
HAL Id: hal-04219244
https://hal.science/hal-04219244

Preprint submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The index and period of a logic program
Christian Antic

To cite this version:

Christian Antic. The index and period of a logic program. 2023. �hal-04219244�

https://hal.science/hal-04219244
https://hal.archives-ouvertes.fr

THE INDEX AND PERIOD OF A LOGIC PROGRAM

CHRISTIAN ANTIĆ

christian.antic@icloud.com
Vienna University of Technology

Vienna, Austria

Abstract. This paper introduces the index and period of a logic program as an algebraic measure of its
cyclicality.

1. Introduction and preliminaries

We introduce the index and period of a logic program via the recently introduced sequential com-
position1 operation on programs (Antić, 2023d, 2023c, 2023a) in analogy to the same concepts in
semigroup theory (see, for example, Howie, 2003, p.10). Numerous examples demonstrate that these
notions provide a suitable algebraization of the cyclicality of a program.

For simplicity, we demonstrate the concepts in this paper for propositional programs of a very
simple (Krom) form only — the index and period of non-Krom and first-order answer set programs
can be defined and studied in essentially the same way where the sequential composition of first-
order programs is defined as in (Antić, 2023a, §3.1) and of arbitrary answer set programs as in Antić
(2023c). We choose here to restrict ourselves to this simple fragment since it allows us to focus on the
novel concepts without introducing too much formalism as the sequential composition of non-Krom
answer set programs is quite involved.

We refer readers not familiar with answer set programming to Baral (2003), Brewka et al. (2011),
Eiter et al. (2009), and Lifschitz (2019).

Preliminaries. For every n ≥ 1, let [n] := {1, . . . , n}.
An (answer set) program (Gelfond & Lifschitz, 1991) over [n] is a finite set of rules of the form

a0 ← a1, . . . , aℓ, not aℓ+1, . . . , not ak, 0 ≤ ℓ ≤ k ≤ n,(1)

where a0, . . . , ak ∈ [n] are atoms and not denotes negation as failure (Clark, 1978). We call a program
positive (or Horn) iff it contains no negation, and we call it negative iff every body atom is negated.

For our demonstration in this paper it will suffice to consider only Krom2 programs (cf. Krom,
1967) consisting of at most one body literal of the following forms:

a, a← b, a← not b.

Notation 1. In what follows, the implication relation “←” binds weaker than any other operation.

1For a discussion of the sequential composition operation used in this paper in relation to other notions of composition
from the literature (e.g. Brogi et al., 1999; Bugliesi et al., 1994; O’Keefe, 1985) see Antić (2023d, §Related work).

2This class of programs is sometimes called binary in the literature.
1

2 THE INDEX AND PERIOD OF A LOGIC PROGRAM

We define the (sequential) composition (Antić, 2023d, 2023c) of two Krom answer set programs P
and R by

P ◦ R :=



a
b
c← d
e← f
g← not h
i← not j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a ∈ P
b← b′ ∈ P and b′ ∈ R
c← c′ ∈ P and c′ ← d ∈ R
e← not e′ ∈ P and e′ ← not f ∈ R
g← g′ ∈ P and g′ ← not h ∈ R
i← not i′ ∈ P and i′ ← j ∈ R


.

We will often abbreviate P ◦ R as PR.

Fact 2. The composition of Krom programs is associative and distributes over union.

Proof. Antić (2023d, Theorem 12) has shown this for positive Krom programs and it is straightfor-
ward to generalize the proof to include negative Krom programs as well. □

We call a program P idempotent iff P2 = P. For every interpretation I, we have

IP = I,(2)

which shows that interpretations are idempotent.

2. The index and period of a logic program

This is the main section of the paper. Here we shall introduce — in analogy to the same concepts
in semigroup theory (see, for example, Howie, 2003, p.10) — the index and period of a logic program
as an algebraic measure of its cyclicality.

Let P be a logic program and consider

[P] := {P, P2, P3, . . .}

generated by P. If there are no repetitions in the list P2, P3, . . ., that is, if

Pm = Pn ⇒ m = n,

then ([P], ◦) is isomorphic to (N,+). In this case, we say that P has infinite order. Notice that this case
can only occur for infinite programs, i.e., infinite propositional programs (which are excluded here)
or first-order (or higher-order) programs with an infinite grounding (which are not considered in this
paper).3

Otherwise, if there are repetitions among the powers of P, then the set

{m ∈ N | Pm = Pn, for some m , n}

3A typical example of this form would be the first-order program

Nat :=
{

nat(0)
nat(s(x))← nat(x)

}
defining the natural numbers as we have

Nat , Nat2 =


nat(0)
nat(s(0))
nat(s(s(x)))← nat(x)

 ,

THE INDEX AND PERIOD OF A LOGIC PROGRAM 3

is non-empty and thus has a least element which we will call the index of P denoted by index(P).
Then the set {

r ∈ N
∣∣∣ Pindex(P)+r = Pindex(P)

}
is also non-empty and has a least element which we will call the period of P denoted by period(P).

Intuitively, the index and period of a program contains information about the cyclicality of a pro-
gram as we shall demonstrate below.

Fact 3. Every idempotent program has period 1 and index 1. This holds in particular for every
interpretation.

Proof. The first statement is obvious and the second statement is a direct consequence of (2). □

2.1. Elevators. In this section, we shall construct programs with index m and period 1 (cf. Proposi-
tion 4).

For every m ≥ 1, define the m-elevator by the Krom program

Em := {1} ∪ {a + 1← a | 1 ≤ a < m} =


1
2← 1
...

m← m − 1

 .
For example, we have

E1 = {1}, E2 =

{
1
2← 1

}
, E3 =


1
2← 1
3← 2

 ,
Notice that

Em ⊆ En, for all m ≤ n.

For every 1 ≤ k ≤ m, we have

Ek
m = {1, . . . , k} ∪ {a + 1← a + 1 − k | k ≤ a ≤ m − 1}

which shows that for all k, ℓ ≤ m − 1,

Ek
m = Eℓm ⇒ k = ℓ

and

Em
m = [m].

For example, for

E4 =


1
2← 1
3← 2
4← 3


we obtain the powers

E4, E2
4 =


1
2
3← 1
4← 2

 , E3
4 =


1
2
3
4← 1

 , E4
4 =


1
2
3
4

 .
Hence, we have shown:

4 THE INDEX AND PERIOD OF A LOGIC PROGRAM

Proposition 4. The m-elevator Em has index m and period 1.

2.2. Permutations. With every permutation π : [n] → [n], n ≥ 1, we associate the permutation
(Krom program)

Kπ := {π(a)← a | a ∈ [n]}.

In what follows, we will not distinguish between π and Kπ. We use the well-known cycle notation so
that

π(1 ... n) =



1← n
2← 1
3← 2
...
n← n − 1


.

In what follows, we shall write πn instead of π(1 ... n) and we call πn the n-permutation (Krom program).
The identity n-permutation is denoted by

1n = {a← a | a ∈ [n]}.

Of course,

index(1n) = period(1n) = 1.

We always have

πn
n = 1n.

Notice that we have

Em = (πm − {1← m}) ∪ {1}.

That is, Em and πm differ only in the rule with head atom 1.

Fact 5. The Krom program πn has index 1 and period n. Moreover, all powers πk
n, k ≥ 1, have index

1 and period n.

Example 6. The permutation program π(1 2) has index 1 and period 2 since

π2
(1 2) = 1{1,2} and π3

(1 2) = π(1 2).

2.3. Km,n. We now wish to construct a Krom program Km,n with index m and period n. For this, let

Km,n := Em ∪ π(m+1 ... m+n).

It is important to notice that we have

Em ∩ π(m+1 ... m+n) = ∅.(3)

Theorem 7. The Krom program Km,n has index m and period n.

Proof. Since Km,n is Krom, we have (we write π instead of π(m+1 ... m+n)))

K2
m,n = (Em ∪ π)(Em ∪ π) = E2

m ∪ πEm ∪ Emπ ∪ π
2 = E2

m ∪ π
2,

where the last identity follows from

Emπ
(3)
= {1} ⊆ E2

m and πEm
(3)
= ∅.

THE INDEX AND PERIOD OF A LOGIC PROGRAM 5

Notice that we have

Emπ
k (3)
= {1} ⊆ Eℓm and πkEm

(3)
= ∅, for all 1 ≤ ℓ ≤ k.(4)

Another iteration yields

K3
m,n = (Em ∪ π)(E2

m ∪ π
2) = E3

m ∪ Emπ
2 ∪ πE2

m ∪ π
3 (4)
= E3

m ∪ π
3.

This leads us to the following general formula which is shown by a straightforward induction using
the identities in (4):

Kk
m,n = Ek

m ∪ π
k
(m+1 ... m+n).

For any 1 ≤ k, ℓ ≤ m − 1, we have

Ek
m , Eℓm

and since

Ek
m ∩ π = Eℓm ∩ π = ∅,

this shows

Kk
m,n , Kℓm,n.

Moreover, we have

Km
m,n = [m] ∪ πm.

and thus

Km+i
m,n = [m] ∪ πm+i

which by Fact 5 implies that n is the least positive integer such that

Km+n
m,n = [m] ∪ πm+n = [m] ∪ πm = Km

m,n.

Hence,

period(Km
m,n) = period(πm) = period(π) = n.

In total we have thus shown

index(Km,n) = m and period(Km,n) = n.

□

3. Negative programs

In this section, we will see that the cyclicality of negative programs is quite different from positive
ones which is due to the alternating nature of negation vs. double negation.

6 THE INDEX AND PERIOD OF A LOGIC PROGRAM

3.1. Negative elevators. The negative m-elevator is given by

not Em = {2, . . . ,m} ∪ {a + 1← not a | 1 ≤ a ≤ m − 1} =



2
...
m
2← not 1
...
m← not (m − 1)


.

For every 1 ≤ k ≤ m, we have

(not Em)k =

{2, . . . ,m} ∪ {a + 1← a − k + 1 | k ≤ a ≤ m − 1} if k is even,
{2, . . . ,m} ∪ {a + 1← not (a − k + 1) | k ≤ a ≤ m − 1} if k is odd.

For example, we have

(not Em)2 =



2
...
m
3← 1
4← 2
...
m← m − 2


, (not Em)3 =



2
...
m
4← not 1
...
m← not (m − 3)


, (not Em)4 =



2
...
m
5← 1
...
m← m − 4


.

In particular, we have

(not Em)m = [m] = Em
m,

regardless of whether m is even or odd.
We have thus shown:

Proposition 8. The negative m-elevator not Em has index m and period 1, that is,

index(not Em) = index(Em) = m and period(not Em) = period(Em) = 1.

3.2. Negative permutations. We now turn our attention to negative programs and we shall see that
such programs have a different kind of cyclicality.

The negative n-permutation (Krom program) is given by

not πn =


2← not 1
...
n← not (n − 1)
1← not n

 .
We have

(not πn)k =

πk
n if k is even,

not πk
n if k is odd.

(5)

In particular, we have

(not πn)n =

1n if n is even,
not 1n if n is odd.

(6)

THE INDEX AND PERIOD OF A LOGIC PROGRAM 7

We thus have

n is even ⇒ period(not πn) = n.

What if n is odd? We claim:

n is odd ⇒ period(not πn) = 2n.

We have

(not 1n)2 = 12
n = 1n,

which by (6) implies

(not πn)2n = 1n

and thus

(not πn)1+2n = not πn.

It remains to show

not πn , (not πn)2 , . . . , (not πn)2n.(7)

Since n is odd by assumption, by (5) this sequence of powers equals

not πn, π
2
n, . . . not πn−2

n , π
n−1
n , not πn

n, π
n+1
n , not πn+2

n , . . . not π2n−1
n , π2n

n .(8)

Notice that since n is odd, we have, for all 1 ≤ k ≤ n,

(not πn)n+k =

πk
n if k is odd,

not πk
n if k is even.

In particular, we have

not π2n
n = π

n
n.

Hence, the sequence in (8) can be written as

not πn, π
2
n, . . . not πn−2

n , π
n−1
n , not πn

n, πn, not π2
n, . . . not πn−1

n , π
n
n.

This immediately shows (7).
For example, for n = 3, the 2n = 6 distinct powers of not π3 are given by

(not π3)1 =


2← not 1
3← not 2
1← not 3

 , (not π3)2 = π2
3 =


2← 3
3← 1
1← 2

 , (not π3)3 = not π3
3 =


2← not 2
3← not 3
1← not 1


(not π3)4 = π4

3 =


2← 1
3← 2
1← 3

 , (not π3)5 = not π5
3 =


2← not 3
3← not 1
1← not 2

 , (not π3)6 = π6
3 =


2← 2
3← 3
1← 1

 .
In total, we have thus shown:

Proposition 9. The negative n-permutation not πn has index 1 and period

period(not πn) =

n if n is even,
2n if n is odd.

That is,

period(not πn) =

period(πn) if n is even,
2 × period(πn) if n is odd.

8 THE INDEX AND PERIOD OF A LOGIC PROGRAM

Remark 10. Notice that the period of not πn is always even!

This means that the cyclicality of not πn is identical to that of πn iff n is even, and it differs by a
factor of 2 iff n is odd; this shows that positive and negative programs are different when it comes to
cycles which coincides with our intuition.

4. Problems

This section lists problems which remained unsolved in this paper and appear to be interesting lines
of future research.

Problem 1. Study the relationship between the index and period of a program and its decompositions
into factors (cf. Antić, 2023e, 2023b).

Problem 2. For simplicity, in this paper we have dealt only with Krom programs of a very simplistic
form. For the future, it is therefore mandatory to study the index and period of non-Krom programs
which is more complicated already in the Horn fragment since the sequential composition of proposi-
tional Horn programs is not associative and does not distribute over union (cf. Antić, 2023d, Example
8). For non-Krom answer set programs the situation is even more complex since the sequential com-
position of answer set programs is quite involved (cf. Antić, 2023c).

Problem 3. In this paper, we have restricted ourselves to propositional programs. The main line of
future research is to study the index and period of a program for first-order and higher-order logic
programs (cf. Miller & Nadathur, 2012; Chen, Kifer, & Warren, 1993).

5. Conclusion

The paper introduced the index and period of a logic program as an algebraic measure of the cycli-
cality of a program. We showed that there are propositional Krom programs, composed of elevators
and permutations, of arbitrary index and period.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statement

The manuscript has no data associated.

References

Antić, C. (2023a). Logic program proportions. Annals of Mathematics and Artificial Intelligence,
accepted. https://arxiv.org/pdf/1809.09938.pdf.

Antić, C. (2023b). On syntactically similar logic programs and sequential decompositions. submitted
to Information and Computation, https://arxiv.org/pdf/2109.05300.pdf.

Antić, C. (2023c). Sequential composition of answer set programs. submitted to Information and
Computation, https://arxiv.org/pdf/2104.12156v2.pdf.

Antić, C. (2023d). Sequential composition of propositional logic programs. submitted to Annals of
Mathematics and Artificial Intelligence, https://arxiv.org/pdf/2009.05774v4.pdf.

Antić, C. (2023e). Sequential decomposition of propositional logic programs. https://arxiv.org/
pdf/2304.13522.pdf.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge.

https://arxiv.org/pdf/1809.09938.pdf
https://arxiv.org/pdf/2109.05300.pdf
https://arxiv.org/pdf/2104.12156v2.pdf
https://arxiv.org/pdf/2009.05774v4.pdf
https://arxiv.org/pdf/2304.13522.pdf
https://arxiv.org/pdf/2304.13522.pdf

References 9

Brewka, G., Eiter, T., & Truszczynski, M. (2011). Answer set programming at a glance. Communi-
cations of the ACM, 54(12), 92–103.

Brogi, A., Mancarella, P., Pedreschi, D., & Turini, F. (1999). Modular logic programming. ACM
Transactions on Programming Languages and Systems, 16(4), 1361–1398.

Bugliesi, M., Lamma, E., & Mello, P. (1994). Modularity in logic programming. The Journal of Logic
Programming, 19-20(1), 443–502.

Chen, W., Kifer, M., & Warren, D. S. (1993). HiLog: A foundation for higher-order logic program-
ming. The Journal of Logic Programming, 15(3), 187–230.

Clark, K. L. (1978). Negation as failure. In Gallaire, H., & Minker, J. (Eds.), Logic and Data Bases,
pp. 293–322. Plenum Press, New York.

Eiter, T., Ianni, G., & Krennwallner, T. (2009). Answer set programming: a primer. In Reasoning Web.
Semantic Technologies for Information Systems, volume 5689 of Lecture Notes in Computer
Science, pp. 40–110. Springer, Heidelberg.

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3-4), 365–385.

Howie, J. M. (2003). Fundamentals of Semigroup Theory. London Mathematical Society Monographs
New Series. Oxford University Press, Oxford.

Krom, M. R. (1967). The decision problem for a class of first-order formulas in which all disjunctions
are binary. Mathematical Logic Quarterly, 13(1-2), 15–20.

Lifschitz, V. (2019). Answer Set Programming. Springer Nature Switzerland AG, Cham, Switzerland.
Miller, D., & Nadathur, G. (2012). Programming with Higher-Order Logic. Cambridge University

Press.
O’Keefe, R. A. (1985). Towards an algebra for constructing logic programs. In SLP 1985, pp. 152–

160.

	1. Introduction and preliminaries
	Preliminaries

	2. The index and period of a logic program
	2.1. Elevators
	2.2. Permutations
	2.3. Km,n

	3. Negative programs
	3.1. Negative elevators
	3.2. Negative permutations

	4. Problems
	5. Conclusion
	Conflict of interest
	Data availability statement
	References
	References

