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Abstract

While the theory of micro-evolution by natural selection assigns a crucial role to competition, its role in15

macroevolution is less clear. Phylogenetic evidence for a decelerating accumulation of lineages suggests a16

feedback of lineage diversity on diversification. However, does this feedback only occur between close17

relatives, or do distant relatives also influence their diversification? In other words: are there phylogenetic18

limits to this diversity-dependence? Islands form ideal systems to answer these questions, because their19

boundedness facilitates an overview of all potential competitors. The DAISIE (Dynamic Assembly of20

Island biota through Speciation Immigration and Extinction) framework allows for testing the presence21

of diversity-dependence on islands given phylogenetic data on colonization and branching times. The22

current inference models in DAISIE assume that this diversity-dependence only applies within a23

c© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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colonizing clade, i.e. all mainland species can colonize and diversify independently from one another. We24

term this clade-specific (CS) diversity-dependence. Here we introduce a new DAISIE model that assumes25

that diversity-dependence applies to all island species of a taxonomic group regardless of their mainland26

ancestry, i.e. diversity-dependence applies both to species within the same clade and between different27

clades established by different mainland species. We call this island-wide (IW) diversity-dependence. We28

present a method to compute a likelihood for this model given phylogenetic data on colonization and29

branching events and use likelihood ratio bootstrapping to compare it to the likelihood of the CS model30

in order to overcome biases known for standard model selection. We apply it to the diversification of31

Eleutherodactylus frogs on Hispaniola. Across the Greater Antilles archipelago, this radiation shows32

repeated patterns of diversification in ecotypes which are similar across clades. This could be suggestive33

of overlapping niche space and hence between-clade interactions, i.e. IW diversity-dependence. But it34

could also be suggestive of only within-clade interactions, because between-clade interactions would have35

blocked the same ecotype re-appearing. We find that the CS model fits the data much better than the IW36

model, indicating that different colonizations, while resulting in similar ecotypes, are sufficiently distinct37

to avoid interacting strongly. We argue that non-overlapping distributions between clades (both spatially38

and in terms of ecotypes) cannot be used as evidence of CS diversity-dependence, because this pattern39

may be a consequence of IW diversity-dependence. By contrast, by using phylogenetic data rather than40

distributional data our method does allow for inferring the phylogenetic limits to diversity-dependent41

diversification. We discuss possibilities for future extensions and applications of our modelling approach.42

Key words : birth-death model, diversity-dependence, Eleutherodactylus, Caribbean, adaptive radiation,43

island biogeography44

Introduction45

“As species of the same genus have usually, though by no means invariably, some similarity in habits and46

constitution, and always in structure, the struggle will generally be more severe between species of the47

same genus, when they come into competition with each other, than between species of distinct genera”.48

This statement by Darwin in the Origin of Species (Darwin, 1859), known as the competition-relatedness49

hypothesis (Cahill et al., 2008) or the phylogenetic limiting similarity hypothesis (Violle et al., 2011), or50

Darwin’s naturalization hypothesis in the field of invasion biology (Proches et al., 2008), has been the51

subject of debate over the past decades, particularly in the field of phylogenetic community ecology52

(Mayfield and Levine, 2010; HilleRisLambers et al., 2012; Pigot and Etienne, 2015; Gerhold et al., 2015;53
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Narwani et al., 2015; Germain et al., 2016; Cadotte et al., 2017; Wilcox et al., 2018). The consequences54

of the competition-relatedness hypothesis for macroevolution have received much less attention. Darwin55

(1859) formulated these consequences himself as “each new variety or species, during the progress of its56

formation, will generally press hardest on its nearest kindred, and tend to exterminate them.” This57

implies that with increasing diversity, speciation rates decline or extinction rates increase. This58

phenomenon has been referred to as diversity-dependent diversification (also somewhat confusingly called59

density-dependent diversification) since the 1970s (Raup et al., 1973; Walker and Valentine, 1984).60

Rabosky (2013) distinguishes Darwinian diversity-dependence, which does not imply an upper bound,61

from asymptotic diversity-dependence, which by definition does impose an upper bound on diversity. We62

leave the question aside whether an upper bound exists, and rather focus on the commonality of these63

types of diversity-dependence: that diversity levels affect diversification, and in particular colonization64

and speciation rates decline with increasing diversity. (In other words: even though in this paper we65

model this negative diversity-dependence with a finite upper bound, we do not believe that whether the66

diversity limit is finite or infinite is crucial for our findings.)67

There have been many suggestions of how such diversity limits come about (Rabosky, 2013;68

Rabosky and Hurlbert, 2015). Here we do not enter this discussion, but we are interested whether there69

is a phylogenetic limit to the effect of diversity, i.e. whether diversity-dependence only acts between70

closely related species or (also) between distantly related species. There is considerable support for71

diversity-dependence in clades of phylogenetically closely related species (Foote and Miller, 2006;72

Phillimore and Price, 2008; Rabosky and Glor, 2010; Etienne et al., 2012; Jønsson et al., 2012; Foote73

et al., 2018), but there is also some evidence that phylogenetically distantly related (but ecologically74

similar) taxa reduce each other’s diversification rates (Stanley, 1973; Sepkoski, 1996; Valkenburgh, 1999;75

Jablonski, 2008; Silvestro et al., 2015; Pires et al., 2017). However, the latter evidence is relatively scarce76

and comes mostly from fossil data. The question then presents itself whether molecular phylogenies can77

also inform us about the phylogenetic limits to diversity-dependent diversification.78

We propose that islands are the ideal arena to study these questions, because they are clearly79

defined systems where (exceptional) radiations have occurred. Moreover, as islands tend to be80

depauperate, we see cases where species released from competition have radiated to fill niches usually81

occupied by a different clade, e.g., woodpecker finches in the Galápagos. In MacArthur & Wilson’s82

original work on island biogeography (MacArhur and Wilson, 1967) speciation receives little attention83

and therefore also diversity-dependent speciation, but colonization and extinction are84

diversity-dependent in their theory, as per capita colonization rates decrease and per capita extinction85
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rates are assumed to increase with increasing island diversity. The General Dynamic Model of island86

biogeography (Whittaker et al., 2008) explicitly assumes that the island’s carrying capacity influences87

the diversification rates. However, neither of these classic works discusses the phylogenetic nature of the88

limits to diversification. Here, we consider two types of diversity-dependence, differing in the89

phylogenetic extent of diversity-dependence: the clade-specific (CS) level, where only species that90

descend from the same mainland (extinct or extant) species (possibly through multiple colonizations)91

reduce each other’s speciation rate and colonization rates, and the island-wide (IW) level, where all92

island species of a predefined taxonomic group, that may descend from very different mainland ancestors,93

inhibit each other’s speciation and colonization (see Fig. 1). Our focus is on species that occur on the94

island, and therefore by ’clade’ we refer to a lineage of island species descending from the same mainland95

ancestor species. These island lineages are evidently embedded in a wider lineage containing both insular96

and mainland species, but the phylogeny of the species outside of the island is not considered here. The97

CS scenario can be modelled by assuming a carrying capacity or upper limit to the number of species for98

each clade, while the IW model can be modelled by assuming an island-wide carrying capacity or upper99

limit to the total number of species. The CS and IW models are thus two extremes of a continuum of100

diversity effects on colonization and speciation. In practice, these effects will not stop directly at the101

clade established by a colonizing species as in the CS model, but they will also not generally extend to102

all island species of the considered taxon as in the IW model. Modelling the continuum between the103

extremes taking into account the phylogenetic (or phenotypic) distances between the mainland species104

would be ideal, but the IW model is already difficult to handle mathematically and computationally (see105

below), and thus modelling an intermediate case is currently unfeasible. However, we believe that with106

these two extremes we are still able to gain more insight into the phylogenetic limits to107

diversity-dependent colonization and speciation.108

Diversity-dependence in speciation rates and colonization rates has been incorporated in the109

DAISIE framework (Dynamic Assembly of Island biota through Speciation, Extinction and Immigration,110

Valente et al. (2015)) that allows maximum likelihood estimation of rates of colonization, speciation and111

extinction from phylogenetic data of the clades that colonized an island (or archipelago). In the first112

simulations in this framework, diversity-dependence was of the IW-type (Valente et al., 2014). For113

inference (i.e. parameter estimation), only the CS model was implemented (Valente et al., 2015), using114

insight from analyses on single clades of closely-related species (Rabosky and Lovette, 2008; Etienne115

et al., 2012), because the IW model presented technical difficulties. Here we overcome (some of) these116

technical difficulties by presenting a method to compute the likelihood of colonization and branching117
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Figure 1. Schematic representation of the two types of diversity-dependence. Phylogenetic trees A to C represent clades of island
species descending from different colonization events. In the IW model (a) diversity-dependence extends to all island lineages in the
data, whereas in the CS model (b) diversity-dependence extends only to species descending from the same mainland species. In this
example there is a recolonization of species B. In the CS model diversification in clade B1 depends on diversity in clade B1 as well as
clade B2, because these two clades descend from the same mainland ancestor (in a phylogeny that includes exclusively the island
species, clades B1 and B2 would form a single monophyletic lineage). This is evidently also true for the IW model. For the CS model
the same clade-level carrying capacity K applies to each clade separately (represented by the different colours of the shaded areas),
while for the IW model it applies to all clades together.

events under the IW model.118

We illustrate our method with an application to the colonization of Hispaniola by five lineages of119

Eleutherodactylus frogs (genus Eleutherodactylus ; Dugo-Cota et al., 2019), for which both CS and IW120

models can be verbally argued to apply. On the one hand, these lineages show, across the Greater121

Antillean archipelago, repeated patterns of diversification into a similar set of ecotypes (Dugo-Cota122

et al., 2019), suggesting a limited set of niches is available, which in turn implies that123

diversity-dependence acts, but no further than within each clade (CS). On the other hand, the relatively124

low geographic overlap in ecotypes between clades on Hispaniola suggests that diversity-dependence125

extends to all Eleutherodactylus species on the island (IW) because species may have blocked126

colonization of the same ecotype regardless of their phylogenetic relatedness. Our analysis, using only127

phylogenetic data, shows that the CS model fits the data much better than the IW model. We discuss128

this result and provide suggestions for further research avenues.129

Methods130

Under the original DAISIE inference model (Valente et al., 2015) and its subsequent extensions (Valente131

et al., 2017a,b, 2019) species can colonize an island at a rate γ, go extinct at a rate µ, and speciate via132

cladogenesis (when one island species splits into two, forming two new endemic species) at a rate λc or133

via anagenesis (when one island species diverges from its mainland ancestor becoming a new endemic134
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species, without leading to an increase in diversity on the island) at a rate λa. CS-type135

diversity-dependence is implemented by allowing for rates of cladogenesis and colonization to decline136

with increasing diversity within a clade, with the number of species within each clade being limited by a137

CS carrying capacity, K. The maximum-likelihood implementation of DAISIE allows γ, µ, λc, λa and K138

to be estimated based on the distribution of times of island colonization and branching times within an139

island, extracted from divergence-dated molecular phylogenies. A diversity-independent model (DI) is140

also implemented, i.e. by fixing K to infinity so that λc and γ do not decline with diversity.141

A logical alternative model to CS in the island context is the IW model, where instead of a K per142

clade there is an island-wide K that determines the maximum number of species that can coexist on an143

island across all clades. This model was implemented in the first version of DAISIE, but only in144

simulations (Valente et al., 2014). Until now, estimating parameters of an IW model has not been145

attempted, because a) the model equations are rather cumbersome to write down and implement, and b)146

parameter estimation is computationally demanding in terms of memory requirements and runtimes,147

even for small data sets. Here we take on these hurdles. We develop a method of estimating parameters148

of an IW model from phylogenetic data. The data requirements, parameters and simulation approach of149

the DAISIE IW model are the same as for CS, except that diversity-dependence in λc and γ is150

determined by an island-wide K, so that these rates decline with diversity of all island species rather151

than simply diversity of the colonist clade they belong to.152

Likelihood of colonization and branching data for the IW model153

We compute the likelihood of the data, consisting of colonization and branching events, for the IW model154

using the Q-approach (Etienne et al., 2012; Laudanno et al., 2019). This approach is named after the155

quantity Q(t), which is the probability that a random realisation of the model is consistent with the data156

up to an arbitrary time t. In the supplementary material we construct the differential equations157

governing the dynamics of Q(t), and explain how these equations, which apply to the dynamics between158

colonization and branching events, are connected to one another across the colonization and branching159

events. By solving these equations from the island emergence time to the present, we obtain Q(tp), the160

quantity Q(t) evaluated at the present time tp, from which the likelihood can be extracted (see161

supplementary material for details).162

Our computational procedure is based on the assumption that we have full information about the163

extant species. That is, we assume that the island phylogenies of the full set of extant species are known,164

together with the corresponding colonization times. This assumption simplifies not only the likelihood165
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computation, but also the comparability with the CS likelihood. Indeed, in case of partial sampling from166

the phylogeny, the CS model distinguishes to what clade the missing species belong, while the IW model167

does not, making their likelihood incomparable. To guarantee full comparability we have also treated the168

likelihood of the CS model as a product of IW likelihoods with mainland pool size of 1 across the M169

mainland species. That is, CS and IW only differ in whether clades established by mainland ancestors170

are independent (CS) or are connected through each other’s diversity (IW).171

Model fitting172

We fitted five DAISIE models: a model without diversity dependence (DI, 4 free parameters), a model

with clade-specific diversity dependence (CS-DD, 5 free parameters), a model identical to CS-DD but

without anagenesis (CS-DD-noA, 4 free parameters); a model with island-wide diversity dependence

(IW-DD, 5 free parameters), and a model identical to IW-DD but without anagenesis (IW-DD-noA, 4

free parameters). In all DD models the per capita rates of cladogenesis λcN and colonization γN were

assumed to linearly decline with diversity:

λcN = λc0(1−N/K)

γN = γ0(1−N/K)

where N is the total number of species in a clade in the CS model, and the total number of species on173

the entire island in the IW model. K is the carrying capacity per clade for the CS model (hence the same174

for each clade) and for the entire island for the IW model. We follow the original DAISIE model (Valente175

et al., 2015) by assuming no diversity-dependence in extinction or anagenesis, and we solely focus on176

diversity-dependence in rates of colonization and cladogenesis.177

Phylogenetic data178

We used the dated phylogeny of Eleutherodactylus frogs by Dugo-Cota et al. (2019), which is based on179

four mitochondrial and three nuclear genes. The data set comprises 152 species of the genus, including180

148 Caribbean species, i.e. 89% of the Caribbean diversity, as well as four continental species. The181

divergence dated phylogeny was reconstructed in BEAST v1.8.2, using secondary time calibration points182

extracted from the wider eleutherodactyline phylogeny of Heinicke et al. (2007). Dugo-Cota et al. (2019)183

reconstructed the biogeographical history of Caribbean Eleutherodactylus using BioGEOBEARS184

(Matzke, 2013, 2014) with a time-stratified analysis and nine geographical regions. They inferred five185

colonizations of Hispaniola from the mainland and surrounding islands (which are collectively referred to186
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as the mainland hereafter), each of which radiated on the island, to a great or lesser degree, producing187

five in situ radiations of 28, 21, 8, 5 and 3 species (Table 1).188

The Dugo-Cota et al. (2019) phylogeny includes 57 of the 66 Hispaniola species. Because fitting189

the IW model assumes complete sampling of the extant species of the focal island, we inserted the190

missing Hispaniola species by assigning them at random locations within the Hispaniola subclades that191

they have been hypothesized to belong to. Information on the nine missing species and the detailed192

rationale for including them in a given subclade are given in supplementary Table S1. There is no genetic193

data available on GenBank for these missing species, because they have been recently described, are194

known from a single specimen or are possibly extinct. We used a set of functions from the phytools R195

package to assign missing species to clades (Revell, 2012). Four of the missing species were previously196

considered subspecies, and have recently been elevated to species, and we thus randomly inserted them197

at any height along the tip branch of the species they were previously assigned to. Four other species198

have been proposed to belong to well-defined terminal clades based on morphology, and we randomly199

inserted them at any position and at any height within those clades. We repeated this procedure 100200

times on the five clades from the maximum clade credibility tree from BEAST, producing 100 sets of five201

clades with complete sampling. The exact procedure is detailed in Table S1. One of the missing species,202

E. neiba was not added to the tree because there is no previous hypothesis regarding its phylogenetic203

position. We ran a sensitivity analysis including this species as a separate colonization, to assess whether204

in the unlikely case it formed a separate clade this would affect the results. These analyses showed that205

even if E. neiba formed an independent colonization, the same model would still be preferred. We206

therefore did not include it in the analyses, as it is unlikely to modify the main findings.207

We extracted colonization and branching times for each of the five Hispaniola radiations from208

these data. Colonization times were assumed to be the stem ages of the Hispaniola clades, as the stem209

age marks the divergence from the mainland sister clade (which is assumed to be do to the colonization210

event). Information on each of the Hispaniola clades is given in Table 1 and the phylogeny is shown in211

Fig. 2.212

As the downstream DAISIE analyses are computationally demanding, we wanted to use only one213

data set for subsequent analyses. In order to perform an informed selection of the tree, we fitted the CS214

and the IW model with no anagenesis to each of the 100 sets of trees. The results of the analysis on the215

100 sets of trees are shown in Table S2. The preferred model in all trees was CS. We thus used only tree216

set 52, which was the one with the highest likelihood for CS, for all subsequent analyses (hereafter217

‘empirical data set’). This may seem to introduce a bias in favor of the CS model, but we note that all218
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Figure 2. Phylogeny of the Hispaniola Eleutherodactylus frogs, and the ecotypes and spatial distribution of the tip species. A separate
time-calibrated phylogenetic tree is shown for each of the five clades. Gray islands show the five inferred independent colonization
events of Hispaniola. Colors at the tips of the phylogeny represent the species ecotypes (see legend). The same colors are used to
show the species distributions for each independent colonization on the Hispaniola map (for visual clarity some transparency has
been applied). The asterisk indicates where missing species have been added to the phylogeny according to taxonomic information,
see Table S1. We note that our inference method only uses the phylogenetic information in the data, i.e. only the colonization and
branching events.

loglikelihood differences (and all parameter estimates) were very similar across the 100 sets of trees: the219

loglikelihood differences between CS and IW were between 5.2 and 6.6 with a median of 5.9 and set 52220

had a loglikelihood difference of 6.4. All 100 data sets would have led to the same conclusions in our221

model comparison (see Results). All sets of trees and corresponding DAISIE colonization/branching time222
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Table 1. Characteristics of the five clades on Hispaniola: diversity, colonization times and geographical distribution within the island
of Hispaniola.

Clade Number of species Colonization time (Ma) Geographical distribution
1 28 22.09 (18.21− 26.36) Mixed
2 21 13.75 (10.73− 16.97) 100% South
3 3 11.03 (8.31− 13.89) 100% North
4 5 8.85 (6.91− 10.8) 100% South
5 8 8.43 (6.3− 10.73) 87.5% North

R objects are provided in the supplementary material. The simulation code, functions to compute the223

likelihood under the two models, and a tutorial on how to run simulations and perform model-fitting are224

available in the R package DAISIE on CRAN and on Github (https://github.com/rsetienne/DAISIE).225

Likelihood optimization on the empirical data226

We fitted each of the five DAISIE models 5 times to the empirical data set using different random sets of227

starting parameters to avoid being trapped in local likelihood optima. We assumed an island age of 30228

million years, consistent with the paleogeographical reconstruction of Iturralde-Vinent (2006) for when229

Hispaniola was isolated from other landmasses. The mainland pool size M was set to 1000 frog species.230

We note that this value is not crucial, because mainland pool size affects only the rate of colonization;231

the product of mainland pool size and the rate of colonization, i.e. the total rate of colonization, is232

practically constant (Valente et al., 2019). Indeed, parameter estimates were very similar for233

optimizations with M = 300.234

Maximum likelihood optimizations were run on the high-performance (Peregrine) cluster of the235

University of Groningen. Optimization of DI and CS-type models generally converged in a few hours.236

IW-DD model optimizations took between a few hours up to 10 days to complete.237

Goodness-of-fit238

We simulated 5,000 data sets using the maximum likelihood parameters of the preferred CS-type model239

(CS-DD no anagenesis) and preferred IW-type model (IW-DD no anagenesis), hereafter the CS and IW240

models. We then plotted relevant statistics from the simulated data sets and compared them to those in241

the empirical data to study how well the models fit the data.242
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Bootstrap analysis243

We computed the AIC and BIC values and weights for model comparison, but because model selection244

involving diversity-dependent models is known to be troublesome (Etienne et al., 2016), we used a245

parametric bootstrap likelihood ratio test similar to Boettiger et al. (2012). This bootstrap analysis246

additionally allowed us to assess bias and precision of parameter estimates. We chose the first 1000 out of247

the 5000 data sets from each of the CS and IW simulations. Not all 5000 simulated data sets were used248

for the bootstrap likelihood ratio test, because the subsequent analyses on these data sets were249

computationally demanding. For each of the chosen 2000 data sets we fitted both CS and IW models,250

resulting in a total of 4000 maximum likelihood optimizations. As starting values of the optimizations we251

used the maximum likelihood parameters of the given model obtained for the empirical data, to make it252

as likely as possible that we will find the global likelihood optimum, as it is expected to be around these253

empirical maximum likelihood parameters. To really ensure local optima are avoided, the optimizations254

would need to be run many times from many different starting values, but this was computationally255

unfeasible. In some cases it was not possible to use the parameters obtained in the optimization analyses256

as initial parameters for the optimization. For instance, if a clade in data sets generated under the IW257

model had more species than the value of K estimated for the CS model fitted to the empirical data,258

using that K as a starting value to fit the CS model to the IW-simulated data would give a likelihood of259

0. Therefore we calculated the starting K for each data set using the largest value of either the K260

estimated from the empirical data for the given model being fitted, or the maximum number of species in261

a clade (CS model) or the total number of species on the island (IW model) in the simulated data set.262

For the bootstrap likelihood ratio test we compared the logarithm of the likelihood ratio of CS263

and IW in the empirical data (i.e. loglikelihood difference, loglikelihood of the CS model − loglikelihood264

of the IW model) with the distribution of the logarithm of likelihood ratios from the data sets simulated265

under CS and under IW (1000 data sets each). We computed the 95th percentile of the distribution266

under the IW model. If the loglikelihood difference of the empirical data falls to the right of this value,267

then they are unlikely to be produced by the IW model, and if it is well within the distribution of the268

data generated under the CS model, the CS model is selected. We also computed the 5th percentile of the269

distribution under the CS model. If the loglikelihood difference of the empirical data falls to the left of270

this value, then they are unlikely to be produced by the CS model, and if it is well within the distribution271

for the data generated under the IW model, the IW model is selected. If the loglikelihood difference of272

the empirical data falls between the two percentiles, then no model can be selected decisively.273
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Results274

Likelihood optimization on the empirical data275

Convergence of the five independent optimizations per model to the empirical data set was very good,276

with all five runs finding the same maximum likelihood parameter set for each model. The preferred277

model using both AIC or BIC was CS-DD with no anagenesis (four free parameters) (Table 2). The278

loglikelihood difference between the best CS model and the best IW model (both diversity-dependent)279

was 6.43. This value points to the CS model as the best model also in the likelihood ratio bootstrap test280

(see below). The models without anagenesis had virtually the same parameter values as their281

counterparts allowing anagenesis to be different from 0. That is, the latter models had estimated rate of282

anagenesis that were very close to 0. This is to be expected because all five frog clades radiated and283

hence there is no evidence for anagenesis. The only signal of anagenesis in such a case could come from284

the observation of recolonizations of the same mainland species that established the clade(s). This is285

because the model assumes that recolonizations can only occur after speciation has taken place (if it286

happens before speciation takes place, the recolonization is assumed to reset the colonization time and is287

then not observed). As the data did not contain recolonizations, the maximum likelihood estimate of288

anagenesis is expected to be 0. Across the 100 sets of empirical trees the loglikelihood difference between289

the diversity-dependent CS and IW models ranged from 5.16 to 6.63, all of which suggest the CS model290

is highly preferred.

Table 2. Maximum likelihood parameter estimates and corresponding loglikelihood (LL) for five fitted models. DI:
diversity-independent rates; DD-CS: clade-specific diversity-dependence in colonization and cladogenesis; DD-CS-noA: same, but
with anagenesis rate fixed to 0; DD-IW: island-wide diversity-dependence in colonization and cladogenesis; DD-IW-noA: same, but
with anagenesis rate fixed to 0. An asterisk indicates that the estimated value is practically 0. df: degrees of freedom, i.e. number of
free parameters; AIC: Akaike information criterion; BIC: Bayesian information criterion.

model λc0 µ K γ λa LL df AIC AIC weight BIC BIC weight
DI 0.18 0.03 ∞ 0.0002 0* -215.87 4 439.75 0.00 445.53 0.00
DD-CS 0.44 0.11 36.44 0.0002 0* -208.67 5 427.34 0.27 434.58 0.15
DD-CS-noA 0.44 0.11 36.45 0.0002 0 -208.67 4 425.34 0.73 431.13 0.85
DD-IW 0.40 0.17 131.89 0.0003 0* -215.10 5 440.20 0.00 447.43 0.00
DD-IW-noA 0.40 0.17 131.96 0.0003 0 -215.10 4 438.20 0.00 443.98 0.00

291

Goodness-of-fit292

Using the estimated parameters for the diversity-dependent CS and IW models we generated simulated293

data for which we computed several summary statistics. The distributions of the summary statistics294

across these simulations fitted well with the empirical data for both models, but somewhat better for the295
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CS model. (Fig. 3, Fig. S1, Fig. S2), as the empirical statistics and the medians across the simulations296

are slightly more similar for this model.297
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Figure 3. Goodness-of-fit plots. Distributions of relevant metrics (number of species, number of colonizations leading to extant clades,
size of the largest clade, and rank of the largest clade when clades are ordered according to their colonization time, rank 1
corresponding to the first colonization) obtained from 5,000 data sets simulated with the maximum likelihood parameters of the CS
(top row) and IW (bottom row) models. Black line: median value, blue arrow and blue bar: value in the empirical data.

Bootstraps298

The analyses fitting the CS model to each of 1000 CS and 1000 IW simulated data sets all completed299

successfully. For the analyses fitting the IW model to the same data sets, some runs runs could not be300

completed within the limit we set (10 days). For the CS simulated data sets this was 0.8% of the301

simulations and for the IW simulated data sets this was 1.6%. These were all data sets with little302

information (only a single clade) where the estimation procedure went to very high values of the rate of303

cladogenesis and colonization. We used the loglikelihood that was obtained after 10 days which is thus an304

underestimate of the maximum IW loglikelihood, but the ML may not be much higher than this value305

after 10 days. However, even if we make the unlikely assumption that in all of these aberrant simulated306

data sets the IW model is a better fit, they are so rare that our qualitative conclusion that the CS model307

is a better fit does not change.308

Parameters were estimated with high precision and little bias under both models: the median and309

means of the distribution of parameters estimated under the CS and IW models for data sets simulated310

under those models closely matched the simulated values (Figs. 4 and 5). When fitting the CS model to311

IW simulations (Fig. S3) we observe that the K is estimated to be much higher than in the CS312

simulations (Fig. 4). This is because the IW simulations show more variability in clade sizes that can313
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only be accommodated by the CS model by assuming a larger clade-level K. When fitting the IW model314

to CS simulations (Fig. S4), we do not observe such a discrepancy. Indeed, in this case the total number315

of species matters rather than the number of species per clade. All parameter estimates and316

corresponding loglikelihoods are available in Table S3.317
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Figure 4. Bootstrap precision estimates of the parameters of the CS model. In a parametric bootstrap analysis the CS model was
fitted to 1000 data sets simulated with the maximum likelihood parameters of the CS model for the empirical data. The panels show
density histograms of the estimated parameters. The black lines indicate the median estimated values across all simulations and the
blue arrows point to the values used in the simulations.
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Figure 5. Bootstrap precision estimates of the parameters of the IW model. In a parametric bootstrap analysis the IW model was
fitted to 1000 data sets simulated with the maximum likelihood parameters of the IW model for the empirical data. The panels show
density histograms of the estimated parameters. The black lines indicate the median estimated values across all simulations and the
blue arrows point to the values used in the simulations.

The simulated data can be used to check the reliability of model selection (because we know the318
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generating process). When performing model selection by simply selecting the model with the highest319

likelihood, the IW model was incorrectly preferred over CS in 7.7% of data sets simulated under CS. The320

CS model was incorrectly preferred over IW in 19% of data sets simulated under IW. When imposing at321

least two log-units of difference before selecting a model, these numbers become 0.9% and 1.6%,322

respectively. The CS and IW model were then correctly selected in 77% and 40.6% of the corresponding323

data sets respectively, leaving 22.1% and 57.8% undecided between the two models. Because using324

highest likelihood or higher by at least two log-units is quite arbitrary, and still leads to either high type325

I error (highest likelihood) or low power (two log-units difference), we used the bootstrap likelihood ratio326

(or loglikelihood difference) distribution to set the permissible type I error to 5% (two left-most arrows in327

Fig. 6). This distribution of differences in loglikelihood between the CS and the IW model revealed that328

it was highly unlikely (p < 0.001) that the empirical loglikelihood difference (6.43) would have been329

found if the underlying model was IW, because the loglikelihood difference found in the empirical data330

(black arrow in Fig. 6) falls clearly beyond the tail of the distribution of loglikelihood differences331

obtained from data simulated under IW (higher than the largest likelihood), but falls right in the middle332

of the distribution of differences for data simulated under CS (at the 49.6th percentile). This all suggests333

that the CS model is strongly supported as the best model for the empirical data.334

The power to select the generating model is relatively high. The power to detect CS is 85% (part335

of distribution generated under CS model that is larger than the middle arrow in Fig. 6) whereas the336

power to detect IW is 72% (part of distribution under IW model that is smaller than the left-most arrow337

in Fig. 6). If the empirical data had had a loglikelihood ratio between -0.29 (the leftmost arrow in Fig. 6)338

and 1.11 (middle arrow in Fig. 6), model selection would have been indecisive.339

Discussion340

We have developed a method to determine, using phylogenetic data on island colonization and branching341

times, whether diversity-dependence in rates of colonization and speciation is limited to species within a342

clade, or extends to species from different clades, or whether the information in the data is too limited to343

make a clear call. In Hispaniolan Eleutherodactylus frogs we find that models including344

diversity-dependence outperform models without a negative feedback of diversity on colonization and345

speciation rates, suggesting that diversity limits play an important role. Diversity limits operating at the346

clade-specific level (i.e. species from different colonizing clades do not interact) predominate over limits347

at the island-wide level (i.e. species from different clades reduce each other’s rate of colonization and348

speciation), because the model with clade-specific diversity-dependence clearly outperformed the model349
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Figure 6. Likelihood ratio bootstrap test. Distribution of differences between the loglikelihood of the CS model and the loglikelihood
of the IW model when fitting both models to data sets simulated under CS and IW. The rightmost (black) arrow shows the difference
in the empirical data, while the leftmost and middle arrows indicate the 5th percentile and the 95th percentile of the distributions
generated under the CS model and the IW model respectively. The black arrow falls well inside the distribution for data simulated
under CS, and to the right of the 95th percentile (in fact even the maximum!) of the distribution for data generated under IW.
Therefore, the CS model is strongly preferred.

with island-wide diversity-dependence.350

Although Eleutherodactylus frogs show repeated patterns of evolution into the same set of351

ecotypes (Dugo-Cota et al., 2019), these results suggest that these ecotypes do not interfere with each352

other across clades. One could argue that Fig. 2 already tells us this because the overlap in ecotypes and353

in ranges between the clades on Hispaniola is limited, and hence species do not seem to interact across354

clades. However, one can also explain this pattern as a consequence of interaction across clades, because355

under IW earlier clades block later ones from radiating into the same habitats (both ecologically and356

spatially). Our results do not support this explanation and lead us to conjecture that there has been357

sufficient (niche) space that IW diversity-dependence does not occur. Of course, this may change in time:358

if we wait millions of years, (niche) space may eventually become saturated, but currently there is no359

signal of IW diversity-dependence. In summary, present-day spatial distributions and ecological360

distributions into ecotypes cannot be taken as evidence that species from different clades do not interact,361

as these patterns may be a consequence of such interactions in the past. The approach we have taken in362

this paper is to infer such diversity-dependence from the phylogenetic branching pattern. We have shown363

that if IW diversity-dependence operates, we would often pick up its signal from the phylogenetic data.364

In our Eleutherodactylus frog example, we did not, as there is only 1% chance that the pattern we365

observed would be generated by an IW model (i.e. only 1 in 100 simulations of an IW model we would366

obtain a loglikelihood ratio between CS and IW models which is equal or higher than observed for the367

empirical data).368
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Our simulations were limited to the parameters estimated from the Eleutherodactylus frog data.369

To assess the more general ability of our approach to identify CS and IW when they are operating would370

require analyzing many more simulated data sets for a wide range of parameters sets. This is currently371

computationally unfeasible, because the likelihood maximizations, although performed with highly372

optimized code, take quite a bit of time (at least a few hours per data set), which bars extensive373

simulation studies across a sizeable number of replicates. Instead we suggest that researchers wishing to374

compare CS and IW models for their study system should fit these models to their data and take the375

estimated parameters to run simulations, just like we did here. This allows one to establish whether CS376

and IW models can be distinguished by plotting figures such as Fig. 6. We have shown that it is377

important to do so, because model selection based solely on AIC may be biased (Etienne et al., 2016).378

The CS model assumes the same carrying capacity K for each clade, which is a constraint to each379

clade’s size, and hence our model selection may be somewhat biased towards IW, which only limits the380

overall number of species by its K. Because the CS model nevertheless outperforms the IW model, this is381

not an issue for this study, and it may be indicative of a similar K among clades, which is in line with382

ecotype space limiting the number of species equally in each clade. Still, models with different K values383

for each clade could in principle be fitted to the data to confirm this. In practice, however, this is not384

really feasible, because we are already estimating four or five parameters, and there may not be enough385

information in a data set of this size to allow for more parameters to be reliably estimated.386

We have only considered two models of diversity-dependence: one where diversity-dependence387

only applies to species within the same clade, and one where it also applies to species of other388

Eleutherodactylus clades establishing on an island. Various other models can be conceived. First,389

diversity-dependence might apply to Anurans species beyond Eleutherodactylus or include other390

amphibians or even non-amphibians. We have chosen the level of textitEleutherodactylus species as it391

seems, arguably, the largest group where the assumptions of equal rates of colonization, speciation and392

extinction are not too strongly violated. Our results indicate that diversity-dependence does not extend393

to this scale. Second, diversity-dependence could also occur at a higher taxonomic level, i.e. the number394

of clades, rather than the number of species within them may be limiting further colonization or395

diversification. Third, the effect of phylogenetic relatedness may also differ for speciation, extinction and396

colonization. For instance, Pires et al. (2017) found that speciation is mostly affected by within-clade397

diversity-dependence, whereas extinction is mostly affected by between-clade diversity-dependence.398

Fourth, one could define phylogenetic limits in terms of actual phylogenetic distances so that we move399

from a within- and between-clade dichotomy to a more continuous spectrum where some phylogenetically400
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related clades may interact, but more distantly related clades do not. There are no likelihood methods401

for such models yet. One may have to resort to simulation-based approaches such as Approximate402

Bayesian Computation (Janzen et al., 2015). These methods need to integrate over all possible403

trajectories of the clades through time which is not trivial, because the space of these trajectories is404

extremely high-dimensional.405

We assumed no diversity-dependence in extinction and anagenesis to focus on the effect on406

colonization and cladogenesis, and for model and computational simplicity. However,407

diversity-dependence in extinction and anagenesis is conceivable. For extinction one may assume higher408

extinction rates for higher diversity. We note that this causes a stronger pull-of-the-present in409

lineages-through-time plots contrary to what is commonly observed (Phillimore and Price, 2008; Etienne410

et al., 2012). However, such a pull-of-the-present may not be visible in empirical data, because we fail to411

account for incipient species (Etienne and Rosindell, 2012). Likelihood methods that incorporate both412

diversity-dependence and protracted speciation do not yet exist, however. Diversity-dependence in413

anagenesis is also conceivable, but it may be both negative and positive. High diversity can inhibit414

anagenesis bt limiting the ecological space to evolve into. However, higher diversity might also mean that415

there is more selective pressure for a species to evolve away from the mainland sister (sub)species.416

Anagenesis can also occur through drift alone simply due to long-term isolation from the mainland, in417

which case a diversity effect on anagenesis seems unlikely. One might also argue that if local adaptation418

is the primary cause of anagenesis, competition with other species (and thus diversity-dependence in419

anagenesis) is unlikely to prevent anagenesis. In such a scenario the species will probably not establish at420

all (some adaptation seems necessary to survive in a new environment) which would be accounted for by421

diversity-dependence in the colonization rate.422

One may wonder what it is in the branching pattern that allows for selecting one model over the423

other. An intuitively obvious candidate may be the rank of the largest clade. The IW model can be424

expected to have the first clade as the largest, because later clades will be suffering from425

diversity-dependence and hence not be able to grow very large. However, we noticed that the first clade426

is also almost equally often the largest clade under the CS model (Fig. 3). Hence, a pattern we may put427

down to incumbency and interclade competition (Silvertown, 2004; Schenk et al., 2013) arises equally428

prominently under a model without interclade competition. Apparently, in our empirical example time429

since colonization is a more important determinant of the size of a clade than diversity-dependence. The430

IW or CS nature of the colonization and diversification process, and thus the presence or absence of431

priority effects at the macroevolutionary scale, is hidden in a more complex way in the phylogenetic432
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branching pattern that is not easily picked up by simple summary statistics, but is detected by our433

likelihood ratio test. We do note that the estimate of the island-wide carrying capacity K (132) is quite a434

bit larger than the number of species present on the island (66), suggesting that the island is still far435

from saturation under the IW model. Other systems may have a lower K and the effect of priority effects436

may be relatively stronger. It is an interesting avenue to study whether there is a relationship between437

the magnitude of these priority effects and invasibility of islands, which may contribute to our438

understanding of biological invasions (Fraser et al., 2015).439

The new IW model may also be applicable in other fields, such as epidemiology where it may440

serve as a tool in understanding spread of an infectious disease, e.g. a virus, in island-like systems such as441

schools or hospitals. In such systems there may be multiple sources of infections that spread through the442

local population and can be modelled as colonizations. The carrying capacity is the number of children443

or patients. The IW model would be the appropriate model if once the host is infected, it builds up444

immunity against all strains, thus hindering further colonization and diversification. This scenario is445

most likely if the colonizing strains are phylogenetically related. The CS model would be a better446

description if a host can be infected by multiple strains, but within each strain there is viral interference447

(see e.g. Ojosnegros et al. (2010)). This scenario is most likely if the colonizing strains are448

phylogenetically (and hence functionally) distinct.449

The CS model implementation allows incomplete phylogenetic information: if the island species450

are recognized (including their endemicity status), but their colonization or branching times are not451

known, the model integrates over the possible colonization and branching times. The same principle can452

be applied to the IW model, but this is currently computationally unfeasible. Sampling colonization and453

branching times to obtain a complete data set and then repeating the analysis for each sampled complete454

phylogeny, as we have done, is probably the most straightforward way to get an idea of the impact of455

phylogenetic uncertainty. Incomplete knowledge due to failure to recognize incipient or cryptic species is456

a more fundamental problem that the field has not been able to address completely satisfactorily. There457

are models that can account for this, e.g. the protracted speciation model (Etienne and Rosindell, 2012;458

Lambert et al., 2014; Etienne et al., 2014), but the mathematical approach to compute the likelihood459

under this model seems incompatible with the approach used for diversity-dependence models (Etienne460

et al., 2012; Laudanno et al., 2019). Simulation-based approaches may be the only (long) way to a461

resolution (Richter et al., 2020).462

We have provided a new model for island biogeography with diversity-dependent feedback on463

colonization and diversification occurring between all island species. Our implementation of this IW464
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model has some computational limitations for islands with large numbers of colonizations, particularly if465

these are non-endemic, but typical insular data sets with a moderate number of colonizations or a high466

level of endemism (such as our Eleutherodactylus frogs) are perfectly feasible. Our single empirical467

example serves as an illustration to the empiricist how to explore the phylogenetic limits of diversity468

limits to diversification from phylogenetic data alone despite the limitations of phylogenetic data (Losos,469

2011). Although this example showed a clearly better fit of the CS model, future applications may reveal470

different and more nuanced impacts of clade competition on diversification at a wider range of471

phylogenetic scales. Further extension of our approach to allow integrating ecological data with472

phylogenetic data (Harmon et al., 2019), for instance to examine simultaneous diversity-dependence and473

trait-dependence of diversification, is an exciting but challenging next direction.474
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