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Abstract

In this paper, we consider parameter estimation of univariate α-stable
distributions and their mixture. We propose firstly an estimation method
based on the characteristic function by the use of a Gaussian ker-
nel estimator of the density distribution. The choice of the optimal
bandwidth parameter was done using a plug-in method. We highlight
another estimation procedure for the maximum likelihood framework
based on the false-position algorithm to find a numerical root of the
log-likelihood through the score functions. In the case of a mixture
α-stable distributions, the EM algorithm and the Bayesian estima-
tion method were modified in order to propose an efficient tool for
parameter estimation. Although we have limited the mixture study to
two components, the proposed methods can be generalized to several
components of mixture. A simulation study is conducted to evalu-
ate the performance of our methods which are then applied to real
data. Our results seems accurately estimating mixture of α-stable dis-
tributions. The application concerned the estimation of reproduction
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2 Parameter estimation for stable distributions and their mixture

number of the Covid-19 in Mayotte and the Enzyme dataset den-
sity distribution. We compare the proposed methods along with a
detailed discussion, and we conclude with some other forthcoming works.

Keywords: Stable distribution; Parametric estimation; Mixture model; EM;
MCMC method.

1 Introduction

In recent decades, many researchers have shown interest in studying α-stable
distributions due to their ability to generalize widely used laws such as Gaus-
sian, Lévy and Cauchy in order to handle impulsive and skewed data, which is
particularly important in the financial field. In 1925, Levy discovered that α-
stable distributions arise as the limit of normalized sums of independent and
identically distributed random variables. The family of stable distributions
possesses skewness and tail thickness. Unfortunately, there is no closed-form
expression for the cumulative distribution function and probability density
function except some few cases such that the Gaussian, Lévy and Cauchy
distribution. Let X be a stable random variable and ϕ(t) = E(exp(itX))
it’s characteristic function. Note that this family laws has multiple param-
eterizations. We follows the presentation in [1] and consider two type of
representations. We write X ∼ S(α, β, δ, ω; 0) for the so called parametriza-
tion 0 and X ∼ S(α, β, δ, ω; 1) for the parametrization 1. A random variable
X ∼ S(α, β, δ, ω; 0) if it’s characteristic function is expressed as follows.

ϕ(t) = exp
(
− δαtα

[
1 + iβ(tan(

πα

2
)) sign(t)(δt1−α − 1)

]
+ iωt

)
I{α̸=1} (1)

+ exp
(
− δt

(
1 + iβ

2

π
sign(t) log(δt)

)
+ iωt

)
I{α=1},

with α ∈ (0, 2] is the index of stability, β ∈ [−1, 1] the skewness parameter;
δ > 0 the scale parameter, ω ∈ R the location or shift parameter and sign(.)
is the signe function. The formula in (1) can be rewritte as follows.

ϕ(t) = g(t) + ih(t) = exp(−δα[tα + iβη(δtα; 0)] + iωt)

where the expression of η function is given by

η(δt|α; 0) =
2

π
t log(δt)I{α=1} + tan(

πα

2
)sign(t)δ1−α (t− tα) I{α̸=1}. (2)
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A random variable X is S(α, β, δ, ω; 1) if,

ϕ(t) = exp
(
−δαtα

[
1 − iβ(tan(

πα

2
))sign(t)

]
+ iωt

)
I{α̸=1}

+ exp(−δ t[1 + iβ
2

π
sign(t) log(t)] + iωt)I{α=1}.

These parametrizations are commonly characterised by four parameters: α
the tail index or the index of stability that governs the heaviness of the tail
bounded in (0,2], the skewness parameter β, which ranges in [−1, 1] and when
β = 0 we have a symmetric stable distribution. The parameter δ denote the
scale, and ω the location parameter. When δ = 1 and ω = 0, one says that X
is a standard stable random variable. By specifying some of this parameters,
for example: In the case of α = 2 and β = 0, we get the Gaussian distribution,
same for α = 1 and β = 0, it becomes Cauchy distribution, and Levy when
α = 1

2 and β = 1.
The parametrization 0 is very important because the characteristic function,
density and cumulative distribution function are continuous with respect to
the four parameters. It is therefore well conditioned numerically for computing.
While the parametrization 1 is suitable to study algebraic properties. Note that
for β = 0, the two parametrizations are identical. It’s worth mentioning that
α-stable distributions have an infinite variance when α < 1, which complicates
the estimation of the parameters in this case. There are many approaches to
estimate parameters of such distributions, namely the Fractional Lower Order
Moments (FLOM) method, as described in [7]. This method considers the
lower-order fractional moments of the data to estimate the parameters of the
distribution. It is also less sensitive to outliers and doesn’t require any iterative
optimization procedures. However, one limitation of the FLOM method is that
it may not work well for data with heavy tails, as it relies on the estimation of
fractional moments, which may not exist for α-stable distributions with α < 1.
Additionally, the FLOM method assumes that the data are independently and
identically distributed, which may not be the case in some real-world appli-
cations. Furthermore, as shown in [2], it doesn’t guarantee a good estimation
of the parameter of asymmetry β. Another approach is the quantile method
improved by McCulloch [3] which is based on the relationship between the q-
th quantile and the distribution parameters for any distribution. In the case of
the α-stable distribution, the q-th quantile is related to the scale and location
parameters of the distribution, as well as the α and β parameters, it’s also
robust to outliers and can handle missing data, but it may not perform well for
distributions with slowly varying tails or non-smooth density functions. In the
same context a new estimation algorithm for the tail index was proposed in
[4] by considering a quantile conditional variance ratio. Based on the explicit
formula (1) of the characteristic function, some authors established an estima-
tion method (ECF) using regression, [1]. Even though the lack of closed-form
expression for the probability density is theorically a disadvantage, note that
in practise they are computed numerically using an integral transform. It is in
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this way that many authors performs the maximum likelihood (ML) method
for parameter estimation, [1]. Finite mixture models are becoming increas-
ingly popular and play a crucial role in density estimation. In particular, the
mixture of α-stable distributions is a popular tool for modeling skewed and
impulsive data, making it applicable in various fields. When dealing with such
mixture method, one need to initialize and choose the components of the mix-
ture. The k-means clustering [5] allows to better estimate the components. A
well known method of mixture estimation is the Expectation-Maximization
algorithm (EM). We shall consider ECF (2.1) and ML (2.2) methods to esti-
mate the four parameters of this distributions, in order to choose the most
efficient of them to apply it in the EM algorithm. This algorithm is particu-
larly useful in cases where the data is incomplete or partially observed. Many
work has been done in this direction; we quoted the following papers of [6]
and references therein. Let us mentioned the work of [7], [8] which presents
a methodology for the EM algorithm applied to symmetric α-stable distribu-
tions. In [9] the authors established some formula that involves symetric and
non symmetric α-stable distributions in order to estimate parameters with the
use of EM algorithm but the paper is still not published and we remark their
algorithm does not converge for non symmetric α-stable distributions. Since
the Bayesian approach is also useful and being an efficient tool for parameter
estimation in mixture models, we proposed a modified framework that involves
updating the posterior distribution until convergence to the stationary distri-
bution by combining the Gibbs sampling and Metropolis-Hastings algorithm,
as described in [10]. The novelty of this latest approach compared to [10], is
essentially the choice of the rejection zones in Metropolis-Hastings algorithm,
that can significantly affect estimates additionally to the updating of param-
eters.
Mixture models, in general, could be used in the understanding and develop-
ment of an epidemic through the estimation of the the generation time and
reproduction number; see for instance the work in [11], where the authors con-
sider mixture of weibull, lognormal and other distributions of mixture models
to estimate the reproduction number during the period of Covid-19 outbreak
in Mayotte island. It was announced in this paper that mixture estimation con-
sidering negative serial interval can enhance the estimates by treating α-stable
mixtures with the various Expectation- Maximization algorithm and Bayesian
methods. Therefore, this work can be consider as an extension of this study.

In this paper, we have chosen to deal with the two parameterizations of
α-stable distributions in order to gain in performance, which can be affected
according to the method used. Our contribution on this paper regarding the
literature is the introduction of Kernel in the estimation method of charac-
teristic function (ECF) which reveals to perform better in a simulation study
when α ≥ 1. Additionally, we propose a new methodology that employs score
function and False-position algorithm to perform the ML estimation. Further-
more, we have improved the EM algorithm of [6] and the Bayesian approach
of [10], which also demonstrated efficient performance in a simulation study.
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All these methods were used to estimate the reproduction number during the
Covid-19 outbreak data of Mayotte as in [11]. We also give another application
with the Enzyme data, see [12]. The use of K-means method on the above data
allows to choose a two components in the mixture estimation methods of this
paper. We also aims to establish new mixture properties results that involved
non symmetric stable distributions as tried in the non published paper [9].

This paper is organized as follows. In Section 2, we first recall some basic
quantiles method originally developed by McCulloch and introduce the Kernel
estimation method of the characteristic function and the estimation procedure
for α-stable distributions. We also consider a new framework consideration of
the ML estimation of α-stable distributions based on score function and False-
position algorithm. Next, in Section 3, we outline an adapted Bayesian and EM
algorithm approaches to estimate the parameters of a two mixture of α-stable
distributions than can be generalized to more than two components mixtures.
In Section 4, we apply the proposed methods with the above mentioned Covid-
19 outbreak data of Mayotte together with the Enzyme data, a conclusion and
future developments. The last section of this paper is an Appendix section,
where we established some modified mixture properties in the case of non-
symmetric α-stable in order to extend the work of [9] for practical issues as a
forthcoming work.

2 Parameter estimation of stable distributions

The aim of this section is to present the relevant methods that we con-
sider in ordrer to improve our mains results. We recall firstly, the quantiles
method originally developed by McCulloch, as described in [3] provided by the
libstableR package. We’ll use such method to initialize our algorithms. The
method has been simplified in recent years, and the version we use is based on
the work presented in [1] that can be described as follows. Let xp be the pth

quantile of X ∼ S(α, β, δ, ω; 0) distribution and define the following quantities:

vα(α, β, δ, ω) =
x0.95 − x0.05

x0.75 − x0.25
,

vβ(α, β, δ, ω) =
x0.05 + x0.95 − 2x0.5

x0.95 − x0.05
,

vδ(α, β, δ, ω) = x0.75 − x0.25,

vω(α, β, δ, ω) = −x0.5.

McCulloch in [3] provides tables, where one could deduce the value of the above
parameters based on this quantities considering a standard stable distribution
Z ∼ S(α, β, 1, 0; 0). This is not restrictive since the scaling property, as out-
lined in [13] allow to have xp = δzp + ω, where zp is pth quantile of Z. Then,
one could deduce the value of the above parameters based on this quantities



Springer Nature 2021 LATEX template

6 Parameter estimation for stable distributions and their mixture

based on the following relations.

vα(α, β, δ, ω) = vα(α, β, 1, 0),

vβ(α, β, δ, ω) = vβ(α, β, 1, 0),

vδ(α, β, δ, ω) = δvδ(α, β, 1, 0),

vω(α, β, δ, ω) = δvω(α, β, 1, 0) − ω.

As we can see vα and vβ are independent of the scale and location parameters
and the above relations allow to obtain a reliable estimation of the four param-
eters, when the sample set is large, see [1]. In the sequel the vector parameter
Θ0 = (α0, β0, δ0, ω0) will refers to the initial vector value parameter according
to the McCulloch method. Now, we will introduce the other methods.

2.1 Estimation method based on characteristic function

Let X ∼ S(α, β, δ, ω; 0) and consider X1, . . . , Xn a sample of size n of X and
Fn the empirical cumulative distribution function:

ϕ̂n1(t) =

∫
R

exp(itx)dFn(x) =
1

n

n∑
j=1

exp(itXj).

Note that ϕ̂n1(t) is a consistent estimator of ϕ(.) for large value of n (by
a simple application of the law of large number). We introduce an alterna-
tive estimation of characteristic function using Kernel method. We shall be
concerned with the Gaussian kernel for the case when α > 1 expressed as

K(x) = 1√
2π

exp
(

−x2

2

)
for all x ∈ R and satisfies

∫
R
K(z)dz = 1. This

alternative estimation of the characteristic function is defined as follow.

ϕ̂n2(t) =
1

nhn

∫
R

exp(itx)

n∑
j=1

K

(
x−Xj

hn

)
dx,

where the bandwidth satisfies lim
n→∞

hn = 0 in order to have the consistency of

ϕ̂n2
. For pratical setting and in the case α > 1, we choose the optimal band-

width hn by considering the plug-in method proposed by Sheather and Jones
[14] since it is based on square mean error. On the other hand (specifically
for α < 1), we consider the plug-in method of second generation proposed by
Slaoui in [15] (see also [16]). Now, we define the following sample functions
gn(t) and hn(t) to compute the estimated characteristic function on sample
size n: {

gn(t) = ℜ(ϕ̂n(t)),

hn(t) = ℑ(ϕ̂n(t)),
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where ϕ̂n(t) could be ϕ̂n1
(t) or ϕ̂n2

(t). We have:{√
gn(t)2 + hn(t)2 = |ϕ̂n(t)| = exp(−δαtα),

arctan
(hn(t)
gn(t)

)
= arg(ϕ̂n(t)) = −δαβη(δt|α; 0) + ωt.

Moreover, we define the following quantities:
y(t) = log(− log(|ϕ(t)|)) = log(δα) + α log(|t|),
zk = arg(ϕ̂n(tk)),

Bk = δ̂α̂η(δ̂tk|α̂; 0).

The relationship between y(t) and log(|t|) can be modeled linearly with a slope
of α and an intercept of a = log(δα). Set

yk = log(− log(|ϕ̂n(tk)|)) = log
(
− log

(√
gn(tk)2 + hn(tk)2

))
where tk is choose on a grid of equally spaced points t1, . . . , tm using the sample
data. We make use of the following weighted least squares method to minimize

S(a, α) =

m∑
k=1

Wk (yk − a− α log(|tk|))2

(â, α̂) = arg min
(a,α)

S(a, α)

where the weights Wk = 1
σ2
k

with σ2
k is the variance of the k-th observation.

We obtain the following estimators:

α̂m =

(
m∑

k=1

Wk log(tk)yk −
∑m

k=1 Wkyk∑m
k=1 Wk

×
m∑

k=1

Wk log(tk)

)

×

(
m∑

k=1

Wk log(tk)2 −
∑m

k=1 Wk log(tk)∑m
k=1 Wk

×
10∑
k=1

Wk log(tk)

)−1

,

âm =

∑m
k=1 Wjyk − α̂m

∑m
k=1 Wk log(tk)∑m

k=1 Wj
,

δ̂m = δ0 exp

(
âm
α̂m

)
.

Then, from the following formula:

zk = βBk + ωtk,



Springer Nature 2021 LATEX template

8 Parameter estimation for stable distributions and their mixture

we use again the above weighted least squares method to obtain

ω̂m = δ0

(
m∑

k=1

WkBkzk −
∑m

k=1 Wktkzk∑m
k=1 WktkBk

×
m∑

k=1

WkB
2
k

)

×

(
m∑

k=1

WkBktk −
∑m

k=1 Wkt
2
k∑m

k=1 WktkBk
×

m∑
k=1

WkB
2
k

)−1

+ ω0,

β̂m =

∑m
k=1 Wktkzk − ω̂

∑m
k=1 Wkt

2
k∑m

k=1 WktkBk
.

Since ϕ̂n is consistent, one could obtain the consistency of the estimated param-
eters α̂m,β̂m, δ̂m using the classical regression estimation method. A simulation
study is conducted to evaluate the performance of the proposed estimation.
The choice of m was done from [17], which suggest selecting points tk in the
interval [0.1, 1].

2.2 Maximum likelihood method

In the following lines, we present a method for estimating stable distributions
within the framework of maximum likelihood (ML) method. Since probabil-
ity density function does not have a closed-form expression, the classical ML
method does not apply in this context because the likelihood ratio doesn’t
exist explicitly. For this reason, we first make use of numerical approximation
of the density function of stable distributions, which provides accurate esti-
mates. We introduce the following method based on score functions and the
False-Position algorithm, which is an intuitive way to estimate the underline
parameters of the stable distributions. Assume that we are in parametrization
1 and α > 1. Set

gd(x|α, β) =

∫ ∞

0

cos(xr + βη(r, α; 1))rd−1 exp(−rα)dr1{0<d<∞}

+

∫ ∞

0

[cos(xr + βη(r, α; 1)) − 1]rd−1 exp(−rα)dr1{−2min(1,α)<d≤0},

g̃d(x|α, β) =

∫ ∞

0

sin(xr + βη(r, α; 1))rd−1 exp(−rα)dr1{−min(1,α)<d<∞}

+

∫ ∞

0

[sin(xr + βη(r, α; 1)) − xr]rd−1 exp(−rα)dr1{α>1,−α<d≤−1},

hd(x|α, β) =

∫ ∞

0

cos(xr + βη(r, α; 1)) log(r)rd−1 exp(−rα)dr.
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h̃d(x|α, β) =

∫ ∞

0

sin(xr + βη(r, α; 1)) log(r)rd−1 exp(−rα)dr,

For x ∈ R and d ∈ N. Where η(r, α; 1) = − tan(πα
2 rα) should not be confused

with the previous one in (2) from parameterization 0. Let recall the following
theorem from [1].

Theorem 1 (Stable score function) Let α ̸= 1. The univariate stable density in the
1-paramerization is given by:

f(x|α, β, δ, ω; 1) = 1

πδ
g1

(x− ω

δ
|α, β

)
.

Then, the score functions which is the derivative of this density on each parameter
are:

∂f

∂α
(x|α, β, δ, ω; 1) = 1

πδ

[
πβ

2 cos(πα2 )2
g̃1+α

(x− ω

δ
|α, β

)
+β tan(

πα

2
)h̃1+α

(x− ω

δ
|α, β

)
− h1+α

(x− ω

δ
|α, β

)]
,

∂f

∂β
(x|α, β, δ, ω; 1) =

tan(πα2 )

πδ
g̃1+α

(x− ω

δ
|α, β

)
,

∂f

∂δ
(x|α, β, δ, ω; 1) = − 1

πδ2
g1

(x− ω

δ
|α, β

)
+

x− ω

πδ3
g̃2

(x− ω

δ
|α, β

)
,

∂f

∂ω
(x|α, β, δ, ω; 1) = 1

πδ2
g̃2

(x− ω

δ
|α, β

)
.

Many equations, including most of the more complicated ones, can be
solved only by iterative numerical approximation. The method of false position
is one of them. This consists of trial and error, in which various values of the
unknown quantity are tried. That trial-and-error may be guided by calculat-
ing, at each step of the procedure, a new estimate for the solution. Let c be the
root of a given continuous function g defined on the interval [a0, a1] such that
g(a0) and g(a1) are of opposite signs. Then there exists a root c in the interval
[a0, a1] by the intermediate value theorem. There are many root-finding algo-
rithms that can be used to obtain approximations to such a root. One of the
most common is Newton’s method or secant method. but it can fail to find a
root under certain circumstances and it may be computationally costly since it
requires a computation of the function derivatives. Other methods are needed
and one general class of methods are the two-point bracketing methods. These
methods proceed by producing a sequence of shrinking intervals [ak, bk] at the
k-th step, such that (ak, bk) contains a root of g. The simplest variation, called
the bisection method, calculates the solution estimate as the midpoint of the
bracketing interval:

c =
g(a1)a0 − a1g(a0)

g(a1) − g(a0)
.

The convergence rate of the bisection method could possibly be improved
by using a different solution estimate. The false-position method calculates
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the new solution estimate as the x-intercept of the line segment joining the
endpoints of the function on the current bracketing interval. This method
runs as the first iteration of the bisection method [18]. Essentially, the root is
being approximated by replacing the actual function by a line segment on the
bracketing interval and then using the classical double false position formula
on that line segment, see [18]. Note that the rate of convergence can drop
below that of the bisection method. We’ll use this methodology to established
our algorithm by finding the roots of the derivative of the above log-likelihood
function, which is equal to:

n∑
i=1

∂ log(f(xi|α, β, δ, ω; 1))

∂α
=

n∑
i=1

∂f(xi|α, β, δ, ω; 1)

∂α
/f(xi|α, β, δ, ω; 1).

Obviously, since this method requires a good range for each parameter. For this
reason we consider the intervals [α0, α1], [β0, β1], [δ0, δ1], and [ω0, ω1] defined
by adding a given margin to the initial values Θ0 = (α0, β0, δ0, ω0) based on the
Quantile method. The same procedure is used for the other three parameters.
In the sequel we refer to this method as ML-Second. However, at this stage,
one can be disappointed by not giving a theoretical study about the existence
of the root solutions of the above score functions under the false position
method. This will be addresses in a forthcoming work. But we’re going to look
at convergence numerically.
Note that, one can also make use of the optim command in R to directly
maximize the log-likelihood function and obtain the estimated parameters.
This will be refers as ML-First in the sequel. The performance and consistency
of the estimation will be illustrated in a simulation study.

3 Parameter estimation for mixture of α-stable
distributions

The mixture of α-stable distributions is a popular tool for modeling skewed
and impulsive data, making it applicable in various fields. Two common
methods for inferring parameters in mixture models are : the Expectation-
Maximization method algorithm and the Bayesian approach, [6, 10]. Bayesian
estimation is a framework for the formulation of statistical inference problems.
In the prediction or estimation of a random variable or process, the Bayesian
philosophy is based on combining the evidence contained in the random
variable with prior knowledge of the probability distribution of the random
variable. Bayesian estimation method uses prior data to estimate the value of
the unknown parameters. This reduces the difference between the estimator
and the actual value of that parameter. In Bayesian modeling, the selection
of priors plays then a crucial role in determining the posterior inference. The
Expectation-Maximization (EM) algorithm is a widely used computational
method for estimating the parameters of statistical models with latent or
missing variables. This algorithm is particularly useful in cases where the data
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is incomplete or partially observed. The EM algorithm works by iteratively
alternating between the E-step, where we estimate the expected value of the
unobserved or latent variables given the current parameter estimates and the
M-step, where we maximize the likelihood of the observed data based on the
expected values obtained in the E-step. This alternating process continues
until convergence is achieved, resulting in the optimal parameter estimates for
the model. Let n be the number of observations and zi the latent observations,
i = 1, . . . , n and denote by λ1 = P(zi = 1) the weight. To obtain the mixture
component parameter, we use in this paper the k-means clustering method
[5]. We assume in the rest of this paper that we are in a two component
mixture. Of course this work can be generalized to more than two component.

3.1 The proposed Expectation-Maximization algorithm

We introduce in this paper an adapted Expectation-Maximization method
by including the above parameter estimation tools namely the ML estima-
tion method and the Estimation through the the characteristic function ECF
(Empirical or Kernel) both for the vector parameter Θ and for updating the E-
step in the EM algorithm. Such adaptation are important when selecting the
appropriate parameter estimation method in the EM method. Our proposed
Expectation-Maximization algorithm is given as follows.

Algorithm 1 Algorithm EM for mixture of α-stable distributions

1: Initialization of the model, with choosing a specific tolerance ϵ.
2: repeat
3: Step-E:
4: We compute the posterior probability
5: for i = 1, . . . , n do
6: for j = 1, 2 do
7: The observation i belongs to component j with probability

p
(t)
i,j =

λ
(t)
j fj(xi|α(t)

1 ,β
(t)
1 ,δ

(t)
1 ,ω

(t)
1 ; 0)

λ
(t)
1 f1(xi|α(t)

1 ,β
(t)
1 ,δ

(t)
1 ,ω

(t)
1 ; 0)+λ

(t)
2 f2(xi|α(t)

2 ,β
(t)
2 ,δ

(t)
2 ,ω

(t)
2 ; 0)

8: end for
9: end for

10: Step-M:
11: for j = 1, 2 do

12: λ
(t+1)
j = 1

n{#zi = j}.

13: Then, we use ML or ECF to obtain Θ
(t+1)
j =

(
α
(t+1)
j , β

(t+1)
j , δ

(t+1)
j , ω

(t+1)
j

)
14: We compute the log-likelihood at iteration t+ 1, we note it: Q(t+1)

15: end for
16: until |Q(t+1)−Q(t)|

|Q(t+1)| < ϵ.
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Now, let us turn into another interesting method that is known for its
flexibility namely the Bayesian estimation method.

3.2 The proposed Bayesian algorithm

As state above, the central idea behind Bayesian estimation is that before we
have seen any data, we already have some prior knowledge about the distri-
bution it came from. Such prior knowledge usually comes from experience or
past experiments. In this section we consider uniform priors for the parame-
ters α and β; an inverse gamma prior for the parameter δ, and a normal prior
for the parameter ω. Moreover we shall consider a symmetric Dirichlet prior
for the weights, see [10]. Each of these priors has been deliberately chosen to
be independent from one another to ensure that our model remains free of
any unwanted biases. It is imperative to note that the choice of priors can
significantly influence the overall results of the model and should be chosen
with care. The Bayesian approach involves updating the posterior distribu-
tion of the parameters using Baye’s theorem. Note that computing the joint
posterior distribution of the above parameters given the data and the priors
is often analytically intractable because of the lack of closed-form expression
for α-stable densities. To overcome this issue, we’ll use Markov chain Monte
Carlo (MCMC) methods more precisely a combination of Gibbs sampling and
Metropolis-Hastings algorithms (see [10]), as illustrated in the following steps.

3.2.1 The distribution of the weights:

We assume that the prior distribution of λ follows a symmetric Dirichlet dis-
tribution with parameters ζ. Since P(zi = j) is equal to λj for j = 1, 2 and
i = 1, . . . , N , where N is the number of observations. The full conditional dis-
tribution for λ is also a Dirichlet distribution, with updated parameters ζ+nj ,
where nj is the number of observations assigned to component j. Thus, the
updated distribution for weigths is λ|Θ ∼ D(ζ + n1, ζ + n2).

3.2.2 Updating vector parameter Θ using MCMC:

In this step, we consider the Metropolis-Hastings sampling method. We gener-
ate a candidate parameter Θnew

j = (αnew
j , βnew

j , δnewj , ωnew
j ), from a proposal

distribution q(.|.), and it’s accepted with probability AΘnew
j

, defined by:

AΘnew
j

= min

(
1,

N∏
i=1,zi=j

f(xi|αnew
j , βnew

j , δnewj , ωnew
j ; 0)

f(xi|αold
j , βold

j , δoldj , ωold
j ; 0)

×
p(Θnew

j )q(Θold
j |Θnew

j )

p(Θold
j )q(Θnew

j |Θold
j )

)
.

We also notice that the priors are independent. Then, we get:

p(Θ) = p(α)p(β)p(δ)p(ω).
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In this work, we choose a normal distribution for q(.|.). By symmetry, we
conclude that

q
(
Θnew

j |Θold
j

)
= q
(
Θold

j |Θnew
j

)
.

Then AΘnew
j

become:

min

(
1,

N∏
i=1,zi=j

f(xi|αnew
j , βnew

j , δnewj , ωnew
j ; 0)

f(xi|αold
j , βold

j , δoldj , ωold
j ; 0)

×
IG(δnewj |α0, β0)N(ωnew

j |ϵ, k)

IG(δoldj |α0, β0)N(ωold
j |ϵ, k)

)
.

(3)

Then, we sample a uniform variable u in [0, 1]. If AΘnew
j

> u, we accept
the new candidate variables, otherwise we keep those of the previous iteration.
The fact that we consider a single rejection zone associated with the vector
parameter Θ is possible since the priors are assumed to be independent. Thus
the Markov chain Θ̃n = (α̃n, β̃n, δ̃n, ω̃n) where n is the index of iteration is
stationary. Unlike [10] where the authors consider a multiple Markov chain for
each parameter without taking advantage of the independence.

3.2.3 Updating the allocation parameter

It’s necessary at each iteration to predict which subpopulation that each
observation belongs. We do that, by computing the conditional probability,

P(zi = j|Θ) =
λjfj(xi|αj , βj , δj , ωj ; 0)

λ1f1(xi|α1, β1, δ1, ω1; 0) + λ2f2(xi|α2, β2, δ2, ω2; 0)
. (4)

which is the probability that the observation xi belongs to the component
j. Note that, this method requires ordered steps to converge to the correct
distribution, similar to the approach detailed in [10], where the reversible jump
Markov chain Monte Carlo was used to determine the number of components
of the mixture model. However, in contrast to the approach in [10], we consider
equation (3) as the rejection zone in the Metropolis-Hastings step for all the
parameters, which seems to be numerically more accurate than considering
rejection zones for each parameter separately (considering the bias generated).
We hence summarize our adapted method in the following algorithm:
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Algorithm 2 Bayesian Approach for a Mixture of α-Stable Distributions

Require: Initialization of the parameters as explained by K-means.
Require: Number of iterations N and burn-in M .
1: for t = 1, . . . , N do
2: Obtain weights λ = (λ1, λ2) by drawing samples from a symmetric

Dirichlet distribution λ ∼ D(ζ + n1, ζ + n2) with n1 as the number of
observations assigned to the first component, and n2 for the second.

3: Update parameters of the proposal distribution q(.|.) = N(.|θ, σ), set-
ting θ to the value of the previous iteration and choosing a small value for
σ (the standard deviation).

4: Sample new candidates Θnew
j = (αnew

j , βnew
j , δnewj , ωnew

j ) from the
proposal distribution q(.|.) = N(.|θ, σ) for each component.

5: Accept Θnew
j according to equation (3) and set Θt

j = Θnew
j , otherwise

set Θt
j = Θt−1

j .
6: for each observation xi do
7: Obtain the allocation variable zi using equation (4).
8: end for
9: end for

10: Calculate the mean parameters: Θj = 1
N−M

∑N
k=M Θ

(k)
j .

Now, since we have fulfilled the main methodology of interest in this paper,
the upcoming section will focus on assessing the efficacy of each approach with
simulated data and then applied to real data.

4 Applications

This section deals firstly with the estimation method based on characteristic
function and the maximum likelihood method for estimating the parameters of
α-stable distributions. We first evaluate the performance through a simulation
study of these methods and assess the effect of observation size n with varying
parameter values. The results of these simulations are presented in Tables 1
to 4. We consider the Gaussian Kernel in the ECF method (denoted by ECF-
Kernel) and the ECF method with empirical characteristic function is denoted
by ECF-Empirical as presented in Section 2.1. Additionally, we used the ML
method (First and Second). It’s worth mentioning that using the ML-Second
method, one observe that numerical convergence holds for the case α > 1
maybe because α-stable distributions have an infinite variance when α < 1.
Consequently, we didn’t provide an estimation of the parameters using the
ML-Second method in that case, as shown below.
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Table 1 Comparison of Methods for Parameter Estimation-Configuration 1

Parameter True value n ECF-Kernel ECF-Empirical ML-First ML-Second
α 1.6 500 1.6356 1.6023 1.6078 1.6151

750 1.6191 1.5484 1.5697 1.7641
1000 1.6075 1.5519 1.5443 1.6894

β -0.8 500 0.7541 -0.7566 -0.6692 -0.3714
750 -0.8375 -0.7668 -0.7389 -0.8081
1000 -0.7696 -0.7337 -0.7781 -0.7756

δ 5 500 5.0124 4.8583 4.8791 5.0498
750 5.2009 4.9608 4.9314 5.4934
1000 5.1666 4.9888 4.9418 5.2904

ω 12 500 11.8914 11.9563 11.8727 12.8558
750 12.2187 12.2930 12.2241 12.8333
1000 12.1193 12.1905 12.2968 12.5753

Table 2 Comparison of Methods for Parameter Estimation - Configuration 2

Parameter True value n ECF-Kernel ECF-Empirical ML-First ML-Second
α 1.4 500 1.3848 1.3243 1.3588 1.3605

750 1.3973 1.3613 1.3649 1.4420
1000 1.3329 1.2985 1.3210 1.3924

β 0.5 500 0.4304 0.4464 0.5150 0.5800
750 0.5173 0.5651 0.5523 0.6135
1000 0.5381 0.5542 0.5280 0.6106

δ 2 500 1.9819 1.8854 1.9495 1.9278
750 2.1368 2.0573 2.0668 2.2048
1000 2.0910 2.0162 2.0397 2.2395

ω -10 500 -9.9746 -10.0041 -10.0032 -8.4292
750 -9.9876 -10.0300 -10.0021 -9.2277
1000 -10.0807 -10.1048 -10.0705 -10.8141

Table 3 Comparison of Methods for Parameter Estimation - Configuration 3

Parameter True value n ECF-Kernel ECF-Empirical ML-First
α 0.8 500 0.9831 0.8523 0.7717

750 0.8601 0.7891 0.7730
1000 0.8614 0.7502 0.7510

β 0.8 500 0.7755 0.7249 0.8436
750 0.8903 0.9398 0.8166
1000 0.6330 0.7373 0.8056

δ 3 500 3.3389 3.1960 3.0887
750 3.2231 3.0899 3.0994
1000 3.0905 2.8824 2.9579

ω -12 500 -11.5866 -11.6107 -11.9937
750 -12.0331 -12.1348 -12.0439
1000 -11.9651 -12.0894 -12.1991

Table 4 Comparison of Methods for Parameter Estimation - Configuration 4

Parameter True value n ECF-Kernel ECF-Empirical ML-First
α 0.6 500 0.7295 0.6118 0.5932

750 0.7136 0.5949 0.5852
1000 0.6826 0.6447 0.5801

β -0.5 500 -0.3862 -0.5280 -0.5449
750 -0.3669 -0.4413 -0.4831
1000 -0.4074 -0.4941 -0.4436

δ 4 500 4.7518 4.0385 4.0950
750 4.3565 3.7984 3.8458
1000 4.4246 4.2515 3.7425

ω 5 500 4.1715 4.4790 4.8560
750 4.5660 4.7277 5.1534
1000 4.7741 4.9808 5.1215
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These results seems to confirm that the ECF-Kernel estimation method is
better than the ECF-Empirical method, which in our case whenever α > 1.

We also consider in a second way, mixture estimation framework of two
α-stable distributions with distinct parameters. The objective is to evalu-
ate the precision and efficacy of the methods described earlier namely our
adapted Expectation-Maximization method (including the use of ECF-Kernel,
ECF-Empirical and ML-First to update the parameters in the M-step of
EM algorithm) and Bayesian method. Let Θ1 = (α1, β1, δ1, ω1) and Θ2 =
(α2, β2, δ2, ω2), the density of the mixture model is giving by:

f(x, λ1,Θ1,Θ2; 0) = λ1 × f(x,Θ1; 0) + (1 − λ1) × f(x,Θ2; 0).

Upon implementing the four methods, we obtain the following table of
estimated parameters:

Table 5 Comparison of Methods for Parameter Estimation of the Mixture Model

Parameter True value Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.2 1.2032 1.2099 1.2886 1.1689
β1 0.5 0.5015 0.2977 0.4095 0.4906
δ1 1 0.9988 1.0338 1.0253 0.9638
ω1 -4.25 −4.1939 -4.1146 -4.1474 -4.1906
λ1 0.6 0.6037 0.622 0.599 0.601
α2 1.2 1.1812 1.4926 1.1579 1.1434
β2 -0.5 -0.6354 -0.6280 -0.3839 −0.5497
δ2 0.5 0.5062 0.5155 0.5103 0.4887
ω2 0.3 0.3043 0.2694 0.2808 0.3157

The corresponding graphs to visualize the plots is presented from Figure 1
to 4.
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The above simulation performance show numerically accurate parameter
estimation for the mixture of α-stable distributions with a given two com-
ponents, which can be extended to more than two components. Now let us
propose an application of the above described methods to real data, namely
the serial interval (SI) and enzyme dataset distribution.

To enhance the understanding of the estimated parameters, we will pro-
vide tables and compare AIC and BIC criteria. The COVID-19 pandemic has
caused extensive damage across the globe, disrupting productivity and trig-
gering widespread panic. In the French region of Mayotte, the Regional Health
Agency has undertaken significant efforts to collect and monitor the prop-
agation, as documented in [11] through the estimation of the time varying
reproduction number which is a non-pharmaceutical monitoring tool. But this
need to determine firstly the transmission dynamics based on the serial interval
described as follow using the data involved in [11]:

serial interval = y −
(
x.ub + x.lb

2

)
.

with:
• x.lb: Lower limit dates of onset of symptoms of infectors.
• x.ub: Upper limit dates of onset of symptoms of infectors.
• y: Dates of onset of symptoms of the infectee.
The associated histogram of this interval is presented in Figure 5, which

will later be used to adjust the curves obtained by each approach:



Springer Nature 2021 LATEX template

18 Parameter estimation for stable distributions and their mixture

Histogram of Serial−interval
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Fig. 5 Serial-interval

Upon examining the histogram of the distribution, we noticed that it
exhibits left-skewness and is not symmetric. Consequently, we propose apply-
ing a mixture of two α-stable distributions not necessarily symmetric. The
K-means algorithm was utilized to select two components. We observed that
the EM-ML method performed exceptionally well during our analysis, owing
to the small dataset size, the peaked distribution, and the fact that the allo-
cation vector changes at each iteration, which may impact model parameter
estimation. We chose EM-ML due to its effectiveness, as demonstrated in [6].
To validate our decision, we calculated the AIC and BIC criteria for all four
methods, which led to this optimal choice. While the AIC and BIC values were
relatively close to each other, we visually confirmed this selection in Figure 4.
The tables associated with these methods are presented below.

Table 6 Estimated Parameters for Serial-Interval dataset

Parameter Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.7140 2 2 1.9614
β1 0.4010 1 1 -0.8793
δ1 1.6734 1.7524 1.3736 2.0038
ω1 3.6323 3.8096 3.4368 4.2990
λ1 0.7111 0.5974 0.5064 0.8311
α2 1.7625 2 2 2
β2 -0.6113 -1 -1 0
δ2 3.2759 4.7511 3.8474 2.2267
ω2 10.8648 9.0474 8.0447 13.5769

The estimated curves obtained by combining the values of each method
on the histogram are displayed in the figure 6. It is evident that the curves
generated by the EM-ML method closely resemble the shape of the histogram,
indicating a good fit. However, the curves generated by the other four methods
show deviation from the actual shape. Therefore, overall, the mixture of two
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Table 7 Table of comparison between criterion of selection for Serial-interval dataset

Methods EM-ML EM-ECF-Kernel EM-ECF-Empirical Bayesian
AIC 455.2616 457.9891 455.935 456.9538
BIC 476.3558 479.0833 477.0293 478.048

α-stable distributions using the EM-ML method provides the best fit of the
serial interval.

Mixture of alpha−stable for serial interval
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Fig. 6 Mixture methods applied on Serial-interval

Time varying Reproduction Number

The basic reproduction number R0 at the start of an epidemic and the time
varying reproduction numbers during a development of an epidemic is an
important tool. It is historically defined as the average number of new cases of
infection generated by an individual during a period of infectivity (see [19]).
There are several methods for computing this parameter. We consider a non-
parametric approach [20] based on the generation time function linked to the
serial interval distribution; (see [21, 22]). We give an estimation of this gen-
eration time distribution taking into account an α-stable mixture modeling
framework. Indeed, the choices of serial interval estimation models in the R0
package (see [21, 22]) are fixed family distributions, which are Gamma, Log-
normal and Weibull. A mixture consideration of such distributions was treated
in [11] but do not allow mixture of α-stable distributions, which consider also
the negative serial interval.
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Let µ be the probability distribution of the transmissibility of an infectious
individual at the age of infection a, assuming that the entire population is
susceptible. Let Γ(t) be the number of new infections during the time interval
]t; t + dt[ and s(t) the proportion of susceptibles in the population. For dis-
crete time t ̸= 0, we have the following non parametric formula of the time
varying reproduction number

R0(t) =
Γ(t)∑

τ≤t µ(τ)Γ(t− τ)
. (5)

Other improved estimation methods of the reproduction number also exist in
the literature, see [23, 24] and references therein. In this work, using the epi-
demic incidence curve in Mayotte (between 13 March 2020 to 11 January 2022),
we derive a generation time distribution in order to estimate the time vary-
ing reproduction number R0(t) using the non parametric formula in equation
(5) and the best-fit of the SI in an α-stable mixture modeling framework.
The following pictures in Figure 7 represent the evolution of the time vary-
ing reproduction number R0(t) ; we make the curve smooth using estimated
values.
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Fig. 7 Evolution of the time varying reproductive number in Mayotte from 13 March 2020
to 11 January 2022 with a mixture of α-stable distribution on Serial-interval estimated by
EM-ML (A), and estimated by EM-ECF-Empirical (B).

Looking at the graphs of figure 7, we notice a similarity between them
and for both, we can see that the reproduction number starts at a value of
around 2.5, indicating that each infected individual is, on average, infecting
2-3 other people. As time progresses, we see a sharp increase in the reproduc-
tion number, peaking at around 4.5, indicating that the disease is spreading
rapidly. This could be due to a variety of factors, such as increased travel,
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relaxed social distancing measures, or a new variant of the disease that is
more transmissible. After the peak, we see a decline in the reproduction num-
ber, indicating that the disease is spreading more slowly. This could be due
to interventions such as increased vaccination rates, stricter social distancing
measures, or natural immunity acquired by those who have recovered from the
disease. The reproduction number eventually drops below 1, indicating that
the disease is no longer spreading and may be considered under control. But,
at the end the reproduction number suddenly increase due to the effect of
the new variant omicron. This task builds on previous work presented in [11],
which focused exclusively on the non-negative portion of the serial interval.
In this paper, we will examine a second dataset that contains a significantly
greater number of observations than the serial interval. The results of the four
approaches outlined in Section 3 will be presented as follows.

Finaly let us consider here a dataset relates to the distribution of enzy-
matic activity in the blood of 245 unrelated individuals for an enzyme involved
in the metabolism of carcinogenic substances, which is available in [12]. Mix-
ture models have been applied to this dataset distribution as it contains two
subpopulations of slow and fast metabolizers within the population.

Table 8 Table of estimated parameters for enzyme dataset

Parameter Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.5936 1.9857 2 1.6939
β1 0.8501 1 1 0.9999
δ1 0.0549 0.0565 0.0499 0.0525
ω1 0.1756 0.1726 0.1741 0.1752
λ1 0.6188 0.5918 0.5755 0.6244
α2 1.7175 1.8921 1.8864 1.3883
β2 0.6134 1 1 0.9964
δ2 0.2885 0.3409 0.3458 0.2273
ω2 1.2204 1.1447 1.1292 1.1502

Table 9 Table of comparison between criterion of selection for enzyme dataset

Methods EM-ML EM-ECF-Kernel EM-ECF-Empirical Bayesian
AIC 109.2265 129.2364 129.3528 116.7802
BIC 140.7378 160.7478 160.8641 148.2916

We observe that almost all of the estimated parameters are similar, except
for the index of stability α. As previously mentioned, the EM-ML method is
the most effective, as demonstrated in Table 9, with the smallest AIC and BIC
values. Additionally, the associated figure for the four methods is presented in
Figure 8 :
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Mixture of alpha−stable for Enzyme
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Fig. 8 Mixture methods applied on Enzyme

As expected, the EM-ML method provides a better fit to the enzyme his-
togram compared to the other approaches. This is because the other methods,
particularly EM-ECF, are sensitive to changes in the allocation vector at each
iteration. Furthermore, the Bayesian approach has the advantage of utilizing
prior knowledge of each parameter, which explains its efficiency on simulated
data. However, it also requires certain conditions, such as the length of the
observations, to ensure accurate results.

4.1 Conclusion and perspectives

In this paper, we consider the parameter estimation of uni-variate α-stable
distributions and their mixture. We introduced some new techniques, such
as the Gaussian kernel estimator in the characteristic function for the case
α ≥ 1, which has shown more efficient performance than the empirical charac-
teristic function in the simulation study. We also perform another estimation
procedure in the maximum likelihood framework based on the false-position
algorithm method to find the root of the log-likelihood through the score func-
tions established in [1]. In the case of estimation for the mixture of α-stable
distributions, although we limited our analysis to two components, the pro-
posed methods can be generalized to several components. The EM algorithm
was adpated to estimate the parameters of each sub-population until conver-
gence by combining the ECF and ML method in the M-step. The Bayesian
method, which is more flexible but requires many steps to perform the estima-
tion was adapted also in the parameter estimation of given mixture model of
α-stable distributions. Finally, we consider two type of applications of our esti-
mation methods on real data, namely the estimation of reproduction number
of the Covid-19 in Mayotte and the Enzyme dataset. In terms of forthcoming
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study, we are currently interested in practical developments based on the mix-
ture properties of α-stable distributions given in the Appendix section by an
adaptation of the suitable Expectation- Maximization algorithm and Bayesian
methods. Another practical perspective study is to implement an R package
for parameter estimation of a mixture of α-stable distributions.

5 Appendix

We aims here to estabilish some slightly different formulas related to mix-
ture properties of α-stable distributions, compared to [9] in order to provide
some forthcoming practical work based on the estimations methods devel-
opped in this paper. Firstly, note that it is straightforward to show that if
X ∼ S(α, β, σ, 0; 1) with α < 2; then, there exist two independent and iden-
tically distributed random variables Y1 and Y2 with the same distribution
S(α, 1, σ, 0; 1), such that for α ̸= 1:

X
d
=

(
1 + β

2

) 1
α

Y1 −
(

1 − β

2

) 1
α

Y2.

Theorem 2 Let Y ∼ S(α, β, σ, µ; 1). For α ∈ (0, 2) and β ∈ (0, 1), we have:

Y =
(
cos(

πα

2
)
)α

× σ ×

(
E1

W
′
1

− E2

W
′
2

)
+ µ,

where E1, E2 ∼ E(1) are i.i.d., and W
′

1 ∼ Weibull(0, 1
λ1

, α) and W
′

2 ∼

Weibull(0, 1
λ2

, α) are also i.i.d., with λ1 =
(
1+β
2

) 1
α

and λ2 =
(
1−β
2

) 1
α
.

In view of the proof, let us introduce the following preliminaries.

Lemma 1 Let 0 < α′ < 2 and 0 < α < α′. Consider X1 and X2 as two independent

copies with a (positive stable) distribution S( α
α′ , 1, (cos(

πα
2α′ ))

α′
α , 0), and V1, V2 as

two independent copies with a distribution S(α′, 1, (cos(πα
′

2 ))
1
α′ , 0). Then:

Z = cos
(πα

2

)α
×

[(
1 + β

2

) 1
α

X
1
α′
1 V1 −

(
1− β

2

) 1
α

X
1
α′
2 V2

]
is a random variable with a stable distribution S(α, β, 1, 0).

Proof Let S1 = X
1
α′
1 V1. We use the Laplace transform, as follows:

E (exp(−uS1)) = E

(
exp(−uX

1
α′
1 V1)

)
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= E
(
exp(−uα

′
X1)

)
= exp

−(uα
′
)

α
α′ ×

((cos( πα
2α′ ))

α′
α )

α
α′

cos( πα
2α′ )


= exp

(
−uα ×

(cos(πα2 )
1
α )α

cos(πα2 )

)
.

Therefore, S1 ∼ S(α, 1, cos(πα2 )
1
α , 0; 1). The same applies to S2 = X

1
α′
2 V2.

Now, by using the property of multiple by a scalar in [13], we get:

cos(
πα

2
)α × S1 ∼ S(α, 1, 1, 0; 1).

Then, we obtain the desired result by using thee algebraic property on sums of α-
stable distributions, see [13]. □

Lemma 2 Let A and X be independent random variables, with A ∼
S(ρ, 1, (cos(ρπ2 ))

1
ρ , 0; 1) and X ∼ S(α, β, 1, 0; 1), such that 0 < ρ < 1, 0 < α ≤ 2,

and α ̸= 1 ̸= ρα. Then A
1
αX ∼ S(ρα, β̂, σ̂, 0). If α < 1, and β = −1, 0, or 1, then

β̂ = β.

Proof Since, we have A ∼ S(ρ, 1, (cos(ρπ2 ))
1
α , 0), it comes that E(exp(−wA)) =

exp(−wρ). Taking w > 0, we can deduce that A > 0. Now, let’s compute the

characteristic function of A
1
αX. For α ̸= 1,

E
(
exp(itA

1
αX)

)
= E

(
exp(−tA

1
α
α
(1− iβ tan(

απ

2
)sign(t)))

)
= E

(
exp

(
−
[
tα(1− iβ tan(

απ

2
)sign(t))

]
A
))

= exp
(
−
[
tα(1− iβ tan(

απ

2
)sign(t))

]ρ)
= exp

(
−tρα

(
1 + β2 tan2(

απ

2
)
) ρ

2
[cos(ρθ)− i sin(ρθ)sign(t)]

)
= exp

(
− cos(ρθ)(1 + β2 tan2(

απ

2
))

ρ
2 tρα

[
1− iβ̂ tan(

ραπ

2
)sign(t)

])
,

where θ = arctan(β tan(απ2 )), β̂ = tan(ρθ)/ tan(ραπ2 ), et σ̂ = cos(ρθ)
1
ρα (1 +

β2 tan2(απ2 ))
1
2α . □

Proof of Theorem 2

Let X1 ∼ S( α
α′ , 1,

(
cos( πα

2α′ )
)α

′

α

, 0; 1), and V1 ∼ S(α
′
, 1, (cos(πα

′

2 ))
1

α
′ , 0; 1),

we define S1 = X
1

α
′

1 V1. Thus,

S1 ∼ S(α, 1,
(

cos(
πα

2
)
) 1

α

, 0; 1).
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Moreover, we have:

E1

S1
∼ Weibull(0, 1, α).

We now return to the proved theorem, where S2 = X
1

α
′

2 V2, where X2 and V2

follow the same distributions as X1 and V1, respectively, and are i.i.d. Thus:

X = λ1S1 − λ2S2.

With X ∼ S(α, β,
(
cos(πα

2 )
) 1

α , 0) and:

λ1S1
d
=

E1

W
′
1

,

λ2S2
d
=

E2

W
′
2

.

By independence, we infer that:

X
d
=

E1

W
′
1

− E2

W
′
2

.

Hence the result follows.
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