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An inverse problem for a generalized FitzHugh-Nagumo type

system

Laure Cardoulis ∗ Michel Cristofol †

Abstract

In this article we consider the inverse problem of simultaneously determining three coeffi-
cients of a FitzHugh-Nagumo type system defined in a bounded domain. We use a Carleman
estimate to establish Hölder estimates for these coefficients by a finite number of measurements
of only one component of the system.

1 Statement of the problem

1.1 Introduction

We consider a generalized FitzHugh-Nagumo system stated in Q = Ω×(0, T ), where Ω is a bounded
domain of R3 and Σ = ∂Ω× (0, T ),

∂tu = ∆u− αu3 + δw + g in Q,
∂tw = βu− γw + h in Q,
u(x, 0) = a1, w(x, 0) = a2 in Ω,
u = a3 on Σ.

(1.1)

Here, the spatial functions α(x), β(x), γ(x), δ(x) are defined on Ω and we assume Dirichlet boundary
condition for u. The system (1.1) under consideration can be used to describe situations from the
field of pharmacology (e.g. [11], [20]), because parabolic PDE’s and ODE’s are usually associated
in therapy modelling, e.g. chimioterapy against a tumor, also in electric wave propagation in the
heart (e.g. [17], [23]).
Note that the nonlinearity u3 in the system (1.1) is chosen to facilitate the formulation of the
inverse problem and our results could be adapted easily to another form of nonlinearity similar
to the original FitzHug-Nagumo one i.e. in the form k1u(u − k2)(1 − u). A lot of work has been
done in the domain of computational cardiology (e.g. [8], [9], [10], [24]) but none of it addresses
the problem of stability in the reconstruction of the parameters of interest (which depends on the
observations).
On the other hand very little research has addressed the problem of the stable reconstruction of
parameters in such models (e.g. [1], [22], [3]) and it has already used the methodology of Carleman
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Marseille, France; michel.cristofol@univ-amu.fr

1



estimates initiated by Bukgheim and Klibanov [5] which allows for the establishment of stability
inequalities between the reconstructed coefficients and the associated observations. This method
has proven to be efficient but requires in the case of the parabolic operator the knowledge of the
components on all the set Ω at one fixed time θ, see also (e.g. [12], [13], [2], [16]) for parabolic
systems. Consequently, in all the papers cited previously the stability inequalities contain in their
right hand sides the norm of the two components involved in the system on all the set Ω at one
time θ. In this paper we improve the existing results in the area of inverse problems for systems
similar to system (1.1) by simultaneously reconstructing the three coupling coefficients without
needing to observe the second component. More precisely, our goal is to recover the following set
of coefficients α(x), β(x) and γ(x) by observation data of |∂νui| on Γ × (0, T ) where Γ is some
arbitrary subdomain of ∂Ω and of ui on Ω for one time θ ∈ (0, T ) where the observed data for
ui, i = A,B, come from two suitable changes in the initial values and without needing to observe
the second component w. Such result, involving the observation of only one component for the
reconstruction of coefficients in systems of partial differential equations was already obtained for
a strongly coupled system in quantitative thermoacoustic equations [14]. However, it is the first
time to our knowledge that such a thing is achieved for a PDE/ODE coupled system. This kind of
system induces a real difficulty because we have no diffusion terms for the component w and the
first equation in (1.1) can be viewed as a reaction-diffusion equation with memory term and this
case may lead to difficulties in the theory of control and inverse problems [3].
Furthermore, the stability estimate involving the coefficients we want to recover and the observa-
tion data immediately yields the uniqueness of these coefficients and can be used for numerical
reconstruction.
This article is organized as follows: sections 1.2-1.4 lay out the main hypotheses and notations and
describe our main tools. In section 2 we prove our result (Theorem 1.1).

1.2 Setting and hypotheses

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. We consider a system involving a
parabolic equation strongly linked with a differential equation as follows{

∂tu = ∆u− αu3 + δw + g in Q,
∂tw = βu− γw + h in Q,

(1.2)

with g and h two functions in L2(Q). We attach to (1.2) the following initial and boundary condi-
tions:

u(x, 0) = a1, w(x, 0) = a2 in Ω,

and
u = a3 on Σ.

Note that in view to recover three coefficients using the observation of only one component of the
system (1.1) we will consider two sets of initial conditions to get more information.
We will consider the admissible set of coefficients

ρ ≡ (α, β, γ, δ) ∈ (Λ(M0))3 × (Λ(M0) ∩ Λ(C0)) (1.3)
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with

Λ(M0) = {f ∈ L∞(Ω), ‖f‖L∞(Ω) < M0} and Λ(C0) = {f ∈ L∞(Ω), |f | ≥ C0 a. e. in Ω}

for some positive constants M0 and C0.
The method of Carleman estimates requires solutions that are sufficiently regular. Indeed the
Buckgheim-Klibanov method implies several time differentiations of system (1.1). We assume in
the following that (u,w) belongs to H = (H3(Ω× (0, T ))2 satisfying the a-priori bound

‖(u,w)‖H ≤M for given M > 0.

Note that (u,w) ∈ (W 3,∞(Ω× (0, T ))2 since Ω ⊂ R3. For a detailed proof of the regularity, we can
refer to [1], [3] or [25].

Remark 1.1. Note that we have restrained the problem to a subdomain Ω of R3 which is the main
field for desired applications. Furthermore such choice allows us to write in a simpler way the space
H. Note that the results could be equally valid for a subdomain Ω of Rn without any condition of
the dimension n but with more restrained regularity conditions for the solutions of (1.1).

1.3 Weight functions and Carleman estimate

Since our strategy or reconstruction uses Carleman estimates, we need to define special weight
functions. Following [26] we carry out classical regular weight functions as follows:
let x0 ∈ R3 \ Ω and denote d(x) = |x− x0|2 for x ∈ Ω such that

d > 0 in Ω, |∇d| > 0 in Ω. (1.4)

Moreover we define Γ = {x ∈ ∂Ω, < x − x0, ν(x) >≥ 0}. Here < ., . > denotes the usual scalar
product in R3 and ν(x) is the outwards unit normal vector to ∂Ω at x. Now we consider weight
functions in the form, for λ > 0, t ∈ (0, T ),

ψ(x, t) = d(x)−
(
t− T

2

)2

+M1 where M1 > (T/2)2,

and φ(x, t) = eλψ(x,t).

It could be underlined that this choice of weight functions will play an important role in our proof
and will allow us to require less observations in the reconstruction of our three coefficients. On the
other hand the non regular weight functions in [19] facilitate the use of Carleman estimates in the
resolution of inverse problems but require to keep the observations of all the components involved
for a single time θ ∈ (0, T ).
As underlined above, in view of the Carleman inequalities for the parabolic operators with regular
weights, we need to use a cut-off function in time. This cut-off function will induce additive terms
coming from the commutator between the evolution operator and this cut-off function. Note that a
recent result in [18] avoids the use of such cut-off functions but restricts the domain of reconstruction
of the coefficients.
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Proposition 1.1. There exist T > 0 and ε > 0 such that (1.4) holds and

d1 < d0 < d2 (1.5)

where

d0 = inf
Ω
φ (·, θ) , d1 = sup

Ω×([0,2ε]∪[T−2ε,T ])

φ, d2 = sup
Ω

φ (·, θ) , θ =
T

2
.

Proof. First we define β0 = infx∈Ω ψ(x, θ) = infx∈Ω |x− x0|2 +M1 and β1 > 0 by

β2
1 = sup

x∈Ω

|x− x0|2 − inf
x∈Ω
|x− x0|2.

Then, we consider T sufficiently large such that β2
2 = (T − θ)2− β2

1 > 0. With these definitions, we
have (T − θ)2 = β2

1 + β2
2 so we get for all x ∈ Ω,

ψ(x, T ) = |x− x0|2 +M1 − sup
x∈Ω

|x− x0|2 + inf
x∈Ω
|x− x0|2 − β2

2 ≤ β0 − β2
2 .

As ψ(x, 0) = ψ(x, T ), we deduce that there exists ε > 0 such that ε < T
4 and

for all x ∈ Ω and t ∈ ([0, 2ε] ∪ [T − 2ε, T ]), ψ(x, t) < β0

and this ends the proof of Proposition 1.1.

These two estimates will be fruitful in Section 2 to solve our inverse problem. Now we recall a
Carleman estimate for a parabolic system with Dirichlet boundary conditions as system (1.7). Let
s > 0 and denote

I(u) =

∫
Q

(
1

sφ
(|∂tu|2 + |∆u|2) + sφ |∇u|2 + s3φ3|u|2

)
e2sφ dx dt.

Proposition 1.2 ([26, Theorem 2.1, (2)]). There exist a value of λ > 0 and positive constants s0

and C such that

I(u) ≤ C‖esφf‖2L2(Q) + Cs

∫
Γ×(0,T )

|∂νu|2e2sφ dσ dt, (1.6)

for all s > s0, and all u ∈ H1(0, T, L2(Ω)) ∩ L2(0, T,H2(Ω)) satisfying
∂tu−∆u = f in Ω,

u(·, 0) = u(·, T ) = 0 in Ω,

u = 0 on ∂Ω× (0, T ).

(1.7)

In the following parts, C will be a generic positive constant. When needed, we will specify its
dependency with respect to the different parameters. Let us remark that this Carleman inequality
uses also λ as a second large parameter. We will consider λ fixed in all the rest of the article such
that Proposition 1.2 holds, λ sufficiently large.
Let now η be a C∞ cut-off function satisfying 0 ≤ η ≤ 1 and

η(t) =

{
0 if t ∈ [0, ε] ∪ [T − ε, T ],

1 if t ∈ [2ε, T − 2ε],
(1.8)

with ε defined in Proposition 1.1.
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1.4 Main result

We obtain the stable reconstruction of the three coupling coefficients (α, β, γ) using only the obser-
vations of the component u and without the knowledge of w for the system (1.1). We suppose that
the sets of coefficients ρ and ρ̃ verify assumption (1.3) with ρ = (α, β, γ, δ) and ρ̃ = (α̃, β̃, γ̃, δ).

Theorem 1.1. Let VA = (uA, wA) be a solution of (1.1) associated with the set of conditions A =
(a1, a2, a3, g, h) and the coefficients ρ = (α, β, γ, δ), ṼA = (ũA, w̃A) be a solution of (1.1) associated
with the same conditions A and the coefficients ρ̃ = (α̃, β̃, γ̃, δ), VB = (uB, wB) be a solution of
(1.1) associated with the conditions B = (b1, b2, b3, g, h) and the coefficients ρ, ṼB = (ũB, w̃B) be a
solution of (1.1) associated with the conditions B and the coefficients ρ̃.
Assume that there exist positive constants C1 > 0, C2 > 0 such that

|ũA(·, θ)| ≥ C1 and |ũA(·, θ)w̃B(·, θ)− ũB(·, θ)w̃A(·, θ)| ≥ C2 in Ω. (1.9)

Then there exist constants κ ∈ (0, 1) and K > 0 such that

‖α− α̃‖2L2(Ω) + ‖β − β̃‖2L2(Ω) + ‖γ − γ̃‖2L2(Ω) ≤ K
(
‖(uA − ũA)(·, θ)‖2H2(Ω) + ‖(uB − ũB)(·, θ)‖2H2(Ω)

+
2∑

k=0

‖∂ν(∂kt (uA − ũA))‖2L2(Γ×(0,T )) + ‖∂ν(∂kt (uB − ũB))‖2L2(Γ×(0,T ))

)κ
.

The constants K and κ are depending on M,T,M0,M1, C0, C1, C2, x0, ε.

Remark 1.2. Conditions similar to (1.9) are classical in the process of coefficients reconstruction
(see e.g. [2], [7], [12], [14], [26], [27]). It is usual to verify that they hold for numerous situa-
tions and the control theory could help us. The goal is to prove that for any coefficient sufficiently
regular in an admissible set, there exists a control such that the associated solutions satisfy (1.9).
Several papers have already used such a strategy and we can refer among others to [7] for parabolic
inverse problem, [2] for systems of parabolic equations and [14] for parabolic-hyperbolic systems.
Concerning our assumption (1.9) we refer to [4] where controllability results are obtained for a
FitzHugh-Nagumo equation in the case where α̃ = 1, δ = −1, β̃ is a positive constant, γ̃ is a
nonnegative constant, g ∈ L2(Q) and h = 0, u(·, 0) = 0, u = 0 on Σ. More precisely, we refer
to Theorem 1.5 in [4], which is stated in the case where w(·, 0) = 0 but Remark 2.3 in [4] allows
the case of a nonzero initial value for w. The authors prove that for any target ud ∈ Lr(Q) with
r ≥ 4, they can construct a sequence of controls (gn) and associated states (un) that converge to ud
strongly in Lr(Q).
Therefore we choose a target ud ∈ C(Q) such that ud > C1 in Q with C1 some positive con-
stant. Thus we have ũA(x, θ) ≥ C1 for ũA close to ud in Lr(Q) with A = (0, a2, 0, gA, 0). Define
ûd(x, t) = eµtud(x, t) for (x, t) ∈ Q with µ some real and consider ũB close to ûd in Lr(Q) with
B = (0, b2, 0, gB, 0). Denote

wd(x, t) = a2(x)e−γ̃t +

∫ t

0
β̃ud(x, s)e

−γ̃(t−s) ds, ŵd(x, t) = a2(x)e−γ̃t +

∫ t

0
β̃ûd(x, s)e

−γ̃(t−s) ds.

Since h = 0, both second components w̃A and w̃B satisfy

w̃A(x, t) = a2(x)e−γ̃t+

∫ t

0
β̃ũA(x, s)e−γ̃(t−s) ds and w̃B(x, t) = b2(x)e−γ̃t+

∫ t

0
β̃ũB(x, s)e−γ̃(t−s) ds.
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Note that uA (resp. wA, uB, wB) is close to ud (resp. wd, ûd, ŵd) for all (x, t) in Q. Then

ud(x, t)ŵd(x, t)−ûd(x, t)wd(x, t) = ud(x, t)e
−γ̃t(b2(x)−eµta2(x))+ud(x, t)

∫ t

0
β̃e−γ̃(t−s)ud(x, s)(e

µs−eµt) ds.

We can choose a2, b2, µ such that |ud(x, t)ŵd(x, t)−ûd(x, t)wd(x, t)| ≥ C2 in Q with C2 some positive
constant in order to satisfy assumption (1.9). The fact that gA and gB are not necessarily the same
does not induce any difficulty for the inverse problem (the steps 1 to 5 of the proof of Theorem 1.1
are valid with one fixed function g for each initial condition and only the sixth step uses the two
sets of conditions A and B; note that the function g has been eliminated in the crucial system (2.4)
that is used in the sixth step).

Remark 1.3. We can obtain a similar result for the three coefficients β, γ, δ by substituting the
hypothesis |ũA(θ)| ≥ C1 by the hypothesis |w̃A(θ)| ≥ C1 in Ω. This theorem could also be expanded
for the reconstruction of the four coefficients α, β, γ, δ by substituting the hypothesis |ũA(θ)| ≥ C1

by |(ũA(θ))3w̃B(θ)−(ũB(θ))3w̃A(θ)| ≥ C1 in Ω and we still obtain a Hölder stability result for these
four coefficients with the same observations of uA and uB described above. Note that we could also
get the same results in the case of an infinite guide of the type R × ω with ω a domain of Rn−1

instead of a bounded domain Ω following ideas developed in [15], [6] and [7]. Lastly, notice that
due to the use of regular weight functions, we obtain a Hölder and not Lipschitz stability result.

2 Solving the inverse problem

2.1 Preliminary lemmas

In this section, we recall and adapt some known results. These lemma will be used, associated
with the Carleman estimate (1.6) applied to the systems (2.4), (2.5) and (2.6), to eliminate the
observation terms coming from the component w. First we recall the following lemma based on an
idea from Klibanov-Timonov ([21]).

Lemma 2.1. There exists a positive constant C such that∫
Q
e2sφφη2

(∫ t

T/2
f(ξ) dξ

)2

dx dt ≤ C

s

(
e2sd1 +

∫
Q
e2sφη2f2 dx dt

)
,

for all s > 0 and f ∈ L2(0, T, L2(Ω)).

Proof. By the Cauchy-Schwarz inequality, we have∫
Q
φη2e2sφ

(∫ t

T/2
f(x, ξ) dξ

)2

dx dt ≤
∫
Q
φη2e2sφ|t− T

2
|

∣∣∣∣∣
∫ t

T/2
f(x, ξ)2 dξ

∣∣∣∣∣ dx dt
≤
∫

Ω

∫ T/2

0
φη2e2sφ(

T

2
− t)

∣∣∣∣∣
∫ t

T/2
f(x, ξ)2dξ

∣∣∣∣∣ dxdt+

∫
Ω

∫ T

T/2
φη2e2sφ(t− T

2
)

(∫ t

T/2
f(x, ξ)2dξ

)
dxdt.

(2.1)
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Note that

∂t(e
2sφ) = −4sλ(t− T

2
)φe2sφ.

For the second integral of the right hand side of (2.1), since η(T ) = 0, by integration by parts we
have ∫

Ω

∫ T

T/2
φη2e2sφ(t− T

2
)

(∫ t

T/2
f(x, ξ)2dξ

)
dx dt

= − 1

4sλ

∫
Ω

∫ T

T/2
η2∂t(e

2sφ)(

∫ t

T/2
f(x, ξ)2dξ) dx dt

= − 1

4sλ

∫
Ω

[
η2e2sφ(

∫ t

T/2
f(x, ξ)2dξ)

]t=T
t=T/2

dx+
1

4sλ

∫
Ω

∫ T

T/2
e2sφη2f2 dx dt

+
1

2sλ

∫
Ω

∫ T

T/2
e2sφη∂tη(

∫ t

T/2
f(x, ξ)2dξ) dx dt

=
1

2sλ

∫
Ω

∫ T

T/2
e2sφη∂tη(

∫ t

T/2
f(x, ξ)2dξ) dx dt+

1

4sλ

∫
Ω

∫ T

T/2
e2sφη2f2 dx dt. (2.2)

The first integral of (2.2) is bounded above by C
s e

2sd1 due to the derivative of η. Therefore∫
Ω

∫ T

T/2
φη2e2sφ(t− T

2
)

(∫ t

T/2
f(x, ξ)2dξ

)
dx dt ≤ C

s

(
e2sd1 +

∫
Q
e2sφη2f2 dx dt

)
.

We obtain a similar result for the first integral of (2.1) and this concludes the proof of Lemma
2.1.

Then we recall the following usual Lemma (see e.g. [7]) adapted from [15, Lemma 4.2].

Lemma 2.2. There exist positive constants s1 and C such that∫
Ω
e2sφ(x,θ)|f(x, θ)|2 dx ≤ Cs

∫
Q
e2sφ|f |2 dx dt+

C

s

∫
Q
e2sφ|∂tf |2 dx dt

for all s ≥ s1 and f ∈ H1(0, T ;L2(Ω)).

Proof. Remind that η is defined by (1.8). Consider any w ∈ H1(0, T ;L2(Ω)). We have∫
Ω
|w(x, θ)|2 dx =

∫
Ω
|η(θ)w(x, θ)|2 dx

=

∫
Ω

∫ θ

0
∂t(η

2(t)|w(x, t)|2) dt dx

= 2

∫ θ

0

∫
Ω
η2(t)w(x, t)∂tw(x, t) dx dt

+ 2

∫ θ

0

∫
Ω
η(t)η′(t)|w(x, t)|2 dx dt.
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As 0 ≤ η ≤ 1, using Young’s inequality, it comes that for any s > 0,∫
Ω
|w(x, θ)|2 dx ≤ C(s+ 1)

∫
Q
|w|2 dx dt+

C

s

∫
Q
|∂tw|2 dx dt.

Then we can conclude replacing w by esφf .

2.2 Proof of Theorem 1.1

We decompose the proof in several steps.
• First step: In this step, we write the systems satisfied by the solutions of (1.1) introducing the
cut-off function η(t) defined in (1.8).
Denote V = (uA, wA) = VA, Ṽ = (ũA, w̃A) = ṼA. For simplicity we omit the underscore A until
the sixth step and we write

U = u− ũ, W = w − w̃, a = α− α̃. b = β − β̃, c = γ − γ̃.

We define for i = 0, 1, 2 (with y0 = y and z0 = z)

y = ηU, z = ηW, yi = ∂ity, zi = ∂itz.

Then we get directly by difference
∂tU = ∆U − αU(u2 + uũ+ ũ2) + δW − aũ3 in Q,
∂tW = βU − γW + bũ− cw̃ in Q,
U = 0 on Σ

(2.3)

and after multiplying by η we obtain{
∂ty = ∆y − αyH + δz − aηũ3 + ∂tηU in Q,
∂tz = βy − γz + bηũ− cηw̃ + ∂tηW in Q,

(2.4)

with
H = u2 + uũ+ ũ2.

Then by taking the time derivative of (2.4){
∂ty1 = ∆y1 − αy1H + δz1 − a∂t(ηũ3) + ∂t(∂tηU)− αy∂tH in Q,
∂tz1 = βy1 − γz1 + b∂t(ηũ)− c∂t(ηw̃) + ∂t(∂tηW ) in Q,

(2.5)

{
∂ty2 = ∆y2 − αy2H + δz2 − a∂2

t (ηũ3) + ∂2
t (∂tηU)− αy1∂tH − α∂t(y∂tH) in Q,

∂tz2 = βy2 − γz2 + b∂2
t (ηũ)− c∂2

t (ηw̃) + ∂2
t (∂tηW ) in Q,

(2.6)

• In the second step we estimate I(y) + I(y1) + I(y2) thanks to the Carleman inequalities applied
to the first equation in each previous system.
Using (1.6) we have for s sufficiently large,

I(y)+I(y1)+I(y2) ≤ C
∫
Q
e2sφ(z2 +z2

1 +z2
2 +a2) dx dt+Ce2sd1 +Cs

∫
Γ×(0,T )

e2sφ
2∑
i=0

|∂νyi|2 dσ dt.
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Since zi = ∂itz, using (2.4) and (2.5), we get for s large enough

I(y) + I(y1) + I(y2) ≤ C
∫
Q
e2sφz2 dx dt+ C

∫
Q
e2sφ(a2 + b2 + c2) dx dt

+Ce2sd1 + Cs

∫
Γ×(0,T )

e2sφ
2∑
i=0

|∂νyi|2 dσ dt. (2.7)

Moreover by Lemma 2.1, since φ ≥ 1 and η(θ) = 1 we have∫
Q
e2sφz2 dx dt ≤

∫
Q
φe2sφz2 dx dt =

∫
Q
φe2sφη2W 2 dx dt =

∫
Q
φe2sφη2

∣∣∣∣∫ t

θ
∂tW +W (·, θ)

∣∣∣∣2 dx dt

≤ C

s

∫
Q
e2sφη2|∂tW |2 dx dt+ C

∫
Q
φe2sφη2|W (·, θ)|2 dx dt+

C

s
e2sd1

≤ C

s

∫
Q
e2sφη2|∂tW |2 dx dt+ C

∫
Q
φe2sφ|z(·, θ)|2 dx dt+

C

s
e2sd1 . (2.8)

From (2.3) we have∫
Q
e2sφη2|∂tW |2 dx dt ≤ C

∫
Q
e2sφ(y2 + z2 + b2 + c2) dx dt. (2.9)

Using now the first equation in (2.4) applied for t = θ we can write

δz(·, θ) = ∂ty(·, θ)−∆y(·, θ)− αy(·, θ)H(·, θ)− aũ3(·, θ)

in Ω. Then, since δ belongs to the admissible set of coefficients Λ(C0), multiplying by φe2sφ and
integrating on Q , we get∫

Q
φe2sφ|z(·, θ)|2 dx dt ≤ C

∫
Q
e2sφ(|∂ty(·, θ)|2 + |∆y(·, θ)|2 + |y(·, θ)|2 + a2) dx dt. (2.10)

Thus for s sufficiently large, from (2.8)-(2.10)∫
Q
e2sφz2 dx dt ≤ C

s

∫
Q
e2sφy2 dx dt+

C

s

∫
Q
e2sφ(b2 + c2) dx dt+

C

s
e2sd1

+C

∫
Q
e2sφ(|∂ty(·, θ)|2 + |∆y(·, θ)|2 + |y(·, θ)|2 + a2) dx dt. (2.11)

Moreover by Lemma 2.2,∫
Q
e2sφ|∂ty(·, θ)|2 dx dt ≤ C

∫
Ω
e2sφ(x,θ)|∂ty(x, θ)|2 dx ≤ Cs

∫
Q
e2sφy2

1 dx dt+
C

s

∫
Q
e2sφy2

2 dx dt

so ∫
Q
e2sφ|∂ty(·, θ)|2 dx dt ≤ C

s2
(I(y1) + I(y2)). (2.12)
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Combinining (2.7), (2.11), (2.12) we obtain for s sufficiently large

I(y) + I(y1) + I(y2) ≤ C
∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Ce2sd1 + Cse2sd2F0(θ) (2.13)

with F0(θ) = ‖y(θ)‖2H2(Ω) +
∫

Γ×(0,T )

∑2
i=0 |∂νyi|2 dσ dt.

• Third step: Here we summarize the inequalities we have obtained in the second step and that
will be used in the next steps. From (2.12) and (2.13) we obtain∫

Ω
e2sφ(x,θ)|∂ty(x, θ)|2 dx ≤ C

s2

∫
Q
e2sφ(a2 + b2 + c2) dx dt+

C

s2
e2sd1 +

C

s
e2sd2F0(θ). (2.14)

Then from (2.11) and (2.13) we get∫
Q
e2sφz2 dx dt ≤ C

∫
Q
e2sφ(a2 + b2 + c2) dx dt+

C

s
e2sd1 + Ce2sd2F0(θ). (2.15)

Moreover by Lemma 2.2∫
Ω
e2sφ(x,θ)|z(x, θ)|2 dx ≤ Cs

∫
Q
e2sφz2 dx dt+

C

s

∫
Q
e2sφ|∂tz|2 dx dt.

Using the second equation in (2.4) we obtain∫
Ω
e2sφ(x,θ)|z(x, θ)|2 dx ≤ Cs

∫
Q
e2sφz2 dx dt+

C

s

∫
Q
e2sφ(y2 + z2 + b2 + c2) dx dt+

C

s
e2sd1

so by (2.13) and (2.15) we deduce that for large s∫
Ω
e2sφ(x,θ)|z(x, θ)|2 dx ≤ Cs

∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Cse2sd1 + Cse2sd2F0(θ). (2.16)

• In the fourth step we estimate
∫

Ω e
2sφ(x,θ)|∂tz(x, θ)|2 dx.

By Lemma 2.2 we have∫
Ω
e2sφ(x,θ)|∂tz(x, θ)|2 dx ≤ Cs

∫
Q
e2sφ|∂tz|2 dx dt+

C

s

∫
Q
e2sφ|∂2

t z|2

≤ Cs
∫
Q
e2sφ(y2 + z2 + y2

1 + z2
1 + b2 + c2) dx dt+ Cse2sd1 .

Since z1 = ∂tz, from (2.4) we deduce∫
Ω
e2sφ(x,θ)|∂tz(x, θ)|2 dx ≤ Cs

∫
Q
e2sφ(y2 + z2 + y2

1 + b2 + c2) dx dt+ Cse2sd1 .

From (2.15) we get∫
Ω
e2sφ(x,θ)|∂tz(x, θ)|2 dx ≤

C

s2
(I(y)+I(y1))+Cs

∫
Q
e2sφ(a2+b2+c2) dx dt+Cse2sd1 +Cse2sd2F0(θ).
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Finally from (2.13) obtained in the second step we get∫
Ω
e2sφ(x,θ)|∂tz(x, θ)|2 dx ≤ Cs

∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Cse2sd1 + Cse2sd2F0(θ). (2.17)

• Fifth step: Now we estimate
∫

Ω e
2sφ(·,θ)a2 dx.

Multiplying the first equation in (2.4) by e2sφ, evaluating at t = θ and integrating over Ω we get∫
Ω
e2sφ(·,θ)a2(ũ(·, θ))6 dx ≤ Ce2sd2‖y(·, θ)‖2H2(Ω) + C

∫
Ω
e2sφ(·,θ)(|∂ty(·, θ)|2 + |z(·, θ)|2) dx.

Using (2.14) and (2.16), we get∫
Ω
e2sφ(·,θ)a2(ũ(·, θ))6 dx ≤ Cs

∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Cse2sd1 + Cse2sd2F0(θ).

Using now the first hypothesis in (1.9) we get∫
Ω
e2sφ(·,θ)a2 dx ≤ Cs

∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Cse2sd1 + Cse2sd2F0(θ). (2.18)

• Sixth step: Now we estimate
∫

Ω e
2sφ(·,θ)(b2 + c2) dx.

We use the two sets of initial conditions and consider VA, ṼA, VB and ṼB. Using (2.4) for zA and
zB we can suppress c and obtain

bη(ũAw̃B−ũBw̃A) = w̃B∂tzA−w̃A∂tzB−(βyA−γzA+∂tηWA)w̃B+(βyB−γzB+∂tηWB)w̃A. (2.19)

Evaluating (2.19) at t = θ and using now the second hypothesis in (1.9), we get∫
Ω
e2sφ(·,θ)b2 dx ≤ C

∫
Ω
e2sφ(x,θ)

(
|∂tzA(x, θ)|2 + |∂tzB(x, θ)|2 + |yA(x, θ)|2

+|zA(x, θ)|2 + |yB(x, θ)|2 + |zB(x, θ)|2
)
dx.

So using (2.16) and (2.17) obtained in the fourth step for either zA(·, θ) or zB(·, θ), we obtain∫
Ω
e2sφ(·,θ)b2 dx ≤ Cs

∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Cse2sd1 + Cse2sd2F1(θ)

with F1(θ) = ‖yA(·, θ)‖2H2(Ω) + ‖yB(·, θ)‖2H2(Ω) +
∫

Γ×(0,T )

∑2
i=0(|∂ν∂ityA|2 + |∂ν∂ityB|2) dσ dt.

Similarly the above estimate holds for c instead of b on the left-hand side so∫
Ω
e2sφ(·,θ)(b2 + c2) dx ≤ Cs

∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Cse2sd1 + Cse2sd2F1(θ). (2.20)

• Seventh and last step: From (2.18) and (2.20) we get∫
Ω
e2sφ(·,θ)(a2 + b2 + c2) dx ≤ Cs

∫
Q
e2sφ(a2 + b2 + c2) dx dt+ Cse2sd1 + Cse2sd2F1(θ). (2.21)
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Now, as for example in [15, 18], we prove that s
∫
Q e

2sφ(a2 + b2 + c2) dx dt in the right-hand side

of (2.21) can be absorbed by
∫

Ω e
2sφ(·,θ)(a2 + b2 + c2) dx. Indeed,

s

∫
Q
e2sφ(a2 + b2 + c2) dx dt =

∫
Ω

(a2 + b2 + c2)e2sφ(·,θ)
(∫ T

0
se2s(φ−φ(·,θ)) dt

)
dx.

But φ− φ(·, θ) = −eλ(d+M1)(1− e−λ(t−θ)2) and there exists a positive constant C such that

φ − φ(·, θ) ≤ −C(1 − e−λ(t−θ)2). Therefore
∫ T

0 se2s(φ−φ(·,θ)) dt ≤
∫ T

0 se−2sC(1−e−λ(t−θ)2 ) dt. By the

Lebesgue convergence theorem, we deduce that
∫ T

0 se−2sC(1−e−λ(t−θ)2 ) dt→ 0 as s→∞ and so we
get that for s sufficiently large we can absorb s

∫
Q e

2sφ(a2 + b2 + c2) dx dt on the right-hand side

of (2.21) by the left-hand side. Thus for s sufficiently large we can write∫
Ω
e2sφ(·,θ)(a2 + b2 + c2) dx ≤ Cse2sd1 + Cse2sd2F1(θ).

Now from Proposition 1.1 we have

e2sd0

∫
Ω

(a2 + b2 + c2) dx ≤
∫

Ω
e2sφ(·,θ)(a2 + b2 + c2) dx ≤ Cse2sd1 + Cse2sd2F1(θ),

and finally ∫
Ω

(a2 + b2 + c2) dx ≤ Cse2s(d1−d0) + Cse2s(d2−d0)F1(θ), (2.22)

Recall from (1.5) that d1 − d0 < 0 and that d2 − d0 > 0. Then we can minimize the right-hand
side of (2.22) by a good choice of the parameter s and we obtain the main stability inequality of
Theorem 1.1.
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