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ABSTRACT
In this paper, we present a mathematical model of malaria trans-
mission dynamics with age structure for the vector population and
a periodic biting rate of female anopheles mosquitoes. The human
population is divided into twomajor categories: themost vulnerable
called non-immune and the least vulnerable called semi-immune. By
applying the theory of uniform persistence and the Floquet theory
with comparison principle, we analyse the stability of the disease-
free equilibrium and the behaviour of the model when the basic
reproduction ratio R0 is greater than one or less than one. At last,
numerical simulations are carried out to illustrate our mathematical
results.
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1. Introduction

Malaria is a common and life-threatening infectious disease inmany tropical and subtropi-
cal areas. It is caused by the Plasmodium parasite which is transmitted by female anopheles
mosquitoes while they bite humans for a blood meal for the development of their eggs.
During the blood meal, the mosquito injects sporozoites into the blood stream. In few
minutes, the sporozoites enter the liver cells where each sporozoite develops into a tissue
schizont that contains 10,000 to 30,000 merozoites. After 1–2 weeks, the schizont ruptures
and releases the merozoites into the blood stream which then invade the red blood cells.
The clinical symptoms of malaria are due to the rupture of the red blood cells and release
of the parasites waste and cells debris into the blood stream. Note that human malaria
is caused by five different species of Plasmodium: Plasmodium falciparum, Plasmodium
malariae, Plasmodium ovale, Plasmodium vivax and Plasmodium knowlesi. However, P. fal-
ciparum is the most prevalent in Africa and it causes the highest mortality rate induced
by the disease [27]. The biology of the five species of Plasmodium is generally similar and
consists of two distinct phases: a sexual stage at the mosquito host and an asexual stage at
the human host.
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The World Health Organization (WHO) estimated that there were 214 million malaria
cases in 2015, resulting in about 438,000 deaths [39]. Moreover, in endemic regions, chil-
dren under 5, pregnant women and non-immune adults are most at risk of malaria mor-
tality [12]. Indeed, there are currently over 100 countries where there is a risk of malaria
transmission, and these are visited by more than 125 million international travellers every
year. International travellers to countries with ongoing local malaria transmission arriving
from countries with no transmission are at high risk of malaria infection and its conse-
quences because they lack immunity. Migrants from countries with malaria transmission
living in malaria-free countries and returning to their home countries to visit friends
and relatives are similarly at risk because of waning or lack of immunity. Despite exten-
sive efforts to eradicate it, malaria caused by P. falciparum remains a significant problem.
A characteristic of falciparum malaria disease that complicates control efforts is clinical
immunity: an immune response that develops with exposure to parasites and provides pro-
tection against the clinical symptoms ofmalaria, despite the presence of parasites [32]. This
immunity is not complete and one can lose it and become susceptible after interruption
of exposure. Those who have acquired immunity can host and tolerate malaria parasites
without developing any clinical symptoms. They may become asymptomatic carriers of
parasites and may transmit slightly the parasites to mosquitoes [15, 19, 34].

In order to reduce the spread of infectious diseases, mathematical models have been
proposed to study their dynamics [5, 25, 40]. Models can provide estimates of underly-
ing parameters of a real-world problem which are difficult or expensive to obtain through
experiment or otherwise [28, 29]. They can predict whether the associated disease will
spread through the population or die out [3, 8, 18]. It can also estimate the impact of a
control measure and provide useful guidelines to public health for further efforts required
for disease elimination.

Concerning the mathematical modelling of malaria, significant breakthroughs have
been made in the recent years since the first model introduced by Ronald Ross [31].
According to Ross, if themosquito population can be reduced to below a certain threshold,
then malaria can be eradicated. Some years later, Macdonald [22] improved the model of
Ross. He showed that reducing the number of mosquitoes has little effect on epidemiology
of malaria in areas of intense transmission. Furthermore, Aron and May [1, 2] added vari-
ous characteristics of malaria to the model of Macdonald, such as an incubation period in
themosquito, superinfection and a period of immunity in humans. An important addition
to the malaria models was the inclusion of acquired immunity proposed by Dietz et al. [9].

Other reviews onmathematical modelling inmalaria include Ngwa et al. [26] and Chit-
nis et al. [6]. Indeed, in the Ngwa and Shu model, humans follow an SEIRS-like pattern
andmosquitoes follow an SEI pattern, similar to that described by Yang [42], but with only
one immune class for humans. Humans move from the susceptible to the exposed class at
some probability when they come into contact with an infectious mosquito, and then to
the infectious class, as in conventional SEIRS models. However, infectious people can then
recover with, or without, a gain in immunity, and either return to the susceptible class or
move to the recovered class. Moreover, Chitnis et al. extended the model of Ngwa and Shu
by assuming that although individuals in the recovered class are immune, in the sense that
they do not suffer from serious illness and do not contract clinical malaria, they still have
low levels of Plasmodium in their blood stream and can pass the infection to susceptible
mosquitoes.
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Recent works have shown that the age structure of vector population and the climate
effects are very important factors on the dynamics of malaria transmission [11, 20, 37]
because the dynamics of vector population and the biting rate frommosquitoes to humans
are greatly influenced by environmental and climatic factors. In addition, based on the
susceptibility, the exposedness and the infectivity of human host, Ducrot et al. [10] have
developed a deterministic mathematical model for the transmission of malaria with two
host types in the human population. The first type called non-immune is supposed to be
very vulnerable tomalaria because it has never acquired immunity against the disease. The
second type called semi-immune is supposed to be non-vulnerable because it has at least
once acquired immunity in his life.

This article is an extension of themodel studied in [10] in the sense that we consider the
life cycle of vector population and the climatic factors on the biting rate of female anopheles
mosquitoes [34]. Thus the model is formulated as a non-autonomous system of differen-
tial equations. Through rigorous analysis via theories and methods of dynamical systems
[16, 33, 43], we derive the epidemic threshold parameter R0, for predicting disease per-
sistence or extinction in periodic environments and we explore the global stability of the
equilibrium state and the existence of positive periodic solution under certain conditions.

This paper is organized as follows. In Section 2, we formulate the mathematical model.
In Section 3, we show that the dynamical properties of the model are completely deter-
mined by the basic reproduction ratio R0. Computational simulations are provided in
Section 4 in order to illustrate our mathematical results. Finally, we conclude in Section 5.

2. Mathematical model formulation

In the study ofmalaria transmission, it has been shown that the susceptibility and the infec-
tivity of the human host depend on certain genetic factors. These two clinical states depend
on whether the host has lost his immunity or if he has not yet acquired it. Indeed, acquired
immunity is a very important factor in the dynamics of malaria transmission. Several stud-
ies have shown that humans who have never acquired immunity during their lifetime have
a very high risk of succumbing to malaria compared to those who have already acquired it
at least once in their lifetime [15, 21, 23]. This is themain reason whymany children under
5 old years die ofmalaria in endemic areas. In fact, newborns (from an immunizedmother)
are protected because of the passive transfer of maternal antibodies through the placenta
in the first 3–6 months of life. After these first few months, they are vulnerable to clinical
episodes of malaria until they have built their own immunity. Thus, to better understand
the dynamics of malaria transmission, it is important to divide human hosts according to
their immune status. This will help to develop better strategies against the disease.

Hence, using this assumption, we divide the human population into two major types:
the non-immune, namely those who have not acquired immunity (the most vulnerable),
and the semi-immune, those who have already acquired their immunity at least once in
their life (least vulnerable).

The non-immune population is divided into three epidemiological categories represent-
ing the state variables: the susceptible class Se, the exposed class Ee and the infectious class
Ie. Similarly, the semi-immune population is divided into four epidemiological categories
representing the state variables: the susceptible class Sa, the exposed class Ea, the infectious
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class Ia and the immune class Ra. Humans in the class Ra have some immunity to the dis-
ease and do not get clinically ill, but they still harbour low levels of parasite in their blood
stream and can pass the infection to the susceptible mosquitoes [6].

Mosquito population is also divided into two major stages: the mature stage (those
which can fly) and the aquatic stage (eggs, larvae and pupae). The mature stage is divided
into three compartments: the susceptible class Sv , the exposed class Ev and the infectious
class Iv . The immature stage represented by the compartment L is constituted by eggs,
larvae and pupae.

At any time t, the total size of humans, Nh(t), and mature mosquitoes, Nv(t), is
respectively denoted by the following equations:

Nh(t) = (Se(t)+ Sa(t))+ (Ee(t)+ Ea(t))+ (Ie(t)+ Ia(t))+ Ra(t),

Nv(t) = Sv(t)+ Ev(t)+ Iv(t).

Furthermore, we assume throughout this paper that:

(A1) all vector population measures refer to densities of female anopheles mosquitoes,
(A2) the mosquitoes bite only humans, with periodic biting rate β(t),
(A3) there is no direct transmission (blood transfusion or from mother to baby) of

malaria,
(A4) all the new recruits are susceptible. There are no immigrations of infectious humans.

Note that in absence of disease, the vector population dynamics is described by the
following diagram .

Hence, according to Figure 1 we obtain the following system:

Ṅv(t) = rvL(t)− dvNv(t),

L̇(t) = bNv(t)− (dl + rv)L(t).

Moreover, female mosquitoes lay their eggs on the surface of water or near rivers. How-
ever, if there are too many eggs in the oviposition habitat or very few nutrients and water
resources, then females choose another site or lay less eggs. In addition, to complete their
development, larvae and pupae need water or nutrients [24]. Hence, using the logistic
growth [41], the per capita oviposition rate is given by

b
(
1 − L(t)

K

)
Nv(t).

Finally, we get the following system:

Ṅv(t) = rvL(t)− dvNv(t),

L̇(t) = b
(
1 − L(t)

K

)
Nv(t)− (dl + rv)L(t),

(1)

where the biological meaning of parameters b, rv , dv , dl and K is given in Table 1.
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Figure 1. Transfer diagram: the solid arrows represent the transition from one class to another and the
blue dashed arrow represents the eggs laying of female mosquitoes.

Table 1. Values for constant parameters of the model.

Symbols Biological descriptions Values Sources Dimensions

� constant recruitment rate for humans 5000 estimated /month
dh human death rate 0.00167 estimated /month
αe transfer rate of humans from Ie to Ra 0.03 [10] /month
αa transfer rate of humans from Ea to Ra 0.3 [10] /month
γe disease-induced death rate for non-immune 0.00054 estimated /month
γa disease-induced death rate for semi-immune 0.00027 estimated /month
νe transfer rate of humans from Ee to Ie 3 [7] /month
νa transfer rate of humans from Ea to Ia 2.7 [7] /month
βa per capita rate of loss of immunity for humans 0.081 [10] /month
cev probability of transmission of infection from Ie to Sv 0.45 [10] dimensionless
cav probability of transmission of infection from Ia to Sv 0.35 [10] dimensionless
c̄av probability of transmission of infection from Rh to Sv 0.002 [10] dimensionless
p probability of recruitment for humans 0.4 estimated /month
rv transfer rate from L to adult – estimated /month
dv death rate for adult vectors – estimated /month
cve probability of transmission of infection from Iv to Se 0.07 [10] dimensionless
cva probability of transmission of infection from Iv to Sa 0.022 [10] dimensionless
νv transfer rate of mosquitoes from Ev to Iv 2.49 [10] /month
β(t) biting rate of mosquitoes – estimated /month
K breeder site occupied by immature mosquitoes 150,000 estimated dimensionless
b eggs laying rate – estimated /month
dl death rate of immature mosquitoes – estimated /month

2.1. Interaction between humans andmosquitoes

When an infectiousmosquito bites a susceptible non-immune, the parasite enters the body
of the non-immune with probability cve and he moves to the exposed class Ee. Some
time after, he moves from class Ee to the infectious class Ie with constant rate νe. The
infectious non-immune moves to the immune class Ra at rate αe after acquisition of his
immunity. The non-immune disappears from the population through natural death rate
dh and malaria death rate γe. In the same way, when an infectious mosquito bites a sus-
ceptible semi-immune, the parasite enters the body of the semi-immune with probability
cva and he moves to the exposed class Ea. Some time after, he moves from class Ea to the
infectious class Ia with constant rate νa. By immunology memory, immunity of infectious
semi-immune might be rapidly restored at rate αa when they begin to be re-exposed to
infection. Immune individuals in class Ra can lose their immunity at rate βa and go back
to susceptible class Sa. The infectious semi-immune leaves the population through natural
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Figure 2. Transfer diagram: the black dashed arrows indicate the direction of the infection, the solid
arrows represent the transition fromone class to another and the blue dashed arrow represents the eggs
laying of female mosquitoes.

death rate dh and malaria death rate γa (γa ≤ γe). At any time, the non-immune popu-
lation receives a new recruitment, p�, and the semi-immune population receives a new
recruitment, (1 − p)�, with p ∈ [0, 1].

Similarly, when a susceptible mosquito bites an infectious non-immune (resp. semi-
immune, immune), it enters the class Ev with a probability cev (resp. cav , c̃av). Some time
after, it moves from class Ev to the infectious class Iv with rate νv where it stays for life.
Mature mosquitoes disappear from the population through natural mortality dv .

Using the standard incidence as in the model of Ngwa and Shu [26], we define respec-
tively the infection incidence frommosquitoes to non-immune, ke(t), frommosquitoes to
semi-immune, ka(t), and from humans to mosquitoes, kv(t).

ke(t) = cveβ(t)
Iv(t)
Nh(t)

,

ka(t) = cvaβ(t)
Iv(t)
Nh(t)

,

kv(t) = cavβ(t)
Ia(t)
Nh(t)

+ cevβ(t)
Ie(t)
Nh(t)

+ c̃avβ(t)
Ra(t)
Nh(t)

.

According to the above assumptions, we get the following schematic diagram (Figure 2) .

2.2. Mathematical model

Using the above assumptions and by making a balance of the movements in each class, we
obtain the following system:

Ṡe(t) = p�− (ke(t)+ dh)Se(t),

Ėe(t) = ke(t)Se(t)− (νe + dh)Ee(t),
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İe(t) = νeEe(t)− αeIe(t)− (dh + γe)Ie(t),

Ṡa(t) = (1 − p)�+ βaRa(t)− (ka(t)+ dh)Sa(t),

Ėa(t) = ka(t)Sa(t)− (dh + νa)Ea(t),

İa(t) = νaEa(t)− dhIa(t)− (αa + γa)Ia(t), (2)

Ṙa(t) = αeIe(t)+ αaIa(t)− (dh + βa)Ra(t),

L̇(t) = b
(
1 − L(t)

K

)
(Sv(t)+ Ev(t)+ Iv(t))− (dl + rv)L(t),

Ṡv(t) = rvL(t)− (dv + kv(t))Sv(t),

Ėv(t) = kv(t)Sv(t)− (dv + νv)Ev(t),

İv(t) = νvEv(t)− dvIv(t),

with initial conditions:

Se(0) > 0, Ee(0) > 0, Ie(0) > 0,

Sa(0) > 0, Ea(0) > 0, Ia(0) > 0, Ra(0) > 0,

L(0) > 0, Sv(0) > 0, Ev(0) > 0, Iv(0) > 0.

The growth of the whole human population andmature vector is respectively described by
the following equations:

Ṅh(t) = �− dhNh(t)− γeIe(t)− γaIa(t), (3)

Ṅv(t) = rvL(t)− dvNv(t). (4)

The evolution of the immature mosquitoes is described by the following equation:

L̇(t) = b
(
1 − L(t)

K

)
Nv(t)− (dl + rv)L(t). (5)

Hence, the system (2) can be written as follows:

Ż(t) = g(t,Z(t)),

Z(0) > 0,

where

Z(t) = (Se(t),Ee(t), Ie(t), Sa(t),Ea(t), Ia(t),Ra(t), L(t), Sv(t),Ev(t), Iv(t))T

and

g : R+ × R
11 −→ R

11
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defined by

g (t,Z(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p�− ke(t)Se(t)− dhSe(t)

ke(t)Se(t)− νeEe(t)− dhEe(t)

νeEe(t)− αeIe(t)− dhIe(t)− γeIe(t)

(1 − p)�+ βaRa(t)− ka(t)Sa(t)− dhSa(t)

ka(t)Sa(t)− dhEa(t)− νaEa(t)

νaEa(t)− dhIa(t)− αaIa(t)− γaIa(t)

αeIe(t)− dhRa(t)+ αaIa(t)− βaRa(t)

b
(
1 − L(t)

K

)
Nv(t)− (dl + rv)L(t)

rvL(t)− dvSv(t)− kv(t)Sv(t)

kv(t)Sv(t)− dvEv(t)− νvEv(t)

νvEv(t)− dvIv(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We assume that

(A5) the biting rate β(t) is a continuous ω-periodic positive function with ω = 12
months,

(A6) all the parameters of the model are positive except the disease-induced death rates,
γe and γa, which are assumed to be non-negative.

3. Mathematical analysis

3.1. Positivity and boundedness of solutions

Lemma 3.1: For any positive initial condition, φ = (Se(0),Ee(0), Ie(0), Sa(0),Ea(0), Ia(0),
Ra(0), L(0), Sv(0),Ev(0), Iv(0)), the system (2) has a unique positive solution u(t,φ) for all
t ≥ 0.

Proof: For any positive initial condition φ, the function g(t,φ) is continuous in (t,φ) and
Lipschitzian in φ. So, thanks to Theorems 2.2.1 and 2.2.3 of Hale and Verduyn Lunel [13],
the system (2) has a unique solution u(t,φ) on its maximal interval [0, tmax) of existence.

Moreover, for all t ≥ 0, let

e(t) = min {Se(t),Ee(t), Ie(t), Sa(t),Ea(t), Ia(t),Ra(t), L(t), Sv(t),Ev(t), Iv(t)} .
Let us suppose that there exists t1 > 0 such that e(t1) /∈ R

∗+ and e(t) > 0 for all t ∈ [0, t1).
If e(t) = Se(t), then Se(t) > 0 and ke(t) > 0. Thus, from the first equation of system (2),

we have

Ṡe(t) > −(ke(t)+ dh)Se(t).

It then follows that

Se(t1) > Se(0) exp
[
−
∫ t1

0
(ke(t)+ dh) dt

]
> 0,
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which leads to a contradiction.
If e(t) = Ee(t), then Se(t) > 0 and ke(t) > 0. Thus, from the second equation of sys-

tem (2), we have

Ėe(t) > −(dh + νe)Ee(t).

It then follows that

Ee(t1) > Ee(0) exp [−(dh + νe)t1] > 0,

which leads to a contradiction.
If e(t) = Ie(t), then Ee(t) > 0. Thus, from the third equation of system (2), we have

İe(t) > −(αe + dh + γe)Ie(t).

It then follows that

Ie(t1) > Ie(0) exp [−(αe + dh + γe)t1] > 0,

which leads to a contradiction.
Similar contradictions can be obtained if e(t) = Sa(t), e(t) = Ea(t), e(t) = Ia(t), e(t) =

Ra(t), e(t) = L(t), e(t) = Sv(t), e(t) = Ev(t) and e(t) = Iv(t). Hence, the solution u(t,φ)
is positive. �

Thus the system (2) is mathematically well-defined over the whole R
11+ . Nevertheless, the

region of biological interest is 	 defined by

	 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(Se,Ee, Ie, Sa,Ea, Ia,Ra, L, Sv ,Ev , Iv) ∈ R

11
+

∣∣∣∣∣∣∣∣∣∣∣

Nh ≤ �

dh
L ≤ K

Nv ≤ rvK
dv

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

Lemma 3.2: The compact 	 is a positively invariant set, which attracts all positive orbits in
R
11+ . Moreover, all the solutions are bounded.

Proof: According to Equations (3), (4) and (5), we have

Ṅh(t) = �− dhNh(t)− γeIe(t)− γaIa(t) ≤ �− dhNh(t),

Ṅv(t) = rvL(t)− dvNv(t) ≤ rvK − dvNv(t),

L̇(t) = b
(
1 − L(t)

K

)
Nv(t)− (dl + rv)L(t) ≤ brvK

dv
− brv

dv
L(t).

Thus if

Nh(t) >
�

dh
, Nv(t) >

rvK
dv

and L(t) > K,

then

Ṅh(t) < 0, Ṅv(t) < 0 and L̇(t) < 0, respectively.
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Moreover, let us consider the following ordinary differential equations:

Ṅh(t) = �− dhNh(t),

L̇(t) = brvK
dv

− brv
dv

L(t),

Ṅv(t) = rvK − dvNv(t),

with respective general solutions:

Nh(t) = �

dh
+
(
Nh(0)− �

dh

)
exp (−dht),

Nv(t) = rvK
dv

+
(
Nv(0)− rvK

dv

)
exp (−dvt),

L(t) = K + (L(0)− K) exp
(

−brv
dv

t
)
.

By applying the standard comparison theorem, we have for all t ≥ 0,

Nh(t) ≤ �

dh
, if Nh(0) ≤ �

dh
,

Nv(t) ≤ rvK
dv

, if Nv(0) ≤ rvK
dv

,

L(t) ≤ K, if L(0) ≤ K.

Thus the compact set 	 is positively invariant, and then the solutions are bounded. �

3.2. Disease-free equilibria

Let us consider the following threshold parameter:

κ =
(

b
dl + rv

)(
rv
dv

)
.

This threshold plays an important role in the dynamics of malaria transmission because it
allows to regulate the mosquitoes population dynamics.

Proposition 3.3: The model (2) has a:

• trivial disease-free equilibrium

E− = (S∗
e , 0, 0, S

∗
a , 0, 0, 0, 0, 0, 0, 0) if κ ≤ 1,
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• non-trivial disease-free equilibrium

E+ = (S∗
e , 0, 0, S

∗
a , 0, 0, 0, L

∗, S∗
v , 0, 0) if κ > 1,

where

S∗
e = p

�

dh
, S∗

a = (1 − p)
�

dh
,

and

L∗ = K
(
1 − 1

κ

)
, S∗

v = rvK
dv

(
1 − 1

κ

)
.

Proof: Solving the system at the disease-free equilibrium, we get

S∗
e = p

�

dh
, S∗

a = (1 − p)
�

dh
, S∗

v = rv
dv

L∗,

and

b
(
1 − L∗

K

)
S∗
v − (dl + rv)L∗ = 0. (6)

Replacing S∗
v by its expression in (6), we have

b
(
1 − L∗

K

)
rv
dv

L∗ − (dl + rv)L∗ = 0.

Hence, it yields that

L∗ = 0 or L∗ = K
(
1 − dv(dl + rv)

brv

)
= K

(
1 − 1

κ

)
.

Thus

• If κ ≤ 1, L∗ = 0, then S∗
v = 0. Hence, we obtain E−.

• If κ > 1, L∗ > 0, then S∗
v = (rvK/dv)(1 − 1/κ). Hence, we obtain E+. �

Remark 3.1: In practice, it is very difficult to find regions completely devoid of anophe-
les. Hence, we only consider the non-trivial disease-free equilibrium because it is more
biologically realistic. So, in the rest of the paper we assume that κ > 1.
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3.3. Threshold dynamics

Linearizing the system (2) at the equilibrium state E+, we obtain the following system (only
the equations for the infectious classes):

Ėe(t) = pcveβ(t)Iv(t)− (νe + dh)Ee(t),

İe(t) = νeEe(t)− (αe + dh + γe)Ie(t),

Ėa(t) = (1 − p)cvaβ(t)Iv(t)− (dh + νa)Ea(t),

İa(t) = νaEa(t)− (dh + αa + γa)Ia(t),

Ṙa(t) = αeIe(t)+ αaIa(t)− (βa + dh)Ra(t),

Ėv(t) = β(t)
S∗
v

N∗
h

(
cevIe(t)+ cavIa(t)+ c̃avRa(t)

)− (dv + νv)Ev(t),

İv(t) = νvEv(t)− dvIv(t).

This system can be rewritten as follows:

U̇(t) = (F(t)− V(t))U(t),

where

U(t) = (Ee(t), Ie(t),Ea(t), Ia(t),Ra(t),Ev(t), Iv(t))T ,

F(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 pcveβ(t)

0 0 0 0 0 0 0

0 0 0 0 0 0 (1 − p)cvaβ(t)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 cevβ(t)
S∗
v

N∗
h

0 cavβ(t)
S∗
v

N∗
h

c̃avβ(t)
S∗
v

N∗
h

0 0

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 0 0 0 0 0

−νe M2 0 0 0 0 0

0 0 M3 0 0 0 0

0 0 −νa M4 0 0 0

0 −αe 0 −αa M5 0 0

0 0 0 0 0 M6 0

0 0 0 0 0 −νv dv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with

M1 = νe + dh, M2 = dh + αe + γe, M3 = νa + dh,

M4 = dh + αa + γa, M5 = dh + βa, M6 = νv + dv .

For all t ≥ s, let Y(t, s) be the evolution operator of the linear periodic system

ẏ(t) = −V(t)y.

That is, for each s ∈ R, the 7 × 7 matrix Y(t, s) satisfies the equation:

Ẏ(t, s) = −V(t)Y(t, s), ∀t ≥ s, Y(s, s) = I,

where I is the 7 × 7 identity matrix.
Let Cω be the ordered Banach space of all ω-periodic functions from R to R

7 which is
equipped with the maximum norm ‖.‖ and the positive cone

C+
ω := {φ ∈ Cω : φ(t) ≥ 0, ∀t ∈ R} .

Let us suppose φ(s) ∈ Cω is the initial distribution of infectious individuals in this peri-
odic environment, then F(s)φ(s) is the rate of new infections produced by the infected
individuals who were introduced at time s, and Y(t, s)F(s)φ(s) represents the distribution
of those infected individuals who were newly infected at time s and remains in the infected
compartments at time t for t ≥ s. Hence, the distribution of accumulative new infections
at time t produced by all those infected individuals φ(s) introduced at the previous time is
given by

ψ(t) =
∫ t

−∞
Y(t, s)F(s)φ(s) ds =

∫ ∞

0
Y(t, t − a)F(t − a)φ(t − a) da.

Let L : Cω −→ Cω be the linear operator defined by

(Lφ)(t) =
∫ ∞

0
Y(t, t − a)F(t − a)φ(t − a) da, ∀ t ∈ R, φ ∈ Cω.

Then,L is the next infection operator, and the basic reproduction ratio isR0 := ρ(L), the
spectral radius of L.

In order to calculateR0, we consider the following linear ω-periodic system:

ẇ(t) =
[
1
λ
F(t)− V(t)

]
w(t), ∀ t ∈ R+, λ ∈ (0,∞). (7)

Let W(t, s, λ), t ≥ s, s ∈ R, be the evolution operator of the system (7) on R
7. It is clear

that

W(t, 0, 1) = �F−V(t), ∀ t ≥ 0.

The following result will be used in our numerical calculation of the basic reproduction
ratio.
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Lemma 3.4 ([36]): (i) If ρ(W(ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an
eigenvalue of L, and henceR0 > 0.

(ii) IfR0 > 0, then λ = R0 is the unique solution of ρ(W(ω, 0, λ)) = 1.
(iii) R0 = 0 if and only if ρ(W(ω, 0, λ)) < 1, for all λ > 0.

Proposition 3.5: Let ε > 0. If R̂0 is the basic reproduction ratio corresponding to biting rate
β̂(t) = εβ(t), then R̂0 = εR0.

Proof: If β̂(t) = εβ(t), then the linear system (7) becomes

ẇ(t) =
[ ε
λ
F(t)− V(t)

]
w(t), ∀t ∈ R+, λ ∈ (0,∞).

Let

F̂(t) = εF(t) and V̂(t) = V(t)

and Ŵ(ω, 0, λ), the monodromy matrix of the following system:

˙̂w(t) =
[
1
λ
F̂(t)− V̂(t)

]
ŵ(t), ∀t ∈ R+, λ ∈ (0,∞).

It is easy to remark that

Ŵ(ω, 0, λ) = W
(
ω, 0,

λ

ε

)
.

Thus it then follows that

ρ(Ŵ(ω, 0, R̂0)) = 1 ⇐⇒ ρ

(
W

(
ω, 0,

R̂0

ε

))
= 1.

Hence, R̂0 = εR0. �

We have proved that the biting rate is an important parameter for the dynamics of
malaria transmission. Thus it could be used as a very good strategy to control malaria.

Remark 3.2: Let β̄ = (1/ω)
∫ ω
0 β(s) ds be the average number of bites. Then, the basic

reproduction number, R̄0, of the associated autonomous system is given by the spectral
radius of the matrix F̄V−1 [35]. So

R̄0 =
√
rvK
dv

(
1 − 1

κ

)(
R̃2

0a + R̃2
0e

)
with

R̃2
0a = νaνvcvaβ̄2(1 − p)

dvM3M4M6N∗
h

(
αa

M5
c̃av + cav

)
,

R̃2
0e = νeνvcveβ̄2p

dvM1M2M6N∗
h

(
αe

M5
c̃av + cev

)
.

We observe that the basic reproduction number, R̄0, depends on the threshold κ . It could
also be used to control the transmission of malaria.
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3.4. Stability of disease-free equilibrium E+

In this part of the paper, we focus on the stability of the disease-free equilibrium E+. For
that, we first study the global behaviour of the model (1).

Let

(x(t), y(t)) = (Nv(t), L(t)).

Then, we write the system (1) as follows:

ẋ = rvy − dvx,

ẏ = b
(
1 − y

K

)
x − (dl + rv)y.

(8)

The system (8) has two equilibrium points:

• a mosquito-free equilibrium,M0 = (0, 0),
• a mosquito persistence equilibrium,M1 = (x∗, y∗), with

x∗ = rvK
dv

(
1 − 1

κ

)
and y∗ = K

(
1 − 1

κ

)
, if κ > 1.

As mentioned above, the equilibriumM0 is not biologically realistic, so we suppose that
κ > 1.

Theorem 3.6: If κ > 1, then the equilibrium M1 is locally asymptotically stable.

Proof: By linearizing the system (8) at the steady stateM1, we obtain the following system:

ẋ = rvy − dvx,

ẏ = b
κ
x −

[
dl + rv + brv

dv

(
1 − 1

κ

)]
y.

Let us consider the following matrix:

B =
(−α1 α2
α3 −α4

)

with

α1 = dv , α2 = rv , α3 = b
κ

and α4 = dl + rv + brv
dv

(
1 − 1

κ

)
.

The matrix B has two eigenvalues:

λ1=−
√
(α1 − α4)2 + 4α2α3 + α1 + α4

2
and λ2=

√
(α1 − α4)2 + 4α2α3 − α1 − α4

2
.

It is clear that the eigenvalue λ1 always is negative. Now, we aim to show that the eigenvalue
λ2 is also negative if κ > 1. Indeed, we have

α2α3 − α1α4 = brv
(
1
κ

− 1
)
.
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Thus if κ > 1 both λ1 and λ2 are negative. Then, from Poincaré–Lyapunov theorem [24],
we conclude that the equilibriumM1 is locally asymptotically stable if κ > 1. �

Theorem3.7: If κ > 1, then the equilibriumM1 is globally asymptotically stable in�, where

� =
{
(x, y) ∈ R

2
+ : x ≤ rvK

dv
, y ≤ K

}
.

Proof: To prove the global stability ofM1, we consider the following Lyapunov function:

V : R2 −→ R

(x, y) �−→ 1
2
(
δ1(x − x∗)2 + δ2(y − y∗)2

)
,

where δ1 and δ2 are positive constants. Note that

• V(x∗, y∗) = 0 and V(x, y) > 0 if (x, y) = (x∗, y∗),
• otherwise, calculating the derivative of the function V , we get

V̇(x, y) = δ1(x − x∗)ẋ + δ2(y − y∗)ẏ

= δ1(x − x∗)
(
rvy − dvx

)+ δ2(y − y∗)
[
b
(
1 − y

K

)
x − (dl + rv)y

]
.

Let

x̃ = x − x∗, ỹ = y − y∗ and X̃ = (x̃, ỹ)T.

Denote 〈., .〉 the scalar product in R
2. Then, we have

V̇(x, y) = 〈
AX̃, X̃

〉− δ2b
K

ỹ2x

with

A =
⎛
⎝−δ2(rv + dl) δ2

b
κ

δ1rv −δ1dv

⎞
⎠ .

Let A=N−M with

N =
⎛
⎝ 0 δ2

b
κ

δ1rv 0

⎞
⎠ and M =

(
δ2(rv + dl) 0

0 δ1dv

)
.

Now, we construct the symmetric matrix S = −M + 1
2 (N + NT).

Let

β1 = a2(rv + dl), β2 = 1
2

(
δ1rv + δ2

b
κ

)
and β3 = δ1dv .

Then, we have

S =
(−β1 β2
β2 −β3

)
.
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Moreover, we have

〈
SX̃, X̃

〉 = 〈
−MX̃ + 1

2 (N + NT)X̃, X̃
〉

= − 〈
MX̃, X̃

〉+ 1
2

[〈
NTX̃, X̃

〉
+ 〈

NX̃, X̃
〉]

= − 〈
MX̃, X̃

〉+ 1
2
[〈
X̃,NX̃

〉+ 〈
NX̃, X̃

〉]
= − 〈

MX̃, X̃
〉+ 1

2
[〈
NX̃, X̃

〉+ 〈
NX̃, X̃

〉]
= 〈
(−M + N)X̃, X̃

〉 = 〈
AX̃, X̃

〉
.

Thus the matrix S has two eigenvalues μ1 and μ2 defined as follows:

μ1=−
√
(β1 − β3)2 + 4β22 + β1 + β3

2
and μ2=

√
(β1 − β3)2 + 4β22 − (β1 + β3)

2
.

Taking

δ1 = 1
rv

and δ2 = rv
dv(rv + dl)

,

then we obtain

μ1 = −d2v + r2v
dvrv

< 0 and μ2 = 0.

It then follows that

〈
AX̃, X̃

〉 = 〈
SX̃, X̃

〉 ≤ 0 for all X̃ ∈ R
2.

Moreover, if (x, y) ∈ � \ M1, it yields that V̇(x, y) < 0. Hence, LaSalle’s invariant prin-
ciple [17] implies thatM1 is globally asymptotically stable in�.

�

Theorem 3.8 ([36]): (i) R0 = 1 if only if ρ(�F−V(ω)) = 1.
(ii) R0 < 1 if only if ρ(�F−V(ω)) < 1.
(iii) R0 > 1 if only if ρ(�F−V(ω)) > 1.

Proof: (i) IfR0 = 1, then fromLemma3.4 (ii), we haveρ(W(ω, 0, 1))=ρ(�F−V(ω))=
1. Otherwise, if ρ(�F−V(ω)) = 1, then Lemma 3.4 (i) and (ii) imply thatR0 = 1.

(ii) (a) Assume thatR0 > 1. SinceR0 is positive and the linear operator L is compact
and positive, then thanks to Krein–Rutman theorem [14],R0 is an eigenvalue of
L with a positive eigenfunction w in Cω. Thus, for some t0 ∈ [0,ω], w(t0) > 0
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and we have

ẇ(t) = (F(t)− V(t))w(t)+
(

1
R0

− 1
)
F(t)w(t), ∀t ∈ R (9)

with F(t)w(t) = 0 for all t in R. Moreover, by applying the constant–variation
formula to Equation (9), we obtain

w(t0)− W(t0 + ω, t0, 1)w(t0) = k

with

k :=
(

1
R0

− 1
)∫ t0+ω

t0
W(t0 + ω, s, 1)F(s)w(s) ds.

Note that if the matrix V(t) is irreducible, thenW(t, s, 1) is strongly positive for
each t> s, s ∈ R and k � 0 ifR0 > 1. Hence,

−w(t0)+ W(t0 + ω, t0, 1)w(t0) = −k � 0 in R
7.

Since −w(t0) � 0, then from [14], ρ(W(t0 + ω, t0, 1)) = ρ(�F−V(ω)) > 1.
(b) Assume that ρ(�F−V(ω)) > 1. Thus we have ρ(W(ω, 0, 1)) = ρ(�F−V(ω)) >

1 and from Lemma 3.4 (iii) we getR0 > 0. It then follows that (9) is still valid.
Hence, if R0 ∈ (0, 1), then in the case where V(t) is irreducible, it follows that
ρ(W(t0 + ω, t0, 1)) = ρ(�F−V(ω)) < 1 that leads a contradiction. SoR0 > 1.

(iii) is a consequence of the conclusions (i) and (ii) above.
�

Lemma 3.9 ([38]): Let r = 1/ω ln ρ(�N (.)(ω)), then there exists a positive ω-periodic
function v(t) such that ertv(t) is a solution of ż(t) = N (t)z(t).

Theorem 3.10: The disease-free equilibrium E+ is locally asymptotically stable if R0 < 1
and unstable ifR0 > 1.

Proof: LetA(t) be the Jacobian matrix of (2) evaluated at E+. Then, we have

A(t) =
(
F(t)− V(t) 0
A21(t) A22

)
,

where

A22 =

⎛
⎜⎜⎝

−dh 0 0 0
0 −dh 0 0
0 0 −α4 α3
0 0 α2 −α1

⎞
⎟⎟⎠ ,

A21(t) =

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0 0 −p1(t)

0 0 0 0 βa 0 −p2(t)

0 0 0 0 0 0 0

0 −p3(t) 0 −p4(t) −p5(t) 0 0

⎞
⎟⎟⎟⎟⎠ ,
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with

p1(t) = pcveβ(t), p2(t) = (1 − p)cvaβ(t), p3(t) = cevβ(t)
S∗
v

N∗
h
,

p4(t) = cavβ(t)
S∗
v

N∗
h
, p5(t) = c̃avβ(t)

S∗
v

N∗
h
.

E+ is locally asymptotically stable if ρ(�A22(ω)) < 1 and ρ(�F−V(ω)) < 1 [33].
We note thatA22 is a constant matrix and its eigenvalues are given by

λ1 = −
√
(α1 − α4)2 + 4α2α3 + α1 + α4

2
,

λ2 =
√
(α1 − α4)2 + 4α2α3 − α1 − α4

2
,

λ3 = λ4 = −dh.

Since κ > 1, then all the eigenvalues λ1, λ2, λ3 and λ4 are negative. It then follows that
ρ(�A22(ω)) < 1. Furthermore, the stability of E+ depends on ρ(�F−V(ω)).

Hence, if ρ(�F−V(ω)) < 1, then E+ is stable, but if ρ(�F−V(ω)) > 1, then E+ is unsta-
ble. Thus, thanks to Theorem3.8, E+ is locally asymptotically stable ifR0 < 1 and unstable
ifR0 > 1. �

Theorem 3.11: If γe = γa = 0 andR0 < 1, then the disease-free equilibrium E+ is globally
asymptotically stable.

Proof: If γe = γa = 0, we can rewrite (3) and (4) as follows:

Ṅh(t) = �− dhNh(t),

Ṅv(t) = rvL(t)− dvNv(t).

Thus there exists a period ω′ such that for all t > ω′,

Nv(t) ≤ S∗
v + ε and Nh(t) ≥ N∗

h − ε, for all ε > 0.

It then follows that

Se(t)
Nh(t)

≤ S∗
e

N∗
h − ε

,
Sa(t)
Nh(t)

≤ S∗
a

N∗
h − ε

and
Sv(t)
Nh(t)

≤ S∗
v + ε

N∗
h − ε

.
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Thus from the system (2), we have

Ėe(t) ≤ cve
S∗
e

N∗
h − ε

β(t)Iv(t)− (νe + dh)Ee(t),

İe(t) = νeEe(t)− (αe + dh)Ie(t),

Ėa(t) ≤ cva
S∗
a

N∗
h − ε

β(t)Iv(t)− (dh + νa)Ea(t),

İa(t) = νaEa(t)− (dh + αa)Ia(t),

Ṙa(t) = αeIe(t)− (dh + βa)Ra(t)+ αaIa(t),

Ėv(t) ≤ S∗
v + ε

N∗
h − ε

β(t)
(
cavIa(t)+ cevIe(t)+ c̃avRa(t)

)− (dv + νv)Ev(t),

İv(t) = νvEv(t)− dvIv(t).

(10)

Let us consider the following auxiliary system:

˙̃h(t) = Aε(t)h̃(t), (11)

with

h̃(t) = (
Ẽe(t), Ĩe(t), Ẽa(t), Ĩa(t), R̃a(t), Ẽv(t), Ĩv(t)

)T ,
and the matrix Aε(t) defined by

Aε(t)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−M1 0 0 0 0 0
cveS∗

e
N∗
h − ε

β(t)

νe −M2 0 0 0 0 0

0 0 −M3 0 0 0
cvaS∗

a
N∗
h − ε

β(t)

0 0 νa −M4 0 0 0

0 αe 0 αa −M5 0 0

0 cevβ(t)
S∗
v + ε

N∗
h − ε

0 cavβ(t)
S∗
v + ε

N∗
h − ε

c̃avβ(t)
S∗
v + ε

N∗
h − ε

−M6 0

0 0 0 0 0 νv −dv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From Theorem 3.8, if R0 < 1, then ρ(�F−V(ω)) < 1. Clearly, limε→0+ �Aε (ω) =
�F−V(ω) and by continuity of the spectral radius, we have limε→0+ ρ(�Aε (ω)) =
ρ(�F−V(ω)) < 1. Thus there exists ε1 > 0 such that ρ(�Aε (ω)) < 1, for all ε ∈ [0, ε1].
From Lemma 3.9, there exists a positive ω-periodic function v(t) such that h̃(t) = ertv(t)
is a solution of (11) with r = 1/ω ln ρ(�Aε (ω)). Since ρ(�Aε (ω)) < 1, so r<0. The ω-
periodic function v(t) is bounded and it then follows that limt→∞ h̃(t) = 0. Applying
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comparison theorem [16] on system (10), we get

lim
t→∞(Ee(t), Ie(t),Ea(t), Ia(t),Ra(t),Ev(t), Iv(t)) = (0, 0, 0, 0, 0, 0, 0).

Hence, from the first and fourth equations of system (2), we get

lim
t→∞ Se(t) = S∗

e and lim
t→∞ Sa(t) = S∗

a .

Moreover, from Theorem 3.7, we have

lim
t→∞ L(t) = L∗ and lim

t→∞ Sv(t) = S∗
v .

It then follows that the equilibrium E+ is globally attractive. �

3.5. Persistence ofmalaria

Let us consider the following sets:

X := R
11
+ ,

X0 := {(Se, . . . , Iv) ∈ X |Ee > 0, Ie > 0,Ea > 0, Ia > 0,Ra > 0, L > 0,Ev > 0, Iv > 0} ,
∂X0 := X \ X0.

Let u(t,φ) be the unique solution of (2) with initial condition φ, �(t) the periodic semi-
flow generated by periodic system (2) and P : X −→ X the Poincaré map associated with
system (2), namely:

P(φ) = �(ω)φ = u(ω,φ), ∀φ ∈ X,

Pm(φ) = �(mω)φ = u(mω,φ), ∀m ≥ 0.

Proposition 3.12: The sets X0 and ∂X0 are positively invariant under the flow induced
by (2).

Proof: For any initial condition ψ ∈ X0, by solving the equations of system (2) we derive
that

Se(t) = exp
(

−
∫ t

0
h1(s) ds

)[
Se(0)+ p�

∫ t

0
exp

(∫ s

0
h1(τ ) dτ

)
ds
]

≥ p� exp
(

−
∫ t

0
h1(s) ds

)[∫ t

0
exp

(∫ s

0
h1(τ ) dτ

)
ds
]

> 0, ∀ t > 0, (12)

Ee(t) = exp(−M1t)
(
Ee(0)+

∫ t

0
ke(s)Se(s) exp(M1s) ds

)

≥ exp(−M1t)
(∫ t

0
ke(s)Se(s) exp(M1s) ds

)

> 0, ∀ t > 0, (13)
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Ie(t) = exp(−M2t)
(
Ie(0)+ νe

∫ t

0
Ee(s) exp(M2s) ds

)

≥ νe exp(−M2t)
(∫ t

0
νeEe(s) exp(M2s) ds

)

> 0, ∀ t > 0,

Sa(t) = exp
(

−
∫ t

0
h2(s) ds

)[
Sa(0)+

∫ t

0
((1 − p)�+ Ra(s)) exp

(∫ s

0
h2(τ ) dτ

)
ds
]

≥ exp
(

−
∫ t

0
h2(s)ds

)[∫ t

0
((1 − p)�+ Ra(s)) exp

(∫ s

0
h2(τ ) dτ

)
ds
]

> 0, ∀ t > 0, (14)

Ea(t) = exp(−M3t)
(
Ea(0)+

∫ t

0
ka(s)Sa(s) exp(M3s) ds

)

≥ exp(−M3t)
(∫ t

0
ka(s)Sa(s) exp(M3s) ds

)

> 0, ∀ t > 0, (15)

Ia(t) = exp(−M4t)
(
Ia(0)+ νa

∫ t

0
Ea(s) exp(M4s) ds

)

≥ νa exp(−M4t)
(∫ t

0
Ea(s) exp(M4s) ds

)

> 0, ∀ t > 0, (16)

Ra(t) = exp(−M5t)
(
Ra(0)+

∫ t

0
(αeIe(s)+ αaIa(s)) exp(M5s) ds

)

≥ exp(−M5t)
(∫ t

0
(αeIe(s)+ αaIa(s)) exp(M5s) ds

)

> 0, ∀ t > 0, (17)

L(t) = exp
(

−
∫ t

0
h3(s) ds

)[
L(0)+ b

∫ t

0
Nv(s) exp

(∫ s

0
h3(τ ) dτ

)
ds
]

≥ b exp
(

−
∫ t

0
h3(τ ) ds

)∫ t

0
Nv(s) exp

(∫ s

0
h3(τ ) dτ

)
ds

> 0, ∀ t > 0, (18)
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Sv(t) = exp
(

−
∫ t

0
h4(s) ds

)[
Sv(0)+ rv

∫ t

0
L(s) exp

(∫ s

0
(h4(τ )) dτ

)
ds
]

≥ rv exp
(

−
∫ t

0
h4(s) ds

)[∫ t

0
L(s) exp

(∫ s

0
h4(τ ) dτ

)
ds
]

> 0, ∀ t > 0, (19)

Ev(t) = exp(−M6t)
(
Ev(0)+

∫ t

0
kv(s)Sv(s) exp(M6s) ds

)

≥ exp(−M6t)
(∫ t

0
kv(s)Sv(s) exp(M6s) ds

)

> 0, ∀ t > 0, (20)

Iv(t) = exp(−dvt)
(
Iv(0)+ νv

∫ t

0
Ev(s) exp(dvs) ds

)

≥ νv exp(−dvt)
(∫ t

0
Ev(s) exp(dvs) ds

)

> 0, ∀ t > 0, (21)

where

h1(t) = ke(t)+ dh, h2(t) = ka(t)+ dh,

h3(t) = Nv(t)
K

+ dl + rv , h4(t) = kv(t)+ dv .

Thus X0 is positively invariant. Since X is positively invariant and ∂X0 is relatively closed
in X, it yields that ∂X0 is positively invariant. �

Note that from Lemma 3.2, 	 is a compact set which attracts all positive orbits in X that
implies that the discrete-time system P : X −→ X is point dissipative. Moreover, ∀n0 ≥
1,Pn0 is compact, it then follows that P admits a global attractor in X.

Lemma 3.13: If R0 > 1, there exists η > 0 such that when
∥∥φ − E+∥∥ ≤ η, ∀φ ∈ X0, we

have

lim sup
n→∞

∥∥Pn(φ)− E+∥∥ ≥ η.

Proof: Suppose by contradiction that lim supn→∞
∥∥Pn(φ)− E+∥∥ < η for some φ ∈ X0.

Then, there exists an integer N1 ≥ 1 such that for all n ≥ N1,
∥∥Pn(φ)− E+∥∥ < η. By the

continuity of the solution u(t,φ), we have
∥∥u(t, Pn(φ))− u(t,E+)

∥∥ ≤ σ for all t ≥ 0 and
σ > 0. For all t ≥ 0, let t = nω + t′, where t′ ∈ [0,ω] and n = [t/ω]. [t/ω] is the greatest
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integer less or equal to t/ω. If
∥∥φ − E+∥∥ ≤ η, then by the continuity of the solution u(t,φ),

we have ∥∥u(t,φ)− u(t,E+)
∥∥ = ∥∥u(t′ + nω,φ)− u(t′ + nω,E+)

∥∥
= ∥∥�(t′ + nω)φ −�(t′ + nω)E+∥∥
= ∥∥�(t′)�(nω)φ −�(t′)�(nω)E+∥∥
= ∥∥�(t′)Pn(φ)−�(t′)Pn(E+)

∥∥
= ∥∥�(t′)Pn(φ)−�(t′)E+∥∥ ≤ σ .

Moreover, there exists σ ∗ > 0 such that for all t ∈ [0,ω],

Se(t)
Nh(t)

≥ S∗
e

N∗
h

− σ ∗,
Sa(t)
Nh(t)

≥ S∗
a

N∗
h

− σ ∗ and
Sv(t)
Nh(t)

≥ S∗
v

N∗
h

− σ ∗.

Hence, we obtain the following system:

Ėe(t) ≥
(
S∗
e

N∗
h

− σ ∗
)
cveβ(t)Iv(t)− (νe + dh)Ee(t)

İe(t) = νeEe(t)− (αe + dh + γe)Ie(t)

Ėa(t) ≥
(
S∗
a

N∗
h

− σ ∗
)
cvaβ(t)Iv(t)− dhEa(t)− νaEa(t)

İa(t) = νaEa(t)− (dh + αa + γa)Ia(t)

Ṙa(t) = αeIe(t)− (dh + βa)Ra(t)+ αaIa(t)

Ėv(t) ≥ β(t)
(
S∗
v

N∗
h

− σ ∗
) (

cavIa(t)+ cevIe(t)+ c̃avRa(t)
)− (dv + νv)Ev(t)

İv(t) = νvEv(t)− dvIv(t).

Let us consider the following auxiliary linear system:

˙̄J(t) = Mσ ∗(t)J̄(t), (22)

where

J̄(t) = (
Ēe(t), Īe(t), Ēa(t), Īa(t), R̄a(t), Ēv(t), Īv(t)

)T
andMσ ∗(t) a matrix defined by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−M1 0 0 0 0 0 cveβ(t)q1
νe −M2 0 0 0 0 0

0 0 −M3 0 0 0 cvaβ(t)q2
0 0 νa −M4 0 0 0

0 αe 0 αa −M5 0 0

0 cevβ(t)q3 0 cavβ(t)q3 c̃avβ(t)q3 −M6 0

0 0 0 0 0 νv −dv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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with

q1 = S∗
e

N∗
h

− σ ∗, q2 = S∗
a

N∗
h

− σ ∗ and q3 = S∗
v

N∗
h

− σ ∗.

Once again by Lemma 3.9, there exists a positive ω-periodic function v(t) such that
J̄(t) = ertv(t) is a solution of system (22)with r = (1/ω) ln ρ(�Mσ∗ (ω)).ρ(�Mσ∗ (ω)) > 1
implies that r>0. In this case, J̄(t) → ∞ as t → ∞. Applying the theorem of comparison
[16], we have

lim
t→∞ |(Ee(t), Ie(t),Ea(t), Ia(t),Ra(t),Ev(t), Iv(t))| = ∞,

that contradicts the fact that solutions are bounded. �

Theorem 3.14: IfR0 > 1, there exists ξ > 0 such that any solution u(t,ϕ) with the initial
condition φ ∈ X0 satisfies

lim inf
t→∞ Se(t) ≥ ξ , lim inf

t→∞ Ee(t) ≥ ξ , lim inf
t→∞ Ie(t) ≥ ξ , lim inf

t→∞ Sa(t) ≥ ξ ,

lim inf
t→∞ Ea(t) ≥ ξ , lim inf

t→∞ Ia(t) ≥ ξ , lim inf
t→∞ Ra(t) ≥ ξ , lim inf

t→∞ L(t) ≥ ξ ,

lim inf
t→∞ Sv(t) ≥ ξ , lim inf

t→∞ Ev(t) ≥ ξ , lim inf
t→∞ Iv(t) ≥ ξ ,

and the system (2) has at least one positive periodic solution.

Proof: Let us consider the following sets:

M∂ = {φ ∈ ∂X0 : Pn(φ) ∈ ∂X0, n ≥ 0},
D = {(Se, 0, 0, Sa, 0, 0, 0, L, Sv , 0, 0) ∈ X : Se ≥ 0, Sa ≥ 0, L ≥ 0, Sv ≥ 0}.

It is clear that D ⊂ M∂ . So we must prove thatM∂ ⊂ D. That means, for any initial condi-
tion φ ∈ ∂X0, Ee(nω) = 0 or Ie(nω) = 0 or Ea(nω) = 0 or Ia(nω) = 0 or Ra(nω) = 0 or
Ev(nω) = 0 or Iv(nω) = 0, for all n ≥ 0.

Let φ ∈ ∂X0. Suppose by contradiction that there exists an integer n1 ≥ 0 such
that Ee(n1ω) > 0, Ie(n1ω) > 0, Ea(n1ω) > 0, Ia(n1ω) > 0, Ra(n1ω) > 0, Ev(n1ω) > 0,
Iv(n1ω) > 0. Then, by replacing the initial time t=0 by t = n1ω in (12)–(20), we
obtain Se(t) > 0, Ee(t) > 0, Ie(t) > 0, Sa(t) > 0, Ea(t) > 0, Ia(t) > 0,Ra(t) > 0, L(t) > 0,
Sv(t) > 0, Ev(t) > 0, Iv(t) > 0, that contradicts the fact that ∂X0 is positively invariant.

The equality M∂ = D implies that E+ is a fixed point of P and acyclic in M∂ , every
solution in M∂ approaches to E+. Moreover, Lemma 3.13 implies that E+ is an isolated
invariant set inX andWs(E+) ∩ X0 = ∅. By the acyclicity theorem on uniform persistence
for maps [43, Theorem 3.1.1], it then follows that P is uniformly persistent with respect to
(X0, ∂X0). So the periodic semiflow �(t) is also uniformly persistent. Hence, there exists
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ξ > 0 such that

lim inf
t→∞ Se(t) ≥ ξ , lim inf

t→∞ Ee(t) ≥ ξ , lim inf
t→∞ Ie(t) ≥ ξ , lim inf

t→∞ Sa(t) ≥ ξ ,

lim inf
t→∞ Ea(t) ≥ ξ , lim inf

t→∞ Ia(t) ≥ ξ , lim inf
t→∞ Ra(t) ≥ ξ , lim inf

t→∞ L(t) ≥ ξ ,

lim inf
t→∞ Sv(t) ≥ ξ , lim inf

t→∞ Ev(t) ≥ ξ , lim inf
t→∞ Iv(t) ≥ ξ .

Furthermore, thanks to Theorem 1.3.6 in [43], the system (2) has at least one periodic
solution u(t,φ∗) with φ∗ ∈ X0.

Now, let us prove that S∗
e (0), S∗

a(0) and S∗
v(0) are positive. If S∗

e (0) = S∗
a(0) = S∗

v(0) = 0,
then we obtain that S∗

e (t) > 0, S∗
a(t) > 0 and S∗

v(t) > 0 for all t>0. But using the periodic-
ity of solution, we have Se(0) = Se(nω) = 0, Sa(0) = Sa(nω) = 0 and Sv(0) = Sv(nω) =
0, that is a contradiction. �

4. Numerical simulations and sensitivity analysis

In this section, we simulate the model in order to illustrate our mathematical results. The
numerical values of the model are given in Table 1.

Using the periodicity of the function β(t), we can write it in the following form [4, 30]:

β(t) =
[
a1 + b1 cos

(
π t
6

)]
per month,

where a1 and b1 are constants chosen such that the function β(t) is positive.
Figures 3–5 show that malaria is persistent and the system admits at least one positive

periodic solution that illustrates our mathematical result of Theorem 3.14. Furthermore,
we remark that the number of infected humans is very high (see Figures 3 and 4) thatmeans

Figure 3. Distribution of infected non-immune with dl = 4, rv = 15, dv = 3.5, b = 180, γe =
0.00054, γa = 0.00027 and a1 = 5, b1 = 3. The initial conditions are given by Se(0) = 500, Ee(0) =
250, Ie(0) = 150, Sa(0) = 1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) =
4000, Iv(0) = 2000 and L(0) = 15, 000. We obtain κ = 40.6015 and R0 = 1.7127 > 1. (a) Exposed
non-immune and (b) infectious non-immune.
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Figure 4. Distribution of infected semi-immune with dl = 4, rv = 15, dv = 3.5, b = 180, γe =
0.00054, γa = 0.00027 and a1 = 5, b1 = 3. The initial conditions are given by Se(0) = 500, Ee(0) =
250, Ie(0) = 150, Sa(0) = 1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) =
4000, Iv(0) = 2000 and L(0) = 15, 000. We obtain κ = 40.6015 and R0 = 1.7127 > 1. (a) Exposed
semi-immune and (b) infectious semi-immune.

Figure 5. Distribution of infected mosquitoes with dl = 4, rv = 15, dv = 3.5, b = 180, γe =
0.00054, γa = 0.00027 and a1 = 5, b1 = 3. The initial conditions are given by Se(0) = 500, Ee(0) =
250, Ie(0) = 150, Sa(0) = 1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) =
4000, Iv(0) = 2000, and L(0) = 15, 000. We obtain κ = 40.6015 and R0 = 1.7127 > 1. (a) Exposed
mosquitoes and (b) infectious mosquitoes.

that we are in the endemic region. In addition, we notice that the density of infectious non-
immune is critical (see Figure 3b). As wementioned it above, the non-immune humans are
very vulnerable to malaria virus. Hence, it is very important to develop control measures
in order to reduce their infectious number. These control measures can consist in fight-
ing against immature mosquitoes proliferation (by reducing κ), avoiding contact between
humans and mosquitoes (by reducing the biting rate β(t)), by protecting a proportion of
non-immune through vaccination or by reducing the number of female anopheles already
present in the area.

Thus, let us assume that after some years, humans becomemore conscious aboutmalaria
mortality and then, develop some personal methods to avoid mosquitoes bites and also
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Figure 6. Distribution of infected non-immune with a1 = 3, b1 = 2.5, dl = 4, dv = 7.5, b =
90, γe = γa = 0. The initial conditions are given by Se(0) = 500, Ee(0) = 500, Ie(0) = 1000, Sa(0) =
1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) = 8000, Iv(0) = 4000 and
L(0) = 15, 000. We obtain κ = 9.47 andR0 = 0.3828 < 1. (a) Exposed non-immune and (a) infectious
non-immune.

Figure 7. Distribution of semi-immune infected with a1 = 3, b1 = 2.5, dl = 4, dv = 7.5, b =
90, γe = γa = 0. The initial conditions are given by Se(0) = 500, Ee(0) = 500, Ie(0) = 1000, Sa(0) =
1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) = 8000, Iv(0) = 4000 and
L(0) = 15, 000.Weobtainκ = 9.47 andR0 = 0.3828 < 1. (a) Exposed semi-immune and (b) infectious
semi-immune.

to reduce the mosquito population. By applying these measures, we obtain the following
figures (Figures 6–8).

Figures 6–8 show that the solution of the systemapproaches the disease-free equilibrium
E+ which is globally asymptotically stable; that illustrates the result of our Theorem 3.11.
Moreover, Figure 6 shows that the number of infected non-immune is rising in the short
time but the disease cannot persist due to the current prevention and control measures.
However, the application of these control measures must be intensified over the first 60
months of infection in order to reduce the malaria death rate for the non-immune.
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Figure 8. Distribution of infected mosquitoes with a1 = 3, b1 = 2.5, dl = 4, dv = 7.5, b = 90, γe =
γa = 0. The initial conditions are given by Se(0) = 500, Ee(0) = 500, Ie(0) = 1000, Sa(0) =
1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) = 8000, Iv(0) = 4000 and
L(0) = 15, 000. We obtain κ = 9.47 andR0 = 0.3828 < 1. (a) Exposed mosquitoes and (b) infectious
mosquitoes.

Figure 9. Distribution of infected non-immune and semi-immune with dl = 6.5, rv = 7, dv =
7.5, b = 20, γe = γa = 0 and a1 = 5, b1 = 3. The initial conditions are given by Se(0) = 500, Ee(0) =
250, Ie(0) = 150, Sa(0) = 1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) =
4000, Iv(0) = 2000 and L(0) = 15, 000. We get κ = 1.3827 and R0 = 0.2139 < 1. (a) Infectious
non-immune and (b) infectious semi-immune.

Next, we perform some sensitivity analysis to determine the influence of parameters
κ and β(t) on the dynamics of malaria transmission. First, we analyse the impact of the
parameter κ .

If we take the precautionary measures in the aquatic stage by reducing the parameter
κ , the number of infectious humans and mosquitoes decreases rapidly as Figures 9 and 10
show it. Thus the parameter κ is very important in the dynamics of malaria transmission.

Now, let us suppose that the only control measure applied by the humans consists in
avoiding the bites of the mosquitoes. Let θ be the efficiency of intervention measures. By
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Figure 10. Distribution of infected mosquitoes and immune humans with dl = 6.5, rv = 7, dv =
7.5, b = 20, γe = γa = 0 and a1 = 5, b1 = 3. The initial conditions are given by Se(0) =
500, Ee(0) = 250, Ie(0) = 150, Sa(0) = 1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) =
10, 000, Ev(0) = 4000, Iv(0) = 2000 and L(0) = 15, 000. We get κ = 1.3827 and R0 = 0.2139 < 1.
(a) Infectious mosquitoes and (b) immune humans.

Figure 11. Distribution of infected non-immune and semi-immune with dl = 4, rv = 15, dv =
3.5, b = 180, γe = γa = 0 and a1 = 5, b1 = 3. The initial conditions are given by Se(0) = 500, Ee(0) =
250, Ie(0) = 150, Sa(0) = 1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) = 10, 000, Ev(0) =
4000, Iv(0) = 2000 and L(0) = 15, 000. We get κ = 1.3827 and R0 = 0.2126 = 1.4173 × 0.15 < 1.
(a) Infectious non-immune and (b) infectious semi-immune.

considering this prevention, we use β̂(t) = (1 − θ)β(t) to replace β(t) in the model. If
θ = 0.85, then we obtain the following results.

By applying this prevention measure, we remark that malaria disappears in the pop-
ulations as shown in Figures 11 and 12. It must also be noticed that the basic repro-
duction decreases with this effort. In fact for the biting rate β̂(t) = (1 − θ)β(t), we have
obtained R̂0 = (1 − θ)R0. This numerical result is consistent with our theoretical result
of Proposition 3.5.
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Figure 12. Distribution of infected mosquitoes and immune humans with dl = 4, rv = 15, dv =
3.5, b = 180, γe = γa = 0 and a1 = 5, b1 = 3. The initial conditions are given by Se(0) =
500, Ee(0) = 250, Ie(0) = 150, Sa(0) = 1000, Ea(0) = 500, Ia(0) = 1000, Ra(0) = 2000, Sv(0) =
10, 000, Ev(0) = 4000, Iv(0) = 2000 and L(0) = 15, 000. We get κ = 1.3827 and R0 = 0.2126 =
1.4173 × 0.15 < 1. (a) Infectious mosquitoes and (b) immune humans.

5. Conclusion

Based on themodel in [10], we have formulated amathematicalmodel ofmalaria transmis-
sion with periodic biting rate and mosquitoes population structured in the heterogeneous
humans host population. The basic reproduction ratios associated to the model has been
determined and a new other threshold dynamics, κ , has been determined too. We have
shown that κ is an important parameter which allows to control the dynamics of mosquito
populations. Thus for the autonomous model, we clearly observe that basic reproduction
number increases with κ . It also emerged from our study that the basic reproduction ratio
is highly influenced by the biting rate. Then, these parameters could be used to fight against
the disease in the populations.

Furthermore, we have determined the biological realistic disease-free equilibrium, E+,
of the model and then we have completely investigated its stability by using the Floquet
theory. Indeed,we have proved that if the basic reproduction ratio,R0, is less than one, then
E+ is globally asymptotically stable and malaria dies out of the populations. Otherwise,
if R0 is greater than one, the system admits at least one positive periodic solutions and
malaria persists in the populations.

However, it must be noticed that our model is limited due to the following reasons:

(i) seasonality is not incorporated in the evolution of immature mosquitoes, that is a
mathematical simplification,

(ii) the immature class is not differentiated (eggs, larvae and pupae).

One can develop a more realistic model by incorporating these above assumptions and
also include the investigation of the stability of positive periodic solution. Otherwise, this
study could be applied to some regions with realistic data on malaria transmission that
would allow to show the impact of climate on the transmission.
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