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Résumé
L’utilisation combinée de réseaux de neurones à impul-
sions et de caméras événementielles gagne du terrain dans
le domaine de la vision par ordinateur embarquée. Ce tra-
vail cherche à optimiser les performances d’un modèle em-
barqué, l’utilisation de la mémoire, la latence et la consom-
mation d’énergie, en implémentant un modèle neuromor-
phique de sélection d’objets saillants. Sans aucun entraî-
nement et avec un nombre limité de neurones, l’architec-
ture proposée est capable de détecter différents objets avec
un délai de seulement 14ms et les objets filtrés conservent
73% de la performance de classification des données ori-
ginales. A notre connaissance, il s’agit du premier modèle
neuromorphique capable de sélectionner plusieurs objets
d’intérêt simultanément.

Mots Clef
Attention visuelle, Réseau de neurones impulsionnels, Ca-
méra événementielle, Saillance, Neuromorphique.

Abstract
The combined use of spiking neural networks and event ca-
meras is gaining momentum in embedded computer vision.
This work aims to optimise model performance, memory
usage, latency and power consumption by implementing a
neuromorphic model of salient selection. Without any trai-
ning and with a limited number of neurons, the proposed
architecture is able to detect different objects with a delay
of only 14ms at most and filtered objects maintain 73% of
the original data’s classification performance. To the best
of our knowledge, it is the first neuromorphic model able to
select multiple objects of interest simultaneously.

Keywords
Visual attention, Spiking neural network, Event camera,
Saliency, Neuromorphic.
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1 Introduction
Spiking neural networks (SNNs) [1] are bio-inspired ar-
tificial neural networks aiming to mimic the dynamics of
biological neuronal circuits by receiving and processing in-
formation in the form of spike trains (see Fig. 1B). Event
cameras [2] are increasingly popular for capturing fine-
grained dynamics of a scene, with a native SNN-friendly
encoding. Instead of measuring the intensity of every pixel
in a fixed time interval like standard cameras, they generate
events of significant pixel intensity changes (see Fig. 1A).
Every such event is represented by its position, sign of
change and time-stamp, accurate to the microsecond. Be-
cause of their asynchronous operation principle, they are a
natural match for SNNs. Their combined use is of such a
high interest from the point of view of biological inspira-
tion, energy savings, decision latency and memory use that
it is gaining momentum in the field of embedded computer
vision [3].
However, embedded systems and even early realised neu-
romorphic embedded processors are quite limited in terms
of memory bandwidth. Although event cameras produce
less heavy data with less redundant information than a
conventional RGB camera, the visual scene may in some
cases of fast motion and highly textured objects produce
a flow of events too dense to be correctly processed by the
state-of-the-art low-power embedded system [6]. The latter
is likely to saturate and drop incoming events thus miss po-
tentially relevant information, without any human control.
In such cases, it is thus important to focus the treatment on
relevant information to fasten and better it. We believe this
comes from reducing the size of the input data while main-
taining the quality of the information conveyed in order to
optimise the embedded system performance.
Previous work has attempted to address this issue by pro-
posing neuromorphic [7] or non neuromorphic [6, 8] spa-
tial reduction techniques. However, the trade-off between
the quantity and the quality of the reduced event data is
not optimal (as explained in [7,8]), of which a possible ex-
planation may be the non-detection of salience during data
reduction. Indeed, we believe that detecting Regions of In-
terest (RoIs) in the original visual scene to select the corres-



ponding Objects of Interest (OoIs — i.e. the events taking
place in the detected RoIs) is a more promising approach.
A significant number of computer vision tasks (classifica-
tion, object tracking, autonomous navigation, etc) could
rely on small salient items in the global scene [9]. This
work presents and demonstrates the assumption that selec-
ting only the objects of interest will simultaneously reduce
the size of data to be processed, the number of events and
spatio-temporal densities while maintaining significant in-
formation quality.
According to [10], visual attention can be defined as the
behavioural and cognitive process of selectively focusing
on a discrete aspect of sensory cues while disregarding
other perceivable information. The RoI detection we pro-
pose in this work consists in a neuromorphic visual at-
tention model applied to event data. However, works that
address all of these constraints are rare in the literature
(see [11]) : for example, the models introduced in [12–14]
detect saliency on event data with traditional neural net-
works while [15, 16] implement neuromorphic models of
visual saliency in RGB data. Additionally, neuromorphic
saliency detection models applied to event data are most
often than not derived from existing models implemented
with traditional neural networks and applied to RGB or
grayscale images : [17] is for example adapted from [13],
itself originally adapted from the grouping mechanism es-
timating the location and spatial scale of proto-objects in
RGB data implemented in [18]. Only a few models truly
take advantage of the intrinsic dynamics of SNNs and the
uniqueness of event data : in particular, [19] make use of
the mathematical model of Dynamic Neural Field [20] as
a soft Winner-Takes-All (WTA) to implement salient tra-
cking of pre-activated objects.
Following this limited number of existing visual attention
models, this paper will first present in more detail the exis-
ting architectures our work is based on and describe our
contribution ; then it will extensively outline the different
experimental validations of the original architecture and
our new contribution. In summary, the proposed model of
multi-OoIs attentional selection :

— is able to simultaneously select multiple OoIs

FIGURE 1 – (A) Principle of operation of an event-based
camera, from [4]. (B) Behaviour of a spiking neuron, which
receives spike trains as input and processes this information
to produce a new sequence of activations. (C) Evolution of
the neuron’s membrane potential over time when activated
by input spikes.

present more than 50% of the time, with no training
phase ;

— selects at least one OoI with a delay of less than
15ms, and reaching 5ms in the best cases ;

— filters out OoIs with a quality leading to a classi-
fication performance reaching 73% of the original
data’s ;

— achieves all the above with a reduced number of
neurons and synapses compared to existing me-
thods.

2 Neuromorphic models for OoIs se-
lection

The detection of OoIs is a little-explored issue regarding
event data. This work extends the neuromorphic model we
first introduced in [5] to multi-OoIs selection. Our original
mechanism relies solely on intrinsic SNN dynamics and
dynamic adaptation rules applied to synaptic weights and
population thresholds. These are crucial features as they
lead to minimising the latency since it does not require
the conversion of spiking events into frames. The saliency
detection and multi-OoIs selection model proposed in this
new work is not specialised for any specific context or any
specific shape (in other words, there is no training phase)
which allows for a good generalisation ability of the net-
work.
The original architecture, presented in Fig. 2A, and our
contribution presented in Fig. 2B, are designed to be light-
weight enough to enable embedded simulations in real-
time. These models are implemented using the "Leaky
Integrate-And-Fire" SNN model because of its simplicity :
the membrane potential is at rest when there is no input ;
otherwise, it increases according to the incoming spikes
and slowly decays towards the resting value when the in-
put stops (leak). If the membrane potential overcomes a
threshold, an output spike is produced and the membrane
potential is reset.

2.1 Saliency detection
As described by the authors in [21], the saliency detector
integrates the events produced by each pixel at a low reso-
lution and outputs a set of coordinates for one or multiple
RoIs. In this case, the RoI would be a region where the
amount of events received over a certain amount of time is
more important than elsewhere over the whole scene, i.e.
a region where the events are numerous in a small spatio-
temporal window. The visual attention mechanism imple-
mented in [21] is thus bottom up (i.e. independant from any
previously set motivation or rule) and covert (i.e. without
simulated saccadic eye movements) [11]. The saliency de-
tector is formed by the "Input events" and "Saliency detec-
tor" layers and their interconnections depicted in Fig. 2A.

Input events. The input layer translates relative changes
in the illumination from the sensor (or events) into spikes,
which are sent to the saliency detector via an excitatory



downscaling connection. This corresponds to a convolu-
tional layer with a kernel size S × S, a stride S, wi-
thout padding. The input neurons are tessellated into non-
overlapping square regions of size S × S.

Saliency detector. The saliency detection aggregates the
active regions into distinct segments using a soft expo-
nential WTA strategy by laterally inhibiting neurons in
the same layer (see Eq. 1) : each neuron activation leads
to the inhibition of the others, without autapses (self-
connections). A soft WTA strategy is adopted as it leads
to the activation of multiple neurons in the layer thus the
detection of multiple RoIs.

ωWTA = min(
ed

w × h
, ωmax) (1)

where d corresponds to the Euclidean distance between the
active and target neuron subject to inhibition, and w and
h to the width and height of the layer. The upper bound
ωmax of the weight ωWTA is a tunable parameter for opti-
mising the saliency detection, depending on the input data
(see Fig. 5).

Weight adaptation rule. Finally, the adaptive detection
of saliency in this layer is enabled by a dynamic weight
adaptation rule between the input layer and the saliency
detector, inspired by Hebb’s rule : "cells that fire together
wire together" [22]. This rule is implemented by increasing
or decreasing the weights of synapses that have recently
fired, as described in Eq. 2.

ω(t+ 1) =

 ω(t) + ∆ω if ftsaliency ≥ t
ωinit if ftsaliency < t− tδ
ω(t) otherwise

(2)
where ω(t) is the weight at the simulation step t of the
synapse undergoing the dynamic weight adaptation rule,

∆ω is the positive weight variation at each simulation step,
ωinit is the initial weight of the synapse (homogeneously
initialized), ftsaliency is the firing time of the last spike
emitted by the saliency detector and tδ the delay before the
synaptic weight decays back to ωinit.

2.2 Attentional selection of one OoI
The saliency detection described above was extended to a
first attentional model by the authors of [5] (see Fig. 2A).

Output layer. An output layer of the same size as the in-
put layer is added in this model. It receives the activity of
the input layer through one-to-one connectors (i.e. each in-
put neuron is solely connected to the neuron located at the
same coordinates in the output layer). Only the spikes cor-
responding to one OoI are emitted by this layer thanks to an
exponential WTA mechanism similar to the one described
in Eq. 1.

Threshold adaptation rule. The attentional filtering im-
plemented in [5] aims to maintain the same information as
the OoI identified in the original data. In order to do so, the
authors set up a dynamic threshold adaptation rule aiming
to facilitate the neuronal spiking at the salient coordinates
and to hinder it in other neurons of the output layer. This
is respectively translated into the decrease (closer to the
resting value) and increase (further away from it) of the
neuronal threshold of each neuron depending on the acti-
vity at the corresponding region in the saliency detector, as
described in Eq. 3 and Eq. 4.

θ(t+ 1) =

 θ(t)−∆θ if ftsaliency ≥ t
θ(t) + ∆θ if ftsaliency < t− tδ
θ(t) otherwise

(3)
where θ(t) is the threshold at the simulation step t of the
neuron to which is applied the dynamic weight adaptation

(a) Architecture of our initial neuromorphic model detecting
saliency by event density and filtering out one OoI.

(b) Architecture of our main contribution. The maximum number of
OoIs (i.e. the number of output layers) has been set to 2 for clarity.

FIGURE 2 – Overview of our initial model introduced in [5] (A) and our contribution (B).



rule, ∆θ is the positive threshold variation at each simula-
tion step, ftsaliency corresponds to the firing time of the
last spike transmitted by the saliency detector in the cor-
responding neuronal regions and tδ is the delay before the
neuronal spiking is hindered i.e. before the neuronal thre-
shold is increased. Note that the ftsaliency used here cor-
responds to the ftsynapse used in Eq. 2. However, while
the weight adaptation rule applied to the synapse linking
the input and the saliency detector relies on the activity of
its post-synaptic neurons, here the thresholds modifications
carried out by the adaptation rule do not rely on the post-
synaptic activity (i.e. the output layer’s activity) but on the
saliency detector acting as an external supervisor.

θ(t+ 1) =

 θmax if θ(t+ 1) > θmax

θreset if θ(t+ 1) < θreset
θ(t+ 1) otherwise

(4)
where θmax and θreset are respectively the upper and lower
bound (i.e. the reset value) of the neuronal threshold. Note
that this equation (as well as Eq. 6 and Eq. 7) updates θ,
which was first calculated in Eq. 3, according to various
conditions at t + 1, which explains the repeated use of the
term θ(t+ 1).
The authors of [5] demonstrated that such a plasticity rule
is highly preferred to a simple system of synaptic activa-
tions and inhibitions. Indeed, activating the neurons cor-
responding to the salient regions identified by the saliency
detector would compete with the input activation and sa-
turate these neurons. This would blur the spikes from the
input data, causing the filter to lose spatio-temporal accu-
racy.

2.3 Attentional selection of multiple OoIs

The main contribution of this work is the implementation
of the following proposed neuromorphic model, an exten-
sion of our previous work to simultaneously detect and fil-
ter out multiple OoIs in an event-based visual scene using
intrinsic SNN dynamics. This model is designed to detect n
OoIs — however, in an effort to simplify the reader’s com-
prehension, it is depicted in Fig. 2B under an architecture
which would allow the detection of two OoIs at most.
This new attentional selection of n OoIs features the same
saliency detector, exponential WTA and weight adaptation
rule we introduced in [5] ; however, we propose here a new
dynamic threshold adaptation rule grounded on the activity
of both the saliency detector and the lateral output layers.
At each simulation timestep, for each neuron of each out-
put layer, this dynamic rule will first identify the lateral
neuronal activity at the same coordinates (see Eq. 5) and
maximise the threshold if the corresponding lateral neu-
rons are activated (see Eq. 6 and Eq. 7). The rule will then
modify the threshold depending on the activation of the sa-
liency detector in the corresponding neuronal regions (as
described in Eq. 3 and 4).

∀λ ∈ λlateral layers,∀n ∈ nneighbourhood,

αn(t+ 1) =

{
0 if t ≥ δλ × iλ and ftλ > tδ
1 otherwise

(5)
where αn(t) is the binary mask applied to the neuron n
depending on the activity of the lateral layer λ at the si-
mulation step t and ftλ corresponds to the firing time of
the lateral layer λ’s neuron at the same coordinates. δλ is
the delay applied to each output’s influence on its lateral
populations : as the output layers are implemented sequen-
tially, iλ is the arbitrary identifier given to each layer and
by which the δλ is multiplied to calculate λ’s delay. αn(t)
is null if the corresponding neuron in at least one of the la-
teral layers is activated — thus hindering the selection of
spikes emitted in other layers.

θ(t+ 1) =

{
θmax if α(t+ 1) = 0
θ(t+ 1) otherwise (6)

where θ(t) is the neuronal threshold at the simulation step
and θmax is the upper bound of the neuronal threshold. If
α(t+ 1) is null, then the corresponding neurons in at least
one of the lateral layers λ is active and the neuron of the
current layer cannot fire.

∀λ ∈ λlateral layers,

θ(t+ 1) =

{
θ(t+ 1)−∆θ if ftλ < t− tδ
θ(t+ 1) otherwise

(7)
where ∆θ is the positive threshold variation at each simu-
lation step and ftλ(t) the firing time of the corresponding
neuron in the lateral layer λ.

3 Experimental validation
Both architectures described above were implemented with
PyNN, a simulator-independent Python interface for SNN
simulators [23], combined with NEST (NEural Simulation
Tool) [24], a Python simulator for SNN on CPUs. We used
these libraries to simulate architectures of 4,224 neurons
interacting via approximately 8,400,000 synaptic connec-

TABLE 1 – Hyperparameters used to implement our contri-
bution, the multi-OoI selection model.

Parameter Values
Saliency detector Outputs

Resting membrane potential −65mV −65mV
Reset membrane potential −100mV −65mV

Neuronal threshold −25mV −20mV
Membrane time constant 2.5ms 25ms

Refractory period 0.1ms 0.1ms
Excitatory decay time 5ms 5ms
Inhibitory decay time 5ms 5ms

ωWTA 0.5 /
∆θ / 12mV
tδ / 50ms



FIGURE 3 – Evolution of quantitative and qualitative properties of the DVS 128 Gesture dataset after attentional filtering,
according to the dataset’s various targets i.e. various labelled gestures.

FIGURE 4 – Performance of the attentional filtering introduced in [5] according to the shift and diverse activity measures.
N corresponds to the number of events, TD to the temporal density and SD to the spatial density.

tions and two dynamic adaptation rules 1.

3.1 Visual input data
This work aims to demonstrate the neuromorphic mo-
dels’ efficient saliency detection and attentional selection
of OoIs in an event-based visual scene by verifying their
quantitative and qualitative accuracies. To this end, we
need an event dataset with a controlled number of OoIs,
with known spatiotemporal coordinates. Additionally, as
we wish to assess a qualitative aspect by evaluating the
performance of a classification task on the output OoIs, the

1. This number of neurons and synaptic connections was calculated
for two output layers. It was obtained by computing the corresponding
values in the saliency detection (see the equations described in Tab. 2)
added to the number of synaptic connections between the input and the
output layers (2×w×h) and the number of output neurons (2×w×h).
We ran the experiments on the custom-made datasets described in Section
III.A, where each sample is spatially downsized by 4 (thus w = 64 and
h = 32) using the eventcount method introduced in [8].

dataset must include labelled objects corresponding to the
output OoIs.
Since (to the best of our knowledge) such a dataset does not
exist, we artificially created one meeting the criteria des-
cribed above by combining together various samples from
DVS 128 Gesture [25] according to a protocol described
below.

DVS 128 Gesture. The DVS128 Gesture dataset [25] has
now become a standard benchmark in event data classifica-
tion. It features 29 subjects recorded (with a 128 × 128
pixels DVS128 camera) performing 11 different hand ges-
tures under 3 kinds of illumination conditions. A total of
133 samples are available for each gesture, each compo-
sed roughly of 400K events, for a duration of 6 seconds
approximately. The dataset is split into two sub-datasets to
facilitate training : the train set contains 80% of the recor-
ded samples and the test set contains the remaining 20%,
with evenly distributed target.



Control and random symmetric combinations. A first
custom-made dataset called "control" was created by ran-
domly selecting 50 DVS 128 Gesture samples, copying
them n times and combining them together side-by-side by
offsetting their x and y coordinates accordingly. This leads
to a pool of 50 samples on which to detect one to n OoIs
(i.e. the hand doing the gesture), whose spatiotemporal lo-
calisation is approximately known.
A second custom-made dataset was similarly created by
randomly selecting 50 × n DVS 128 Gesture sample and
combining them together to produce a final pool of 50
samples. As the intrinsic activity measures of each sample
differ according to their class and may affect the saliency
detection (see Fig. 4), for each combination n − 1 others
are created by permuting the order of the samples in order
to create a random but symmetric custom-made dataset of
50 ∗ n elements.
The two datasets described above will be respectively refer-
red to as "control" and "random symmetric" in the rest of
this paper. It is to be noted that the actual data used as input
in the following sections have been spatially reduced by 4
using the event count method introduced in [8] , due to the
limitations of PyNN in terms of the maximum number of
simultaneously simulatable neurons and connections. Fur-
thermore, only the first 100ms (or 1s for any classification
task) of each sample was used to reduce the computation
time.

Shift. Additionally, we introduce some variations within
the two kinds of custom-made datasets presented above :
the n samples are combined together according to a certain
temporal shift, where the m+1 sample’s temporal coordi-
nate is shifted by a factor shift to the mth sample. In the
following experimental results, shift varies between 0 (all
the combined samples start simultaneously) and 5000µs.

3.2 Validation of the attentional selection of
one OoI

One OoI in input data. Firstly we aimed to validate our
i=original attentional mechanism by assessing the evolu-
tion of the quantitative and qualitative properties of DVS
128 Gesture [25] before and after attentional filtering.
Fig. 3 presents the ratio of various quantitative properties’
values of the model’s output to those of the original da-
taset, averaged for each class ; as well as the classification
performance performed by the Parametric Leaky Integrate-
and-Fire (PLIF) classifier [26] on the original and output
datasets.
We aim to implement an attentional selection of multiple
OoIs that on one side significantly reduce the input data to
handle, while on the other side maintaining relatively good
quality. Fig. 3 assures us that using our original saliency de-
tection model allows for an attentional selection of events
answering to our needs, with a repartition of events in space
reduced by 80% and a classification accuracy maintained at
70% of the original one’s.

FIGURE 5 – Performance of simultaneous mult-OoIs de-
tection according to the parameters ωWTA, ∆θ and tδ . The
impact of tδ variation was observed for the parameteriza-
tions A (ωWTA = 0.5, ∆θ = 14), B (ωWTA = 0.5, ∆θ =
13), C (ωWTA = 0.5, ∆θ = 12) and D (ωWTA = 0.5,
∆θ = 11).

FIGURE 6 – Latency of the OoI selection in [5]’s (in blue)
and our novel architecture according to the shift (in red).
With the exception of the dip observed for a 50µs shift, the
overall latency of OoI selection increases with the number
of OoIs to be detected (from one in blue to two in red).

FIGURE 7 – Multi-OoIs detection performance (top), la-
tency of the OoIs detection (middle) and classification ac-
curacy of the selected OoIs (bottom) of the multi-OoIs se-
lection model on a "control" dataset.



TABLE 2 – Comparison between our contribution and the state-of-the-art, with input data of size S × S,OL the overlapping
percentage described in [17] and div the dividing factor between the input layer and the saliency detector in [5]. A numerical
value was calculated for each theoretical estimation, for S = 128, OL = 5% and div = 16.

Renner et al., 2019 [19] D’Angelo et al., 2022 [17] Our initial model Our contribution

Saliency detection

nlayers 2 10 2 2

nneurons 2S2 S2 × (1 + 4
OL2 ) + 5 S2 × (1 + 1

div2 ) S2 × (1 + 1
div2 )

For S = 128 : 32,768 19,010 17,408 17,408

nsynapses S2 × (2S2 − 1) S2 × (4 + 20
OL2 ) + 4 S2 × (1 + S2

div4 − 1
div2 ) S2 × (1 + S2

div4 − 1
div2 )

For S = 128 : 536,854,528 65,540 1,063,936 1,063,936

Selection of OoIs

Selection of OoI No No Yes Yes

Simultaneous
multi-OoI selection No No No Yes

Detection latency NA 16µs 13µs 14µs

Multiple OoIs in input data. After verifying the perfor-
mance of the saliency detection model with one OoI in
the input data, we now wish to assess its behaviour and
its bio-plausibility. Indeed, when confronted with a visual
scene with multiple OoIs and asked to select only one,
we expect a human being to always select either the one
with the highest density of information (i.e. highest num-
ber of events and spatiotemporal density) or the one that
comes first when the shift between the multiple OoIs is big
enough. A bio-plausible saliency detection model would
follow a similar behaviour ; we thus present our previous
model with the pool of custom-made "random symmetric"
samples (see Section III.A). Fig. 4 displays the results of
this experiment : we can see that as expected, the per-
formance of detection of the first sample increases stron-
gly with the shift, reaching nearly 100% for a shift of
1000µs and higher. On the other side, this performance is
strongly degraded when the value of the activity measure
of the first sample is smaller than the second one (i.e. where
the ratio of the first sample’s value to the second is smaller
than 100%, highlighted by a green line on the figure). This
is confirmed by comparing these results to the one obtained
in case of no shift (plot on the left).
We can thus conclude that detecting the saliency in event
data according to the event density is bio-plausible : the de-
tected OoI corresponds either to the first object appearing
in the scene (with at least a 1000µs delay compared to the
others) or the one with the highest spatial density of events.
We can thus indeed call such a model a spatiotemporal at-
tention mechanism.

3.3 Quality of the simultaneous attentional
selection of multiple OoIs

Fig. 5 presents the evolution of the performance of detec-
tion of two different OoIs depending on the tuning of sy-
naptic and neuronal parameters : ωWTA which influences
the number and size of detected RoIs (see Eq. 1), ∆θ which

moderates the impact of salient activity on the output’s
thresholds (see Eq. 3) and tδ which delays the impact of
the lateral output layers (see Eq.7). It highlights the im-
portance of parameter tuning in SNN, and the difficulty to
identify the correct parameters for each dataset — although
we can conclude that it seems that tδ has little impact on
the selection performance. According to Fig. 5, in order to
optimise the multi-OoI detection performance, this work
uses the hyperparameters defined in Table 1.
We aim to assess the multi-OoIs selection performance as
well as the quality of the output OoIs. Fig. 7 shows the
evolution of the performance of multi-OoIs detection ac-
cording to the temporal shift in the custom-made "control"
datasets, as well as the detection latency and classification
accuracy of PLIF [26] compared to the original (in orange).
The drop in accuracy compared to the original can be ex-
plained by the smaller number of events contained in the
multiple output OoIs. Indeed, the PLIF classifier [26] ac-
cumulates events in frames and therefore performs better
on a dataset rich in events.

3.4 Latency of OoI selection
On an embedded system, the latency of the model’s deci-
sion is crucial to limit any risk of an accident. We found
in our previous work that our "Neuromorphic Event-Based
Spatio-temporal Attention Model rejects more than 50%
of incoming unwanted events occurring only 20 ms after
activity onset" [5]. One might fear that extending this mo-
del to multiple OoI might lead to a significant increase in
decision latency — however, Fig. 6 demonstrates that our
contribution maintains this latency performance, which is
revised to the value of 14ms maximum without shift and
decreases down to 5ms for an increasing shift.

3.5 Comparison with State-of-the-Art
Table 2 compares our contribution with the neuromorphic
saliency models implemented in [17,19] as well as with our



initial model [5]. The data presented here were either re-
trieved directly from the information given by the authors
or calculated from the description of each model. Those
different metrics enhance our proposed model, whose im-
plementation is resource-efficient while implementing ad-
ditional features with lower latency.

4 Conclusion
This work significantly extends our original preliminary
SNN architecture introduced in [5] to attentionally and si-
multaneously select multiple OoIs in event data. This in-
novative proposed architecture is able to accurately filter
out n objects of interest out of n initially present more
than 50% of the time ; selects at least one OoI with a de-
lay of less than 15ms at most and reaching 5ms in the best
cases ; filters out OoIs with a quality leading to a classifi-
cation performance reaching 73% the original data’s ; and
achieves all the above with no training phase and a reduced
number of neurons and connections compared to state-of-
the-art salient detection methods.
In future works, we wish to validate this novel architecture
on additional event-based datasets and a greater n of OoIs
as well as implement it on neuromorphic hardware, such
as SpiNNaker [27] or Kraken [28], directly interfaced with
an event camera. We believe in its usefulness in a task of
embedded multi-object tracking or scene segmentation.
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