
HAL Id: hal-04219291
https://hal.science/hal-04219291

Submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation efficace des incertitudes avec
Packed-Ensembles

Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc
Martinez, Andrei Bursuc, Gianni Franchi

To cite this version:
Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, et al.. Esti-
mation efficace des incertitudes avec Packed-Ensembles. ORASIS 2023, Laboratoire LIS, UMR 7020,
May 2023, Carqueiranne, France. �hal-04219291�

https://hal.science/hal-04219291
https://hal.archives-ouvertes.fr

Estimation efficace des incertitudes avec Packed-Ensembles

Olivier Laurent1,2,* Adrien Lafage2,* Enzo Tartaglione3 Geoffrey Daniel1

Jean-Marc Martinez1 Andrei Bursuc4 Gianni Franchi2

1 SGLS, CEA, Université Paris-Saclay
2 U2IS, ENSTA Paris, Institut Polytechnique de Paris
3 LTCI, Télécom Paris, Institut Polytechnique de Paris

4 Valeo.ai

adrien.lafage@ensta-paris.fr

Résumé
Deep Ensembles (DE) est une des approches principales
pour obtenir d’excellentes performances sur des tâches
de classification et de détection de données hors distri-
bution. En pratique cependant, ces ensembles et leurs
membres sont généralement petits, et donc peu perfor-
mants, car limités par les contraintes matérielles. Nous
proposons Packed-Ensembles (PE), une méthode pour dé-
finir et entraîner des ensembles plus légers en modulant
la dimension des espaces de représentation. Nous utilisons
des convolutions groupées pour paralléliser l’ensemble en
une unique structure et ainsi améliorer les temps d’en-
traînement et d’inférence. PE a la capacité de fonction-
ner avec une empreinte mémoire équivalente à celle d’un
réseau de neurones classique. Au travers d’études appro-
fondies, nous montrons que PE préserve les propriétés de
DE, telles que la diversité, et atteint des résultats simi-
laires sur toutes les métriques de précision et de quanti-
fication d’incertitude. Le code associé au papier est dis-
ponible sur https://github.com/ENSTA-U2IS/
torch-uncertainty .

Mots Clés
Méthodes d’ensembles, Estimation des incertitudes, Détec-
tion d’OOD

Abstract
Deep Ensembles (DE) are a prominent approach to achieve
excellent performance on key metrics such as accuracy,
calibration, uncertainty estimation, and out-of-distribution
detection. However, hardware limitations of real-world
systems constrain to smaller ensembles and lower-capacity
networks, significantly deteriorating their performance
and properties. We introduce Packed-Ensembles (PE), a

* Equal contribution

strategy to design and train lightweight structured ensem-
bles by carefully modulating the dimension of their encod-
ing space. We leverage grouped convolutions to paral-
lelize the ensemble into a single common backbone and
forward pass to improve training and inference speeds.
PE is designed to work under the memory budget of a
single standard neural network. Through extensive stud-
ies, we show that PE faithfully preserve the properties
of DE, e.g., diversity, and match their performance in
terms of accuracy, calibration, out-of-distribution detec-
tion, and robustness to distribution shift. We make our code
available at https://github.com/ENSTA-U2IS/
torch-uncertainty .

Keywords

Efficient Ensembling, Uncertainty Quantification, OOD
Detection

2 3 4 5 6
Images/sec (×103)

78

79

80

81

82

A
cc

ur
ac

y
(%

)

10M 20M 90M

Packed-Ensembles
(2, 4, 1)

Packed-Ensembles
(2, 4, 2)

Deep Ensembles (×4)

Single

MIMO (4)

Figure 1 – Evaluation of computation cost and performance
trade-offs for multiple uncertainty quantification techniques
on CIFAR-100. The y-axis shows the accuracy, and the x-axis
shows the inference time in images per second. The circle area
is proportional to the number of parameters. Optimal approaches
should be closer to the top-right corner. Packed-Ensembles strikes
a good balance between predictive performance and speed.

https://github.com/ENSTA-U2IS/torch-uncertainty
https://github.com/ENSTA-U2IS/torch-uncertainty
https://github.com/ENSTA-U2IS/torch-uncertainty
https://github.com/ENSTA-U2IS/torch-uncertainty

1 Introduction
Real-world safety-critical machine learning decision sys-
tems such as autonomous driving [40; 48] impose excep-
tionally high reliability and performance requirements over
a broad range of metrics: accuracy, calibration, robustness
to distribution shifts, uncertainty estimation, and compu-
tational efficiency under limited hardware resources. Al-
though their performance across all key dimensions has
dramatically improved in the last years, vanilla Deep Neu-
ral Networks (DNNs) still have several shortcomings, no-
tably overconfidence in correct and wrong predictions [55;
16; 21]. Deep Ensembles (DE) [36] arise as a prominent
approach to address these challenges by leveraging predic-
tions from multiple high-capacity neural networks. By av-
eraging predictions or voting, DE achieves high accuracy
and robustness since potentially unreliable predictions are
exposed via the disagreement between individuals. Thanks
to the simplicity and effectiveness of the ensembling strat-
egy [8], DE have become widely used and dominate per-
formance across various benchmarks [58; 17].
DE tick all boxes in the requirements list for real-world
applications, except for computational efficiency. In fact,
DE are, in practice, computationally demanding (required
memory storage, number of operations, inference time) for
training and testing as their costs grow linearly with the
size of the individuals.
Their computational costs are, therefore, prohibitive un-
der tight hardware constraints. This limitation of DE has
inspired numerous approaches proposing computationally
efficient alternatives: multi-head networks [39; 5], archi-
tectures with ensemble-imitating layers [66; 19; 61], mul-
tiple forwards on different weight subsets of the same net-
work [14; 9], ensembles of smaller networks [33; 44],
computing ensembles from a single training run [28; 15],
efficient Bayesian Neural Networks [47; 12]. These ap-
proaches typically improve storage usage, train cost, or in-
ference time at the cost of lower accuracy and lower diver-
sity in the predictions.
An essential property of ensembles that enables improved
predictive uncertainty estimation is related to the diversity
in its predictions. [60] have shown that the independence
of individuals is critical to the success of ensembling. [11]
argue that the diversity of DE due to randomness from
weight initialization, data augmentation and batching, and
stochastic gradient updates, is superior to various other ef-
ficient ensembling approaches, despite their predictive per-
formance boosts.
Few works manage to mirror this property of DE in a com-
putationally efficient manner close to a single DNN (in
terms of memory usage, number of forward passes, image
throughput, etc.).
In this work, we aim to design a DNN architecture that
closely mimics properties of ensembles, in particular, hav-
ing a set of independent networks, in a computationally ef-
ficient manner. Previous works propose ensembles com-
posed of small models [33; 44] and achieve performances

comparable to a single large model. We build upon this
idea and devise a strategy based on small networks trying to
match the performance of an ensemble of large networks.
To this end, we leverage grouped convolutions [35] to de-
lineate multiple subnetworks within the same network. The
parameters of each subnetwork are not shared across sub-
networks, leading to independent smaller models. This
method enables fast training and inference times while pre-
dictive uncertainty quantification is close to DE (Figure 1).
In summary, our contributions are the following:

— We propose Packed-Ensembles (PE), an efficient
ensembling architecture relying on grouped convo-
lutions, as a formalization of structured sparsity for
Deep Ensembles;

— We extensively evaluate PE regarding accuracy,
calibration, OOD detection, and dataset shift on
classification and regression tasks. We demonstrate
that PE achieves state-of-the-art predictive uncer-
tainty quantification.

— We thoroughly study and discuss the properties of
PE (diversity, sparsity, stability, behavior of subnet-
works) and release our PyTorch implementation.

2 Background
In this section, we present the formalism for this work and
offer a brief background on grouped convolutions and en-
sembles of DNNs.

2.1 Background on convolutions
The convolutional layer [37] consists of a series of cross-
correlations between feature maps hj ∈ RCj×Hj×Wj re-
grouped in batches of size B and a weight tensor ωj ∈
RCj+1×Cj×s2j with Cj , Hj ,Wj three integers that represent
the number of channels, the height and the width of hj re-
spectively. Cj+1 and sj are also two integers correspond-
ing respectively to the number of channels of hj+1 (the
output of the layer) and the kernel size. Finally, j is the
layer’s index and will be fixed in the following formula.
The supplementary material details the main notations in
Table 3. The bias of convolution layers will be omitted in
the following for simplicity. Hence the output value of the
convolution layer, denoted ⊛, is:

zj+1(c, :, :) = (hj ⊛ ωj)(c, :, :)

=

Cj−1∑
k=0

ωj(c, k, :, :) ⋆ hj(k, :, :) (1)

where c ∈ J0, Cj+1 − 1K is the index of the considered
channel of the output feature map, ⋆ is the classical 2D
cross-correlation operator, and zj is the pre-activation fea-
ture map such that hj = ϕ(zj) with ϕ an activation func-
tion.
To embed an ensemble of subnetworks, we leverage
grouped convolutions, already used in ResNext [70] to
train several DNN branches in parallel. The grouped

x1

ŷ1

x1

ŷ1 ŷ1

x1
M = 3 M = 3

width α × widthwidth

a) b) c)

γ = 2

Figure 2 – Overview of the considered architectures: (left) baseline vanilla network; (center) Deep Ensembles; (right)
Packed-Ensembles-(α,M = 3, γ = 2).

convolution operation with γ groups and weights ωi
γ ∈

RCj+1×
Cj
γ ×s2j is given in equation 2, γ dividing Cj for

all layers. Any output channel c is produced by a spe-
cific group (set of filters), identified by the integer

⌊
γc

Cj+1

⌋
,

which only uses 1
γ of the input channels.

zj+1(c, :, :) = (hj ⊛ ωj
γ)(c, :, :)

=

Cj
γ −1∑
k=0

ωj
γ (c, k, :, :) ⋆ h

j

(
k +

⌊
γc

Cj+1

⌋
Cj

γ
, :, :

)
(2)

The grouped convolution layer is mathematically
equivalent to a classical convolution where the
weights are multiplied element-wise by the bi-
nary tensor maskm ∈ {0, 1}Cj+1×Cj×s2j such that
maskjm(k, l, :, :) = 1 if

⌊
γl
Cj

⌋
=

⌊
γk

Cj+1

⌋
= m for each

group m ∈ J0, γ − 1K. The complete layer mask is

finally defined as maskj =
γ−1∑
m=0

maskjm and the grouped

convolution can therefore be rewritten as:

zj+1 = hj ⊛
(
ωj ◦ maskj

)
(3)

where ◦ is the Hadamard product.

2.2 Background on Deep Ensembles
For a classification problem, let us define a dataset D =

{xi,yi}|D|
i=1 containing |D| pairs of samples xi ∈ RHj×Wj

and one-hot-encoded labels yi ∈ RNC modeled as the real-
isation of a joint distribution P(X,Y) where NC is the num-
ber of classes in the dataset. The input data xi is processed
via a neural network fθ which is a parametric probabilistic
model such that ŷi = fθ(xi) = P (Y = yi|X = xi;θ).
This approach consists in considering the prediction ŷ as
parameters of a Multinoulli distribution.
To improve the accuracy of predictions, the accuracy of
the predicted uncertainties, and the detection of OOD sam-
ples, [36] have proposed to ensemble M randomly initial-
ized DNNs as a large predictor called Deep Ensembles.

These ensembles can be seen as a discrete approximation
of the intractable bayesian marginalization on the weights,
according to [69]. If we note {θm}M−1

m=0 the set of trained
weights for the M DNNs, Deep Ensembles consists in av-
eraging the predictions of these M DNNs as in equation
equation 4.

P (yi|xi,D) =
1

M

M−1∑
m=0

P (yi|xi,θm) (4)

3 Packed-Ensembles
This section presents how to train multiple subnetworks us-
ing grouped convolution efficiently. Then, we explain how
our new architectures are equivalent to training several net-
works in parallel.

3.1 Revisiting Deep Ensembles
Although Deep Ensembles provide undisputed benefits,
they also come with the significant drawback that the train-
ing time and the memory usage in inference increase lin-
early with the number of networks. To alleviate these prob-
lems, we propose assembling small subnetworks, which
are DNNs with fewer parameters. Moreover, while en-
sembles to this day have been trained sequentially, we sug-
gest leveraging grouped convolutions to massively accel-
erate their training and inference computations thanks to
their smaller size. The propagation of grouped convolu-
tions with M groups, M being the number of subnetworks
in the ensemble, ensures that the subnetworks are trained
independently while dividing their encoding dimension by
a factor M .
More details on the usefulness of grouped convolutions to
train ensembles can be found in subsection 3.3.
To create Packed-Ensembles (illustrated in Figure 2), we
build on small subnetworks but compensate for the dra-
matic decrease of the model capacity by multiplying the
width by the hyperparameter α, which can be seen as an
expansion factor. Hence, we propose Packed-Ensembles-
(α,M, 1) as a flexible formalization of ensembles of small

equivalent
architectures

3,3x3,12

Av. Pool

12,3x3,24

48,1x1,10

24,1x1,48

x1 x2 x3

3,3x3,12

Av. Pool

12,3x3,24

48,1x1,10

24,1x1,48

x1 x2 x3

3,3x3,12

Av. Pool

12,3x3,24

48,1x1,10

24,1x1,48

x1 x2 x3 x1 x2 x3

3,3x3,36
groups = 3

Av. Pool

36,3x3,72
groups = 3

144,1x1,30
groups = 3

72,1x1,144
groups = 3

Rearrange

x1 x2 x3

3,3x3,36

Av. Pool

36,3x3,72
groups = 3

144,1x1,30
groups = 3

72,1x1,144
groups = 3

a) b) c)

Figure 3 – Equivalent architectures for Packed-Ensembles. (a) corresponds to the first sequential version, (b) to the
version with the rearrange operation and grouped convolutions and (c) to the final version beginning with a full convolution.

subnetworks. For an ensemble of M subnetworks, Packed-
Ensembles-(α,M, 1) therefore modifies the encoding di-
mension by a factor α

M and the inference of our ensemble
is computed with the following formula:

ŷ =
1

M

M−1∑
m=0

P (y|θα,m,x) with θα,m = {ωj
α ◦ maskjm}j ,

(5)

where ωj,α is the weight of the layer j of dimension
(αCj+1)× (αCj)× s2j .
In the following, we add another hyperparameter γ cor-
responding to the number of groups of each subnetwork
of the Packed-Ensembles, creating another level of spar-
sity. These groups are also called "subgroups" and are ap-
plied to the different subnetworks. Formally, we denote
our technique Packed-Ensembles-(α,M, γ), where the hy-
perparameters are in the parentheses. In this work, we con-
sider the case of a constant number of subgroups across the
layers; therefore, γ divides αCj for all j.

3.2 Computational cost
In a convolutional setting, the number of parameters in
a layer involving Cj input channels, Cj+1 output chan-
nels, kernels of size sj and γ subgroups is equal to M ×[
αCj

M
αCj+1

M s2jγ
−1

]
.

The same formula applies to dense layers as 1 × 1 convo-
lutions. Two specific cases emerge whenever the architec-
tures of the subnetworks are fully convolutional or dense.
If α =

√
M , the number of parameters in the ensemble is

equal to the number of parameters in a single model. With
α = M , each subnetwork corresponds to a single model
(and their ensemble is therefore equivalent in size to Deep
Ensembles).

3.3 Implementation details
In this paper, we propose a simple way of designing ef-
ficient ensemble convolutional layers using grouped con-

volutions. To take advantage of the parallelization capa-
bilities of GPUs in training and inference, we replace the
sequential training architecture, (a) in Figure 3, with the
parallel implementations (b) and (c). Figure 3 summarizes
different equivalent architectures for a simple ensemble of
M = 3 DNNs with three convolutional layers and a fi-
nal dense layer (equivalent to a 1 × 1 convolution) with
α = γ = 1.
In (b), we propose to stack the feature maps on the channel
dimension (denoted as the "rearrange" 1 operation). This
yields a feature map hj , of size M × Ci × Hj × Wj re-
grouped by batches of size only B

M , with B the batch size
of the ensemble. One solution to keep the same batch size
is to repeat the batch M times so that its size equals B af-
ter the rearrangement. Using convolutions with M groups
and γ subgroups per subnetwork, each feature map is con-
voluted separately by each subnetwork and yields its own
independent output. Grouped convolutions are propagated
until the end to ensure that gradients stay independent be-
tween subnetworks. Other operations, such as Batch Nor-
malization [30], can be applied directly as long as they
can be grouped or have independent actions on each chan-
nel. Figure 4a illustrates the mask used to code Packed-
Ensembles in the case where M = 2. Similarly, Figure 4b
shows the mask with M = 2 and γ = 2.
Finally, (b) and (c) are also equivalent. It is indeed possible
to replace the "rearrange" operation and the first grouped
convolution with a standard convolution if the same images
are to be provided simultaneously to all the subnetworks.
We confirm in Appendix F that this procedure is not detri-
mental to the ensemble’s performance, and we take advan-
tage of this property to provide this final optimization and
simplification.

4 Experiments
To validate the performance of our method, we conduct ex-
periments on classification tasks and measure the influence

1. See https://einops.rocks/api/rearrange/

https://einops.rocks/api/rearrange/

m=1

m=2

(a) M = 2, γ = 1

m=2

m=1

(b) M = 2, γ = 2

Figure 4 – Diagram representation of a subnetwork mask:
maskj , with M = 2, j an integer corresponding to a fully
connected layer

of the parameters α and γ. Regression tasks are detailed in
Appendix N.

4.1 Datasets and architectures
First, we demonstrate the efficiency of Packed-Ensembles
on CIFAR-10 and CIFAR-100 [34], showing how the
method adapts to different data complexities. As we pro-
pose to replace a single model architecture with several
subnetworks, we study the behavior of Packed-Ensembles
on architectures with various sizes: ResNet-18, ResNet-
50 [20], and Wide ResNet28-10 [72]. We compare it
against Deep Ensembles [36] and three other approxi-
mated ensembles from the literature: BatchEnsemble [66],
MIMO [19], and Masksembles [9].
Secondly, we report our results for Packed-Ensembles on
ImageNet, which we compare against all baselines. We run
experiments with ResNet-50 and ResNet-50x4. All train-
ing runs are started from scratch.

Metrics. We evaluate the overall performance of the
models in classification tasks using the accuracy (Acc) in %
and Negative Log-Likelihood (NLL). We choose the clas-
sical Expected Calibration Error (ECE) [51] for the cal-
ibration of uncertainties 2 and measure the quality of the
OOD detection using the Areas Under the Precision/Recall
curve (AUPR) and Under the operating Curve (AUC), as
well as the False Positive Rate at 95% recall (FPR95), all
expressed in %, similarly to [23].
We use accuracy as the validation criterion (i.e., the final

2. Note that the benchmark conducted at https://github.com/
google/uncertainty-baselines uses only ECE to measure the
calibration quality of the models

trained model is the one with the highest accuracy). Dur-
ing inference, we average the softmax probabilities of all
subnetworks and consider the index of the maximum of
the output vector to be the predicted class of the ensem-
ble. We define the prediction confidence as the value of
this maximum (also called maximum softmax probability).
For the out-of-distribution detection tasks on CIFAR-10
and CIFAR-100, we use the SVHN dataset [54] as an
out-of-distribution dataset and transform the initial clas-
sification problem into a binary classification between in-
distribution (ID) data and OOD data using the maximum
softmax probability as OOD criterion. We discuss the dif-
ferent OOD criteria in appendix E. For ImageNet, we use
two out-of-distribution datasets: ImageNet-O (IO) [25] and
Texture (T) [65], and use the Mutual Information (MI) as a
criterion for the ensembles techniques (see Appendix E for
details on MI) and the maximum softmax probability for
the single model and MIMO. To measure the robustness
under distribution shift, we use ImageNet-R [24] and eval-
uate the Accuracy, ECE, and NLL, denoted rAcc, rECE,
and rNLL on this dataset respectively.
We implement our models using the PyTorch-Lightning
framework built on top of PyTorch. Both are open-source
Python frameworks. Appendix B and Table 4 detail the
hyper-parameters used in our experiments across architec-
tures and datasets. Most training instances are completed
on a single Nvidia RTX 3090 except on ImageNet, for
which we use 2 to 8 Nvidia A100-80GB.

Results. Table 1 presents the average performance over
five runs on the classification task using the hyper-
parameters in Table 4. We showcase that in the particular
setting of α = 2 and γ = 2, Packed-Ensembles yields sim-
ilar results to Deep Ensembles while having a lower mem-
ory cost than the single model. On CIFAR-10 [34], we
notice that its relative performance compared to Deep En-
sembles seems to increase as the original architecture gets
bigger. For ResNet-18, the method matches Deep Ensem-
bles on OOD detection metrics but shows slightly worse
performance on the others. Using ResNet-50, both mod-
els seem to perform equivalently, while Packed-Ensembles
slightly outperforms Deep Ensembles in terms of classifi-
cation performance with Wide ResNet28-10.
On CIFAR-100, Deep Ensembles outperform Packed-
Ensembles on ResNet-18. However, we argue that ResNet-
18 architecture does not have enough representation capac-
ity to be divided into subnetworks for CIFAR-100. Indeed,
when we look at the results of ResNet-50, we can see that
Packed-Ensembles has better results than Deep Ensembles.
This analysis demonstrates that, given a sufficiently large
network, Packed-Ensembles is able to match Deep Ensem-
bles with only 16% of its parameters. In appendix D, we
discuss the influence of the representation capacity.
Based on the results in Table 2, we can conclude that
Packed-Ensembles improves uncertainty quantification for
OOD and distribution shift on ImageNet compared to Deep
Ensembles and Single model and that it improves the accu-

https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines

Table 1 – Performance comparison (averaged over five runs) on CIFAR-10/100 using ResNet-18 (R18), ResNet-50
(R50), and Wide ResNet28-10 (WR) architectures. All ensembles have M = 4 subnetworks, we highlight the best
performances in bold. For our method, we consider α = γ = 2, except for WR, where γ = 1. Mult-Adds corresponds to the
inference cost, i.e., the number of Giga multiply-add operations for a forward pass which is estimated with [64].

Method Data Net Acc ↑ NLL ↓ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓ Params (M) ↓ Mult-Adds ↓
Single Model C10 R18 94.0 0.238 0.035 94.0 89.7 33.8 11.17 0.56
BatchEnsemble C10 R18 92.9 0.257 0.031 92.4 87.8 32.1 11.21 2.22
MIMO (ρ = 1) C10 R18 94.0 0.228 0.033 94.4 90.2 28.6 11.19 2.24
Masksembles C10 R18 94.0 0.188 0.009 93.6 89.5 27.8 11.24 2.22
Packed-Ensembles C10 R18 94.3 0.178 0.007 94.7 91.3 23.2 8.18 0.48
Deep Ensembles C10 R18 95.1 0.156 0.008 94.7 91.3 18.0 44.70 2.22

Single Model C10 R50 95.1 0.211 0.031 95.2 91.9 23.6 23.52 1.30
BatchEnsemble C10 R50 93.9 0.255 0.033 94.7 91.3 20.1 23.63 5.19
MIMO (ρ = 1) C10 R50 95.4 0.197 0.030 95.1 90.8 26.0 23.59 5.22
Masksembles C10 R50 95.3 0.175 0.019 95.7 92.2 22.1 23.81 5.19
Packed-Ensembles C10 R50 95.9 0.137 0.008 97.3 95.2 14.4 14.55 1.00
Deep Ensembles C10 R50 96.0 0.136 0.008 97.0 94.7 15.5 94.08 5.19

Single Model C10 WR 95.4 0.200 0.029 96.1 93.2 20.4 36.49 5.95
BatchEnsemble C10 WR 95.6 0.206 0.027 95.5 92.5 22.1 36.59 23.81
MIMO (ρ = 1) C10 WR 94.7 0.234 0.034 94.9 90.6 30.9 36.51 23.82
Masksembles C10 WR 94.0 0.186 0.016 97.2 95.0 14.5 36.53 23.82
Packed-Ensembles C10 WR 96.2 0.133 0.009 98.1 96.5 11.1 19.35 4.06
Deep Ensembles C10 WR 95.8 0.143 0.013 97.8 96.0 12.5 145.96 23.82

Single Model C100 R18 75.1 1.016 0.093 88.6 79.5 55.0 11.22 0.56
BatchEnsemble C100 R18 71.2 1.236 0.116 86.0 75.4 60.2 11.25 2.22
MIMO (ρ = 1) C100 R18 75.3 0.962 0.069 89.2 80.7 52.9 11.36 2.24
Masksembles C100 R18 74.2 1.054 0.061 86.7 76.3 59.8 11.24 2.22
Packed-Ensembles C100 R18 76.4 0.858 0.041 88.7 79.8 57.1 8.18 0.48
Deep Ensembles C100 R18 78.2 0.800 0.018 90.2 82.4 50.5 44.88 2.22

Single Model C100 R50 78.3 0.905 0.089 87.4 77.9 57.6 23.70 1.30
BatchEnsemble C100 R50 66.6 1.788 0.182 85.2 74.6 60.6 23.81 5.19
MIMO (ρ = 1) C100 R50 79.0 0.876 0.079 87.5 76.9 64.7 24.33 5.22
Masksembles C100 R50 78.5 0.832 0.046 90.3 81.9 52.3 23.81 5.19
Packed-Ensembles C100 R50 81.2 0.703 0.020 90.0 81.7 56.5 15.55 1.00
Deep Ensembles C100 R50 80.9 0.713 0.026 89.2 80.8 52.5 94.82 5.19

Single Model C100 WR 80.3 0.963 0.156 81.0 64.2 80.1 36.49 5.95
BatchEnsemble C100 WR 82.3 0.835 0.130 88.1 78.2 69.8 36.59 23.81
MIMO (ρ = 1) C100 WR 80.2 0.822 0.028 84.9 72.0 72.8 36.51 23.82
Masksembles C100 WR 74.4 0.937 0.063 76.1 60.0 75.1 36.53 23.82
Packed-Ensembles C100 WR 83.9 0.678 0.089 86.2 73.2 80.7 36.62 5.96
Deep Ensembles C100 WR 82.5 0.903 0.229 81.6 67.9 71.3 145.96 23.82

racy with a moderate training and inference cost.

Study on the parameters α and γ. Table 1 reports re-
sults only for α = 2 and γ = 2; however, depending on
the task, the architecture used, and the available memory,
one might want to tune those parameters to fit more pre-
cisely its needs. Figures 6 and 7 showcase the performance
evolution of the Packed-Ensembles as the α values vary.

5 Discussions
We have shown that Packed-Ensembles has attractive prop-
erties, mainly by providing a similar quality of Uncertainty
Quantification as Deep Ensembles while using a reduced
architecture and computing cost. Several questions can be
raised, and we conducted some studies - detailed in the Ap-
pendix sections - to provide possible answers.

Discussion on the sparsity As described in section 3,
one could interpret Packed-Ensembles as leveraging group
convolutions to approximate Deep Ensembles with a mask
operation applied to some components. In Appendix C,

by using a simplified model, we propose a bound of the
approximation error based on the Kullback-Leibler diver-
gence between the Deep Ensemble and its pruned version.
This bound depends on the density of ones in the mask
p, and more specifically, depends on the terms (p − 1),
p(p − 1), and (p − 1)2/p2. By manipulating these terms,
corresponding to modifying the number of subnetworks
M , the number of groups γ, and the dilatation faction α,
we could theoretically be able to control the approximation
error.

On the sources of stochasticity Diversity is essential in
ensembles and is usually obtained by exploiting two pri-
mary sources of stochasticity: the random initialization of
the model’s parameters and the shuffling of the batches. A
last source of stochasticity is introduced during the training
phase by the non-deterministic behavior of the backpropa-
gation algorithms.

In Appendix F, we study the function space diversities
which arise from every possible combination of these

Table 2 – Performance comparison on ImageNet [7] using ResNet-50 (R50) and ResNet-50x4 (R50x4). All ensembles
have M = 4 subnetworks and γ = 1. We highlight the best performances in bold. For OOD tasks, we use ImageNet-O
(IO) [25] and Texture (T) [65], and for distribution shift we use ImageNet-R [24]. The number of parameters and operations
are available in Appendix M.

Method Net Acc ECE AUPR (T) AUC (T) FPR95 (T) AUPR (IO) AUC (IO) FPR95 (IO) rAcc rNLL rECE

Single Model R50 77.8 0.1206 18.0 80.9 68.6 3.6 50.8 90.8 23.5 5.187 0.0822
BatchEnsemble R50 75.9 0.0348 20.2 81.6 66.5 4.0 55.2 82.3 21.0 6.148 0.1649
MIMO R50 77.6 0.1465 18.4 81.6 66.8 3.7 52.2 90.6 23.4 5.115 0.0585
Masksembles R50 73.6 0.2093 13.6 79.7 68.3 3.3 47.7 87.7 21.2 5.139 0.0107
Packed-Ensembles α = 3 R50 77.9 0.1796 35.1 88.2 43.7 9.9 68.4 80.9 23.8 4.978 0.0221
Deep Ensembles R50 79.2 0.2326 19.6 83.4 62.1 3.7 52.5 85.5 24.9 4.879 0.0182

Single Model R50×4 80.2 0.0221 20.5 82.6 63.9 4.9 60.2 87.4 26.0 5.190 0.1721
BatchEnsemble R50×4 77.7 0.0237 23.8 82.8 63.8 4.4 58.4 80.5 23.4 6.079 0.2029
MIMO R50×4 80.3 0.0150 19.3 82.5 66.1 4.9 60.7 86.4 25.8 5.278 0.1886
Masksembles R50×4 / / / / / / / / / / /
Packed-Ensembles α = 2 R50×4 81.3 0.1034 34.6 88.1 50.3 9.6 69.9 79.2 26.6 4.848 0.0750
Deep Ensembles R50×4 82.1 0.0534 23.0 85.6 58.1 5.0 62.7 81.9 28.2 4.789 0.1048

sources. It follows that only one of these sources is of-
ten sufficient to generate diversity, and no peculiar pat-
tern seems to emerge to predict the best combination.
Specifically, we highlight that even the only use of non-
deterministic algorithms introduces enough diversity be-
tween each subnetwork of the ensemble.

Ablation study We perform ablations studies to assess
the impact of the parameters M , α, and γ on the perfor-
mances of Packed-Ensembles. Appendix D provides in-
depth details of this study. No explicit behavior appears
from the results we obtained. A trend shows that a higher
number of subnetworks helps get better OOD detection, but
the improvement in terms of AUPR is not significant.

Training speed Depending on the chosen hyperparame-
ters α, M , and γ, PE may have fewer parameters than the
single model, as shown in Table 1. This translates into an
expected lower number of operations. However, a study of
the training and inference speeds, developed in Appendix
H, shows that using PE-(2,4,1) does not significantly in-
crease the training and testing times compared to the single
model while improving accuracy and uncertainty quantifi-
cation performances.
However, this also hints that the actual speedup is not op-
timal despite the significant acceleration offered by 16 bits
floating points.

OOD criteria The maximum softmax probability is of-
ten used as criterion for discriminating OOD elements.
However, this criterion is not unique, and others can be
used, such as the Mutual Information, the maximum logit,
or the Shannon entropy of the mean prediction. Although
no relationship is expected between this criterion and the
method of Packed-Ensembles, we obtained different per-
formances in OOD detection according to the selected cri-
terion. The results are detailed in Appendix E and show
that an approach based on the maximum logit seems to give
the best results in detecting OOD.
It should be noted that this discussion focuses primarily on
CIFAR-100 and that the notion of OOD depends on the

training distribution. Such a discussion does not necessar-
ily generalize to all datasets. Indeed, preliminary results
have shown that Mutual information outperforms the other
criteria for our method applied to the ImageNet dataset.

6 Related Work
Ensembles and uncertainty quantification. Bayesian
Neural Networks (BNNs) [46; 53] are the cornerstone and
primary source of inspiration for uncertainty quantifica-
tion in deep learning. Despite the progress enabled by
variational inference [31; 4], BNNs remain challenging to
scale and train for large DNN architectures [10]. DE [36]
arise as a practical and efficient instance of BNNs, coarsely
but effectively approximating the posterior distribution of
weights [69]. DE are currently the best-performing ap-
proach for both predictive performance and uncertainty es-
timation [58; 17].

Efficient ensembles. The appealing properties in perfor-
mance and diversity of DE [11], but also their major down-
side related to computational cost, have inspired a large
cohort of approaches aiming to mitigate it. BatchEnsem-
ble [66] spawns an ensemble at each layer thanks to an
efficient parameterization of subnetwork-specific parame-
ters trained in parallel. MIMO [19] shows that a large net-
work can encapsulate multiple subnetworks using a multi-
input multi-output configuration. A single network can be
used in ensemble mode by disabling different sub-sets of
weights at each forward pass [14; 9]. [43] leverage the
sparse networks training algorithm of [49] to produce en-
sembles of sparse networks. Ensembles can be computed
from a single training run by collecting intermediate model
checkpoints [28; 15], by computing the posterior distribu-
tion of the weights by tracking their trajectory during train-
ing [47; 12], and by ensembling predictions over multiple
augmentations of the input sample [1]. However, most of
these approaches require multiple forward passes.

Neural network compression. The most intuitive ap-
proach for reducing the size of a model is to employ DNNs

that are memory-efficient by design, relying on, e.g., chan-
nel shuffling [74], point-wise convolutional filters [41],
weight sharing [3], or a combination of them. Some of the
most popular architectures that leverage such models are
SqueezeNet [29], ShuffleNet [75], and MobileNet-v3 [27].
Some approaches conduct automatic model size reduction,
e.g., network sparsification [50; 45; 13; 63]. These ap-
proaches aim at removing as many parameters as possible
from the model to improve memory and computation effi-
ciency. Similarly, quantization approaches [18; 42] avoid
or minimize the computation cost of floating point opera-
tion and optimize the use of the much more efficient integer
computation.

Grouped convolutions. To the best of our knowledge,
grouped convolutions (group of convolutions) were intro-
duced by [35]. Enabling the computation of several inde-
pendent convolutions in parallel, they developed the idea
of running a single model on multiple GPU devices. [70]
demonstrate that using grouped convolutions leads to ac-
curacy improvements and model complexity reduction. So
far, grouped convolutions have been used primarily for
computational efficiency but also to compute multiple out-
put branches in parallel [5]. Here, we re-purpose them to
delineate multiple subnetworks within a network and effi-
ciently train an ensemble of such subnetworks.

7 Conclusions
We propose a new ensemble framework: Packed-
Ensembles, which is able to approximate Deep Ensem-
bles in terms of uncertainty quantification and accuracy.
Our work provides several new findings: first, we show
that ensembling independent small neural networks can
be equivalent to ensembling independent deep neural net-
works. Secondly, we demonstrate that not all sources of
diversity are needed to improve the diversity of the ensem-
ble. Thirdly, we show that Packed-Ensembles is more sta-
ble than a single DNN. Fourthly, we highlight that there is
a trade-off between the accuracy and the size of the param-
eters, and Packed-Ensembles allows us to have flexible and
efficient ensembling. In the future, we intend to explore
Packed-Ensembles for more complex tasks.

8 Reproducibility
Alongside this paper, we provide the source code of
Packed-Ensembles layers. Moreover, two notebooks
enable the training of Packed-Ensembles based on the
ResNet-50 architecture, both on CIFAR-10 and CIFAR-
100 (public datasets). To ensure reproducibility, we report
the performance given a specific random seed with a deter-
ministic training process. Furthermore, it should be noted
that the source code contains two PyTorch Module classes
to produce Packed-Ensembles efficiently. The idea would
be to release a Python package to provide easier access to
Packed-Ensembles layers. A readme file at the root of the
project details how to install and run experiments. In ad-
dition, we showcase how to get Packed-Ensembles from

LeNet [38].

9 Ethics
The purpose of this paper is to provide a method for a bet-
ter estimation of Deep Learning model uncertainty. Never-
theless, we acknowledge their limitation, which could be-
come critical when applied to safety systems. While this
work aims to improve the reliability of Deep Neural Net-
works, this approach is not ready for deployment in safety-
critical systems. We show the limitations of our approach
in several experiments. Many more validation and verifica-
tion steps would be needed before real-world deployment
to ensure robustness to various unknown situations, corner
cases, adversarial attacks, and biases.

References
[1] Arsenii Ashukha, Alexander Lyzhov, Dmitry

Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep
learning. In ICLR, 2020. 7

[2] William H Beluch, Tim Genewein, Andreas Nürn-
berger, and Jan M Köhler. The power of ensembles
for active learning in image classification. In CVPR,
2018. 16

[3] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu,
Shuyang Cheng, Pieter-Jan Kindermans, and Quoc V.
Le. Can weight sharing outperform random architec-
ture search? An investigation with TuNAS. In CVPR,
2020. 8

[4] Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural network. In ICML, 2015. 7

[5] Hao Chen and Abhinav Shrivastava. Group ensem-
ble: Learning an ensemble of convnets in a single
convnet. arXiv preprint arXiv:2007.00649, 2020. 2,
8

[6] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In CVPR,
2020. 14

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In CVPR, 2009. 7, 22

[8] Thomas G Dietterich. Ensemble methods in machine
learning. In IWMCS, 2000. 2

[9] Nikita Durasov, Timur Bagautdinov, Pierre Baque,
and Pascal Fua. Masksembles for uncertainty esti-
mation. In CVPR, 2021. 2, 5, 7, 14

[10] Michael Dusenberry, Ghassen Jerfel, Yeming Wen,
Yian Ma, Jasper Snoek, Katherine Heller, Balaji Lak-
shminarayanan, and Dustin Tran. Efficient and scal-
able bayesian neural nets with rank-1 factors. In
ICML, 2020. 7

[11] Stanislav Fort, Huiyi Hu, and Balaji Lakshmi-
narayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019. 2,
7

[12] Gianni Franchi, Andrei Bursuc, Emanuel Aldea,
Séverine Dubuisson, and Isabelle Bloch. Tradi:
Tracking deep neural network weight distributions. In
ECCV, 2020. 2, 7

[13] Jonathan Frankle and Michael Carbin. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2018. 8, 18

[14] Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In ICML, 2016. 2, 7, 21

[15] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin,
Dmitry P Vetrov, and Andrew G Wilson. Loss sur-
faces, mode connectivity, and fast ensembling of
dnns. In NeurIPS, 2018. 2, 7

[16] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. On calibration of modern neural net-
works. In ICML, 2017. 2

[17] Fredrik K Gustafsson, Martin Danelljan, and
Thomas B Schon. Evaluating scalable bayesian deep
learning methods for robust computer vision. In
CVPR Workshops, 2020. 2, 7

[18] Song Han, Huizi Mao, and William J. Dally. Deep
compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. In
ICLR, 2016. 8

[19] Marton Havasi, Rodolphe Jenatton, Stanislav Fort,
Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew Mingbo Dai, and Dustin Tran.
Training independent subnetworks for robust predic-
tion. In ICLR, 2020. 2, 5, 7

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016. 5, 14

[21] Matthias Hein, Maksym Andriushchenko, and Julian
Bitterwolf. Why relu networks yield high-confidence
predictions far away from the training data and how
to mitigate the problem. In CVPR, 2019. 2

[22] Dan Hendrycks and Thomas Dietterich. Benchmark-
ing neural network robustness to common corruptions
and perturbations. In ICLR, 2019. 19, 20

[23] Dan Hendrycks and Kevin Gimpel. A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. In ICLR, 2017. 5

[24] Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The
many faces of robustness: A critical analysis of out-
of-distribution generalization. In CVPR, 2021. 5, 7

[25] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob
Steinhardt, and Dawn Song. Natural adversarial ex-
amples. In CVPR, 2021. 5, 7

[26] José Miguel Hernández-Lobato and Ryan Adams.
Probabilistic backpropagation for scalable learning of
bayesian neural networks. In ICML, 2015. 21

[27] Andrew G. Howard, Mark Sandler, Grace Chu,
Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan,
Quoc V. Le, and Hartwig Adam. Searching for Mo-
bileNetV3. In ICCV, 2019. 8

[28] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu,
John E Hopcroft, and Kilian Q Weinberger. Snapshot
ensembles: Train 1, get M for free. In ICLR, 2017. 2,
7

[29] Forrest N Iandola, Song Han, Matthew W
Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and < 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.
8

[30] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015. 4

[31] Michael I Jordan, Zoubin Ghahramani, Tommi S
Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine
learning, 1999. 7

[32] Alex Kendall and Yarin Gal. What uncertainties do
we need in bayesian deep learning for computer vi-
sion? In NeurIPS, 2017. 21

[33] Dan Kondratyuk, Mingxing Tan, Matthew Brown,
and Boqing Gong. When ensembling smaller mod-
els is more efficient than single large models. arXiv
preprint arXiv:2005.00570, 2020. 2

[34] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, MIT, 2009. 5, 19

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In NeurIPS, 2012. 2, 8

[36] Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In
NeurIPS, 2017. 2, 3, 5, 7, 16, 21

[37] Yann LeCun, Bernhard Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne Hubbard,
and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computa-
tion, 1989. 2

[38] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
1998. 8

[39] Stefan Lee, Senthil Purushwalkam, Michael
Cogswell, David Crandall, and Dhruv Batra.
Why M heads are better than one: Training a
diverse ensemble of deep networks. arXiv preprint
arXiv:1511.06314, 2015. 2

[40] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer
Dolson, David Held, Soeren Kammel, J. Zico Kolter,
Dirk Langer, Oliver Pink, Vaughan Pratt, Michael
Sokolsky, Ganymed Stanek, David Stavens, Alex Te-
ichman, Moritz Werling, and Sebastian Thrun. To-
wards fully autonomous driving: Systems and algo-
rithms. In IV, 2011. 2

[41] Feng Liang, Zhichao Tian, M. Dong, Shuting Cheng,
Li Sun, Hai Helen Li, Yiran Chen, and Guohe Zhang.
Efficient neural network using pointwise convolution
kernels with linear phase constraint. Neurocomput-
ing, 2021. 8

[42] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accu-
rate binary convolutional neural network. In NeurIPS,
2017. 8

[43] Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xi-
aohan Chen, Ghada Sokar, Elena Mocanu, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Con-
stantin Mocanu. Deep ensembling with no overhead
for either training or testing: The all-round blessings
of dynamic sparsity. In ICLR, 2022. 7

[44] Ekaterina Lobacheva, Nadezhda Chirkova, Maxim
Kodryan, and Dmitry Vetrov. On power laws in deep
ensembles. In NeurIPS, 2020. 2

[45] Christos Louizos, Max Welling, and Diederik P
Kingma. Learning sparse neural networks through
l_0 regularization. In ICLR, 2018. 8

[46] David JC MacKay. A practical bayesian framework
for backpropagation networks. Neural computation,
1992. 7

[47] Wesley J Maddox, Pavel Izmailov, Timur Garipov,
Dmitry P Vetrov, and Andrew Gordon Wilson. A sim-
ple baseline for bayesian uncertainty in deep learning.
In NeurIPS, 2019. 2, 7

[48] Rowan McAllister, Yarin Gal, Alex Kendall, Mark
Van Der Wilk, Amar Shah, Roberto Cipolla, and
Adrian Weller. Concrete problems for autonomous
vehicle safety: Advantages of bayesian deep learn-
ing. In IJCAI, 2017. 2

[49] Decebal Constantin Mocanu, Elena Mocanu, Peter
Stone, Phuong H Nguyen, Madeleine Gibescu, and
Antonio Liotta. Scalable training of artificial neural
networks with adaptive sparse connectivity inspired
by network science. Nature communications, 2018. 7

[50] Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. Variational dropout sparsifies deep neural net-
works. In ICML, 2017. 8

[51] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Mi-
los Hauskrecht. Obtaining well calibrated probabili-
ties using bayesian binning. In AAAI, 2015. 5

[52] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak
Tantia, Matthew Scicluna, Simon Lacoste-Julien, and
Ioannis Mitliagkas. A modern take on the bias-
variance tradeoff in neural networks. arXiv preprint
arXiv:1810.08591, 2018. 19

[53] Radford M Neal. Bayesian learning for neural net-
works. PhD thesis, University of Toronto, 1995. 7

[54] Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits
in natural images with unsupervised feature learning.
In NeurIPS Workshops, 2011. 5

[55] A. Nguyen, J. Yosinski, and J. Clune. Deep neural
networks are easily fooled: High confidence predic-
tions for unrecognizable images. In CVPR, 2015. 2

[56] Thao Nguyen, Maithra Raghu, and Simon Kornblith.
Do wide and deep networks learn the same things?
Uncovering how neural network representations vary
with width and depth. In ICLR, 2020. 18

[57] D.A. Nix and A.S. Weigend. Estimating the mean
and variance of the target probability distribution. In
ICNN, 1994. 21

[58] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
D. Sculley, Sebastian Nowozin, Joshua V. Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you
trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. In NeurIPS, 2019. 2,
7, 19

[59] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning li-
brary. In NeurIPS, 2019. 14

[60] Michael P Perrone and Leon N Cooper. When net-
works disagree: Ensemble methods for hybrid neural
networks. Technical report, Brown University, 1992.
2

[61] Alexandre Ramé, Rémy Sun, and Matthieu Cord.
Mixmo: Mixing multiple inputs for multiple outputs
via deep subnetworks. In ICCV, 2021. 2

[62] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR,
2016. 14

[63] Enzo Tartaglione, Andrea Bragagnolo, Attilio Fian-
drotti, and Marco Grangetto. Loss-based sensitivity
regularization: towards deep sparse neural networks.
Neural Networks, 2022. 8

[64] Torchinfo. Torchinfo. https://github.com/
TylerYep/torchinfo. Version: 1.7.1. 6, 22

[65] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne
Zhang. ViM: Out-of-distribution with virtual-logit
matching. In CVPR, 2022. 5, 7

[66] Yeming Wen, Dustin Tran, and Jimmy Ba.
BatchEnsemble: an alternative approach to effi-
cient ensemble and lifelong learning. In ICLR, 2019.
2, 5, 7

[67] Ross Wightman. Pytorch image models.
https://github.com/rwightman/
pytorch-image-models, 2019. 14

[68] Ross Wightman, Hugo Touvron, and Herve Jegou.
Resnet strikes back: An improved training procedure
in timm. In NeurIPS 2021 - Workshop ImageNet PPF,
2021. 14

[69] Andrew G Wilson and Pavel Izmailov. Bayesian deep
learning and a probabilistic perspective of generaliza-
tion. In NeurIPS, 2020. 3, 7

[70] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen
Tu, and Kaiming He. Aggregated residual transfor-
mations for deep neural networks. In CVPR, 2017. 2,
8, 21

[71] Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In CVPR, 2019. 14

[72] Sergey Zagoruyko and Nikos Komodakis. Wide
residual networks. In BMVC, 2016. 5, 14

[73] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin,
and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In ICLR, 2018. 14

[74] Qing-Long Zhang and Yubin Yang. SA-Net: Shuffle
attention for deep convolutional neural networks. In
ICASSP, 2021. 8

[75] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In CVPR, 2018. 8

https://github.com/TylerYep/torchinfo
https://github.com/TylerYep/torchinfo
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Background
	Background on convolutions
	Background on Deep Ensembles

	Packed-Ensembles
	Revisiting Deep Ensembles
	Computational cost
	Implementation details

	Experiments
	Datasets and architectures

	Discussions
	Related Work
	Conclusions
	Reproducibility
	Ethics

