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Abstract

Synchronizing a (deterministic, finite-state) automaton is the problem of finding
a sequence of actions to be played in the automaton in order to end up in the
same state independently of the starting state. We consider synchronization
with LTL constraints on the executions leading to synchronization, extending the
results of [Petra Wolf. Synchronization under dynamic constraints. FSTTCS’20]
by showing that the problem is PSPACE-complete for LTL as well as for restricted
fragments (involving only modality F or G), while it is NP-complete for constraints
expressed using only modality X.

1. Introduction

Synchronizing an automaton. A synchronizing word for a deterministic finite-
state automaton A is a finite word that always takes the automaton to the
same state, independently of the state of A it starts from. When the automaton
represents the behaviours of a computer system, a synchronizing word can be
seen as a sequence of actions to perform on the system so as to take it to the
same state (in a sense, to regain control) if we initially don’t know which state
it is in.

yes

no yes/noyes/no

insert coin

Figure 1: A coffee-vending machine

Example. Consider the coffee-vending
machine whose behaviour is depicted
in Fig. 1: it asks the user how much
sugar they want, and whether they
want milk; the user may insert coins
at any time to get coffee with the last
choices that have been recorded.

Unfortunately, the display is bro-
ken. You do not know what state the
machine is in, but you want a coffee
with milk and no sugar. By noticing
that the sequence ⟨no, yes, no⟩ is a syn-
chronizing word, always ending up in
the milk state, you will get a beverage
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at your taste (by appending ⟨yes, no⟩ to the previous sequence to be sure you get
milk and no sugar).

The problem of regaining control on a device dates back to Moore [Moo56]
and Ginsburg [Gin58], and was popularized in the early 1960’s by Černý [Čer64],
who proposed a polynomial-time algorithm for deciding the existence of a
synchronizing word. Černý’s algorithm works by iteratively synchronizing states
by pairs, based on the following fact: an automaton has a synchronizing word if,
and only if, for any two states s and s′, there is a word w which, when read
from s and from s′ ends up in the same state. This way, the existence of a
synchronizing word can even be decided in non-deterministic logarithmic space,
and is actually NLOGSPACE-complete. Černý’s result also entails that, if there
is a synchronizing word for a given automaton, then there is one of size O(n3)
(where n is the number of states of the automaton). Černý conjectured that the
upper bound on the size of synchronizing words is (n−1)2; this is a long-standing
open problem in automata theory. Pin and Frankl proved in the early 1980’s
that an upper bound is (n3 − n)/6 [Fra82, Pin83], and recently Szyku la and
Shitov improved this bound to 0.1654n3 +o(n3) [Szy18, Shi19]. Additionally, the
probability that an n-state deterministic complete automaton (chosen uniformly
at random) has a synchronizing word of size O(n log3(n)) tends to 1 as n tends
to +∞ [Nic19].

Another, more naive algorithm for deciding the existence of a synchronizing
word consists in building the powerset automaton and looking for a path to a
singleton state; however, the resulting automaton has exponential size, and this
algorithm thus runs in polynomial space. It can be used to solve the subset-
synchronization-word problem, where the aim is to synchronize a subset of the
set of states of the automaton; somewhat surprisingly, this problem can be
proved to be PSPACE-complete [Rys83]; as a side result, shortest synchronizing
words may be of exponential size for subset synchronization. We refer to classical
surveys [Vol08, San05] for more background and results about synchronizing
words.

Synchronizability in other classes of automata. Synchronizability has been
studied in a variety of contexts since then: for timed automata and integer-
weighted automata under energy constraints, synchronizability is PSPACE-
complete [DJL+14]. The problem of synchronizing probabilistic automata is a
bit more complex (conceptually): probabilistic automata generate infinite se-
quences of distributions over states; synchronizing a probabilistic automaton may
then amount to reaching a distribution where the probability mass ultimately
accumulates in a single state. The existence of a synchronizing word in that
setting is PSPACE-complete [DMS11, DMS12]; several variants and extensions
of this result are presented in [DMS19]. Synchronizability has also been studied
in the context of register automata, where again the problem has been proven
to be PSPACE-complete [QS19].

Our contributions. Recently, Wolf considered the problem of finding synchro-
nizing words with additional dynamic constraints: this requires that all the
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paths generated by the considered synchronizing word from all the states of A
satisfy some constraints on the order of the states being visited; an example of
such a constraint is that the last occurrence of state p always precedes the last
occurrence of some other state q. Deciding the existence of such synchronizing
words is PSPACE-complete in most cases [Wol20].

In the present paper, we extend the results of Wolf by showing that the
existence of synchronizing words with additional LTL constraints on all paths is
also PSPACE-complete. Membership in PSPACE relies on the translation of the
LTL constraint into a finite-state automaton, and on an algorithm similar to the
powerset automaton described above. Hardness in PSPACE is actually proved
for very simple, fixed formulas involving only LTL modalities F or G. When X is
the only allowed modality, we show that the problem is NP-complete.

2. Definitions

2.1. Linear-time Temporal Logic (LTL)

The linear-time temporal logic (LTL) [Pnu77] over the set AP of atomic
propositions is the set of formulas built along the following grammar:

LTL ∋ ϕ, ψ ::= p | ϕ ∨ ψ | ¬ϕ | Xϕ | ϕ U ψ

where p ranges over AP⊎{true}. The size of an LTL formula ϕ, denoted with |ϕ|,
is the size of its derivation tree.

A finite trace over AP is a sequence ρ = (vi)0≤i≤n with n ≥ 0 and vi ⊆ AP
for all 0 ≤ i ≤ n. We may equivalently see each vi as a mapping AP → {0, 1}.
The size of ρ, denoted with |ρ|, is n+ 1.

For our purposes, we interpret LTL formulas over finite traces. For any finite
trace ρ = (vi)0≤i≤n and any index 0 ≤ j ≤ n, we inductively define:

ρ, j |= true
ρ, j |= p ⇐⇒ vj(p) = 1
ρ, j |= ϕ ∨ ψ ⇐⇒ ρ, j |= ϕ or ρ, j |= ψ
ρ, j |= ¬ϕ ⇐⇒ ¬(ρ, j |= ϕ)
ρ, j |= Xϕ ⇐⇒ j < n and ρ, j + 1 |= ϕ
ρ, j |= ϕ U ψ ⇐⇒ ∃0 ≤ k < n− j.

(
ρ, j + k |= ψ and

∀0 ≤ l < k. ρ, j + l |= ϕ
)
.

Intuitively, X means “next” while U stands for “until”. We write ρ |= ϕ as a
shorthand for ρ, 0 |= ϕ.

Example. Formula ϕ U ψ demands that ψ be true at some point along the path.
A weaker modality, called weak until, relaxes this condition by allowing ψ to
never hold true. This modality can be defined as ϕW ψ ≡ Gϕ ∨ ϕ U ψ.

We extend the syntax of LTL by defining false as the negation of true,
conjunction as the dual of disjunction, and with the following extra constructs:
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• ϕ R ψ ≡ ¬(¬ϕ U ¬ψ) is the dual of U: this modality is read “release”. Its
semantics is given by

ρ, j |= ϕ R ψ ⇐⇒ ∀0 ≤ k < n− j.
(
ρ, j + k |= ψ or

∃0 ≤ l < k. ρ, j + l |= ϕ
)
.

It can be checked that ϕ R ψ is equivalent to ψW (ϕ ∧ ψ) in our setting.

• X̃ϕ ≡ ¬X¬ϕ is the dual of X: it holds true at position j of ρ if either j is
the last position in ρ, or ϕ holds at position j + 1;

• Fϕ ≡ true U ϕ; then ρ, j |= Fϕ if there exists 0 ≤ k such that ρ, j + k |= ϕ;

• Gϕ ≡ ¬F¬ϕ; then ρ, j |= Gϕ if for all 0 ≤ k ≤ |ρ| − j, it holds ρ, j + k |= ϕ.
Notice that Gϕ ≡ false R ϕ.

Thanks to conjunction, X̃ and R, any LTL formula can be turned into negation
normal form, where negations are only allowed to apply to atomic propositions.
Said differently, LTL can be defined as

LTL ∋ ϕ, ψ ::= p | ¬p | ϕ ∨ ψ | ϕ ∧ ψ | Xϕ | X̃ϕ | ϕ U ψ | ϕ R ψ. (1)

In the sequel, we will consider some sublogics of LTL defined by restricting the
set of allowed modalities. For a subset M ⊆ {X, X̃,F,G,U,R}, we write L+(M)
for the sublogic obtained by restricting the grammar of Eq. (1) to only allow
the modalities in M [SC85]. In the sequel we will encounter the sublogics L+(F),
L+(G) and L+(X). Notice that in those sublogics, negation is only allowed in
front of atomic propositions, so that e.g. modality F cannot be used in L+(G).

2.2. Synchronizing words

Definition 1. Let Σ be a finite alphabet, and AP be a finite set of atomic
propositions. An AP-labelled automaton over Σ is a tuple A = ⟨S, T, ℓ⟩ where
S is a finite set of states, T ⊆ S × Σ × S is a set of transitions, and ℓ : S → 2AP

is a labelling function.

The size of such an automaton is defined as the cardinality of its state set S.
In some situations, the AP-labelling of those automata will be useless; we will
simply call them automata in that case; such automata will have no labelling
function ℓ.

Pick a labelled automaton A = ⟨S, T, ℓ⟩, and a state s ∈ S. A (finite) path
from s in A is a sequence π = (ti)1≤i≤n of transitions from T such that, writing
ti = ⟨si, σi, s′i⟩ for all 1 ≤ i ≤ n, it holds s1 = s and s′i = si+1 for all 1 ≤ i < n.
We write first(π) and last(π) for the states s1 and s′n when n > 0, with the special
case first(π) = last(π) = s when n = 0 (i.e., when π is the empty sequence).
The word associated with π is the finite sequence word(π) = (σi)1≤i≤n ∈ Σn.

An acceptor automaton over Σ is an automaton A = ⟨S, T ⟩ over Σ equipped
with two subsets I and F of S, respectively containing initial and final states.
A word σ ∈ Σn is accepted by the acceptor automaton B = ⟨⟨S, T ⟩, I, F )⟩
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whenever there exists a path π with first(π) ∈ I, last(π) ∈ F , and word(π) = σ.
The language of B is the set of words it accepts.

Given a state s ∈ S and a finite word w in Σ∗, we define the set s ⊗ w of
paths generated by reading w from s inductively as follows: for the empty word ϵ,
the set s⊗ ϵ only contains the empty path from s; for any non-empty word w,
writing w = w′ · σ with σ ∈ Σ, we have

s⊗ (w′ · σ) = {π · ⟨r, σ, r′⟩ | π ∈ s⊗ w′ and r = last(π) and ⟨r, σ, r′⟩ ∈ T}.

Finally, we let s⊙ w = {last(π) | π ∈ s⊗ w} for the set of states reached from s
by reading w, and for any subset Q ⊆ S, we define Q ⊗ w =

⋃
s∈Q s ⊗ w and

Q⊙ w =
⋃

s∈Q s⊙ w.
A labelled automaton is said deterministic (resp. complete) whenever for

any s ∈ S and any σ ∈ Σ, the cardinality of s⊙ σ is at most (resp. at least) 1.
A set of states Q ⊆ S of a complete deterministic labelled automaton A is

said to admit a synchronizing word if there exists a word w such that Q⊙w is a
singleton. A complete deterministic automaton is said synchronizable if its set
of states S has a synchronizing word [Čer64].

Example. Consider the automaton of Fig. 2 (borrowed from [Wol20]), over the
2-letter alphabet {a, b}. This automaton admits bab as a synchronizing word.

1 2 3

4 5a

a
a

a
a bb b b

b

Figure 2: A synchronizable automaton with Σ = {a, b} and AP = {1, 2, 3, 4, 5}.

With a path π = (ti)1≤i≤n in a labelled automaton A, writing ti = ⟨si, σi, s′i⟩
for all 1 ≤ i ≤ n, we associate the sequence of states (qi)0≤i≤n defined as q0 = s1
and qi = s′i for all 1 ≤ i ≤ n. We then let trace(π) = (ℓ(qi))0≤i≤n. For a
formula ϕ ∈ LTL, we write that π |= ϕ when trace(π), 0 |= ϕ.

In the sequel, we focus on the following problem:

Definition 2. Subset-synchronizability under LTL constraints is the problem of
deciding, given a complete, deterministic AP-labelled automaton A = ⟨S, T, ℓ⟩
over Σ, a subset Q ⊆ S, and an LTL formula ϕ over AP, whether there exists
a finite word w ∈ Σ∗ such that Q ⊙ w is a singleton and for all π ∈ Q ⊗ w,
it holds π |= ϕ. Synchronizability under LTL constraints is the special case of
subset-synchronizability where Q = S.

Example. Consider again the automaton of Fig. 2, and the property that the
transition from state 5 to state 2 is never taken; this condition can be expressed
as ϕ : G(5 ⇒ X¬2) (assuming that the names of the states are the atomic
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propositions). Obviously, bab is not a good candidate; actually, because of the
path starting from state 5, any synchronizing word under LTL constraint ϕ has
to start with an a; it turns out that abab is a valid solution. On the other hand,
it can be checked that no synchronizing word can avoid the transition from state 2
to state 4.

3. Related work: synchronizing words under dynamic constraints

Our work can be seen as an extension of some of the results of [Wol20].
In that paper, Wolf considered the problem of synchronizing labelled automata
under dynamic constraints, enforcing different kinds of constraints on the first
or last occurrence of states of the automaton. Formally, with a (non-necessarily
synchronizing) finite word, we can associate different orders on the states of the

(deterministic complete) automaton: for instance, the order ∝l<f
p@w is defined as

follows: for any two states p and q in S, it holds p ∝l<f
p@w q if, and only if, for

all s ∈ S, along the path s ⊗ w, either p never occurs, or q never occurs, or
the last occurrence of p occurs before the first occurrence of q. Synchronizability
under ∝l<f

p@w then asks, given an automaton and a binary relation R ⊆ S2,

whether there is a synchronizing word w for which R ⊆ ∝l<f
p@w; in other terms,

for all ⟨p, q⟩ ∈ R, the last occurrence of state p (if any) must occur before the
first occurrence of state q (if any) along any path following w in A. This is easily
expressed in LTL, e.g. as G(q ⇒ G¬p), assuming that AP = S and each state
is labelled with (only) its name. It is proved in [Wol20] that synchronizability

under ∝l<f
p@w is PSPACE-complete.

Similarly, the order ∝l≤l
p@w requires that the last occurrence of the left-hand-

side state should occur before or at the same time as the last occurrence of the
right-hand-side state. Constraint p ∝l≤l

p@w q can be expressed in LTL as G(p⇒ Fq).
The associated synchronizability problem is shown NP-hard (and in PSPACE)
in [Wol20]; it is PSPACE-complete when the constraint does not take into account
the starting state of each path (equivalently, when the LTL constraint is prefixed
by X).

4. Synchronizability under LTL constraints

Our main result can be stated as follows:

Theorem 3. Synchronizability under LTL constraints is PSPACE-complete, even
for fixed formulas in L+(F) or L+(G).

Proof. We first prove membership in PSPACE, and start with an overview of the
proof. Intuitively, given a formula ϕ over AP and an AP-labelled automaton A,
the first step of the algorithm consists in building an acceptor automaton Bϕ

over 2AP accepting exactly the finite traces satisfying ϕ (following the classi-
cal transformation of LTL formula into automata [DV13]). Identifying traces
over AP with words over the alphabet 2AP, we then construct the synchronized
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product C of A and Bϕ, which accepts the traces generated by A and satisfy-
ing ϕ. The existence of a synchronizing word for A with constraint ϕ is then
equivalent to the existence of a word w which, when read from a set of initial
states of C covering all states of A, reaches final states of C involving only one
single state of A. Checking the existence of such a word can be performed by a
non-deterministic algorithm, which guesses w letter by letter, and computes the
set of states reached by reading the current prefix of w from each of the initial
states considered, until reaching a final configuration as described above. While
a naive implementation of this algorithm requires exponential space, we notice
that we do not need to explicitely build the automata Bϕ and C, but only
need to compute the successor of a state by a letter. Following this remark,
we get a non-deterministic algorithm running in polynomial space; by Savitch’s
theorem [Sav70], this proves that synchronizability under LTL constraints is in
PSPACE.

We now develop the details of this proof. For the sake of self-containment,
we briefly sketch the construction of an acceptor automaton Bϕ = ⟨⟨V,R⟩, I, F ⟩
over 2AP associated with an LTL formula [BK08, DV13].

Fix a formula ϕ ∈ LTL; its set of subformulas subf(ϕ) is the smallest set
of LTL formulas containing ϕ and true, and such that, for any two formulas α
and β of LTL,

• if α ∨ β or α U β appears in subf(ϕ), then also α and β are in subf(ϕ);

• if Xα or ¬α appears in subf(ϕ), then α ∈ subf(ϕ);

• if α ∈ subf(ϕ) and α is not of the form ¬α′, then ¬α ∈ subf(ϕ).

Clearly enough, subf(ϕ) contains at most 2|ϕ| formulas. A subset C of subf(ϕ) is
said to be maximally-consistent whenever it contains true and for all α and β
in subf(ϕ),

• if ¬α ∈ subf(ϕ), then ¬α ∈ C if, and only if, α /∈ C;

• if α ∨ β ∈ subf(ϕ), then α ∨ β ∈ C if, and only if, α ∈ C or β ∈ C;

• if α U β ∈ subf(ϕ), then α U β ∈ C implies that α ∈ C or β ∈ C.

The number of maximally-consistent subsets of subf(ϕ) is at most 22|ϕ|.
The states of automaton Bϕ are the maximally-consistent sets of subformulas

of ϕ, together with an extra state f ; there is a transition ⟨v, l, v′⟩ from state v ̸= f
to state v′ ̸= f labelled with l if, and only if, for any ψ ∈ subf(ϕ),

• if ψ = Xα, then ψ ∈ v if, and only if, α ∈ v′;

• if ψ = α U β, then ψ ∈ v if, and only if, β ∈ v or α ∈ v and ψ ∈ v′;

• l = v ∩ AP.
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Additionally, for any v ̸= f , there is a transition from v to f labelled with
v ∩ AP whenever for all α U β ∈ subf(ϕ), if α U β ∈ v, then β ∈ v and for all
Xα ∈ subf(ϕ),Xα ̸∈ v. Finally, all states containing ϕ are initial, and f is the
unique final state. It can be proved inductively that the language accepted by Bϕ

contains exactly the finite traces over AP that satisfy ϕ [BK08, DV13].
We consider the synchronized product of A = ⟨S, T, ℓ⟩ with Bϕ = ⟨⟨V,R⟩, I, F ⟩,

denoted with A⋉ Bϕ, which is the automaton C = ⟨Q,R⟩ over Σ defined as:

• Q = {⟨s, v⟩ ∈ S × V | ℓ(s) = v ∩ AP} ⊎ {⟨s, f⟩ | s ∈ S};

• R is the set of triples ⟨⟨s, v⟩, σ, ⟨s′, v′⟩⟩ ∈ Q × Σ ×Q such that there are
transitions ⟨s, σ, s′⟩ in A and ⟨v, v ∩ AP, v′⟩ in Bϕ.

By construction, for any path π in A ⋉ Bϕ starting from some state ⟨s, v⟩
with v ∈ I and ending in some state ⟨s′, f⟩, it holds π |= ϕ.

In order to decide synchronizability of A = ⟨S, T, ℓ⟩ under LTL constraint ϕ,
we consider the cross-product P of |S| copies of A⋉ Bϕ, and look for a path π
from some state of the form (⟨si, vi⟩)1≤i≤|S| with {si | 1 ≤ i ≤ |S|} = S

and vi ∈ I for all 1 ≤ i ≤ |S|, to a state of the form (⟨s′i, f⟩)1≤i≤|S| where

{s′i | 1 ≤ i ≤ |S|} is a singleton. Clearly enough, any such path π is such that for
all s ∈ S, the path s⊗word(π) in A satisfies ϕ, since it corresponds to some path
from ⟨si, vi⟩ to ⟨s′i, f⟩ in the product automaton A ⋉ Bϕ. Since the size of P
is at most (|S| × 2|ϕ|)|S|, if such a path π exists, there must be one that never
visits the same state twice, thus there is one of size at most (|S| × 2|ϕ|)|S|. As a
consequence, synchronizability of A under LTL constraint ϕ can be decided by
non-deterministically building such a path step-by-step, using space polynomial
in both |ϕ| and |S| to store the current state of P being visited and a counter
to stop the computation if no solution is found after (|S| × 2|ϕ|)|S| steps. Since
PSPACE = NPSPACE [Sav70], this proves that synchronizability under LTL
constraints is in PSPACE.

Hardness in PSPACE is easily derived from the results of [Wol20], even for a
fixed LTL formula in L+(G) (see Section 3). We propose an alternative PSPACE-
hardness proof for fixed formulas without nesting of modalities, and involving
only modality G (i.e., in L+(G)), or only modality F (i.e., in L+(F)). Our proof
is based on a reduction from the subset-synchronizability problem (with no LTL
constraints), which is known to be PSPACE-complete [Rys83].

Consider an automaton A = ⟨S, T ⟩ over alphabet Σ, and a non-empty
subset Q ⊆ S of states that we want to synchronize. We define a labelled
automaton A′ = ⟨S′, T ′, ℓ′⟩ over Σ′ by letting S′ = S ⊎ {s#, s0, s′0, sf , s′f},
Σ′ = Σ ⊎ {#} ⊎ S, and T ′ = T ⊎ U where U contains the following transitions:

• ⟨s0,#, s#⟩, ⟨s′0,#, s#⟩, and ⟨s0, σ, s′0⟩ and ⟨s′0, σ, s′0⟩ for all σ ∈ Σ ⊎ S.
Since s0 will have no incoming transitions, the automaton cannot synchro-
nize in s0, so that any synchronizing word must contain #. Using an LTL
constraint, we will enforce that any synchronizing word begins with #;

• all transitions from sf and s′f go to s′f ; this way, if synchronization is
possible, the synchronized runs will end in s′f ;
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• ⟨s,#, s#⟩ for all s ∈ {s#} ∪ S \Q, and ⟨q,#, q⟩ for all q ∈ Q. This way,
when reading the first letter # of a synchronizing word, all states in Q take
a self-loop, states sf and s′f move to s′f , while the other states (in particular
those in S \Q) all go to s#;

• ⟨s, s, sf ⟩ for all s ∈ S, and ⟨s, s′, s#⟩ for all s and s′ in S with s′ ̸= s.
Additionally, U also contains ⟨s#, s, s′f ⟩ for all s ∈ S. An LTL constraint
will forbid the runs originating from Q to ever visit s#, so that these
runs can only leave S by reading a letter from S, and they must have
synchronized before doing so;

• finally, ⟨s#, σ, s#⟩ for all σ ∈ Σ.

The construction is depicted on Fig. 3. In that figure, ⋆-transitions represent all
labels that do not already appear on other transitions leaving the same state
(so that the automaton is deterministic and complete).

q1

q2

q3

s1

s2

s3

Q
S \Q

⇝
q1

q2

q3

s1

s2

s3

Q
S \Q

s′0

s0

s#

s′f

sf⋆

⋆

#

#
⋆

⋆S

⋆

#

#

#

s=s̸=

#

Figure 3: Reduction of subset-synchronizability to LTL-synchronizability

We let AP′ = {Q, s#, s0, s′0}, with ℓ′(q) = {Q} for all q ∈ Q, and ℓ′(s) = s
for s ∈ {s#, s0, s′0}. Finally, we let ϕ = [s0 ⇒ G(¬s′0)] ∧ [Q⇒ G(¬s#)]; the first
conjunct forces the synchronizing word (if any) to start with a #-transition,
while the second one forbids the states in Q to ever visit s#, as required above.

We prove that Q can be synchronized in A if, and only if, S′ can be syn-
chronized in A′ under LTL constraint ϕ. First, if w is a synchronizing word
for Q in A, then w′ = # · w · qw · # is a synchronizing word in A′ satisfying ϕ,
where qw is such that Q ⊙ w = {qw}: reading w′ from states in Q first loops
on the states in Q, then synchronizes to qw, and finally goes to sf and then s′f ,
thereby satisfying ϕ; reading w′ from sf or s′f eventually loops in s′f , trivially
satisfying ϕ; reading w′ from any other state first goes to s#, loops there while
reading w, and finally moves to s′f , thereby also satisfying ϕ.

Conversely, consider a synchronizing word w′ in A′ under constraint ϕ.
As argued above, it must start with # as otherwise reading w′ from s0 would
visit s′0 and falsify ϕ; states in Q then take their self-loops, while sf and s′f
both go to s′f , and all other states go to s#. As argued above, synchronization

9



can only happen in s′f , and since the runs originating from Q cannot visit s#,
they cannot leave S by reading #; hence some letter in S must eventually occur
in order to achieve synchronization. But this may only occur when all paths
originating from the states in Q have synchronized in S, as otherwise some of
those runs would visit s#. This proves our result.

This proof easily extends to fixed formulas in L+(F): the construction of the
labelled automaton is almost unchanged, except that we swap the transitions
from s0: we have ⟨s0,#, s′0⟩ and ⟨s0, σ, s#⟩ for all σ ∈ Σ′ \ {#}. Formula ϕ =
[s0 ⇒ Fs′0]∧ [Q⇒ Fsf ] achieves the same constraints as above: the first conjunct
forces to start with #, and the second one prevents the synchronizing runs
originating from Q to visit s#.

Remark 1. Notice that our algorithm is readily adapted to subset-synchronizability
with LTL constraints, which is thus also in PSPACE (hence PSPACE-complete).

Remark 2. The last part of the hardness proof (for L+(F)) implies that the

problem SYNC-UNDER-0-∝l≤l
w@p, which is proven to be NP-hard in [Wol20,

Theorem 16], is actually PSPACE-hard (hence PSPACE-complete). Indeed, the
L+(F) constraint can be encoded by requiring that the last occurrence of s0 precedes
the last occurrence of s′0, and that the last occurrence of each state in Q precedes
the last occurrence of sf .

Theorem 4. Synchronizability under L+(X)-constraints is NP-complete. It is
NLOGSPACE-complete when the L+(X) formula is fixed.

Proof. Membership in NP can be proven in two steps: first, we have to check
that all states can be synchronized, using the pairwise-synchronization algorithm.
If so, in order to prove that there is a synchronizing word whose traces satisfy ϕ,
we guess a prefix of size d of this synchronizing word, where d is the maximal
number of nested X modality in ϕ; since the whole automaton can be synchronized,
the set of states reached after reading this prefix can also be synchronized.

When the formula is fixed, the second part of the algorithm runs in NLOGSPACE:
it guesses and stores the prefix (using space O(1)), and checks from each state
of A that the resulting path satisfies ϕ, which can be achieved in LOGSPACE.
Since the classical synchronizability problem is NLOGSPACE-complete, the first
part of the algorithm can be performed in NLOGSPACE (and hardness for fixed
L+(X) formulas follows).

NP-hardness for non-fixed formulas follows from the NP-hardness of model
checking for L+(X) [Mar02]: given an AP-labelled automaton A, a state s0 of A,
and a formula ψ ∈ L+(X), deciding whether there is a path from s0 satisfying ψ
is NP-complete. This problem is easily reduced to our synchronizability problem
with constraints in L+(X): we add two extra states t and t′, and two extra
letters # and $ in Σ; all #-transitions go to t, except for a #-self-loop on s0,
and all non-#-transitions from t and t′ go to t′; all $-transitions go to t′. Finally,
we label s0, t and t′ with their names, seen as two extra atomic propositions.

We consider the formula ϕ defined as

(Xt ∧ X2..d+1¬t) ∨ (Xs0 ∧ Xψ ∧ X1..d+1(¬t ∧ ¬t′))
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where again d is the maximal number of nested X in ψ, and Xa..bϕ is a shorthand
for the conjunction of all Xjϕ for j ranging from a to b.

Assume that there is a synchronizing word satisfying ψ. From t, the resulting
path cannot satisfy Xs0, hence it has to satisfy the first disjunct, so that this
word has to start with #, and cannot involve # in the next d steps. From s0,
Xt cannot be fulfilled, so that the second conjunct has to be satisfied, and the
synchronizing word gives rise to a path satisfying ψ and visiting only states of A
for the first d steps; since the truth value of ψ only depends on the first d steps,
this shows the existence of a path in A satisfying ψ.

Conversely, if there is a path from s0 satisfying ψ, then we can build a
synchronizing word satisfying ϕ by prepending # and appending $ to the
corresponding word. The resulting word is easily checked to satisfy ϕ and,
thanks to the last $, to synchronize all paths to t′.
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