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Résumé

La segmentation sémantique est une tdche importante de la
vision par ordinateur, utile notamment pour la compréhen-
sion des scénes et la navigation des véhicules autonomes et
des drones. Plusieurs variantes d’architectures de réseaux
neuronaux profonds dédiées a cette tdche ont été congues.
Cependant, en raison de leurs énormes coiits de calcul
et de leur forte consommation de mémoire, ces modeles
ne sont pas destinés a étre implémentés sur des systemes
a ressources limitées. Afin de pallier ce probléme, nous
introduisons une approche de segmentation sémantique
inspirée de la biologie en combinant des réseaux de
neurones impulsionnels (SNN, une alternative de faible
puissance aux réseaux de neurones classiques) avec
des caméras événementielles dont les données de sortie
peuvent directement alimenter les entrées de ces réseaux
de neurones.

Nous avons concu EvSegSNN, une architecture
d’encodage-décodage en forme de U, biologiquement
plausible, qui s’appuie sur des neurones Parametric Leaky
Integrate and Fire afin d’optimiser ['équilibre perfor-
mances/utilisation des ressources. Les expérimentations
menées sur DDDI7 montrent que EvSegSNN permet
d’atteindre de meilleures performances que le modele le
plus proche de I’état de I’art en termes de MIoU tout en
réduisant le nombre de parametres par un facteur de 1.6
et en épargnant la batch normalisation au modéle.

Mots Clef

Réseaux neuronaux impulsionnels, caméras événemen-
tielles, segmentation sémantique

Abstract

Semantic segmentation is an important computer Vvision
task, useful in particular for scene understanding and na-
vigation of autonomous vehicles and UAVs. Several va-
riations of deep neural network architectures have been
designed to tackle this task. However, due to their huge
computational costs and their high memory consumption,
these models are not meant to be deployed on resource-
constrained systems. To address this limitation, we intro-
duce an end-to-end biologically inspired semantic segmen-

tation approach by combining Spiking Neural Networks
(SNNs, a low-power alternative to classical neural net-
works) with event cameras whose output data can di-
rectly feed these neural networks inputs. We have desi-
gned EvSegSNN, a biologically plausible encoder-decoder
U-shaped architecture relying on Parametric Leaky Inte-
grate and Fire neurons in an objective to trade-off resource
usage against performance. The experiments conducted on
DDD17 demonstrate that EvSegSNN outperforms the clo-
sest state-of-the-art model in terms of MIoU while reducing
the number of the parameters by a factor 1.6 and sparing
a batch normalization stage.

Keywords

Spiking neural networks, event cameras, semantic segmen-
tation

1 Introduction

Neuromorphic computing guided by the principles of bio-
logical neural computing and inspired by the human brain’s
interaction with the world has been studied for years to
open up the possibility of extending the use of artificial
neural networks from hardware with huge computational
costs and high memory consumption to embedded systems
equipped with power-constrained components such as In-
ternet of Things (IoT) devices, automotive and AR/VR. In
this sense, models like Spiking Neural Networks (SNNs)
are strongly representative. Because, they take an addi-
tional level of inspiration from biological neural systems
compared to standard Artificial Neural Network (ANN) by
integrating the concept of time into their operating mo-
del [6].

These neural models are based on timestamped discrete
events called spikes. A commonly used neuron model (acti-
vation function) for SNNs is the Leaky Integrated-and-fire
(LIF) neuron (Fig. 1). In a discrete formulation, the mem-
brane potential V;! is measured by summing up the decayed
membrane potential from previous time-steps Vf_1 with a
sum of the weighted spike signals W;; triggered by the pre-
synaptic neurons j :

VE= AV Y Wy -6 (M)
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FIGURE 1 — LIF neuron (Image taken from [15].)

When this membrane potential V;' exceeds the firing thre-
shold V;,, a spike S? is generated by the neuron i :

ot =

3

2

1 if Vi >V
{ 0 otherwise
After a spike is emitted, V' value is either lowered by the
amount of the threshold (soft reset) or it is reset to the mi-
nimum voltage such as zero (hard reset).
Besides of taking advantage of low power consumption as
they consume energy only when spikes are triggered and
low computation latency, due to the asynchronous com-
putation of the spikes and the speed of their spread [18].
SNNs are the most suitable interface of event based sen-
sors such as event cameras.
Event cameras are bio-inspired sensors designed to over-
come the standard frame cameras drawbacks. Instead of
recording the video as a sequence of dense frames with
every image collected with a constant rate [26], they asyn-
chronously measure per-pixel brightness changes, and out-
put a stream of < x, y, p,t > events that encode the time ¢,
location (x,y) and sign of the brightness changes, named
polarity p (positive if the pixel brightness increases, nega-
tive otherwise).
Thus, thanks to their structure, these offer multiple advan-
tages over standard cameras [10], such as a high temporal
resolution (in the order of ps), very high dynamic range (
> 120 dB vs. 60 dB for frame-based cameras), a low la-
tency (10 ms on the lab bench, and sub-millisecond in the
real world) and low power consumption (100 mW max).
In addition, they are extremely useful when coupled with
the SNNs, because the generated events/spikes can directly
feed the SNNs’ inputs.
In this paper, we introduce EvSegSNN, a spiking Convo-
lutional Neural Network (CNN) combined with event data
to tackle the semantic segmentation problem. This compu-
ter vision task is mostly used in self-driving cars and UAVs
that require a real-time processing with a reduced energy
consumption. The proposed approach is biologically plau-
sible, namely because it relies on SNNs, and more impor-
tantly, it does not require batch normalization [11], thatis a
standard process used in deep learning to fix the means and
variances of a network layers by applying on a mini-batch
(21,22, ey Tiy -vy Ty ) Of size m the following equation :

BN, g(z;) = v + 8 3)

where + and (3 indicate the parameters to be learned and
is:
T —
wh= St “
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Here € is a constant added to the mini-batch variance for
numerical stability, 1 and o2 represent the mini-batch mean
and the mini-batch variance, respectively. They are measu-

red as follows :
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The proposed model is validated with DDD17 dataset, an
event dataset featuring driving sequences. Our main contri-
butions are :

1. We design a spiking light Unet model for semantic
segmentation that outperforms the state-of-the-art
model with 5.58% of absolute MIoU while redu-
cing the number of parameters by 62%.

2. We successfully train a large spiking neural net-
work using Surrogate Gradient Learning.

3. We propose a biologically plausible spiking neural
network Unet model that does not require the batch
normalization in any layer.

The paper is organized as follows. In section 2, we intro-
duce some research works that inspired our contribution. In
section 3, we explain our methodology by describing our
network architecture including the main differences with
the state-of-the-art model that we take as a baseline [12].
Then, in section 4, we present the data pre-processing,
the implementation details and the performance results in
terms of MIoU, accuracy and number of parameters in or-
der to compare our EvSegSNN model to the state-of-the-
art model with and without batch normalization on the one
hand, and to the original Unet designed for semantic seg-
mentation on the other.

2 Related work

Semantic segmentation is a computer vision task which
consists of assigning a label, corresponding to a given
class, for each pixel in the image (Fig. 2). In recent years,
this challenging task has been resolved using deep lear-
ning approaches based on different variations of encoder-
decoder CNN architectures where the encoder down-
samples the image given as input and the decoder up-
samples the result returned by the encoder until it reaches
the original size of the image. Among these techniques we
have : Fully Convolutional Network (FCN) [16], a mo-
del obtained after transforming the fully connected layers
in the most adapted classification networks (AlexNet [14],
VGGI16 [21] and GoogLeNet [24]) into fully convolutional
ones in order to output spatial maps instead of classifica-
tion scores. SegNet [2] which uses a pre-trained VGG16



without the fully connected layers as encoder and a de-
coder which aims to upsample the image to its original
size using the max pooling indices sent by the encoder.
Unet [19], a U-shaped encoder-decoder network architec-
ture, which consists of four encoder blocks that half the
spatial dimensions and double the number of filters and
four decoder blocks that do the opposite process, meaning
it doubles the spatial dimensions and half the number of
feature channels. Both are connected via skip connections.
And Xception [5] which stands for “Extreme Inception”, a
36 convolutional layers split in 3 flows such that the input,
first, goes through the st flow, then through the 2nd flow
which is repeated eight times, and goes finally through the
last exit flow. As input data, all these previous works have
used only images captured by classic cameras. The only
research work exploring the use of event based cameras
to do semantic segmentation we can find, is Alonso’s et
al. [1]. Their model consists on an encoder-decoder archi-
tecture which has been inspired from current state-of-the-
art semantic segmentation CNNs, slightly adapted to use
the event data encoding. An encoder represented by Xcep-
tion model in which all the training is concentrated, and
a light decoder connected to the encoder via skip connec-
tions to help deep neural architecture avoid the vanishing
gradient problem and to help the decoder build an image
using the fine-grained details learnt in the encoder.

However, since event-driven cameras produce spikes asyn-
chronously, their data are more suitable as input for a Spi-
king Neural Network which also works with spikes asyn-
chronously. So far, this combination have been used for
fundamental computer visions tasks like image classifi-
cation [4], [25]. To the best of our knowledge, the only
work that extends its use to semantic segmentation and we
take as a reference for being the closest to our work, is
Kim et al. [12]. They designed a spiking Fully Convolutio-
nal Networks that consists of an encoder-decoder architec-
ture connected via skip connections using for each convo-
lution layer Batch-Normalization-Through-Time (BNTT)
[13] that is a batch normalization applied at every timestep.
In their experiments, they use LIF neurons and piece-wise

FIGURE 2 — Semantic segmentation results (left) of accu-
mulated events within an interval of 50ms (middle). Gray
scale images represent the scenes captured by the event ca-
mera (right). Image from [1].

function during the forward and backward propagation,
respectively with a soft reset scheme. As input, they use
re-scaled image resolution of 346 x 200 pixels to 64 x 64
pixel of data provided by [1], without the mean and stan-
dard deviation channels measured by computing the arith-
metic mean and standard deviation of the normalized ti-
mestamps of events happening at each pixel (z;, y;) within
an interval of 50ms, computed separately for the positive
and negative events. As result, their model reaches good
performances in terms of MIoU, however the use of the
batch normalization makes their spiking model non bio-
plausible [20].

3 EvSegSNN for semantic segmenta-
tion of event data

Our work is grounded on a Unet model [19] adapted for
Spiking Neural Network (Fig. 4B). To reduce its com-
plexity, inspired by [23] who proposed a light Unet model
consisting on a smaller Unet with less parameters than the
original, we design a light Unet topology EvSegSNN with
four depth levels, as illustrated in Fig. 4A.

Compared to the original Unet, our light Unet model spares
4 convolution layers, 1 max-pooling layer, and 1 upsam-
pling layer — represented within the pink dashed box of the
Fig. 4B. This design choice has been made for two main
reasons : (1) the deepest layer represents the heaviest part
in Unet in terms of number of parameters, and (2) the dee-
pest Unet layer in the pink dashed box is particularly suited
for dense 3-channel RGB data, while event data is sparse
and it features only two polarities. Hence, by lowering the
number of layers in the encoder whose role is to compress
the input through the layers to keep the most important
details, no performance drop can be noticed on the event
frames processing. In addition, its size has been reduced so
as to obtain a dimension equal to 64 x 64 in the first layer.
In order to keep the biological plausibility of SNNs, our
model does not include any kind of normalization, unlike
our baseline model [12] that uses Batch-Normalization-
Throught-Time technique at each convolutional layer.

The computing graphs of the model is described in Fig.
3 showing that each neuron’s membrane potential is mea-
sured by combining the previous membrane potential (ho-
rizontal lines) and the previous layer (vertical lines). The
output spikes across all time-steps are accumulated to ge-
nerate a 2-dimensional probabilistic map in the last layer
whose number of channels is equal to the number of seg-
mentation classes and whose activation function is set to
None.

More particularly, our model is made up of Parametric LIF
(PLIF) neurons introduced by [8], that are known to be less
sensitive to the initial values of the learnable time constants
compared to LIF. Also, it uses a soft-reset scheme because,
unlike a hard reset, this scheme helps retain the residual
information after the reset, thus avoiding information loss.
During its training, because of the behavior of PLIF neu-
rons making the gradient of their output spikes with respect
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FIGURE 3 — Computational graph of both encoder decoder
parts unrolled over multiple time-steps. Adapted from [12].

to their membrane potential non-differentiable, the training
optimization via back-propagation of the loss is perfor-
med based on surrogate Back-propagation Through Time
(BPTT) :

— Surrogate Back-propagation refers to the use of the
backward gradient approximation using the piece-
wise quadratic surrogate spiking function defined
in Eq. 7 and taken from [7] documentation.

L vi>1 o
5V | —?V|+a V<L

— Through Time refers to the accumulated gradients
over all time-steps across all layers.

Where S, V, and « represent the output spike, the mem-
brane potential and a scalar parameter to control smooth-
ness of gradient, respectively.
The loss L is a pixel-wise classifier loss that is measured
by summing the error between the estimated pixels’ classes
and the ground-truth :

1 H W C Vi’fj

SRS 9) ) VR (SR TS
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Here, N is the size of the minibatch, C' is the number of
classes and H, Wrepresent the height and the width of the
pseudo-frame, respectively. y; ; is the ground-truth label,
and V;"; stands for the membrane potential of the neurons
correspondlng to the pixel (¢, j) in the last layer.

4 Experimental validation

4.1 Event-based dataset

The DAVIS Driving Dataset 2017 (DDD17) [3] contains
40 different driving sequences of event data captured by an
event camera. Since the original dataset provides only both
grayscale images and event data without semantic segmen-
tation labels, we used the segmentation labels provided by
alonso et al. [1] who generate an approximated set of la-
bels using a CNN model trained with Cityscapes dataset.
These labels are not as perfect as if it’s manually annotated

|—> Loss

and this can be clearly noticed in the left column of each
of the 3 samples illustrated in Fig. 5. This dataset includes
20 different sequence intervals taken from 6 of the original
DDD17 sequences. Furthermore, since only multi-channel
representation of the events (normalized sum, mean and
standard deviation for each polarity) are made available, we
extracted the original events from DDD17 with the original
< x,y,p,t > structure using DDD20 tools ! and selected
events corresponding to the frames with a ground-truth.

We have used a 5-fold cross validation strategy in our ex-
periments with 80%-20% train-test split. This choice has
been made due to the fact that the original split from [12]
and [1] revealed a large difference between train and test
performances corresponding to a MIoU equal to 63.91%
and 32.92%, respectively.

4.2 Implementation

Hyperparameters. For the experimental validation, we
first implemented Kim’s et al. [12] model based on the
open source code? associated to their research work [13]
related to Batch-Normalization-Throught-Time. The hy-
perparameters of the model are available in their paper
[12].

We implemented our model using Spikingjelly [7], a Py-
thon framework based on Pytorch dedicated to SNNs. We
trained the model on a desktop computer equipped with an
NVIDIA RTX A5000 GPU card using the hyperparameters
given in Table 1.

TABLE 1 — EvSegSNN hyperparameters

Optimizer Nadam

Learning rate 2e -3

Learning rate scheduling | [8, 16,24, 50] with a factor of 10
Batch size 16

Number of epochs 70

Timesteps 20

Leak factor 0.99

Membrane threshold 1.0

Performance metrics. To evaluate our model and com-
pare it to the baseline, we use standard metrics of semantic
segmentation as used by Alonso et al. [1] i.e. accuracy and
Mean Intersection over Union (MIoU) :

N
. 1 ~
accuracy(y,y) = ~ 25(%»%)
i=1 (&)
B TP+ TN
- TP+TN+ FP+FN

1. DDD tools : https ://github.com/SensorsINI/ddd20-utils.
2. https ://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-
Normalization-Through-Time.
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In Eq. 9 and Eq. 10, y and ¥ are the desired output and the
system output respectively, C' is the number of classes, [V
is the number of pixels and § denotes the Kronecker delta
function, TP, TN, FP and FN stand for : true positive, true
negative, false positive and false negative, respectively.
Moreover, we compare our model to the baseline in terms
of number of parameters whose reduction involves a re-
duction of the runtime as well as the energy consumption,
which represents the first motivation of using SNNs.

4.3 Performance results

Figure 6 shows a performance comparison of the propo-
sed EvSegSNN (blue) and the baseline model with and wi-
thout Batch-Normalization-Through-Time (green and red,
respectively) in terms of MIoU and accuracy, with respect
to the number of parameters. It is interesting to note that,
in the one hand, despite the fact that the number of pa-
rameters of our model (8.55M) is reduced by a factor of
1.6 compared to Kim et al. [12], the performances of both
models remain very close. On the other hand, considering
the bio-plausibility of Spiking Neural Networks, we no-
tice that EvSegSNN built without BNTT yields a MIoU
of 45.54% and an accuracy of 89.90%, while the baseline
designed without BNTT only obtains a MIoU of 39.96%
and an accuracy of 86.03%. Therefore, in addition to be
bio-plausible, EvSegSNN outperforms the baseline model
without BNTT while having a number of parameters 1.6
times smaller. Note that the number of parameters of Kim

et al. [12] model without BNTT is slightly reduced compa-
red to the original one (with BNTT) due to the removal of
trainable parameters used for BNTT.

By taking a close look at MIoU results of EvSegSNN du-
ring training and testing summarized in Table 2, we can
see that the MIoU of the Background, the Road, the Tree
and the Car classes show good performances, while the
Panel and the Pedestrian classes show unsatisfying values.
This can be explained by the average number of pixels be-
longing to each class in all the DDD17 frames. Indeed, in
Table 3, we can see that the four first classes are represented
by a large amount of pixels while the Panel and Pedestrian
classes contain in average less than 500 and 100 pixels res-
pectively, thus explaining the poor performances for both
these classes.

TABLE 2 — Class-wise MIoU results for EvSegSNN.

Road Background Panels Tree Pedestrian Car
MIoU Train | 83.93 93.01 17.26 75.92 14.81 72.75
MIoU Test 79.14 89.26 6.25 48.54 2.44 47.63

TABLE 3 — Average number of pixels per class in DDD17

Road Background Panels Tree Pedestrian Car

Pixels | 7.49K 47.22K 0.476K 10.55K 0.087K 3.36K

Figure 7 presents a comparison of the proposed model with
the original Unet in terms of number of parameters and per-
formances. The original Unet is taken as a reference model
for EvSegSNN with the maximal set of parameters, thus
scoring 100% in each metric. Note that, similarly to Ev-
SegSNN, the input size of the original Unet has also been
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reduced to fit the 64 x 64 size of the dataset.

As we can see, by designing EvSegSNN whose number
of trainable parameters is equal to 8.55M (about 25% the
number of parameters of the original Unet), we obtain per-
formances in terms of MIoU and accuracy almost equal to
the original. This result shows that we successfully desi-
gned a smaller and less complex Unet while maintaining
the performances. Thus, this also shows that our initial hy-
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pothesis stating that due to its structure, event data does
not require a deep encoder to preserve the most important
details while being down-sampled is verified.
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Note that if we go further in the simplification and intro-
duce another light Unet with much less parameters (2M)
by sparing the layers represented within the yellow dashed
box of the Fig. 4B, we notice a significant decrease of the
semantic segmentation quality whose evaluation metrics
return a MIoU of 40.19% and an accuracy of 84.67% repre-
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FIGURE 5 — Example of semantic segmentation results using Light Unet on the DDD17. We visualize the Ground-Truth -
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senting a drop of 5.91% and 5.23% respectively, compared
to the original Unet,.

5 Conclusion

In this paper, we introduced a bio-inspired model to tackle
the semantic segmentation task that consists of a spiking
light Unet architecture directly fed by an event camera.
This architecture has been built using : Surrogate Gra-
dient Learning, Parametric LIF and SpikingJelly frame-
work. Our semantic segmentation experiments show that
our approach outperforms a state-of-the-art model in terms
of MIoU and number of parameters while considering the
biological plausibility of Spiking Neural Network. It also
shows a large variation regarding the segmentation result
corresponding to each class which is due to the unbalanced
number of pixels belonging to each class. Hence, for future
work, it would be interesting to train and test our model
using better semantic segmentation labels obtained and ge-
nerated by e.g. [22]. Besides, the next step is to implement
EvSegSNN on a low-power neuromorphic hardware such
as Loihi [17] or SpiNNaker [9] which will enable power-
efficient embedded semantic segmentation applications.
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