
HAL Id: hal-04219365
https://hal.science/hal-04219365

Submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wasserstein loss for semantic editing in the latent space
of GANs

Perla Doubinsky, Nicolas Audebert, Michel Crucianu, Hervé Le Borgne

To cite this version:
Perla Doubinsky, Nicolas Audebert, Michel Crucianu, Hervé Le Borgne. Wasserstein loss for seman-
tic editing in the latent space of GANs. ORASIS 2023, Laboratoire LIS, UMR 7020, May 2023,
Carqueiranne, France. �hal-04219365�

https://hal.science/hal-04219365
https://hal.archives-ouvertes.fr


Wasserstein loss for semantic editing in the latent space of GANs

Anonymous submission∗

Abstract
The latent space of GANs contains rich semantics re-
flecting the training data. Different methods propose
to learn edits in latent space corresponding to semantic
attributes, thus allowing to modify generated images.
Most supervised methods rely on the guidance of clas-
sifiers to produce such edits. However, classifiers can
lead to out-of-distribution regions and be fooled by
adversarial samples. We propose an alternative for-
mulation based on the Wasserstein loss that avoids
such problems, while maintaining performance on-par
with classifier-based approaches. We demonstrate the
effectiveness of our method on two datasets (digits and
faces) using StyleGAN2.

1 Introduction
GANs are known to encode the semantics of the train-
ing data in their latent space [1, 2, 3]. Moving the
latent codes in certain directions results in changing
specific semantic attributes in the generated images [1].
This ability makes GANs great tools to perform image
editing, especially as it can be applied to real images
through inversion methods [4].

The challenge is to identify the manipulations in the la-
tent space that have the desired effect on one attribute
without affecting others. To obtain such disentangled
manipulations, existing supervised methods leverage
the semantic knowledge learned by pretrained attribute
classifiers operating either in the image domain (im-
age classifiers) or directly in the latent domain (latent
classifiers). The key idea is that manipulated latent
codes (or the images they produce) shift the predic-
tions to match the desired outcome [5, 6]. However,
classifiers can easily be fooled [7], e.g. they can classify
with high confidence out-of-distribution samples. As
illustrated in Fig. 2a, the latent classifier of [6] steers
latent codes outside the distribution resulting in edited
images that are unrealistic. To address this issue, the
authors employ an ad hoc L2-regularization to mini-
mize the norm of the latent editing. While this fixes
out-of-distribution edits, Fig. 2b shows that on Mul-
tiMNIST [8] this regularization produces adversarial
samples [9] instead, i.e. the edited latent codes are
correctly classified but the corresponding images re-
main unchanged. This is not surprising as changing
the predicted class while minimizing the L2-norm of

∗This paper is currently under consideration at ICME 2023.

Figure 1: Method overview. For each semantic at-
tribute (e.g. “Glasses”) we learn a mapping Hk that
moves the distribution of latent codes lacking the at-
tribute to the distribution of codes having that at-
tribute. We enforce that each latent code is moved
near a point that shares similar semantics, thus only
changing that attribute. For identity preservation, the
resulting distribution does not entirely match the tar-
get distribution.

the edit precisely mimics the search for adversarial
examples. To overcome these issues, we introduce a
new formulation for learning semantic editing in the
latent space, leading to a core solution that does not
rely on classifiers.

From a global perspective, latent editing can be viewed
as an optimal transport problem [10]. Given a distribu-
tion of latent codes sharing some semantics, we propose
to transport it onto the distribution of latent codes
that share the same semantics except for the attribute
to be edited. Since the resulting images should not
exhibit any other changes than the desired one, the
initial points should be transported “close” to points
sharing their semantics; that is, the transport should
be optimal w.r.t. a cost representing the perceptual
similarity. To achieve this, we learn transformations in
latent space using the guidance of the Wasserstein loss
with an Euclidean cost, which can be combined with a
Wasserstein loss with a cost computed in the attribute
space to enforce disentanglement.

We apply our method in the latent space of StyleGAN2
to modify the number of digits and edit facial attributes.
We compare quantitatively and qualitatively to the
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method of Yao et al. (LT) [6] that relies exclusively on a
latent classifier. Without additional regularization, our
method leads to realistic edited images and achieves on-
par disentanglement and better identity preservation
than a classifier-based method.

2 Related work
Early works on GANs have demonstrated that their
latent space contains rich semantics that can be lever-
aged to control some properties of the generated data.
Simply translating a latent code in a given direction
can lead to the variation of a semantic attribute in the
corresponding generated image [2, 1, 3, 12]. Latent
semantic directions can be extracted from the latent
space without supervision by performing PCA [2] or
by singular value decomposition on the weights of the
pretrained GAN [3, 12]. Supervised methods often
employ classifiers to extract the directions. Interface-
GAN [1] introduces a framework to edit binary facial
attributes. An SVM is trained in latent space to in-
fer the hyperplane that best separates the positive vs.
negative latent codes w.r.t. a semantic attribute. The
vector orthogonal to the hyperplane then constitutes
the editing direction. Later works aim at learning a di-
rection specific to each latent code by passing the input
code through an MLP or an affine layer that is trained
with the guidance of a classifier. GuidedStyle [5] uses
an attribute image classifier that classifies the images
corresponding to the edited latent codes. The editing is
correct if the classifier’s predictions correspond to the
desired change. Yao et al. [6] employ a similar objec-
tive but use a classifier trained directly in latent space.
However, classifiers are unreliable [9, 7], potentially
leading to images or latent codes that minimize the
objective but do not correspond to the desired editing.
Different from previous works, our core method does
not rely on classifiers. Instead, we solve the problem
using the optimal transport framework. To the best of
our knowledge, this is the first work applying optimal
transport for latent space editing.

3 Wasserstein loss for GAN edit-
ing

Let G be a pretrained generator and Z its latent space
such that I = G(z) where z ∈ Z is a latent code and I
the corresponding generated image. Suppose we have
a collection of latent codes {zi}Ni=1, where each code
is associated with a set of binary semantic attributes
A = {a1, a2, .., aK} ∈ {0, 1}. For a given attribute ak,
we aim to learn an affine transform Hk in Z,

z′k = zk + α ·Hk(z), α ∈ R (1)

such that only the attribute intensity ak differs in
the resulting image I′ = G(z′), where α controls the
strength of the change.

Let µk
s be the distribution of latent codes zk that are

negative with respect to the binary attribute ak and µk
t

the distribution of latent codes z̄k positive w.r.t. the
attribute ak. To increase the intensity of the attribute
ak in the generated images, Hk should transport the
distribution of edited latent codes z′k denoted by µ′k

s

close to the distribution µk
t . However, the information

encoding other attributes or properties should remain
unchanged. The theory of optimal transport [10] in-
troduces a framework to transport a distribution to
another with a minimal cost. The Wasserstein distance
between two distributions represents the minimal value
of this cost. Thus, we propose to use this loss as super-
vision to learn Hk with a cost in latent space expressing
similarity in image space. We call this model Latent
Wasserstein (LW).

3.1 Wasserstein Distance

Let us consider two probabilistic spaces Ωs and Ωt

and a cost function c : X × Y 7→ R+. Following Kan-
torovich formulation, the Wasserstein distance between
the source distribution µs ∈ Ωs and the target distri-
bution µt ∈ Ωt is defined as:

W (µs, µt) = min
γ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy (2)

where γ is a joint probability measure with marginals
µs and µt. The value γ(x,y) represents how much
probability mass must be transported from x to y and
c(x,y) the cost of transporting x to y. The commonly
used cost function is the squared Euclidean distance
c(x,y) = ∥x− y∥2.
In the following, we consider the Wasserstein distance
between empirical distributions:

µs =

ns∑
i=1

aiδ(xi) and µt =

nt∑
i=1

biδ(yi) (3)

where δ(·) is the Dirac distribution, ai and bi are the
probability mass associated to the i-th sample such that∑ns

i=1 ai =
∑nt

i=1 bi = 1. Estimating the Wasserstein
distance is challenging in practice as it requires to solve
the underlying optimal transport. The Wasserstein dis-
tance is usually estimated with the Sinkhorn divergence
built on entropic regularization with debiasing terms
[13, 14].

3.2 Core Method

Our main objective is to minimize the Wasserstein
loss between µ′k

s and µk
t with a squared Euclidean cost

function:

Ledit = W
(
µ′k
s , µk

t

)
, c

(
z
′(i)
k , z̄

(j)
k

)
=

1

2

∥∥∥z′(i)k − z̄
(j)
k

∥∥∥2
2

(4)
In Eq. (3), the probability mass of each sample is
usually set uniformly across samples, i.e. ai =

1
ns

and
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Figure 2: Failure cases of a classifier-based method. LT [6] learns edits in latent space under the guidance of
a latent classifier. (a) On FFHQ: without L2-regularization on the edited codes, the edited images are unrealistic
(as shown in the qualitative result on the left) before reaching the desired editing. The classifier leads to out-of-
distribution regions as it allocates high confidence to regions larger than that of the training samples [7]. The
quantitative analysis on attribute and identity preservation shows highly degraded results. (b) On MultiMNIST:
the edited images remain unchanged (no digit is being added) while the classifier indicates the opposite (predicts
2 digits with high confidence). The classifier leads to regions close to the decision boundaries where there are
adversarial samples. The quantitative analysis shows that only 32% of images are correctly edited.

bi =
1
nt

for all i. If there are biases in the collection of
training latent codes, the representation of semantically
similar samples may vary significantly between the µ′k

s

and µk
t [15]. In this case, we propose to weight the

source samples according to the number of similar
samples in the target distribution. More formally, we
set ai =

1
nA
t ×nA

s
where nA is the number of latent codes

with the attribute combination A for a set of selected
attributes.

3.3 Enforced Disentanglement

To ensure that the transported latent codes share the
same attributes as the initial ones, we propose to mini-
mize the Wasserstein loss between µ′k

s and µk
s :

Lpres = W (µ′k
s , µk

s) (5)

In contrast to the previous objective, we employ a cost
computed in the attribute space. We follow the cost

defined in [6]: c(z
′(i)
k , z̄

(j)
k ) = 1

2

∑
l ̸=k(1−γlk)∥F(z′(i)l )−

F(z
(j)
l )∥22 where F is a latent classifier trained to pre-

dict semantic attributes given a latent code z. The
term γlk represents the absolute correlation between
attribute al and ak and is used to avoid disentangling
naturally correlated attributes (e.g. “Smile” and “High
Cheekbones”). Although we use the cost introduced
in [6], our constraint is a more relaxed constraint since
we operate on the distribution.

The final objective to minimize is then L = Ledit +
λLpres where λ allows to balance the two losses.

4 Experiments

4.1 Implementation Details

We present two editing applications: facial at-
tributes on FFHQ/CelebAHQ and number of digits
on MultiMNIST[8], consisting of images with 1 to 4
MNIST digits. We apply the editing in the latent
space of StyleGAN2 [11] pretrained on FFHQ resp.
MultiMNIST. For the training data, we employ latent
codes corresponding to real images previously projected
in latent space using the pSp encoder [4], that projects
the images into the W+ latent space. We employ re-
spectively the 30K labeled 1024 × 1024 CelebAHQ
images [16] for face editing and 25K 128 × 128 Mul-
tiMNIST images. To learn a transformation, we use
the implementation of the Wasserstein loss provided
by the GeomLoss [13] library. We set the batch size as
the minimum between the number of samples in the
source and target distributions, and drop the last batch
if it causes a strong imbalance between both. We use
Adam optimizer with a learning rate of 0.001. To avoid
overfitting the target distribution, we perform early
stopping on a hold-out validation set. As CelebAHQ
contains various biases, we weight the samples and use
the disentanglement loss. Optimal value for λ is 1 for
all considered attributes except for “Glasses” (λ = 15).
The cost is computed on all 40 attributes of CelebA
[17]. Samples are weighted based on the most common
attributes
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Figure 3: Qualitative results for facial attribute editing. We report the editing results for α = ±2. We
observe that our approach better preserves identity and some facial attributes (e.g. expression, absence of makeup)
compared to LT.

4.2 Metrics

We use three metrics [6] to evaluate the different meth-
ods. The target attribute change rate indicates the
percentage of images for which the target attribute
is indeed modified. The attribute preservation rate
corresponds to the average number of attributes, apart
from the target attribute, that are preserved. The
aforementioned metrics are computed by running pre-
trained attribute image predictors before and after the
editing (for a given α) and finding which attributes
have changed. An attribute is considered present if the
probability is greater than 0.5. We also compute the
identity preservation rate as the average of the cosine
similarities between VGGFace [18] features of input
and edited images. All metrics are evaluated on 1, 000
images from FFHQ. The attribute and identity preser-
vation rates are reported against the target change for
10 values of α ∈ [1 · d, 2 · d] where d is chosen such that
the target change for a given α is comparable between
the different methods. In tables, we report the mean
over all values of α.

4.3 Facial Attribute Editing

We present a quantitative and qualitative compari-
son with Latent Transformer (LT) [6] that relies on
the guidance of a latent classifier. In addition to the
classification objective, the authors introduce a disen-

tanglement loss and an L2-regularization on the norm
of the transformation. The latter is used to enforce
identity preservation but is also critical to obtain latent
codes corresponding to realistic images. The compar-
ison is conducted on common attributes (“Glasses”,
“Gender”, “Smile”, “Age”) and rarer attributes chosen
based on their representation and the performances
of the image classifiers (“Pale Skin”, “Bangs”, “Blond
Hair”, “Wavy Hair”). Quantitative results from Fig. 4
show that our results are on par with LT with occasion-
ally slightly lower attribute preservation (“Gender”)
but generally higher identity preservation (“Gender”,
“Age”, “Blond Hair”). Note that this is surprising
since we do not explicitly enforce identity preservation.
Qualitative results in Fig. 3 showcase some advantages
of our method. Nose, lips and eyes shape are much
better preserved for “Gender” and “Age”. LT also
produces “cartoonish” edits for these attributes while
ours remains naturalistic. LT ’Gender’ editing is also
heavily entangled with ’Makeup’ while LW adds nearly
none. We provide additional qualitative results in the
supplementary.

Classifier vs. Wasserstein. We evaluate the ability
of both methods to achieve disentangled and identity
preserving editing without any explicit constraint. We
denote by LT(-) the latent transformer of Yao et al.
[6] trained without the disentanglement loss nor the
L2-regularization. In Table 1 (top), we compare it to



Figure 4: Quantitative results for facial attribute editing. We report the attribute preservation rate (computed
on all other attributes indicated here) and the identity preservation rate for different values of α (points of the
curves). The x-axis is the ratio of images (among all test images) for which the target attribute is successfully
flipped.

Table 1: Quantitative results for the attributes “Gen-
der” (G), “Age” (A) and “Pale Skin” (PS). We compare
the classifier loss approach (LT) with our Wasserstein
loss approach (LW). Setting (-) is the “core” method,
w/o any regularization.

Method Attr. preservation Id. preservation

G A PS G A PS
LT(-) 0.92 0.95 0.86 0.94 0.96 0.96
LW(-) 0.95 0.96 0.96 0.94 0.97 0.98

LT 0.98 0.98 0.98 0.95 0.96 0.98
LW 0.97 0.98 0.97 0.96 0.97 0.98

our model trained without the disentanglement loss
(λ = 0), denoted by LW(-). The Wasserstein baseline
outperforms the classifier baseline both regarding dis-
entanglement and identity preservation. As shown in
the qualitative results presented in Fig. 5, the latter
produces highly entangled edits (e.g. with the attribute
“Smile”) and alters the identity. Without enforcing it
explicitly, the Wasserstein approach already exhibits a
good disentanglement ability and the identity is also
well-preserved. These abilities can be explained as the
Euclidean cost in employed in Eq. (4) fairly reflects
the perceptual distance in image space.
Disentanglement Constraint. We study the in-
fluence of adding the disentanglement constraint
from Eq. (5). As shown in Table 1, we improve at-
tribute preservation. Qualitatively, the results are also
improved as shown in Fig. 5. “Gender” is no longer
heavily entangled with “Beard” (1st row) and the slight
entanglement with “Smile” is removed. As shown in
Fig. 2 (left), when the disentanglement constraint is

Input LT(-) LW(-) LW (Ours)

G
en

d
er

A
g
e

P
a
le

S
k
in

Figure 5: Qualitative comparison between classifier-
based edits

(
LT(-)

)
and our Wasserstein-based ap-

proach without any constraint
(
LW(-)

)
vs with the

disentanglement constraint (LW).

used in the classifier-based approach, the edited images
are unrealistic. The attribute and identity preservation
curves show atypical behavior as image classifiers are
disrupted by such images. As the decision boundaries
of classifiers cover areas that are larger than the area
of training samples, latent codes which are far away
from the training distribution can still minimize the
classification objective. The L2-regularization in [6]
enforcing that the edited latent codes remain close to
the initial ones is thus necessary to circumvent this
limitation. Our method does not require any regu-
larization to produce realistic edits, since our main
objective enforces closeness to the target distribution.



4.4 Editing the Number of Objects

The L2-regularization in conjunction with the classifi-
cation objective is similar to the formulation employed
to produce adversarial examples [9]. While this rarely
occurs on faces, this plagues editing performance on
MultiMNIST. The quantitative results in Table 2 show
that for a target change of 100% according to the la-
tent classifier, the image classifier indicates significantly
lower target changes for LT. In other words, the la-
tent classifier predicts that the number of digits has
increased while it has stayed the same in the image,
undermining the goal of an editing method. In con-
trast, our method has a high editing effect and actually
adds digits in the edited images. Qualitative results
are provided in the supplementary material.

Table 2: Quantitative results for the manipulations
“adding one digit in an image containing n digits, for
n = 1, 2, 3” in real images from MultiMNIST [8]. Given
a target change rate of 100% according to a latent
classifier, we report the actual change rate as measured
by an image classifier. Higher values indicate a lower
rate of adversarial samples.

Method Target change rate

1→2 2→3 3→ 4
LT 0.32 0.31 0.64

LW (ours) 0.90 0.95 0.99

5 Conclusion

We present a new method to learn semantic editing in
the latent space of GANs, that proposes to model the
problem as an optimal transport problem. We look for
transformations that transport a collection of latent
codes to the most semantically similar points in the
distribution of latent codes with the desired semantic.
We use the squared Euclidean distance in latent space
as a cost function as it fairly reflects the perceptual
distances in image space. This formulation readily
produces almost totally disentangled editing whereas
classifier-based methods require an explicit disentan-
glement constraint. To achieve even more disentangled
editing, we introduce an explicit loss enforcing the
transported codes to remain close to the distribution
of initial codes. This loss is also formulated with opti-
mal transport but using a semantic cost computed in
attribute space. On the task of facial attribute editing
on CelebA/FFHQ, our method is competitive with a
state-of-the-art classifier-based method without requir-
ing an additional constraint to ensure that the obtained
images are realistic. Our method also alleviates other
issues from using classifiers, such as the sensitivity to
adversarial examples as we illustrate on the editing of
the number of digits in MultiMNIST images.

Our method achieves particularly strong identity preser-
vation performances when editing facial attributes.
This is unexpected as there is no explicit constraint
to do so, and the train and target distributions con-
tain different identities. We attribute this ability to a
combination of early stopping, that prevents us from
overfitting our edited codes on the target distribution,
and of the inductive bias of the model, which defines ed-
its as simple affine transformations in the latent space,
acting as a regularization.

While the Wasserstein loss based on the latent Eu-
clidean distance results in state-of-the-art editing per-
formances, it does not perfectly reflect the perceptual
distance in image space. This could explain why some
edits are not totally disentangled. As an extension of
this work, we believe that performances could be fur-
ther improved by using a cost based on the perceptual
LPIPS metric [19] or an equivalent proxy learned in
the latent space to reduce computation time.
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