2 Rule 3 Rule 4
Churn
rate

retcalls changem
changem
dummy

recchrge creditde custcare setprcm eqpdays directas outcalls

1
eqpdays
<= -0.31

14.3% 0.46 1.12 -0.07 0.96 -0.28 -0.63 0.23 -0.52

2
eqpdays
> -0.31

eqpdays
<= -0.6

16.7% 0.19 0.98 -0.24 1.59 -0.5 0.51

3
eqpdays
> -0.06

webcap
<= 0

51.9% 0.23 0.17 -0.19 -0.35 -0.2

4
eqpdays
> -0.06

webcap
> 0

callwait
<= -0.51

changem
<= -0.05

14.6% 0.11 0.18 -0.29 1.66 0.42 -0.38 -0.2

5
eqpdays
> -0.06

webcap
> 0

callwait
<= -0.51

changem
> -0.05

12.7% -0.3 0.19 0.29 -0.14 -0.2

6
eqpdays
> -0.06

webcap
> 0

callwait
> -0.51

30.2% 0.21 0.59 -0.1 1.37 -0.11 -0.36 -0.09 0.16 -0.21
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• Responsible analytics. OR research that relates to RA and its subdimensions in market-
ing is scarce. This is surprising since marketing practices are typically very visible and
impactful to companies and customers. For example, ethical concerns may arise in ad-
vertising targeting. Advertising networks offer transparency in their targeting practices.
For example, Google’s AdChoices allows end users to investigate why an ad is served to
them. Another illustration is the widely discussed Target case, which has shown us all
the fallout that can come in predicting pregnancy (Martens, 2022). Even if end users
consent to predict (baby) product interest, and even if the model performs accurately, the
sensitivity of pregnancy prediction cautions against it.

4.5. Supply chain management

Supply chain management (SCM) involves different functions in the multi-echelon system
and is related to managing the flows of goods and services and all processes that transform
raw materials into finalized products. We discuss the evolution towards analytics-driven
SCM for the three dimensions of the XAIOR framework.

• Performance analytics. Ample work in SCM literature has focused on improving effec-
tiveness and efficiency. In particular, Bayesian decision theory has been widely used to
incorporate information into the decision-making process to enhance accuracy. For exam-
ple, Iyer and Bergen (1997) adopt the Bayesian conjugate pair theory to explore responsive
supply chain operations. The authors quantify the impact of information updating in the
supply chain and discuss how to achieve Pareto improvement in the channel. Aronis et al.
(2004) explore inventory management in a supply chain with Bayesian information up-
dating. They assess the Bayesian prior distribution for the failure rates of different spare
parts and subsequently develop the algorithm to analytically update the inventory policy’s
parameters using information. Choi et al. (2006) extend Iyer and Bergen (1997)’s analysis
to the case with two different Bayesian models, namely the Bayesian conjugate models
with known and unknown variance, respectively. The authors highlight the importance of
having a more sophisticated Bayesian model as well as the proper choice of the observation
target.

• Attributable analytics. Extant SCM literature has focused on interpretability, justifiability,
and actionability. With the advance of computational power and the popularity of data
analytics, the Bayesian (belief) network approach (BNA) has received growing interest
over the past decade in supply chain risk analysis. The Bayesian network is, in fact, a
“probabilistic graphical model” that can help analytically assess the probabilistic relation-
ships among the variables under investigation. For instance, Garvey et al. (2015) study via
the BNA risk propagation in supply chains. In their proposed model, inter-dependencies
among different categories of “risks” are modeled. The authors also derive the risk mea-
sures. Model performance and interpretability is demonstrated by conducting simulation
experiments. Liu et al. (2021) choose the robust “dynamic Bayesian network approach”
(DBNA) to explore supply chain disruptions. The authors consider the “worst-case prob-
ability” situation and build a mathematical optimization model to provide analytically
explainable logic in finding the optimal solution. Sakib et al. (2021) study the supply
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chains for oils and gases. The authors introduce the BNA-based models to help forecast
and analyze challenges in the supply chain. They highlight the critical factors that af-
fect supply chains. The BNA is very performant in supply chain risk analyses. Since
the BNA also uses the Bayesian approach, many details are analytically explainable, at
least partially. For supply chains in the Industry 4.0 era, analytics-driven insights play a
critical role. However, most AI decision-making tools in supply chains are based solely on
automated processing and profiling. Thus, they are generally not explainable, and hence,
they are treated as black boxes. It makes them difficult to understand for supply chain
operations managers. In the OR literature, only very few studies discuss the use of AA
in supply chains, and we review them as follows. Senoner et al. (2022) investigate the use
of AA for electronics supply chains. The authors focus on process quality improvement
in semiconductor manufacturing and build a novel data-driven decision-making (DDM)
model. To cope with real-world situations, the DDM model must be able to process data
sets that are highly complex. The authors propose a model that includes SHAP to ana-
lytically explain how the systems parameters and the manufacturing process quality are
correlated. This helps to streamline the manufacturing process with quality in mind.

• Responsible analytics. Relatively few studies are present in the current OR literature of
SCM that address RA. One exception is Westerski et al. (2021), who explores the use of ex-
plainable AI in detecting the ethical problems with procurement fraud. The authors model
different categories of procurement fraud with the use of proper statistical measures. They
establish a decision-making framework to rank the fraud’s severity and assess the score
for each procurement transaction. This helps to improve the auditing function. In both
Senoner et al. (2022) and Westerski et al. (2021), the intelligence systems’ techniques and
resulting logics are understandable. This fosters the trust of the supply chain managers in
using them and facilitates further extensions in future research. In fact, for Industry 5.0,
in which the focus is on human-machine reconciliation, the importance of having a balance
between “machines” and “humans” (and human society) is well-advocated. Choi et al.
(2022) propose an analytical framework with a feedback loop for achieving sustainable
social welfare (SSW), which includes human welfare, the environment, and company ben-
efits in using disruptive technologies for supply chain operations. One important highlight
of their proposal is the importance of policymakers in deciding the carrot-and-stick policy
to ensure companies have the right incentive to achieve SSW.

4.6. Other applications

In this section, we summarize other relatively less-known applications of analytics as
part of OR. We particularly focus on the following OR domains: healthcare, litigation,
and educational analytics, and discuss their link with the building blocks of the XAIOR
framework.

• Healthcare. Various applications have focused on optimizing the decision-making strategy
in the context of improving the health and well-being of people, such as in the context
of organ transplantation operations. The use of data analytics methods, as opposed to
intuition and experience-based utility functions, for optimal allocation of the organs to po-
tential recipients, optimizes the allocation process and thereby saves more lives (Al-Ebbini
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et al., 2017). Not only do analytics predict the prognostics of these significant events, but
also explain the reasoning behind the prescribed actions. AA is used synergistically to
develop and deploy powerful mathematical models as screening mechanisms for the future
onset of diabetes complications. For instance, machine learning models developed on the
electronic health records (EHR) database are used to predict diabetic retinopathy (Piri
et al., 2017), a leading cause of blindness among working-aged adults. Such an analytics
model is used as a screening tool by medical professionals to urge diabetic patients to
get it confirmed and treated so that they maintain their eyesight. Such automated early
warning mechanisms are especially useful in rural settings where specialist like ophthal-
mologists is scarce (Wang et al., 2021). Another healthcare domain where the use of an
EHR database along with AA makes a significant impact is in the analyses of relatively
rare chronic diseases (Reddy and Delen, 2018). Such data-driven analysis leads to better
understanding, diagnosis, explanation, and management of these diseases. Often, these
data-driven explanatory analytics studies discover patterns that pave the way for novel
clinical and biological investigations toward better diagnostic and treatment regiments
(Reddy et al., 2019).

• Litigation. A particular application is analytics for drug courts. The purpose behind the
establishment of drug courts was to create an alternative to traditional criminal courts
to transform the traditional punitive jurisprudence into a therapeutic one. Under this
new philosophy, the eligible offenders are considered individuals in need of rehabilitative
treatments and are persuaded to undergo a regimen that seeks to return them to the
community as productive contributors rather than sending them to prison. This initiative,
if performed properly, has proven to be effective in lowering costs to the community and
improving social outcomes. To enable better management of resources and improvement of
outcomes, advanced analytics models are developed using large real-world data obtained
from drug courts to predict and explain who would or would not graduate from these
treatments (Zolbanin et al., 2020), who would be a returning offender (i.e., recidivism)
(Delen et al., 2021), and to prescribe a set of guidelines (presented as characteristics of
the offenders) that can help jurisdictions and drug court administrators to make more
effective and efficient decisions.

• Educational analytics. Lastly, we look at the college student attrition problem. Student
retention is an essential part of any college enrollment management system. It affects a
university’s rankings, reputation, and financial well-being. Therefore, student retention
has become one of the top priorities for decision-makers in higher education institutions.
Improving student retention starts with a thorough understanding of the reasons behind
attrition. Such an understanding is the basis for accurately predicting at-risk students and
appropriately and responsibly intervening to help them to stay in school. To go beyond
the intuitionist approaches to understanding the underlying causes of attrition and to
make the outcomes more actionable, in a series of exemplary studies, researchers have
used multiple years of institutional data along with several machine learning techniques
to develop analytical models to predict and explain the reasons behind student attrition
(Delen, 2010). Explanatory capabilities of these prediction models provide the much-
needed guideline to approach an at-risk student with a specific regiment plan to improve
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his/her possibilities of returning to school for the sophomore year. Because more than half
of the attrition happens in the freshmen year, better management of freshmen student
attrition translates to better retention and graduation rates.

5. Discussion and setting an agenda for future research

In this paper, we present a framework for XAIOR and provide a review of existing
methods and applications according to the three main dimensions of XAIOR. In what follows,
we summarize our main findings for PA, AA and RA across methods and applications and
establish an agenda for future research.

• Performance analytics. In terms of methods and applications, the PA dimension of the
XAIOR framework is well-established. This is not surprising, as performance is necessary
for any analytical OR solution.

• Attributable analytics. AA has also received much attention from the OR community.
A prominent example is post-hoc interpretation, enabled through methods specifically
developed for AA. Such methods allow for deriving insights from so-called “black box”
models. The level of advancement of AA within applications often depends on domain-
specific requirements. Some applications, for example, are more advanced in dimensions of
AA, such as forecasting, risk management, or marketing, while other application domains,
such as inventory control and supply chain management, are still lagging.

• Responsible analytics. Only recently, RA became an important aspect in many applica-
tions, leading to the development of methods or adjustments to methods to deal with RA
specifically. Despite recent advancements, RA, however, is still a dimension that needs
further research within OR.

Figure 7 presents a research agenda that is linked to the XAIOR framework. Research
topics cover a single dimension of the XAIOR framework, or combine PA, AA, and/or RA
dimensions. Based on the current state of research on XAIOR, we propose five promising
research themes, across methods and applications, that will advance the XAIOR domain
in the near future. For each of these themes, highlighted with a specific icon, we list some
exemplary research questions in Figure 7 that will further inspire readers.

• Data innovation. Data enrichment and data augmentation studies are important in OR,
showing the importance of innovative, unstructured, or structured data sources, such
as textual, image, or social network data, to improve models. In the near future, new
data sources such as data issued by generative AI models, geospatial data, data linked
to IoT applications, or data from the Metaverse might show value for various domains.
Despite the importance of data augmentation studies, they traditionally focus mainly on
the PA dimension of the XAIOR framework. It is, however, relevant to link new data
sources across all dimensions of the XAIOR framework. Research may then question, for
example, whether all applications require massive amounts of data to train a model for a
marginal gain in performance, but at permanent maintenance and energy costs. Another
innovation may focus on the use of synthetic data from simulators, which found some
applications in the OR domain already (Brailsford et al., 2019) Similarly, state-of-the-art
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models and platforms to artificially generate data, such as Stable Diffusion or chatGPT,
offer promising new research venues. Hence, the full potential of artificially generated data
to improve OR applications in terms of PA, AA, and RA is yet to be explored.

• Deep learning. Despite the fact that deep learning does not always perform better than
traditional machine learning algorithms, especially when well-designed features are avail-
able (Gunnarsson et al., 2021), there is still much potential for further research. Most
existing research focuses on the PA aspect of deep learning, while AA and RA aspects
would require more attention. In line with the AA dimension, an interesting path is to
explore how “black box” deep learning algorithms could be opened. Most attempts to do
so are post-hoc evaluation methods, such as SHAP. There are also attempts to improve
model interpretability of deep learning models by, for example, inducing decision rules,
although this remains a difficult task. Next, transfer learning is another promising way to
further advance OR applications. In NLP, once large language models are trained, they
can be fine-tuned for specific applications, which allows to boost performance and reduces
the training time for the specific application. Hence, exploring other ways of transfer
learning would be interesting. This is important when considering frugal aspects in deep
learning, which requires more research to reduce the cost of deploying and operating deep
learning networks. For example, frugal algorithms can be used to reduce the number of
parameters that are required for a deep learning network, which can reduce the amount of
computation and storage required. Similarly, algorithms can be designed to make better
use of training data. Additionally, frugal architectures can be used to reduce the number
of layers in a deep learning network, which can also reduce the cost of deploying and
operating a deep learning network. Finally, other learning paradigms are advancing such
as zero/one/few-shot learning, reinforcement learning, or semi-supervised learning. Such
approaches can become important within the OR field as well.

• Integrated XAIOR. Two aspects are important to consider, being the development of new
metrics and the optimization of algorithms along metrics. First, there exist streams in
OR that focus on the development of better evaluation metrics to replace purely statis-
tical metrics, such as profit metrics in marketing (Verbeke et al., 2012) or credit scoring
(Verbraken et al., 2014). Most metrics focus on PA, although some recent developments
try to include AA and RA as well (Kozodoi et al., 2022). Yet, more research is needed
to create better metrics for all dimensions of the XAIOR framework. Second, analytical
solutions should ideally be evaluated over all PA, AA, and RA dimensions in line with
multi-criteria evaluation literature. A challenge is that all aspects of the traditional data
processing pipeline might have an impact, so multi-criteria evaluation should not only
focus on the algorithm but also consider the broader solution. So far, limited research
evaluated algorithms across these different dimensions.
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Figure 7: Future research themes and agenda for XAIOR
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• Societal responsibility. Stakeholders in society become more aware of potential risks linked
to algorithm-assisted- and automated decision-making tools, especially in times when gen-
erative AI models such as large language models (LLMs, e.g., OpenAI’s ChatGPT) are
being integrated with various solutions at a rapid pace. There is, for example, an increased
sensitivity towards algorithmic biases, which makes that solely considering performance
might not suffice to implement a solution. Despite the attention to such issues, more
research is needed on how to detect, prevent, and mitigate algorithmic biases within OR
applications, requiring domain-specific research. Therefore, it is important to explain al-
gorithmic decisions, as already required in certain industries such as credit scoring. Also,
awareness about the ecological costs of saving, storing, and analyzing data is pushing to-
wards more frugal analytics. Research could further explore how models can become more
efficient to achieve this goal. As a final topic, privacy and data protection are important
concerns for organizations. In Europe, there is an all-encompassing law regulating the
acquisition, storage, or use of personal data after the introduction of Regulation (EU)
2016/679 (the General Data Protection Regulation, or GDPR), published in May 2016
with enforcement starting in May 2018. In the US, data protection is partly regulated by
the Privacy Act of 1974, which establishes a code of fair practice to govern the collection of
personal data, the Health Insurance Portability and Accountability Act of 1996 (HIPAA)
to protect health information privacy rights, and the Electronic Communications Privacy
Act (ECPA) of 1986 that establishes sanctions for interception of electronic communica-
tion. As a response, research in OR mainly focuses on the input side (Li, 2018) to protect
data, but other aspects could be considered as well. Hence, more research is still needed
on the development of privacy-preserving solutions.

• New application domains. New application domains are likely to arise as a result of
increased data availability, new data sources, new technologies, new industries, and new
societal challenges. Domains like sports analytics, health analytics or analytics linked to
robotics are likely to become more important. Embedding all aspects of XAIOR within
these new applications is an inspiring challenge. Sometimes the domain as such is a driver
for a certain dimension of the XAIOR framework. Indeed, using analytics that assists in
a modal shift to low-emission transport contributes to RA goals (De Moor et al., 2022;
Gijsbrechts et al., 2022) by the application itself. Innovative applications that spring from
RA challenges are therefore also an important future research direction.

6. Conclusions

There is an increasing need to explain analytical solutions, originating from expectations
of internal and external stakeholders, yet this is not fully captured in the OR literature.
Despite some review papers focusing on explainability, existing research falls short in (i)
proposing an OR-oriented definition of explainable AI for the operational research domain
and (ii) zooming in on specific methods and application requirements. In this paper, we
first define and characterize XAIOR, i.e., explainable AI for Operational Research. Specif-
ically, XAIOR is defined as an interplay of three dimensions, i.e., performance analytics,
attributable analytics, and responsible analytics.
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We subsequently discuss the implementation of XAIOR across the data analytics pipeline.
In particular, we discuss state-of-the-art methodologies for experimental design & data se-
lection, feature engineering & data preparation, algorithmic design & choice, post-hoc inter-
pretation methods, and evaluation strategies & metrics, and we link these with our XAIOR
dimensions. We find that further research is still needed to integrate all XAIOR dimensions,
especially AA and RA. In an overview of applications of XAIOR, we discuss prior work on
XAIOR and its subdimensions in 6 crucial OR domains. These include forecasting, risk
analysis, inventory control, marketing, supply chain management, and other applications.
We find that the maturity of PA, AA, and RA depends on the application domain with an
under-representation of AA and RA.

Based on these overviews, we identify critical avenues for future research linked to five
research themes, i.e., data innovation, deep learning, integration of the XAIOR framework’s
dimensions and subdimensions, responding to societal changes, and new innovative appli-
cations. We propose specific research questions linked to these five research themes and in
relation to the XAIOR framework that might inspire researchers to apply and contribute to
XAIOR.
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Mitrović, S., Baesens, B., Lemahieu, W., De Weerdt, J., 2018. On the operational efficiency of different feature types for telco

churn prediction. European Journal of Operational Research 267, 1141–1155.
Molnar, C., 2022. Interpretable Machine Learning: A Guide For Making Black Box Models Explainable.
Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S., 2020. Fforma: Feature-based forecast model averag-

ing. International Journal of Forecasting 36, 86–92.
Montero-Manso, P., Hyndman, R.J., 2021. Principles and algorithms for forecasting groups of time series: Locality and

globality. International Journal of Forecasting 37, 1632–1653.
Mortenson, M.J., Doherty, N.F., Robinson, S., 2015. Operational research from taylorism to terabytes: A research agenda for

the analytics age. European Journal of Operational Research 241, 583–595.
Nicholson, W.B., Wilms, I., Bien, J., Matteson, D.S., 2020. High dimensional forecasting via interpretable vector autoregression.

Journal of Machine Learning Research 21, 1–52.
Nieddu, L., Patrizi, G., 2000. Formal methods in pattern recognition: A review. European Journal of Operational Research

120, 459–495.
Nikolopoulos, K., Goodwin, P., Patelis, A., Assimakopoulos, V., 2007. Forecasting with cue information: A comparison of

multiple regression with alternative forecasting approaches. European Journal of Operational Research 180, 354–368.
Olafsson, S., Li, X., Wu, S., 2008. Operations research and data mining. European Journal of Operational Research 187,

1429–1448.
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