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A NOTATIONS

We summarize the main notations used in the paper in Table 3.

Table 3: Summary of the main notations of the paper.

Notations Meaning

D = {(xi,yi)}|D|
i=1 The set of |D| data samples and the corresponding labels

j, m, L The index of the current layer, the current subnetwork, and the number of layers

zj The preactivation feature map and output of the layer (j − 1)/input of layer j

ϕ The activation function (considered constant throughout the network)

hj The feature map and output of layer j, hj = ϕ(zj)

Hj ,Wj The height and width of the feature maps and output of layer j − 1

Cj The number of channels of the feature maps and output of layer j − 1

nj The number of parameters of layer j

B The batch size of the training procedure

maskjm The mask corresponding to the layer j of the subnetwork m

⌊·⌋ The floor function

⋆, ⊛, ◦ The 2D cross-correlation, the convolution, and the Hadamard product

sj The size of the kernel of the layer j

M The number of subnetworks in an ensemble

ŷm
i The prediction of the subnetwork number m concerning the input xi

ŷi The prediction of the ensemble concerning the input xi

α The width-augmentation factor of Packed-Ensembles

γ The number of subgroups of Packed-Ensembles

θα,m The set of weights of the subnetwork m with a width factor α

ωj
α,γ The weights of layer j with γ groups and a width factor α
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Table 4: Hyperparameters for image classification experiments. HFlip denotes the classical horizontal flip.

Dataset Networks Epochs Batch size start lr Momentum Weight decay γ-lr Milestones Data augmentations

C10 R18 75 128 0.05 0.9 5e-4 0.1 25, 50 HFlip
C10 R50 200 128 0.1 0.9 5e-4 0.2 60, 120, 160 HFlip
C10 WR28-10 200 128 0.1 0.9 5e-4 0.2 60, 120, 160 HFlip
C100 R18 75 128 0.05 0.9 1e-4 0.2 25, 50 HFlip
C100 R50 200 128 0.1 0.9 5e-4 0.2 60, 120, 160 HFlip
C100 WR28-10 200 128 0.1 0.9 5e-4 0.2 60, 120, 160 Medium

B IMPLEMENTATION DETAILS

General Considerations. Our code is implemented in PyTorch (Paszke et al., 2019) using the
PyTorch Lightning framework. The code will be made publicly available after the anonymity period.

Table 4 summarizes all the hyperparameters used in the paper for CIFAR-10 and CIFAR-100. In
all cases, we use SGD combined with a multistep-learning-rate scheduler multiplying the rate by
γ-lr at each milestone. Note that BatchEnsemble based on ResNet-50 uses a lower learning rate of
0.08 instead of 0.1 for stability. The medium data augmentation corresponds to a combination of
mixup (Zhang et al., 2018a) and cutmix (Yun et al., 2019) with 0.5 switch probability and using
timm’s augmentation classes (Wightman, 2019), with coefficients respectively 0.5 and 0.2. In this
case, we also use RandAugment (Cubuk et al., 2020) with m = 9, n = 2, and mstd = 1 and a
label-smoothing (Szegedy et al., 2016) of intensity 0.1.

To ensure that the layers convey sufficient information and are not weakened by groups, we have set
a constant minimum number of channels per group to 64 for all experiments presented in the paper.
If the number of channels per group is lower than this threshold, γ is reduced. Moreover, we do
not apply subgroups (parameterized by γ) on the first layer of the network, nor on the first layer of
ResNet’s blocks. Experiments in which this minimum number of channels could play a significant
role and bring confusion are not presented (see, for instance, PE-(1, 4, 4) in Table 5).

For ImageNet, we use the A3 procedure from Wightman et al. (2021) for all models. Training with
the exact A3 procedure was not always possible. Refer to the specific subsection for more details.

Please note that the hyperparameters of the training procedures have not been optimized for our
method and have been taken directly from the literature (He et al., 2016; Wightman et al., 2021).
We strengthened the data augmentations for WideResNet on CIFAR-100 as we were not able to
replicate the results from Zagoruyko & Komodakis (2016).

Masksembles. We use the code proposed by (Durasov et al., 2021) 3. We modified the mask gen-
eration function using binary search, as proposed by the authors since it was unable to build masks
for ResNet50x4. We note that the code implies performing batch repeats at the start of the forward
passes. All the results regarding this technique are therefore computed with this specification. The
ResNet implementations are built using Masksemble2D layers with M = 4 and a scale factor of 2
after each convolution.

BatchEnsemble. For BatchEnsemble, we use two different values for weight decay. Table 4 pro-
vides the weight decay corresponding to the shared weights. However, no weight decay is applied
to the vectors S and R (which generate the rank-1 matrices).

ImageNet. The batch size of Masksembles ResNet-50x4 is reduced to 1120 because of memory
constraints. Concerning the BatchEnsembles based on ResNet-50 and ResNet-50x4, we clip the
norm of the gradients to 0.0005 to avoid divergence.

C DISCUSSION ON THE SPARSITY

In this section, we provide an estimation of the expected distance between a dense, fully-connected
layer and a sparse one. For simplicity, we are here assuming to operate with a fully-connected layer.
First, let us write our first proposition:

3available at github.com/nikitadurasov/masksembles
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Figure 5: KL divergence for different values of p and σj+1
z , with µj(k) = 0.1 ∀j, k and wj(c, k) =

0.1 ∀j, c, k.

Proposition C.1. Given a fully connected layer j + 1 defined by:

zj+1(c) =

Cj−1∑
k=0

ωj(c, k)hj(k) (6)

and its approximation defined by:

z̃j+1(c) =

Cj−1∑
k=0

(ωj(c, k)maskj(k, c))hj(k) (7)

Under the assumption that the j follows a Gaussian distribution hj ∼ N (µj ,Σj), where Σj is the
covariance matrix, and µj the mean vector, the Kullback–Leibler divergence between the layer and
its approximation is bounded by:

DKL(z, z̃)(c) ≤
1

2

{
p+

1

p
− 2 +

p · (1− p)
∑Cj−1

k=0 ωj(c, k)2µj(k)2

(σj+1
z )2(c)

+

[
(1− p)× µj+1

z (c)
]2

p(σj+1
z )2(c)

}
(8)

where p ∈ [0; 1] is the fraction of the parameters of zj+1(c) included in the approximation z̃j+1(c).

A plot for (8) is provided in Figure 5.

Proof. To prove Prop. C.1, we state first that, since hj(k) follows a Gaussian distribution, and
considering that ωj at inference time is constant and linearly-combined with a gaussian random
variable, zj+1 will be as well gaussian-distributed.
From the property of linearity of expectations, we know that the mean for zj+1(c) is:

µj+1
z (c) =

Cj−1∑
k=0

ωj(c, k)µj(k) (9)

and the variance is:

(σj+1
z )2(c) =

Cj−1∑
k=0

ωj(c, k)

[
ωj(c, k)Σ(k, k) + 2

∑
k′<k

ωj(c, k′)Σ(k′, k)

]
. (10)

19



Published as a conference paper at ICLR 2023

If we assume Σ(i, k) = 0 ∀ i ̸= k, (10) simplifies into:

(σj+1
z )2(c) =

Cj−1∑
k=0

ωj(c, k)2Σ(k, k). (11)

Let us now consider the case with the mask, similarly as presented in (3):

z̃j+1(c) =

Cj−1∑
k=0

(ωj(c, k)maskj(k, c))hj(k) (12)

We assume here that maskj ∼ Ber(p) where p is the probability of the Bernoulli (or 1-pruning
rate). In the limit of large Cj , we know that z̃j+1(c) follows a Gaussian distribution defined by a
mean and a variance equal to:

µ̃j+1
z (c) =

Cj−1∑
k=0

ωj(c, k)µj(k)p (13)

(σ̃j+1
z )2(c) =

Cj−1∑
k=0

pωj(c, k)2
[
µj(k)2(1− p) + Σ(k, k)

]
(14)

Hence, we have:
µ̃j+1

z (c) = p× µj+1
z (c) (15)

(σ̃j+1
z )2(c) = p

(σj+1
z )2(c) + (1− p)

Cj−1∑
k=0

ωj(c, k)2µj(k)2

 (16)

In order to assess the dissimilarity between z and z̃, we can write the Kullback–Leibler divergence:

DKL(z, z̃)(c) =
1

2

{
log

[
(σ̃j+1

z )2(c)

(σj+1
z )2(c)

]
+

(σj+1
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− 1

}
(17)

Straightforwardly we can write the inequality:

DKL(z, z̃)(c) ≤
1

2

{
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}
(18)

According to (16) we can write:
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1
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Since we know that
(σj+1
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can also write:
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Finally, according to: (15)

DKL(z, z̃)(c) ≤
1
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finding back (8).
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Accuracy AUPR

Figure 6: Accuracy and AUPR of Packed-Ensembles with ResNet-50 on CIFAR-100 depending on
α.

Accuracy AUPR

Figure 7: Accuracy and AUPR of Packed-Ensembles with ResNet-50 on CIFAR-100 depending on
γ.

D ABLATION STUDY

Our algorithm mainly depends on three hyperparameters. M represents the number of subnetworks
in the ensemble, α controls the power of representation of the DNN, and γ is an extra parameter that
controls the sparsity degree of the DNN. To evaluate the sensitivity of Packed-Ensembles to these
parameters, we train 5 ResNet-50 on CIFAR-10 similarly to the protocol explained in section 4.1.
Figures 6 and 7 show that the more we add subnetworks increasing M , the better the performance, in
terms of accuracy and AUPR. We also note that the results are stable with γ. Moreover, the resulting
accuracy tends to increase with α until it reaches a plateau. These statements are confirmed by the
results in Table 5.

E DISCUSSION ABOUT OOD CRITERIA

Deep Ensembles (Lakshminarayanan et al., 2017) and Packed-Ensembles are ensembles of DNNs
that can be used to quantify the uncertainty of the DNNs prediction. Similarly to Bayesian Neu-
ral Network, one can take the softmax outputs of posterior predictive distribution, which define
the MSP = maxyi{P (yi|x,D)}. The MSP can also be used for classical DNN, yet we use the
conditional likelihood instead of the posterior distribution in this case.

One can also use the Maximum Logit (ML) as an uncertainty criterion and the entropy of the pos-
terior predictive distribution as an uncertainty criterion, which is defined by Ent. = H(P (yi|x,D))
with H being the entropy function. Another metric is the mutual information between two random

variables, which is defined by: MI = H(P (yi|x,D)) − 1
M

M−1∑
m=0

H(P (y|θα,m,x)). It represents a
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Table 5: Performance (Acc / ECE / AUPR) of Packed-Ensembles for various α and γ with ResNet-50 on
CIFAR-100 and M = 4.

γ
α 1 2 3 4

1 0.7872 / 0.0165 / 0.8969 0.8116 / 0.0203 / 0.8966 0.8187 / 0.0201 / 0.8825 0.8183 / 0.0230 / 0.8939
2 0.7857 / 0.0185 / 0.9024 0.8103 / 0.0295 / 0.9115 0.8186 / 0.0197 / 0.9127 0.8242 / 0.0190 / 0.9088
4 / 0.8119 / 0.0180 / 0.9066 0.8182 / 0.0236 / 0.9140 0.8225 / 0.0226 / 0.9229

Table 6: Comparison of the effect of the different uncertainty criteria for OOD on CIFAR-100 with
different sets of parameters for Packed-Ensembles.

Criterion OOD eval α = 2, γ = 1M = 4 α = 3, γ = 1M = 8 α = 4, γ = 2M = 8 α = 6, γ = 4M = 8 α = 8, γ = 1M = 16

MSP AUPR (↑) 0.8952 ± 0.0132 0.9055 ± 0.0034 0.9153 ± 0.0012 0.9149 ± 0.0071 0.9141 ± 0.0057
ML AUPR (↑) 0.9183 ± 0.0098 0.9175 ± 0.0044 0.9285 ± 0.0012 0.9265 ± 0.0070 0.9268 ± 0.0068
Ent. AUPR (↑) 0.9105 ± 0.0138 0.9152 ± 0.0035 0.9260 ± 0.0016 0.9237 ± 0.0066 0.9252 ± 0.0060
MI AUPR (↑) 0.8649 ± 0.0061 0.9139 ± 0.0077 0.9157 ± 0.0072 0.9196 ± 0.0109 0.9245 ± 0.0091
v AUPR (↑) 0.8404 ± 0.0071 0.8746 ± 0.0056 0.8827 ± 0.0033 0.8842 ± 0.0102 0.8931 ± 0.0072

MSP AUC (↑) 0.8056 ± 0.0260 0.8204 ± 0.0101 0.8408 ± 0.0033 0.8432 ± 0.0134 0.8387 ± 0.0094
ML AUC (↑) 0.8562 ± 0.0194 0.8421 ± 0.0115 0.8665 ± 0.0027 0.8621 ± 0.0144 0.8607 ± 0.0114
Ent. AUC (↑) 0.8361 ± 0.0271 0.8427 ± 0.0095 0.8662 ± 0.0027 0.8617 ± 0.0136 0.8614 ± 0.0096
MI AUC (↑) 0.7711 ± 0.0064 0.8312 ± 0.0135 0.8402 ± 0.0116 0.8468 ± 0.0163 0.8513 ± 0.0120
v AUC (↑) 0.7305 ± 0.0153 0.7799 ± 0.0129 0.7943 ± 0.0082 0.7999 ± 0.0166 0.8092 ± 0.0113

measure of the ensemble entropy, which is the entropy of the posterior minus the average entropy
over predictions.

The last metric, used in active learning, is the variation ratio (Beluch et al., 2018), which measures
the dispersion of a nominal variable and is calculated as the proportion of predicted class labels that
are not the modal class prediction. It is defined by: v = 1− fi

M , where fi is the number of predictions
falling into the modal class category.

In Table 6, the results for the different metrics are reported. We note that ML seems to be the best
metric to detect OOD. This metric is followed by Ent. and then MI. Note that v, widely used in
active learning, does not seem effective in detecting OOD samples. This shows us that it is essential
to use a good criterion in addition to good ensembling.

F DISCUSSION ABOUT THE SOURCES OF STOCHASTICITY

As written in the introduction of the paper, diversity is essential to the success of ensembling, be it for
its accuracy but also for calibration and OOD detection. Three primary sources can induce weight
diversity, and therefore diversity in the function space, during the training. These sources are the ini-
tialization of the weights, the composition of the batches, and the use of non-deterministic backprop-
agation algorithms 4. On Table 7, we measure the performance and diversity of Packed-Ensembles
trained on CIFAR-100. This diversity is measured by the mutual information and is twofold: we
compute the in-distribution mutual information (IDMI) on the test set of CIFAR-100 and the OOD
mutual information (OODMI) on SVHN. of the mean performance of Packed-Ensembles over five
experiments in accuracy, NLL, calibration, and OOD detection on CIFAR-100. Concerning the
performance, we compute the accuracy, ECE, and AUPR, which are proxies of the quality of this
diversity. Results of Table 7 lead to several takeaways. First, they hint that there is no clear best
set of trivial sources of stochasticity. Except for the first (and greyed) line, which corresponds to
ensembling completely identical networks (the training being totally deterministic, which the null
MI confirms), the results seem equivalent in diversity (via mutual information) and ID/OOD perfor-
mance. Secondly, it shows that the use of non-deterministic algorithms can be sufficient to generate
diversity. It was noted that this effect does not always happen depending on the selected architecture
and the precision used (float16, or float32).

Given that there is no emerging best set of stochasticity, we use the faster non-deterministic back-
propagation algorithms and different initializations to ensure enough stochasticity and for program-
ming convenience.

4see https://docs.nvidia.com/deeplearning/cudnn/api/index.html
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Table 7: Comparison of the diversities and the performance wrt. the different sources of
stochasticity on CIFAR-100. ND corresponds to the use of Non-deterministic backpropagation
algorithms, DI to different initializations, and DB to different compositions of the batches. A stan-
dard error (over five runs) is included in small font.

Stochasticity ResNet-18
ND DI DB Acc (↑) ECE (↓) AUPR (↑) IDMI OODMI

- - - 71.70±0.06 0.0497±0.0013 87.32±0.91 0±0 0±0

✓ - - 75.79±0.22 0.0365±0.0044 89.53±0.47 0.1945 0.4001

- ✓ - 76.20±0.04 0.0419±0.0006 89.54±0.39 0.2011 0.4391

- - ✓ 76.06±0.02 0.0434±0.0011 88.70±0.27 0.1987 0.4079

✓ ✓ - 76.10±0.05 0.0424±0.0004 88.65±0.42 0.1995 0.4360

✓ - ✓ 76.19±0.11 0.0433±0.0010 88.87±0.15 0.2032 0.4090

- ✓ ✓ 76.14±0.07 0.0437±0.0008 89.21±0.38 0.1943 0.4195

✓ ✓ ✓ 76.29±0.07 0.0445±0.0006 89.00±0.54 0.1954 0.4060

Stochasticity ResNet-50
- - - 77.63±0.23 0.0825±0.0018 89.19±0.65 0±0 0±0

✓ - - 80.94±0.10 0.0179±0.0010 90.23±0.62 0.1513 0.4022

- ✓ - 81.01±0.06 0.0202±0.0011 91.10±0.39 0.1524 0.4088

- - ✓ 80.87±0.10 0.0178±0.0010 90.80±0.30 0.1505 0.4115

✓ ✓ - 81.16±0.10 0.0210±0.0008 91.69±0.56 0.1584 0.4135

✓ - ✓ 81.14±0.07 0.0200±0.0007 90.41±0.39 0.1503 0.3897

- ✓ ✓ 81.10±0.05 0.0186±0.0016 90.85±0.29 0.1521 0.4034

✓ ✓ ✓ 81.08±0.08 0.0198±0.0013 90.68±0.25 0.1534 0.4031

G DISCUSSION ABOUT THE SUBNETWORKS

Discussing the width and depth of deep neural networks is an essential research topic. Researchers
have focused on the correct approaches to increase the depth of DNN, increasing the accuracy.
Nguyen et al. (2020) demonstrate that the width and depth are connected to the model capacity and
enable the DNN to learn block structures, leading to good accuracy. Hence, by splitting the width,
chances are that we could decrease the model capacity.

Deep neural networks are heavily over-parameterized DNNs as suggested by lottery ticket hypoth-
esis (Frankle & Carbin, 2018). Thus it is possible to kill up to 80% of the neurons without losing
too much performance. MIMO builds on this assumption to ensure that each network drives several
networks simultaneously. However, unlike in our work, the boundaries between the networks are
not clearly defined. Thus, the same neuron can be used for multiple different subnetworks (DNNs)
in the same ensemble. In our case, we clearly assign each neuron to a DNN from the ensemble.
This way, the DNNs are not mixed up and can learn an independent representation. However, as in
MIMO, we rely on the fact that not all neurons are helpful, so we split the width of the initial DNNs
into a set of DNNs. This decomposition may seem crude. However, it allows us to better parallelize
Packed-Ensembles for training and inference. To overcome the fact that our networks are not wide
enough if M is too large, we have added an alpha hyperparameter that can increase the width of the
subnetworks. In Figure 8, we study the influence of the width of the subnetworks.

First, we notice that the accuracy increases with the width, while the AUPR looks relatively constant.
This seems to confirm the importance of the alpha parameter in balancing the width of the DNN.
Furthermore, reducing the width does not appear to reduce the accuracy significantly. Thus, this jus-
tifies our choice to split the width of the DNN to produce several subnetworks since the uncertainty
quantification will be constant, and the accuracy will not drop drastically. Moreover, the addition
of the alpha parameter allows us to add a new degree of freedom to our ensemble and enables it to
increase its accuracy.
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Accuracy AUPR

Figure 8: Accuracy and AUPR curves of ResNet-18 in red and ResNet-50 in blue on CIFAR-100
with different widths. When the width is equal to 1, it corresponds to the original ResNet; when the
width is equal to x, the width of every layer is multiplied by x.

Table 8: Comparison of training and inference times of different ensemble techniques using
torch1.12.1+cu113 on an RTX 3090. All ensembles have four subnetworks.

f32 Precision f16 Precision
models Training ↓ Inference ↑ Training ↓ Inference ↑

ResNet-50
CIFAR-100 s/epoch im/s s/epoch im/s

Single Model 37.06 3709 22.42 5718
Packed-Ensembles-(2,4,1) 179.50 1381 51.20 3406
Packed-Ensembles-(2,4,2) 175.10 1501 52.11 3440

Deep Ensembles 145.30 1001 84.86 1609
MIMO 37.90 3574 24.44 5649

BatchEnsemble 58.78 1809 53.97 1916

H DISCUSSION ABOUT THE TRAINING VELOCITY

Our experiments show that grouped convolutions are not as fast as they could theoretically be, and
confirm the statements made by many PyTorch and TensorFlow users 5. Following the idea that
grouped convolutions are bandwidth-bound, we advise readers to leverage Native Automatic Mixed
Precision (AMP) and cuDNN benchmark flags when training a Packed-Ensembles to reduce the
bandwidth bottleneck compared to the baseline. AMP also divides the VRAM usage by two while
yielding equally good results. Future improvements of PyTorch grouped convolutions should help
Packed-Ensembles develop its full potential, increasing its current assets. We note in Table 8 that
using float16, Packed-Ensembles is only 1.6× slower than the single model during inference.
Furthermore, Packed-Ensembles is only 2.3× slower during training than the single model, making
it an efficient model capable of training four models in half the time of a Deep Ensembles.

I DISTRIBUTION SHIFT

In this section, we evaluate the robustness of Packed-Ensembles under dataset shift. We use models
trained on CIFAR-100 (Krizhevsky, 2009) and shift the data using corruptions and perturbations
proposed by (Hendrycks & Dietterich, 2019) to produce CIFAR-100-C. There are five levels of
perturbations called ”severity,” from one, the weakest, to five, the strongest. In real-world scenarios,
distributional shift is crucial, as explained by (Ovadia et al., 2019), and it is critical to study how
much a model prediction shifts from the original training data distribution. Thanks to Figure 9, we
notice that Packed-Ensembles achieves the highest accuracy and lowest ECE under distributional
shift, leading to a method robust against this uncertainty.

5For instance https://github.com/pytorch/pytorch/issues/75747
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Figure 9: Accuracy and Calibration under distributional shift. Comparison of the accuracy and ECE
under all types of corruptions on (a) CIFAR-100-C (Hendrycks & Dietterich, 2019) with different
levels of severity.

Table 9: Comparison between the results obtained with Packed-Ensembles and a similar
ResNeXt-50. The dataset is CIFAR-10.

Network Acc NLL ECE AUPR AUC FPR95 Params (M)
PE ResNet-50 96.0 0.1367 0.0087 97.1 94.9 14.5 23.6
ResNeXt-50 90.4 0.4604 0.0709 90.4 82.5 63.4 23.0

J STABILIZATION OF THE PERFORMANCE

We perform five times each training task on CIFAR-10 and CIFAR-100 to estimate a better value
and be able to compute the variance. Let us first note that the standard deviation for the single DNN
on CIFAR-100 with a ResNet-50 architecture amounts to 0.68%. Ensemble strategies shrink the
standard variation to 0.43% for Deep Ensembles and 0.19% for Packed-Ensembles. Thus it seems
that Packed-Ensembles makes DNN predictions more stable in addition to improving accuracy and
uncertainty quantification. This result is interesting as it appears to contradict Neal et al. (2018), who
claim that wider DNNs have a smaller variance. This stability might come from the ensembling.

K ON THE EQUIVALENCE BETWEEN SEQUENTIAL TRAINING AND
PACKED-ENSEMBLES

The sequential training of Deep Ensembles differs significantly from the training procedure of
Packed-Ensembles. The main differences lie in the subnetworks’ batch composition and the best
models’ selection.

Concerning Packed-Ensembles, the batches are strictly the same for all subnetworks, thus removing
one source of stochasticity compared to sequential learning. Yet, in practice, we show empirically
that random initialization and stochastic algorithms are sufficient to get diverse subnetworks (see
Appendix F for more details).

For the selection of models, Packed-Ensembles considers subnetworks as a whole (i.e., maximize
the ensemble accuracy on the validation set) and therefore selects the best ensemble at a given epoch.
On the other hand, sequential training selects the best networks individually, possibly on different
epochs, which does not guarantee that the best ensemble is selected but ensures the optimality of
subnetworks over the epochs.
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Table 10: Comparison of the efficiency of the networks trained on ImageNet (Deng et al.,
2009). All ensembles have M = 4 subnetworks and γ = 1. Mult-Adds corresponds to the inference
cost, i.e., the number of Giga multiply-add operations for a forward pass which is estimated with
Torchinfo.

Method Net Params (M) ↓ Mult-Adds (G) ↓
Single Model R50 25.6 4.09
BatchEnsemble R50 25.7 16.36
MIMO R50 31.7 4.45
Masksembles R50 25.7 16.36
Packed-Ensembles (α = 3) R50 59.1 9.29
Deep Ensembles R50 102.4 16.36

Single Model R50x4 383.6 70.0
BatchEnsemble R50x4 384.4 256.0
MIMO R50x4 408.3 65.4
Masksembles R50x4 384.0 256.0
Packed-Ensembles (α = 2) R50x4 392.0 64.47
Deep Ensembles R50x4 1534.4 280.0

L USING GROUPS IS NOT SUFFICIENT TO PROVIDE EQUIVALENT RESULTS TO
PACKED-ENSEMBLES

To make sure that the use of groups cannot simply explain our results, we compare Packed-
Ensembles to a single ResNeXt-50 (32×4d) (Xie et al., 2017) in Table 9. ResNeXt-50 is fairly
equivalent to our method but does not propagate groups, only used in the middle layer of each
block, which are therefore not independent. We keep the same training optimization procedures and
data-augmentation strategies detailed in Appendix B.

M EFFICIENCY OF THE NETWORKS TRAINED ON IMAGENET

Table 10 provides the efficiency of the networks trained on ImageNet-1k (see section 4.1.3), in num-
ber of parameters and multiply-additions. PE-(3, 4, 1) was preferred to PE-(3, 4, 2) for ResNet50 to
improve the representation capacity of the subnetworks.

N REGRESSION

To generalize our work, we propose to study regression tasks. We replicate the setting developed
by Hernández-Lobato & Adams (2015), Gal & Ghahramani (2016), and Lakshminarayanan et al.
(2017).

For the training in the one-dimensional regression setting, we minimize the gaussian NLL (21) us-
ing networks with two outputs neurons which estimate the parameters of a heteroscedastic gaussian
distribution (Nix & Weigend, 1994; Kendall & Gal, 2017). One output corresponds to the mean
of the predicted gaussian distribution, and the softplus applied on the second is its variance. The
ensemble’s mean µ̄θ(xi) is computed using the empirical mean over the estimators and the variance
using the formula of a mixture σ̄θ(xi)

2 = M−1
∑

m

(
σθm(xi)

2 + µθm(xi)
2
)
− µ̄θ(xi) (Lakshmi-

narayanan et al., 2017).

L
(
µθm(xi), σθm(xi)

2, yi
)
=

(yi − µθm(xi))
2

2σθm(xi)2
+

1

2
log σθm(xi)

2 +
1

2
log 2π (21)

We compare Packed-Ensembles-(2, 3, 1) and Deep Ensembles on the UCI datasets in Table 11. The
subnetworks of these methods are based on multi-layer perceptrons with a single hidden layer, con-
taining 400 neurons for the more extensive Protein dataset and 200 for the others, and a ReLU
non-linearity. The results show that Packed-Ensembles and Deep Ensembles provide equivalent
results on most datasets.
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Table 11: Comparison between the results obtained with Packed-Ensembles and Deep Ensembles
on regression tasks

Datasets RMSE NLL
Packed-Ensembles Deep Ensembles Packed-Ensembles Deep Ensembles

Boston housing 2.218 ± 0.099 2.219 ± 0.098 2.028 ± 0.034 2.047 ± 0.028
Concrete 5.092 ± 0.225 5.167 ± 0.234 2.854 ± 0.028 2.885 ± 0.032
Energy 1.675 ± 0.085 1.712 ± 0.067 1.543 ± 0.072 1.553 ± 0.060
Kin8nm 0.058 ± 0.003 0.058 ± 0.003 -1.442 ± 0.010 -1.452 ± 0.010
Naval Propulsion Plant 0.002 ± 0.000 0.002 ± 0.000 -4.835 ± 0.066 -4.833 ± 0.097
Power Plant 3.127 ± 0.018 3.097 ± 0.020 2.607 ± 0.007 2.600 ± 0.007
Protein 3.476 ± 0.030 3.412 ± 0.017 2.472 ± 0.033 2.442 ± 0.015
Wine 0.482 ± 0.006 0.483 ± 0.006 0.622 ± 0.014 0.611 ± 0.013
Yacht 1.949 ± 0.215 2.511 ± 0.283 2.023 ± 0.075 2.023 ± 0.074
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