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Abstract

Latent representations are ubiquitous in data analytics and AI
tasks. They are used as intermediary hidden models to go from a
set of observations to decisions.
Victor Charpenay and Rodolphe Le Riche confront the perspectives
of their domains about these intermediary vector representations.
They identify two antagonist purposes: while the latent variables of
statistical models are used to ease computation, the hidden layers
of neural networks are meant to capture non-trivial regularities in
the observed data. The difference has consequences on the
dimension of the latent feature space: looking for regularities
implies finding an optimal contraction of the input data to a
smaller latent space, in contrast to the infinite-dimensional vectors
used in kernel based approaches.



General problem

observations ?−→ decision

industrial control variables ?−→ anomaly detection

knowledge graph ?−→ auto-completion

wind farm topology ?−→ productivity

airfoil shape ?−→ lift/drag prediction

mechanical measures ?−→ material characteristics (strength . . . )

observations φ−→ latent representation
ψ−→ decision



Importance of latent representations

(one solution)
Many learning and optimization tasks rely on latent
representations. . .

(to address many problems)
. . . despite the great variety in the observed data and the nature of
the decision.

Question
Is there such a diversity in the role of latent representations
themselves?



Heterogeneous terminology

observations
φ−→ latent representation ψ−→ decision

Latent: unobserved (hidden), transitive, implicit.

Other names:
I “hidden features”

as in “feature space” of Kriging
I “latent variables”

as in “random variables” of Expectation-Maximization
I “embeddings” into a vector space

as in “word embeddings” of Language Models



Notation

x
φ(x ; θφ)

h
ψ(h ; θψ)

y

I single observation: input vector x
I hidden vector h
I decision: output vector y
I φ and ψ parameterized with θφ, θψ



Example: defect detection I

A typical application of machine learning in industrial systems is
defect detection.

Hidden Markov Models (HMMs) may be used for this
task [Aggarwal, 2016, ch. 10].
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Example: defect detection II

I observations: 14 mechanical variables characterizing work
cells (angle of a robotic arm, force applied by its effector, etc.)

I decision: quality indicator of output product (0/1)
I φ: transition probability estimation
I ψ: emission probability estimation



Example: Knowledge Graph completion I
Word embeddings are common in Natural Language Processing.

Similar latent models can be used on structured data such as
Knowledge Graphs to perform inductive
reasoning [Hogan et al., 2021, ch. 5].

Figure: Airports Knowledge Graph



Example: Knowledge Graph completion II
I observations: a set of e1

r−→ e2 edges,
I decision: predict the plausibility of any edge.
I φ: embedding array lookup
I ψ: geometric transformation, e.g.
−‖φ(e1) + φ(r)− φ(e2)‖ or φ(e1)φ(r)Dφ(e2)T
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Figure: Geometric interpretation of KG embeddings



Example: wind farm power production
An example of Kriging, a kernel-based method.
I observation, x : a new set of wind turbine positions.
I φ : almost always implicit thanks to the kernel trick,
〈φ(x), φ(x ′)〉H = k(x , x ′; θφ) and always rely on k()

I ψ: Bayesian linear regression
I decision, y : predict the average power production from new

wind turbine positions.

Complete study in [Sow et al., 2023]



Example : eigenshape decomposition I
An example of Principal Components Analysis (PCA) use.

From a database of possible shapes,

. . .

extract a basis of most impor-
tant shapes by principal compo-
nent analysis, {V 1, . . . ,V dim(h)}



Example : eigenshape decomposition II

Shapes are now described with their eigencomponents h,

shape ≈
dim(h)∑
i=1

hiV
i , hi = x>V i

Then work in latent h-space, cf. [Gaudrie et al., 2020].

I observation: a shape x

I h = φ(x ; θφ): projections of x on the basis,
θφ = {V 1, . . . ,V dim(h)}

I ψ: regression in h-space
I decision, y : prediction of lift and drag (then optimization)



Example : latent variables in materials science I

Example of Expectation-Maximization, EM.

Latent random variables to describe sample variability (e.g.,
[Laboulfie et al., 2021]).

h1 ∼ pH(h | θφ) sample X 1 hn ∼ pH(h | θφ) sample X n

hi 6= hj

In learning, average out latent variables to calculate likelihood:
L(θφ;X ) = p(X | θφ) =

∏n
i=1
∫
p(X i | h, θφ)pH(h | θφ)dh



Example : latent variables in materials science II

I observations, x : stress-strain measures on specimen
I φ: the probability distribution of the material parameters

h ∼ pH(. | θφ)

I ψ: material probabilistic model, p(x | h)

I decision: likelihood of the measures



Why latent representations

I A transformation to help learning?
I Or a causality (explanation) hidden in the observations ? I.e.,

try to understand regularities of the data.



Comparison criteria

Various comparison criteria for latent representations:
I dimension of latent vectors
I complexity of φ (number of parameters)
I complexity of ψ (number of parameters)

Do not mistake the above mapping complexity for the
computational complexity. Some mappings (e.g., EM) have no
parameter but imply heavy calculations.



Latent representation families

In the following, we use these criteria to characterize various
families of latent representations after learning, in the prediction
phase.

Families of latent representations:
I Knowledge Graph embeddings (TransE, RESCAL)
I Word embeddings (word2vec, GloVe)
I Transformers (BERT)
I Principal Component Analysis (PCA)
I Kernel-based algorithms (Kriging, SVM)
I Expectation-maximization algorithms



word2vec

dim(x) ≈ 30k

σ(W [x ; h(t−1)])

dim(h) = 90

softmax(W ′h(t))

dim(y) = dim(x)

dim(θφ) = dim(θψ) = dim(x)× dim(h)



GloVe

dim(x) ≈ 400k

Wx

dim(hi ) = 300

h1hT2
‖h1‖‖h2‖

dim(y) = 1

dim(θφ) = dim(x)× dim(hi )



GloVe (discussion) I

GloVe was designed to capture similarity between words.

Semantic relations can explain, a posteriori, certain regularities in
the latent space.

(a) gender equivalence (b) comparative-superlative

Figure: Linear substructures of GloVe
embeddings [Pennington et al., 2014]



GloVe (discussion) II

But can they explain all latent space regularities?

The inverse approach consists in embedding lexical databases
such as WordNet.

man woman king queen uncle aunt

person

aristocrat relative

antonym hypernym



TransE

dim(x) ≈ 15k

Wx

dim(hi ) = 50

‖h1 + h2 − h3‖

dim(y) = 1

dim(θφ) = dim(x)× dim(hi )



TransE (discussion) I

WordNet embeddings have decent true/false classification
performances. But dim(h) varies from 50 to 500 across
experiments.

Does the English language require 500 semantic relations to
discriminate all pairs of words? Probably not.



TransE (discussion) II

Knowledge Graph embeddings have an optimal (often unknown)
dimension.

(a) 40% of data observed (b) 10% of data observed

Figure: Average true/false classification performances on a synthetic
dataset (yellow: RESCAL, cyan: TransE) [Trouillon et al., 2019]; see
also [Charpenay, 2023]



BERT

dim(x) ≈ 30k

Wx + wpos + wpair

dim(h) = 1024

TransformerL,A(h)

dim(y) = dim(h)

dim(θφ) = (dim(x) + 2)× dim(h)

dim(θφ) + dim(θψ) ≈ 340M



BERT (discussion) I

Which part of BERT does capture
latent features?

I The embedding layer?
I Any of the hidden encoder layers?
I The entire encoder?

All layers, partly.

Figure: Transformer en-
coder [Vaswani et al., 2017]



BERT (discussion) II

F1 score
Fine-tuning

BERT 96.4
Feature-based learning

Embeddings 91.0
Last hidden 94.9
Weighted sum all 12 hidden 95.5
Second-to-last hidden 95.6
Weighted sum last four hidden 95.9
Concat last four hidden 96.1

Table: Scores on a Named Entity Recognition task with fine-tuning and
feature-based learning from pre-trained BERT



BERT (discussion) III

BERT is equivalent to a (theoretical) neural network with a single
hidden layer.



BERT-equivalent single-layer network

dim(x) ≈ 30k

σ(Wx)

dim(h) ≈ 100M?

. . .

. . .

softmax(W ′h)

dim(y) = dim(x)

dim(θφ) =
dim(θψ) =
dim(x)× dim(h)



BERT-equivalent single-layer network (discussion)

There is some interdependence between dim(h) and
card(θφ) + card(θψ).

Why are Transformers used in practice instead of single-layer
networks? For efficient computation.

In contrast, kernel-based methods tend to increase the latent
dimension, to ease the calculation of ψ.



Kriging & SVM

dim(x) ≈ 10

φ implicit

k(x , x ′) =

σ2 exp
(
−‖x−x

′‖2
2θ2

)

dim(h) =∞. . .

. . .

k(x ,X )[k(X ,X )]−1Y

dim(y) = 1

dim(θφ) = dim(x) + 1



Expectation-Maximization

dim(x) ≈ 500

rand. sampling
∼ pH(h | θφ)

N (µ,Σ2)

dim(h) ≈ 5

likelihood calc
& copy φ

dim(y) = 1 + dim(h)

h

p(x | h)
dim(θφ) ≈ 20



Principal Component Analysis

dim(x) ≈ 1000

V>x

dim(h) ≈ 5

linear
operations

dim(y) = 1 to dim(h)

dim(θφ) =
dim(h)× dim(x)

dim(θψ) = dim(h)



Comparison I
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Figure: Comparison of latent representations on size and complexity
criteria



Comparison II

I Current algorithms rely mainly on latent variables as
dim(θψ) ≤ dim(θφ)

I The explainability of the methods depends on both the
dimension of the latent space and the total number of
parameters



Latent spaces as manifold, intrinsic dimension

I The latent space is a manifold.
I The smallest number of dimensions among useful latent spaces

is the intrinsic dimension [Camastra and Staiano, 2016] of
the problem

Ex: Parameterized shape families (top row) and associated
(h1, h2, h3)

(illustration from extended version of [Gaudrie et al., 2020] on arXiv)



Latent spaces are not unique

I If learning is repeated, the same map from x to y typically has
different (φ, ψ) pairs.

I Mathematically, φ is not unique because it depends on ψ
I Example :

ψ( 1
3 × 3× φ(x)) = ψ′(φ′(x)) = ψ(φ(x))

where ψ′(�) = ψ( 1
3�) , φ′(�) = 3× φ(�)

I More generally, for any bijection g from the h-space to itself,
when φ′(�) = g(φ(�)) and ψ′(�) = ψ(g−1(�)),
ψ(φ(�)) = ψ′(φ′(�)).

I Account for this when comparing latent spaces.



Conclusions I

I Latent variables are ubiquitous in data science, making them a
topic for interdisciplinary research.

I 2 goals were identified :
I find regularities in data, explain data ⇒ reduce latent

dimension to tend towards the (low) intrinsic dimension of the
problem.

I ease computation ⇒ increase latent dimension to allow linear
classification or regression.



Conclusions II

(a) high dim(h), low dim(θ)

(b) low dim(h), high dim(θ)

Figure: Schematic view on the dimension(s) of latent representations



Conclusions III

I The increase in complexity of ψ ◦ φ allowed by progress in
algorithms (regularization) and hardware is compensated for by
the need for explainability that calls for low intrinsic
dimensions.

I The link between the data set size and the latent dimension
is an open question of practical importance.



Bibliography I

Aggarwal, C. C. (2016).
Outlier Analysis.
Springer Cham.

Camastra, F. and Staiano, A. (2016).
Intrinsic dimension estimation: Advances and open problems.
Information Sciences, 328:26–41.

Charpenay, V. (2023).
On the dimensionality of knowledge graph embeddings.
submitted to IJCKG.

Gaudrie, D., Le Riche, R., Picheny, V., Enaux, B., and Herbert, V. (2020).
Modeling and optimization with gaussian processes in reduced eigenbases.
Structural and Multidisciplinary Optimization, 61:2343–2361.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutiérrez, C.,
Kirrane, S., Labra Gayo, J. E., Navigli, R., Neumaier, S., Ngonga Ngomo, A.-C.,
Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J. F., Staab, S.,
and Zimmermann, A. (2021).
Knowledge Graphs.
Number 22 in Synthesis Lectures on Data, Semantics, and Knowledge. Springer.



Bibliography II

Laboulfie, C., Balesdent, M., Brevault, L., Da Veiga, S., Irisarri, F.-X., Le Riche,
R., and Maire, J.-F. (2021).
Calibration of material model using mixed-effects models.
In 4th International Conference on Uncertainty Quantification in Computational
Sciences and Engineering (UNCECOMP 2021).

Pennington, J., Socher, R., and Manning, C. D. (2014).
GloVe: Global vectors for word representation.
available on nlp.stanford.edu.

Sow, B., Le Riche, R., Pelamatti, J., Zannane, S., and Keller, M. (2023).
Learning functions defined over sets of vectors with kernel methods.
In 5 th ECCOMAS Thematic Conference on Uncertainty Quantification in
Computational Sciences and Engineering (UNCECOMP 2023).

Trouillon, T., Gaussier, E., Dance, C. R., and Bouchard, G. (2019).
On inductive abilities of latent factor models for relational learning.
JAIR.



Bibliography III

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need.
In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R., editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008.


	What are Latent Representations
	How We All Use Latent Representations
	Why we All Use Latent Representations
	Further mathematical characteristics of latent spaces
	Conclusions

