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An inverse problem for a generalized FitzHugh-Nagumo type system

In this article we consider the inverse problem of simultaneously determining three coefficients of a FitzHugh-Nagumo type system defined in a bounded domain. We use a Carleman estimate to establish Hölder estimates for these coefficients by a finite number of measurements of only one component of the system.

Statement of the problem 1.Introduction

We consider a generalized FitzHugh-Nagumo system stated in Q = Ω×(0, T ), where Ω is a bounded domain of R 3 and Σ = ∂Ω × (0, T ),

       ∂ t u = ∆u -αu 3 + δw + g in Q, ∂ t w = βu -γw + h in Q, u(x, 0) = a 1 , w(x, 0) = a 2 in Ω, u = a 3 on Σ. (1.1)
Here, the spatial functions α(x), β(x), γ(x), δ(x) are defined on Ω and we assume Dirichlet boundary condition for u. The system (1.1) under consideration can be used to describe situations from the field of pharmacology (e.g. [START_REF] Cristini | Non linear simulation of tumor growth[END_REF], [START_REF] Jackson | Intracellular accumulation and mechanism of action of doxorubicin in a spatio temporal tumor model[END_REF]), because parabolic PDE's and ODE's are usually associated in therapy modelling, e.g. chimioterapy against a tumor, also in electric wave propagation in the heart (e.g. [START_REF] Franzone An | A parallel solver for reaction-diffusion systems in computationnal electrocardiology[END_REF], [START_REF] Neu | Homogenization of syncytial tissues[END_REF]). Note that the nonlinearity u 3 in the system (1.1) is chosen to facilitate the formulation of the inverse problem and our results could be adapted easily to another form of nonlinearity similar to the original FitzHug-Nagumo one i.e. in the form k 1 u(u -k 2 )(1 -u). A lot of work has been done in the domain of computational cardiology (e.g. [START_REF] Chapelle | A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems analysis, assessments and applications to parameter estimation[END_REF], [START_REF] Collin | A Luenberger observer for reaction-diffusion models with front position data[END_REF], [START_REF] Corrado | Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography[END_REF], [START_REF] Ngoma | Parameter identification for a non-differentiable ionic model used in cardiac electrophysiology[END_REF]) but none of it addresses the problem of stability in the reconstruction of the parameters of interest (which depends on the observations). On the other hand very little research has addressed the problem of the stable reconstruction of parameters in such models (e.g. [START_REF] Abidi | Ionic parameters identification of an inverse problem of strongly coupled PDE's system in cardiac electrophysiology using Carleman estimates[END_REF], [START_REF] Lassoued | Stability result for the parameter identification inverse problem in cardiac electrophysiology[END_REF], [START_REF] Boulakia | Stability estimates for some parameters of a reactiondiffusion equation coupled with an ode[END_REF]) and it has already used the methodology of Carleman estimates initiated by Bukgheim and Klibanov [START_REF] Bukhgeim | Uniqueness in the Large of a Class of Multidimensional Inverse Problems[END_REF] which allows for the establishment of stability inequalities between the reconstructed coefficients and the associated observations. This method has proven to be efficient but requires in the case of the parabolic operator the knowledge of the components on all the set Ω at one fixed time θ, see also (e.g. [START_REF] Cristofol | Inverse problems for a two by two reactiondiffusion system using a Carleman estimate with one observation[END_REF], [START_REF] Cristofol | Identification of two independant coefficients with one observation for a non linear parabolic system Applicable Analysis[END_REF], [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF], [START_REF] Cristofol | Stable estimation of two coefficients in a nonlinear Fisher-KPP equation[END_REF]) for parabolic systems. Consequently, in all the papers cited previously the stability inequalities contain in their right hand sides the norm of the two components involved in the system on all the set Ω at one time θ. In this paper we improve the existing results in the area of inverse problems for systems similar to system (1.1) by simultaneously reconstructing the three coupling coefficients without needing to observe the second component. More precisely, our goal is to recover the following set of coefficients α(x), β(x) and γ(x) by observation data of |∂ ν u i | on Γ × (0, T ) where Γ is some arbitrary subdomain of ∂Ω and of u i on Ω for one time θ ∈ (0, T ) where the observed data for u i , i = A, B, come from two suitable changes in the initial values and without needing to observe the second component w. Such result, involving the observation of only one component for the reconstruction of coefficients in systems of partial differential equations was already obtained for a strongly coupled system in quantitative thermoacoustic equations [START_REF] Cristofol | Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boudary data[END_REF]. However, it is the first time to our knowledge that such a thing is achieved for a PDE/ODE coupled system. This kind of system induces a real difficulty because we have no diffusion terms for the component w and the first equation in (1.1) can be viewed as a reaction-diffusion equation with memory term and this case may lead to difficulties in the theory of control and inverse problems [START_REF] Boulakia | Stability estimates for some parameters of a reactiondiffusion equation coupled with an ode[END_REF]. Furthermore, the stability estimate involving the coefficients we want to recover and the observation data immediately yields the uniqueness of these coefficients and can be used for numerical reconstruction. This article is organized as follows: sections 1.2-1.4 lay out the main hypotheses and notations and describe our main tools. In section 2 we prove our result (Theorem 1.1).

Setting and hypotheses

Let Ω ⊂ R 3 be a bounded domain with smooth boundary ∂Ω. We consider a system involving a parabolic equation strongly linked with a differential equation as follows

∂ t u = ∆u -αu 3 + δw + g in Q, ∂ t w = βu -γw + h in Q, (1.2) 
with g and h two functions in L 2 (Q). We attach to (1.2) the following initial and boundary conditions:

u(x, 0) = a 1 , w(x, 0) = a 2 in Ω,
and u = a 3 on Σ.

Note that in view to recover three coefficients using the observation of only one component of the system (1.1) we will consider two sets of initial conditions to get more information. We will consider the admissible set of coefficients

ρ ≡ (α, β, γ, δ) ∈ (Λ(M 0 )) 3 × (Λ(M 0 ) ∩ Λ(C 0 )) (1.3) with Λ(M 0 ) = {f ∈ L ∞ (Ω), f L ∞ (Ω) < M 0 } and Λ(C 0 ) = {f ∈ L ∞ (Ω), |f | ≥ C 0 a. e. in Ω}
for some positive constants M 0 and C 0 .

The method of Carleman estimates requires solutions that are sufficiently regular. Indeed the Buckgheim-Klibanov method implies several time differentiations of system (1.1). We assume in the following that (u, w) belongs to H = (H 3 (Ω × (0, T )) 2 satisfying the a-priori bound (u, w) H ≤ M for given M > 0.

Note that (u, w)

∈ (W 3,∞ (Ω × (0, T )) 2 since Ω ⊂ R 3 .
For a detailed proof of the regularity, we can refer to [START_REF] Abidi | Ionic parameters identification of an inverse problem of strongly coupled PDE's system in cardiac electrophysiology using Carleman estimates[END_REF], [START_REF] Boulakia | Stability estimates for some parameters of a reactiondiffusion equation coupled with an ode[END_REF] or [START_REF] Schenone | Reduced order models, Forward and Inverse Problems in Cardiac Electrophysiology[END_REF].

Remark 1.1. Note that we have restrained the problem to a subdomain Ω of R 3 which is the main field for desired applications. Furthermore such choice allows us to write in a simpler way the space H. Note that the results could be equally valid for a subdomain Ω of R n without any condition of the dimension n but with more restrained regularity conditions for the solutions of (1.1).

Weight functions and Carleman estimate

Since our strategy or reconstruction uses Carleman estimates, we need to define special weight functions. Following [START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF] we carry out classical regular weight functions as follows:

let x 0 ∈ R 3 \ Ω and denote d(x) = |x -x 0 | 2 for x ∈ Ω such that d > 0 in Ω, |∇d| > 0 in Ω. (1.4)
Moreover we define Γ = {x ∈ ∂Ω, < x -x 0 , ν(x) >≥ 0}. Here < ., . > denotes the usual scalar product in R 3 and ν(x) is the outwards unit normal vector to ∂Ω at x. Now we consider weight functions in the form, for λ > 0, t ∈ (0, T ),

ψ(x, t) = d(x) -t - T 2 2 + M 1 where M 1 > (T /2) 2 ,
and φ(x, t) = e λψ(x,t) .

It could be underlined that this choice of weight functions will play an important role in our proof and will allow us to require less observations in the reconstruction of our three coefficients. On the other hand the non regular weight functions in [START_REF] Imanuvilov | Controllability of parabolic equations Sbornik Math[END_REF] facilitate the use of Carleman estimates in the resolution of inverse problems but require to keep the observations of all the components involved for a single time θ ∈ (0, T ).

As underlined above, in view of the Carleman inequalities for the parabolic operators with regular weights, we need to use a cut-off function in time. This cut-off function will induce additive terms coming from the commutator between the evolution operator and this cut-off function. Note that a recent result in [START_REF] Huang | Stability for inverse source problems by Carleman estimates[END_REF] avoids the use of such cut-off functions but restricts the domain of reconstruction of the coefficients.

Proposition 1.1. There exist T > 0 and > 0 such that (1.4) holds and

d 1 < d 0 < d 2 (1.5)
where

d 0 = inf Ω φ (•, θ) , d 1 = sup Ω×([0,2 ]∪[T -2 ,T ]) φ, d 2 = sup Ω φ (•, θ) , θ = T 2 .
Proof. First we define

β 0 = inf x∈Ω ψ(x, θ) = inf x∈Ω |x -x 0 | 2 + M 1 and β 1 > 0 by β 2 1 = sup x∈Ω |x -x 0 | 2 -inf x∈Ω |x -x 0 | 2 .
Then, we consider T sufficiently large such that

β 2 2 = (T -θ) 2 -β 2 1 > 0. With these definitions, we have (T -θ) 2 = β 2 1 + β 2 2 so we get for all x ∈ Ω, ψ(x, T ) = |x -x 0 | 2 + M 1 -sup x∈Ω |x -x 0 | 2 + inf x∈Ω |x -x 0 | 2 -β 2 2 ≤ β 0 -β 2 2 .
As ψ(x, 0) = ψ(x, T ), we deduce that there exists > 0 such that < T 4 and for all x ∈ Ω and t

∈ ([0, 2 ] ∪ [T -2 , T ]), ψ(x, t) < β 0
and this ends the proof of Proposition 1.1.

These two estimates will be fruitful in Section 2 to solve our inverse problem. Now we recall a Carleman estimate for a parabolic system with Dirichlet boundary conditions as system (1.7). Let s > 0 and denote

I(u) = Q 1 sφ (|∂ t u| 2 + |∆u| 2 ) + sφ |∇u| 2 + s 3 φ 3 |u| 2 e 2sφ dx dt. Proposition 1.2 ([26, Theorem 2.

1, (2)]

). There exist a value of λ > 0 and positive constants s 0 and C such that

I(u) ≤ C e sφ f 2 L 2 (Q) + Cs Γ×(0,T ) |∂ ν u| 2 e 2sφ dσ dt, (1.6) 
for all s > s 0 , and

all u ∈ H 1 (0, T, L 2 (Ω)) ∩ L 2 (0, T, H 2 (Ω)) satisfying      ∂ t u -∆u = f in Ω, u(•, 0) = u(•, T ) = 0 in Ω, u = 0 on ∂Ω × (0, T ).
(1.7)

In the following parts, C will be a generic positive constant. When needed, we will specify its dependency with respect to the different parameters. Let us remark that this Carleman inequality uses also λ as a second large parameter. We will consider λ fixed in all the rest of the article such that Proposition 1.2 holds, λ sufficiently large. Let now η be a C ∞ cut-off function satisfying 0 ≤ η ≤ 1 and

η(t) = 0 if t ∈ [0, ] ∪ [T -, T ], 1 if t ∈ [2 , T -2 ], (1.8) 
with defined in Proposition 1.1.

Main result

We obtain the stable reconstruction of the three coupling coefficients (α, β, γ) using only the observations of the component u and without the knowledge of w for the system (1.1). We suppose that the sets of coefficients ρ and ρ verify assumption (1.3) with ρ = (α, β, γ, δ) and ρ = (α, β, γ, δ).

Theorem 1.1. Let V A = (u A , w A ) be a solution of (1.1) associated with the set of conditions A = (a 1 , a 2 , a 3 , g, h) and the coefficients ρ = (α, β, γ, δ), ṼA = (ũ A , wA ) be a solution of (1.1) associated with the same conditions A and the coefficients ρ = (α, β, γ, δ), V B = (u B , w B ) be a solution of (1.1) associated with the conditions B = (b 1 , b 2 , b 3 , g, h) and the coefficients ρ, ṼB = (ũ B , wB ) be a solution of (1.1) associated with the conditions B and the coefficients ρ.

Assume that there exist positive constants

C 1 > 0, C 2 > 0 such that |ũ A (•, θ)| ≥ C 1 and |ũ A (•, θ) wB (•, θ) -ũB (•, θ) wA (•, θ)| ≥ C 2 in Ω. (1.9)
Then there exist constants κ ∈ (0, 1) and K > 0 such that

α -α 2 L 2 (Ω) + β -β 2 L 2 (Ω) + γ -γ 2 L 2 (Ω) ≤ K (u A -ũA )(•, θ) 2 H 2 (Ω) + (u B -ũB )(•, θ) 2 H 2 (Ω) + 2 k=0 ∂ ν (∂ k t (u A -ũA )) 2 L 2 (Γ×(0,T )) + ∂ ν (∂ k t (u B -ũB )) 2 L 2 (Γ×(0,T )) κ .
The constants K and κ are depending on M, T, M 0 , M 1 , C 0 , C 1 , C 2 , x 0 , .

Remark 1.2. Conditions similar to (1.9) are classical in the process of coefficients reconstruction (see e.g. [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF], [START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF], [START_REF] Cristofol | Inverse problems for a two by two reactiondiffusion system using a Carleman estimate with one observation[END_REF], [START_REF] Cristofol | Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boudary data[END_REF], [START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF], [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF]). It is usual to verify that they hold for numerous situations and the control theory could help us. The goal is to prove that for any coefficient sufficiently regular in an admissible set, there exists a control such that the associated solutions satisfy (1.9). Several papers have already used such a strategy and we can refer among others to [START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF] for parabolic inverse problem, [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF] for systems of parabolic equations and [START_REF] Cristofol | Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boudary data[END_REF] for parabolic-hyperbolic systems. Concerning our assumption (1.9) we refer to [START_REF] Brandão | Theoretical analysis and control results for the FitzHug-Nagumo equation[END_REF] where controllability results are obtained for a FitzHugh-Nagumo equation in the case where α = 1, δ = -1, β is a positive constant, γ is a nonnegative constant, g ∈ L 2 (Q) and h = 0, u(•, 0) = 0, u = 0 on Σ. More precisely, we refer to Theorem 1.5 in [START_REF] Brandão | Theoretical analysis and control results for the FitzHug-Nagumo equation[END_REF], which is stated in the case where w(•, 0) = 0 but Remark 2.3 in [START_REF] Brandão | Theoretical analysis and control results for the FitzHug-Nagumo equation[END_REF] allows the case of a nonzero initial value for w. The authors prove that for any target u d ∈ L r (Q) with r ≥ 4, they can construct a sequence of controls (g n ) and associated states

(u n ) that converge to u d strongly in L r (Q). Therefore we choose a target u d ∈ C(Q) such that u d > C 1 in Q with C 1 some positive con- stant. Thus we have ũA (x, θ) ≥ C 1 for ũA close to u d in L r (Q) with A = (0, a 2 , 0, g A , 0). Define ûd (x, t) = e µt u d (x, t) for (x, t) ∈ Q with µ some real and consider ũB close to ûd in L r (Q) with B = (0, b 2 , 0, g B , 0). Denote w d (x, t) = a 2 (x)e -γt + t 0 βu d (x, s)e -γ(t-s) ds, ŵd (x, t) = a 2 (x)e -γt + t 0
β ûd (x, s)e -γ(t-s) ds.

Since h = 0, both second components wA and wB satisfy wA (x, t) = a 2 (x)e -γt + t 0 β ũA (x, s)e -γ(t-s) ds and wB (x, t) = b 2 (x)e -γt + t 0 β ũB (x, s)e -γ(t-s) ds.

Note that u A (resp. w A , u B , w B ) is close to u d (resp. w d , ûd , ŵd ) for all (x, t) in Q. Then

u d (x, t) ŵd (x, t)-û d (x, t)w d (x, t) = u d (x, t)e -γt (b 2 (x)-e µt a 2 (x))+u d (x, t) t 0
βe -γ(t-s) u d (x, s)(e µs -e µt ) ds.

We can choose a 2 , b 2 , µ such that |u d (x, t) ŵd (x, t)-ûd (x, t)w d (x, t)| ≥ C 2 in Q with C 2 some positive constant in order to satisfy assumption (1.9). The fact that g A and g B are not necessarily the same does not induce any difficulty for the inverse problem (the steps 1 to 5 of the proof of Theorem 1.1 are valid with one fixed function g for each initial condition and only the sixth step uses the two sets of conditions A and B; note that the function g has been eliminated in the crucial system (2.4) that is used in the sixth step).

Remark 1.3. We can obtain a similar result for the three coefficients β, γ, δ by substituting the hypothesis |ũ A (θ)| ≥ C 1 by the hypothesis | wA (θ)| ≥ C 1 in Ω. This theorem could also be expanded for the reconstruction of the four coefficients α, β, γ, δ by substituting the hypothesis |ũ

A (θ)| ≥ C 1 by |(ũ A (θ)) 3 wB (θ) -(ũ B (θ)) 3 wA (θ)| ≥ C 1
in Ω and we still obtain a Hölder stability result for these four coefficients with the same observations of u A and u B described above. Note that we could also get the same results in the case of an infinite guide of the type R × ω with ω a domain of R n-1 instead of a bounded domain Ω following ideas developed in [START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF], [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] and [START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF]. Lastly, notice that due to the use of regular weight functions, we obtain a Hölder and not Lipschitz stability result.

2 Solving the inverse problem

Preliminary lemmas

In this section, we recall and adapt some known results. These lemma will be used, associated with the Carleman estimate (1.6) applied to the systems (2.4), (2.5) and (2.6), to eliminate the observation terms coming from the component w. First we recall the following lemma based on an idea from Klibanov-Timonov ( [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF]).

Lemma 2.1. There exists a positive constant C such that

Q e 2sφ φη 2 t T /2 f (ξ) dξ 2 dx dt ≤ C s e 2sd 1 + Q e 2sφ η 2 f 2 dx dt ,
for all s > 0 and f ∈ L 2 (0, T, L 2 (Ω)).

Proof. By the Cauchy-Schwarz inequality, we have

Q φη 2 e 2sφ t T /2 f (x, ξ) dξ 2 dx dt ≤ Q φη 2 e 2sφ |t - T 2 | t T /2 f (x, ξ) 2 dξ dx dt ≤ Ω T /2 0 φη 2 e 2sφ ( T 2 -t) t T /2 f (x, ξ) 2 dξ dxdt + Ω T T /2 φη 2 e 2sφ (t - T 2 ) t T /2
f (x, ξ) 2 dξ dxdt.

(2.1)

Note that

∂ t (e 2sφ ) = -4sλ(t - T 2 )φe 2sφ .
For the second integral of the right hand side of (2.1), since η(T ) = 0, by integration by parts we have

Ω T T /2 φη 2 e 2sφ (t - T 2 ) t T /2 f (x, ξ) 2 dξ dx dt = - 1 4sλ Ω T T /2 η 2 ∂ t (e 2sφ )( t T /2 f (x, ξ) 2 dξ) dx dt = - 1 4sλ Ω η 2 e 2sφ ( t T /2 f (x, ξ) 2 dξ) t=T t=T /2 dx + 1 4sλ Ω T T /2 e 2sφ η 2 f 2 dx dt + 1 2sλ Ω T T /2 e 2sφ η∂ t η( t T /2 f (x, ξ) 2 dξ) dx dt = 1 2sλ Ω T T /2 e 2sφ η∂ t η( t T /2 f (x, ξ) 2 dξ) dx dt + 1 4sλ Ω T T /2 e 2sφ η 2 f 2 dx dt. (2.2)
The first integral of (2.2) is bounded above by C s e 2sd 1 due to the derivative of η. Therefore

Ω T T /2 φη 2 e 2sφ (t - T 2 ) t T /2 f (x, ξ) 2 dξ dx dt ≤ C s e 2sd 1 + Q e 2sφ η 2 f 2 dx dt .
We obtain a similar result for the first integral of (2.1) and this concludes the proof of Lemma 2.1.

Then we recall the following usual Lemma (see e.g. [START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF]) adapted from [START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF]Lemma 4.2].

Lemma 2.2. There exist positive constants s 1 and C such that

Ω e 2sφ(x,θ) |f (x, θ)| 2 dx ≤ Cs Q e 2sφ |f | 2 dx dt + C s Q e 2sφ |∂ t f | 2 dx dt for all s ≥ s 1 and f ∈ H 1 (0, T ; L 2 (Ω)).
Proof. Remind that η is defined by (1.8). Consider any w ∈ H 1 (0, T ; L 2 (Ω)). We have

Ω |w(x, θ)| 2 dx = Ω |η(θ)w(x, θ)| 2 dx = Ω θ 0 ∂ t (η 2 (t)|w(x, t)| 2 ) dt dx = 2 θ 0 Ω η 2 (t)w(x, t)∂ t w(x, t) dx dt + 2 θ 0 Ω η(t)η (t)|w(x, t)| 2 dx dt.
As 0 ≤ η ≤ 1, using Young's inequality, it comes that for any s > 0,

Ω |w(x, θ)| 2 dx ≤ C(s + 1) Q |w| 2 dx dt + C s Q |∂ t w| 2 dx dt.
Then we can conclude replacing w by e sφ f .

Proof of Theorem 1.1

We decompose the proof in several steps.

• First step: In this step, we write the systems satisfied by the solutions of (1.1) introducing the cut-off function η(t) defined in (1.8).

Denote V = (u A , w A ) = V A , Ṽ = (ũ A , wA ) = ṼA .
For simplicity we omit the underscore A until the sixth step and we write

U = u -ũ, W = w -w, a = α -α. b = β -β, c = γ -γ.
We define for i = 0, 1, 2 (with y 0 = y and z 0 = z)

y = ηU, z = ηW, y i = ∂ i t y, z i = ∂ i t z.
Then we get directly by difference

   ∂ t U = ∆U -αU (u 2 + uũ + ũ2 ) + δW -aũ 3 in Q, ∂ t W = βU -γW + bũ -c w in Q, U = 0 on Σ (2.3)
and after multiplying by η we obtain

∂ t y = ∆y -αyH + δz -aηũ 3 + ∂ t ηU in Q, ∂ t z = βy -γz + bηũ -cη w + ∂ t ηW in Q, (2.4) 
with

H = u 2 + uũ + ũ2 .
Then by taking the time derivative of (2.4)

∂ t y 1 = ∆y 1 -αy 1 H + δz 1 -a∂ t (ηũ 3 ) + ∂ t (∂ t ηU ) -αy∂ t H in Q, ∂ t z 1 = βy 1 -γz 1 + b∂ t (ηũ) -c∂ t (η w) + ∂ t (∂ t ηW ) in Q, (2.5) 
∂ t y 2 = ∆y 2 -αy 2 H + δz 2 -a∂ 2 t (ηũ 3 ) + ∂ 2 t (∂ t ηU ) -αy 1 ∂ t H -α∂ t (y∂ t H) in Q, ∂ t z 2 = βy 2 -γz 2 + b∂ 2 t (ηũ) -c∂ 2 t (η w) + ∂ 2 t (∂ t ηW ) in Q, (2.6) 
• In the second step we estimate I(y) + I(y 1 ) + I(y 2 ) thanks to the Carleman inequalities applied to the first equation in each previous system. Using (1.6) we have for s sufficiently large,

I(y) + I(y 1 ) + I(y 2 ) ≤ C Q e 2sφ (z 2 + z 2 1 + z 2 2 + a 2 ) dx dt + Ce 2sd 1 + Cs Γ×(0,T ) e 2sφ 2 i=0
|∂ ν y i | 2 dσ dt.

Since z i = ∂ i t z, using (2.4) and (2.5), we get for s large enough

I(y) + I(y 1 ) + I(y 2 ) ≤ C Q e 2sφ z 2 dx dt + C Q e 2sφ (a 2 + b 2 + c 2 ) dx dt +Ce 2sd 1 + Cs Γ×(0,T ) e 2sφ 2 i=0 |∂ ν y i | 2 dσ dt. (2.7) 
Moreover by Lemma 2.1, since φ ≥ 1 and η(θ) = 1 we have

Q e 2sφ z 2 dx dt ≤ Q φe 2sφ z 2 dx dt = Q φe 2sφ η 2 W 2 dx dt = Q φe 2sφ η 2 t θ ∂ t W + W (•, θ) 2 dx dt ≤ C s Q e 2sφ η 2 |∂ t W | 2 dx dt + C Q φe 2sφ η 2 |W (•, θ)| 2 dx dt + C s e 2sd 1 ≤ C s Q e 2sφ η 2 |∂ t W | 2 dx dt + C Q φe 2sφ |z(•, θ)| 2 dx dt + C s e 2sd 1 .
(2.8)

From (2.3) we have Q e 2sφ η 2 |∂ t W | 2 dx dt ≤ C Q e 2sφ (y 2 + z 2 + b 2 + c 2 ) dx dt. (2.9) 
Using now the first equation in (2.4) applied for t = θ we can write

δz(•, θ) = ∂ t y(•, θ) -∆y(•, θ) -αy(•, θ)H(•, θ) -aũ 3 (•, θ)
in Ω. Then, since δ belongs to the admissible set of coefficients Λ(C 0 ), multiplying by φe 2sφ and integrating on Q , we get 

Q φe 2sφ |z(•, θ)| 2 dx dt ≤ C Q e 2sφ (|∂ t y(•, θ)| 2 + |∆y(•, θ)| 2 + |y(•, θ)| 2 + a 2 ) dx dt. ( 2 
e 2sφ(x,θ) |∂ t z(x, θ)| 2 dx ≤ Cs Q e 2sφ |∂ t z| 2 dx dt + C s Q e 2sφ |∂ 2 t z| 2 ≤ Cs Q e 2sφ (y 2 + z 2 + y 2 1 + z 2 1 + b 2 + c 2 ) dx dt + Cse 2sd 1 . Since z 1 = ∂ t z, from (2.4) we deduce Ω e 2sφ(x,θ) |∂ t z(x, θ)| 2 dx ≤ Cs Q e 2sφ (y 2 + z 2 + y 2 1 + b 2 + c 2 ) dx dt + Cse 2sd 1 .
From (2.15) we get

Ω e 2sφ(x,θ) |∂ t z(x, θ)| 2 dx ≤ C s 2 (I(y)+I(y 1 ))+Cs Q e 2sφ (a 2 +b 2 +c 2 ) dx dt+Cse 2sd 1 +Cse 2sd 2 F 0 (θ).
Finally from (2.13) obtained in the second step we get

Ω e 2sφ(x,θ) |∂ t z(x, θ)| 2 dx ≤ Cs Q e 2sφ (a 2 + b 2 + c 2 ) dx dt + Cse 2sd 1 + Cse 2sd 2 F 0 (θ).
(2.17)

• Fifth step: Now we estimate Ω e 2sφ(•,θ) a 2 dx.

Multiplying the first equation in (2.4) by e 2sφ , evaluating at t = θ and integrating over Ω we get

Ω e 2sφ(•,θ) a 2 (ũ(•, θ)) 6 dx ≤ Ce 2sd 2 y(•, θ) 2 H 2 (Ω) + C Ω e 2sφ(•,θ) (|∂ t y(•, θ)| 2 + |z(•, θ)| 2 ) dx.
Using (2.14) and (2.16), we get

Ω e 2sφ(•,θ) a 2 (ũ(•, θ)) 6 dx ≤ Cs Q e 2sφ (a 2 + b 2 + c 2 ) dx dt + Cse 2sd 1 + Cse 2sd 2 F 0 (θ).
Using now the first hypothesis in (1.9) we get

Ω e 2sφ(•,θ) a 2 dx ≤ Cs Q e 2sφ (a 2 + b 2 + c 2 ) dx dt + Cse 2sd 1 + Cse 2sd 2 F 0 (θ). (2.18) 
• Sixth step: Now we estimate Ω e 2sφ( 

e 2sφ(•,θ) b 2 dx ≤ C Ω e 2sφ(x,θ) |∂ t z A (x, θ)| 2 + |∂ t z B (x, θ)| 2 + |y A (x, θ)| 2 +|z A (x, θ)| 2 + |y B (x, θ)| 2 + |z B (x, θ)| 2 dx.
So using (2.16) and (2.17 But φ -φ(•, θ) = -e λ(d+M 1 ) (1 -e -λ(t-θ) 2 ) and there exists a positive constant C such that φ -φ(•, θ) ≤ -C(1 -e -λ(t-θ) 2 ). Therefore T 0 se 2s(φ-φ(•,θ)) dt ≤ T 0 se -2sC(1-e -λ(t-θ) 2 ) dt. By the Lebesgue convergence theorem, we deduce that T 0 se -2sC(1-e -λ(t-θ) 2 ) dt → 0 as s → ∞ and so we get that for s sufficiently large we can absorb s Q e 2sφ (a 2 + b 2 + c 2 ) dx dt on the right-hand side of (2.21) by the left-hand side. Thus for s sufficiently large we can write 

2 i=0 (|∂ ν ∂ i t y A | 2 +

 22 ) obtained in the fourth step for either z A (•, θ) or z B (•, θ), we obtainΩ e 2sφ(•,θ) b 2 dx ≤ Cs Q e 2sφ (a 2 + b 2 + c 2 ) dx dt + Cse 2sd 1 + Cse 2sd 2 F 1 (θ) with F 1 (θ) = y A (•, θ) 2 H 2 (Ω) + y B (•, θ) 2 H 2 (Ω) + Γ×(0,T ) |∂ ν ∂ i t y B | 2 ) dσ dt.Similarly the above estimate holds for c instead of b on the left-hand side soΩ e 2sφ(•,θ) (b 2 + c 2 ) dx ≤ Cs Q e 2sφ (a 2 + b 2 + c 2 ) dx dt + Cse 2sd 1 + Cse 2sd 2 F 1 (θ).(2.20)• Seventh and last step: From (2.18) and (2.20) we getΩ e 2sφ(•,θ) (a 2 + b 2 + c 2 ) dx ≤ Cs Q e 2sφ (a 2 + b 2 + c 2 ) dx dt + Cse 2sd 1 + Cse 2sd 2 F 1 (θ). (2.21)Now, as for example in[START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF][START_REF] Huang | Stability for inverse source problems by Carleman estimates[END_REF], we prove that s Q e 2sφ (a 2 + b 2 + c 2 ) dx dt in the right-hand side of (2.21) can be absorbed by Ω e 2sφ(•,θ) (a 2 + b 2 + c 2 ) dx. Indeed, s Q e 2sφ (a 2 + b 2 + c 2 ) dx dt = Ω (a 2 + b 2 + c 2 )e 2sφ(•,θ) T 0 se 2s(φ-φ(•,θ)) dt dx.

Ω

  e 2sφ(•,θ) (a 2 + b 2 + c 2 ) dx ≤ Cse 2sd 1 + Cse 2sd 2 F 1 (θ). Now from Proposition 1.1 we have e 2sd 0 Ω (a 2 + b 2 + c 2 ) dx ≤ Ω e 2sφ(•,θ) (a 2 + b 2 + c 2 ) dx ≤ Cse 2sd 1 + Cse 2sd 2 F 1 (θ),and finallyΩ (a 2 + b 2 + c 2 ) dx ≤ Cse 2s(d 1 -d 0 ) + Cse 2s(d 2 -d 0 ) F 1 (θ),(2.22)Recall from (1.5) that d 1 -d 0 < 0 and that d 2 -d 0 > 0. Then we can minimize the right-hand side of (2.22) by a good choice of the parameter s and we obtain the main stability inequality of Theorem 1.1.

  2sφ (a 2 + b 2 + c 2 ) dx dt + Ce 2sd 1 + Cse 2sd 2 F i=0 |∂ ν y i | 2 dσ dt.• Third step: Here we summarize the inequalities we have obtained in the second step and that will be used in the next steps. From (2.12) and (2.13) we obtain

	Combinining (2.7), (2.11), (2.12) we obtain for s sufficiently large
				I(y) + I(y 1 ) + I(y 2 ) ≤ C	0 (θ)	(2.13)
	with F 0 (θ) = y(θ) 2 H 2 (Ω) + Γ×(0,T )	2
		Ω	e 2sφ(x,θ) |∂ t y(x, θ)| 2 dx ≤	C s 2	Q	e 2sφ (a 2 + b 2 + c 2 ) dx dt +	C s 2 e 2sd 1 +	C s	e 2sd 2 F 0 (θ).	(2.14)
	Then from (2.11) and (2.13) we get
				Q	e 2sφ z 2 dx dt ≤ C	Q	e 2sφ (a 2 + b 2 + c 2 ) dx dt +	C s	e 2sd 1 + Ce 2sd 2 F 0 (θ).	(2.15)
	Moreover by Lemma 2.2		
						Ω	e 2sφ(x,θ) |z(x, θ)| 2 dx ≤ Cs	Q	e 2sφ z 2 dx dt +	C s Q	e 2sφ |∂ t z| 2 dx dt.
	Using the second equation in (2.4) we obtain
		Ω	e 2sφ(x,θ) |z(x, θ)| 2 dx ≤ Cs	Q	e 2sφ z 2 dx dt +	C s Q	e 2sφ (y 2 + z 2 + b 2 + c 2 ) dx dt +	C s	e 2sd 1
	so by (2.13) and (2.15) we deduce that for large s
										.10)
	Thus for s sufficiently large, from (2.8)-(2.10)
				Q	e 2sφ z 2 dx dt ≤	C s Q	e 2sφ y 2 dx dt +	C s Q	e 2sφ (b 2 + c 2 ) dx dt +	C s	e 2sd 1
							+C	e 2sφ (|∂ t y(•, θ)| 2 + |∆y(•, θ)| 2 + |y(•, θ)| 2 + a 2 ) dx dt.	(2.11)
							Q		
	Moreover by Lemma 2.2,		
	Q	e 2sφ |∂ t y(•, θ)| 2 dx dt ≤ C	Ω	e 2sφ(x,θ) |∂ t y(x, θ)| 2 dx ≤ Cs	Q	e 2sφ y 2 1 dx dt +	C s Q	e 2sφ y 2 2 dx dt
	so							Q	e 2sφ |∂ t y(•, θ)| 2 dx dt ≤	C s 2 (I(y 1 ) + I(y 2 )).	(2.12)

Q e Ω e 2sφ(x,θ) |z(x, θ)| 2 dx ≤ Cs Q e 2sφ (a 2 + b 2 + c 2 ) dx dt + Cse 2sd 1 + Cse 2sd 2 F 0 (θ).

(2.16)

• In the fourth step we estimate Ω e 2sφ(x,θ) |∂ t z(x, θ)| 2 dx. By Lemma 2.2 we have Ω