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Abstract

In this paper, we consider estimating the parameters of univariate
α-stable distributions and their mixtures. First, using a Gaussian ker-
nel density distribution estimator, we propose an estimation method
based on the characteristic function. The optimal bandwidth parameter
was selected using a plug-in method. We highlight another estima-
tion procedure for the Maximum Likelihood framework based on the
False position algorithm to find a numerical root of the log-likelihood
through the score functions. For mixtures of α-stable distributions,
the EM algorithm and the Bayesian estimation method have been
modified to propose an efficient and valuable tool for parameter esti-
mation. The proposed methods can be generalised to multiple mixtures,
although we have limited the mixture study to two components. A
simulation study is carried out to evaluate the performance of our
methods, which are then applied to real data. Our results appear to accu-
rately estimate mixtures of α-stable distributions. Applications concern
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2 Parameter estimation for stable distributions and their mixtures

the estimation of the number of replicates in the Mayotte COVID-
19 dataset and the distribution of the N-acetyltransferase activity of
the Bechtel et al. data for a urinary caffeine metabolite implicated
in carcinogens. We compare the proposed methods together with a
detailed discussion and conclude with some other forthcoming work.

Keywords: Stable distribution; Parametric estimation; Newton-Raphson
algorithm; Bisection algorithm; Mixture model; EM algorithm; Gibbs
sampling algorithm, Metropolis-Hastings algorithm.

1 Introduction

In recent decades, many researchers have shown an interest in studying α-
stable distributions because of their ability to generalise widely used laws such
as Gaussian, Lévy and Cauchy to handle impulsive and skewed data, which
is particularly important in the financial field. In 1925, Lévy discovered that
α-stable distributions arise as the limit of normalised sums of independent
and identically distributed random variables. The family of α-stable distribu-
tions has skewness and tail thickness. Unfortunately, there is no closed-form
expression for the cumulative distribution function and the probability den-
sity function, except in a few cases such as the Gaussian, Lévy and Cauchy
distributions. Let X be a α-stable random variable and ϕ(t) = E(exp(itX))
the characteristic function. Note that this family of laws has multiple param-
eterizations. We follow the presentation in [1–4] and consider two types of
representations. A random variable X ∼ S(α, β, γ, ζ; 0) if ϕ(t) is expressed as
follows

ϕ(t) =

{
exp

(
−γα|t|α

[
1 + iβ(tan(πα

2 ))sign(t)(|γt|1−α − 1)
]

+ iζt
)

if α ̸= 1.
exp(−γ|t|[1 + iβ 2

π sign(t) log(γ|t|)] + iζt) if α = 1.

(1)

where α ∈ (0, 2] is the index of stability that governs the heaviness of the tail,
β ∈ [−1, 1] the skewness parameter , γ > 0 the scale parameter, ζ ∈ R the
location or shift parameter and the sign function defined by:

sign(t) =

 1 if x > 0
0 if x = 0
−1 if x < 0.

A random variable X is S(α, β, γ, µ; 1), [1] if,

ϕ(t) =

{
exp

(
−γα|t|α

[
1 − iβ(tan(πα

2 ))sign(t)
]

+ iµt
)

if α ̸= 1.
exp(−γ |t|[1 + iβ 2

π sign(t) log(|t|)] + iµt) if α = 1.
(2)
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These parameterizations are therefore usually characterised by four param-
eters: α ∈ [0, 2], β ∈ [−1, 1], γ > 0 and ζ or µ. If β = 0 we have a symmetric
stable distribution and the two parameterizations above are identical. If γ = 1
and µ = 0 (or ζ = 0), we say that X is a standard α-stable random variable.
The different parameterizations have repeatedly led to misunderstandings. The
parameterization (2) proposed by [1] does not provide continuity of the den-
sity function at points α = 1 and β = 0 (because of the tan(πα/2) term), nor
does it provide a scale-location family at α = 1 (because of the γ log(γ) term),
while the parameterization (1) is continuous with respect to all parameters.
The above two formulations are connected by the key equation

ζ =

{
µ + βγ tan(πα

2 ) if α ̸= 1
µ + β 2

πγ log(γ) if α = 1.

It is worth noting that α-stable distributions have infinite variance for any
α < 2, and the mean is infinite for α ∈ (0, 1], which makes estimating the
parameters difficult. Note that the mean, if it exists (α > 1), is the natural
measure of the location, but it cannot be estimated as precisely as ζ. In the
case of α = 2, we get the Gaussian distribution, when α = 1 and β = 0, it
becomes the Cauchy distribution, and Lévy for α = 1

2 and β = 1. It is rec-
ommended to use the 0 parameterization for numerical work and statistical
inference. The standard mean-focus 1 parameterization is suitable for study-
ing algebraic properties, we refer the reader to the work of [5]. Simulation
methods are available for α-stable distributions, for example Kanter [6] was
the first to generate α-stable random variables with α ∈ (0, 1). Later, Cham-
bers, Mallows and Stuck [7] extended the method to the general case. It is
important to note that when α is close to 1 or 0 with β ̸= 0, the computations
are typically much more numerically demanding and the results may not be
very accurate, see Matlab [2] and R [8]. Since it is not known when exactly the
numerical difficulties occur, we only warn the reader to pay great attention
in their programs and practical purposes. In the stabledist package [8], the
authors highlight and discuss such warnings. These warnings are not yet the
subject of explicit studies, and in the future we plan to investigate the explicit
numerical behaviour in the vicinity of these boundary points. The simulation
of α-stable multivariate distributions has been the subject of research in [9].
The performance of our simulations is carried out with values of α that are
not close to 1. In the context of real applications, our applications concern the
case α ∈ (1, 2). For β = 1, the distributions are maximally skewed to the right,
and the FMStable package [10] provides distribution functions that are faster
and more accurate than the stabledist package.

There are several methods in the scientific literature to estimate the
parameters of α-stable distributions, for example the Fractional Lower Order
Moments (FLOM) method [11]; the quantile method improved by McCulloch
[12], the Empirical Characteristic Function (ECF) and Maximum Likeli-
hood (ML) approximation method [2], although the lack of a closed-form
expression for the probability density is a theoretical disadvantage. Finite
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mixture models are becoming increasingly popular and play a crucial role
in density estimation, and the mixture of α-stable distributions is a popular
tool for modelling skewed and impulsive data, making it applicable in various
fields. Two well-known methods of mixture estimation are the Expectation-
Maximisation (EM) algorithm and the Bayesian approach. The EM algorithm
is particularly useful in cases where the data are incomplete or partially
observed. Bayesian estimation uses prior knowledge of the probability distri-
bution of the parameters to estimate the value of the unknown parameters.
Much work has been done in this direction, including the papers cited by
[13] and references therein. Let us mention the work of [14], which presents a
stochastic EM algorithm for skewed α-stable distributions.

The main contributions of this paper to the literature are as follows. First,
we introduce new estimators for parameters of the α-stable distribution, which
mainly modify the well-known characteristic function estimator of this family
by replacing the density function by a Gaussian kernel within the integral
representation of the characteristic function. We also handle the estimation
of the bandwidth parameter using the plug-in method proposed by [15] (for
α > 1) and [16, 17] (for α < 1). Second, the ML estimator is computed numer-
ically using score functions and the False position algorithm. Furthermore,
this allows to improve the EM algorithm of [13]. The Bayesian approach of
[18] is improved by combining Gibbs sampling and the Metropolis-Hastings
algorithm. We consider two-component models motivated by applications,
but it can be generalised to finite-component univariate α-stable mixture
models. The performance of the proposed estimators is compared with other
candidates through a small-scale simulation study. All these methods have
been used to estimate the reproduction number during the COVID-19 out-
break data in Mayotte. We also give other application of a dataset related to
the distribution of N-acetyltransferase activity data in the blood of 245 unre-
lated individuals for a caffeine urinary metabolites involved in carcinogenic
substances, which is available in [19] for two sub-populations study.

The paper is organised as follows. In section 2, we first recall some basic
quantile methods originally developed by McCulloch [12] and introduce the
kernel estimation method of the characteristic function and the estimation pro-
cedure for α-stable distributions. We also consider a new framework for the
ML estimation of α-stable distributions based on the score function and the
False position algorithm. Then, in section 3, we outline an adapted Bayesian
and EM algorithm approaches to estimating the parameters of a two mix-
ture of α-stable distributions, which can be generalised to multiple mixtures.
The performance of the above proposed estimators for estimating the param-
eters of α-stable distributions is given in section 4. In section 5, we apply
the proposed methods with the above mentioned COVID-19 outbreak data
in Mayotte together with the distribution of the above already mentioned
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N-acetyltransferase activity data for two sub-populations studies and a con-
clusion with future theoretical and practical developments, in particular new
stochastic approximation methods and algorithms.

2 Parameter estimation of α-stable
distributions

There are many approaches to estimate the parameters of α-stable distribu-
tions. One of such approaches is the Fractional Lower Order Moments (FLOM)
method, as described in [11]. This method considers the lower-order fractional
moments of the data to estimate the parameters of the distribution. It is also
less sensitive to outliers and does not require any iterative optimisation pro-
cedures. However, a limitation of the FLOM method is that it assumes that
the data are independently and identically distributed, which may not be the
case in some real-world applications. Furthermore, as shown in [11], it does
not guarantee a good estimate of the skewness parameter β.

Another approach is the quantile method, improved by McCulloch [12],
which is based on the relationship between the q-th quantile and the distribu-
tion parameters for any distribution. In the case of the α-stable distribution,
the q-th quantile depends on the scale and location parameters of the distri-
bution as well as the α and β parameters, it is also robust to outliers and can
handle missing data, but it may not work well for distributions with slowly
varying tails or non-smooth density functions. In the same context, a new
estimation algorithm for the tail index was proposed in [20] by considering
a quantile conditional variance ratio. Based on the explicit formula (1) of
the characteristic function, one can establish an estimation method using
regression (ECF) [2]. Although the lack of a closed-form expression for the
probability density is a theoretical disadvantage, note that in practice they
are computed numerically using an integral transformation. It is in this way
that many authors perform the ML method for parameter estimation [2]. The
aim of this section is to present the relevant methods that we consider in
order to improve our main results.

First, we recall the quantile method originally developed by McCulloch,
as described in [12], provided by the libstable4u package [21]. We will use
such a method to initialise our algorithms but with the constraint α ≥ 0.6
[12, 22]. The method has been simplified in recent years, and the version we
use is based on the work presented in [2], which can be described as follows.
Let xp be the pth quantile of the distribution X ∼ S(α, β, γ, ζ; 0) and define
the following quantities:

vα(α, β, γ, ζ) =
x0.95 − x0.05

x0.75 − x0.25
, vβ(α, β, γ, ζ) =

x0.05 + x0.95 − 2x0.5

x0.95 − x0.05
,

vγ(α, β, γ, ζ) = x0.75 − x0.25, vζ(α, β, γ, ζ) = −x0.5.
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In [12], McCulloch provides tables from which the values of the above
parameters can be derived, considering a standard α-stable distribution Z ∼
S(α, β, 1, 0; 0). This is not restrictive, since the scaling property, as outlined
in [1], allows to have xp = γzp + ζ, where zp is the pth quantile of Z. The value
of the above parameters could then be deduced from these quantities using
the following relationships [2]:

vα(α, β, γ, ζ) = vα(α, β, 1, 0), vβ(α, β, γ, ζ) = vβ(α, β, 1, 0),

vγ(α, β, γ, ζ) = γvγ(α, β, 1, 0), vζ(α, β, γ, ζ) = γvζ(α, β, 1, 0) − ζ.

As we can see, vα and vβ are independent of the scale and location parameters,
and the above relationships allow one to obtain a reliable estimate of the four
parameters when the sample set is large, see [2]. In the following, the vector
parameter Θ0 = (α0, β0, γ0, ζ0) will refer to the initial vector value parameter
according to McCulloch’s method. Now we will introduce the other methods.

2.1 Characteristic function-based estimation method

Let X ∼ S(α, β, γ, ζ; 0) and let X1, . . . , Xn be a sample of size n of X and Fn

be the empirical cumulative distribution function:

ϕ̂(1)
n (t) =

∫
R

exp(itx)dFn(x) =
1

n

n∑
j=1

exp(itXj).

Note that, given t ∈ R, ϕ̂
(1)
n (t) is a consistent estimator of ϕ(t) for large values

of n (by a simple application of the law of large numbers). We introduce an
alternative estimation of the characteristic function using the kernel method.
We are concerned with the Gaussian kernel for the case when α > 1, expressed

as K(x) = 1√
2π

exp
(

−x2

2

)
for all x ∈ R and satisfying

∫
R K(z)dz = 1. This

alternative estimate of the characteristic function is defined as follows:

ϕ̂(2)
n (t) =

1

nhn

∫
R

exp(itx)

n∑
j=1

K

(
x−Xj

hn

)
dx,

where the bandwidth satisfies lim
n→∞

hn = 0 in order to have the consistency. For

practical purposes, and in the case of α > 1, we choose the optimal bandwidth
hn by considering the plug-in method proposed by Sheather and Jones [15],
since it is based on the mean square error. On the other hand (specifically for
α < 1), we consider the second-generation plug-in method proposed by Slaoui
in [16] (see also [17]). Set

η(γt|α; 0) =
2

π
t log(γ|t|)I{α=1} + tan(

πα

2
)sign(t)γ1−α (|t| − |t|α) I{α̸=1}.(3)
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We now define the following sample functions gn(t) and hn(t) to compute the
estimated characteristic function at sample size n:{

gn(t) = ℜ(ϕ̂n(t)),

hn(t) = ℑ(ϕ̂n(t)),

where ϕ̂n(t) could be ϕ̂
(1)
n (t) or ϕ̂

(2)
n (t). We have:{√

gn(t)2 + hn(t)2 = |ϕ̂n(t)| = exp(−γα|t|α),

arctan
(hn(t)
gn(t)

)
= arg(ϕ̂n(t)) = −γαβη(γt|α; 0) + ζt.

We also define the following quantities:
y(t) = log(− log(|ϕ(t)|)) = log(γα) + α log(|t|),
zk = arg(ϕ̂n(tk)),

Bk = γ̂α̂η(γ̂tk|α̂; 0).

The relationship between y(t) and log(|t|) can be modelled linearly with a
slope of α and an intercept of a = log(γα). Set

yk = log(− log(|ϕ̂n(tk)|)) = log
(
− log

(√
gn(tk)2 + hn(tk)2

))
,

where tk is chosen on a grid of equally spaced points t1, . . . , tm using the sample
data. We use the following weighted least squares method to minimise

S(a, α) =

m∑
k=1

Wk (yk − a− α log(|tk|))2

(â, α̂) = arg min
(a,α)

S(a, α),

where the weights Wk = 1
σ2
k

and σ2
k denotes the variance of the kth observation.

We get the following estimators:

α̂m =

(
m∑

k=1

Wk log(tk)yk −
∑m

k=1 Wkyk∑m
k=1 Wk

×
m∑

k=1

Wk log(tk)

)

×

(
m∑

k=1

Wk log(tk)2 −
∑m

k=1 Wk log(tk)∑m
k=1 Wk

×
m∑

k=1

Wk log(tk)

)−1

,

âm =

∑m
k=1 Wjyk − α̂m

∑m
k=1 Wk log(tk)∑m

k=1 Wj
,

γ̂m = δ0 exp

(
âm
α̂m

)
.
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Then from the following formula

zk = βBk + ζtk,

again using the method of weighted least squares as described above, we obtain

ζ̂m = γ0

(
m∑

k=1

WkBkzk −
∑m

k=1 Wktkzk∑m
k=1 WktkBk

×
m∑

k=1

WkB
2
k

)

×

(
m∑

k=1

WkBktk −
∑m

k=1 Wkt
2
k∑m

k=1 WktkBk
×

m∑
k=1

WkB
2
k

)−1

+ ζ0,

β̂m =

∑m
k=1 Wktkzk − ζ̂

∑m
k=1 Wkt

2
k∑m

k=1 WktkBk
.

Since ϕ̂n is consistent, the consistency of the estimated parameters α̂m, β̂m,
γ̂m could be obtained using the classical regression estimation method. A
simulation study is carried out to evaluate the performance of the proposed
estimation. The choice of m was taken from [23], which suggests choosing
points tk in the interval [0.1, 1]. We set the parameters γ0 and ζ0 using the
McCulloch method mentioned above [12].

2.2 Maximum Likelihood Approximation

In the following lines, we present a method for estimating α-stable distributions
within the framework of ML. Since the probability density function does not
have a closed-form expression, the classical ML method is computationally
difficult in this context, because the likelihood ratio does not exist explicitly.
For this reason, we first use a numerical approximation of the density function
of α-stable distributions, which provides accurate estimates. We introduce the
following method based on score functions and the False position algorithm,
which is an intuitive way to estimate the underline parameters of α-stable
distributions. Suppose we are in parameterization 1 and α > 1. Set

gd(x|α, β) =

∫ ∞

0

cos(xr + βη(r, α; 1))rd−1 exp(−rα)drI{0<d<∞}

+

∫ ∞

0

[cos(xr + βη(r, α; 1)) − 1]rd−1 exp(−rα)drI{−2min(1,α)<d≤0},

g̃d(x|α, β) =

∫ ∞

0

sin(xr + βη(r, α; 1))rd−1 exp(−rα)drI{−min(1,α)<d<∞}

+

∫ ∞

0

[sin(xr + βη(r, α; 1)) − xr]rd−1 exp(−rα)drI{α>1,−α<d≤−1},
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hd(x|α, β) =

∫ ∞

0

cos(xr + βη(r, α; 1)) log(r)rd−1 exp(−rα)dr,

h̃d(x|α, β) =

∫ ∞

0

sin(xr + βη(r, α; 1)) log(r)rd−1 exp(−rα)dr,

for x ∈ R and d ∈ N. Note that η(r, α; 1) = − tan(πα
2 rα) should not be

confused with the previous one in (3) from parameterization 0. Recall the
following theorem from [2].

Theorem 1 (Stable score function) Let α ̸= 1. The univariate α-stable density in
the 1-parameterization is given by

f(x|α, β, γ, ζ; 1) = 1

πγ
g1

(
x− ζ

γ
|α, β

)
.

Then the score functions are given by

∂f

∂α
(x|α, β, γ, ζ; 1) = 1

πγ

[
πβ

2 cos(πα2 )2
g̃1+α

(
x− ζ

γ
|α, β

)
+β tan(

πα

2
)h̃1+α

(
x− ζ

γ
|α, β

)
− h1+α

(
x− ζ

γ
|α, β

)]
,

∂f

∂β
(x|α, β, γ, ζ; 1) =

tan(πα2 )

πγ
g̃1+α

(
x− ζ

γ
|α, β

)
,

∂f

∂γ
(x|α, β, γ, ζ; 1) = − 1

πγ2
g1

(
x− ζ

γ
|α, β

)
+

x− ζ

πγ3
g̃2

(
x− ζ

γ
|α, β

)
,

∂f

∂ζ
(x|α, β, γ, ζ; 1) = − 1

πγ2
g̃2

(
x− ζ

γ
|α, β

)
.

Many equations, including most of the more complicated ones, can only
be solved by iterative numerical approximation. There are many root-finding
algorithms that can be used to obtain approximations to such a given root.
One of the most common is Newton’s method or the secant method, but it may
fail to find a root under certain circumstances, and it can be computationally
expensive since it requires a computation of the derivatives of the function.
Other methods are needed and a general class of methods are the two-point
bracket methods. The False position or Bisection algorithm is one of these. The
convergence rate of the bisection method could possibly be improved by using
a different solution estimate. The False position algorithm runs as the first
iteration of the bisection algorithm and, essentially, the root is approximated
by replacing the actual function by a line segment on the bracketing interval
and then using the classic double False position formula on that line segment,
see [24].

Obviously, this method requires a good range for each parameter. For this
reason we consider the initial intervals with a given margin to the initial values
Θ0 = (α0, β0, γ0, ζ0) based on the quantile method. The same procedure is
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used for the other three parameters. In the following we will refer to this
method as ML-Second. At this stage, however, one may be disappointed that
there is no theoretical study of the existence of the root solutions of the above
score functions under the False position method. This will be addressed as
a perspective, but we will only look at the convergence numerically. Note
that one can also use the optim command in R to directly maximise the log-
likelihood function and obtain the estimated parameters. This is referred to as
ML-first. The performance and consistency of the estimation is illustrated in
a simulation study.

3 Parameter estimation for mixtures of
α-stable distributions

Finite mixture models are becoming increasingly popular and play a crucial
role in density estimation, and the mixture of α-stable distributions is a pop-
ular tool for modelling skewed and impulsive data, making it applicable in
various fields. A well-known method for mixture estimation is the EM algo-
rithm. We will consider the ECF (2.1) and ML (2.2) methods for estimating the
four parameters of these distributions, in order to select the most efficient of
them for use in the EM algorithm. This algorithm is particularly useful in cases
where the data are incomplete or partially observed. Much work has been done
in this direction, including the papers cited by [13] and references therein. We
should also mention the work of [25], [14], which presents a methodology for a
stochastic EM algorithm applied to α-stable distributions. In [26] the author
established a formula that includes symmetrical and asymmetrical α-stable
distributions to estimate parameters using the EM algorithm, but the paper is
still unpublished and we note that their algorithm does not converge for non-
symmetric α-stable distributions. Since the Bayesian approach is also a useful
and efficient tool for parameter estimation in mixture models, we have pro-
posed a modified framework that involves updating the posterior distribution
until it converges to the stationary distribution by combining Gibbs sampling
and the Metropolis-Hastings algorithm, as described in [18]. The novelty of
this latest approach, compared to [18], is essentially the choice of the rejection
zones in the Metropolis-Hastings algorithm, which, in addition to updating the
parameters, can significantly affect the estimates. Mixture models in general
could be used to understand the development an epidemic by estimating the
generation time and the number of reproductions; see for example the work in
[27], where the authors consider mixtures of Weibull, lognormal and other dis-
tributions to estimate the effective reproduction number during the COVID-19
outbreak on the island of Mayotte, France.

The mixture of α-stable distributions is a popular tool for modelling
skewed and impulsive data, making it applicable in various fields. When
dealing with such a mixture method, one needs to initialise and select the
components of the mixture. The K-means clustering [28] allows a better
estimation of the components. Two common methods to infer parameters in
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mixture models are: the EM algorithm and the Bayesian approach, [13, 18].
Bayesian estimation is a framework for formulating statistical inference
problems. When predicting or estimating a random variable or process, the
Bayesian philosophy is based on combining the evidence contained in the
random variable with prior knowledge of the probability distribution of the
random variable. The Bayesian estimation method uses prior data to estimate
the value of the unknown parameters. This reduces the difference between
the estimate and the true value of that parameter. In Bayesian modelling, the
choice of priors then plays a crucial role in determining the posterior inference.
The EM algorithm is a widely used computational method for estimating
the parameters of statistical models with latent or missing variables. This
algorithm is particularly useful in cases where the data are incomplete or par-
tially observed. The EM algorithm works by iteratively alternating between
the E-step, where we estimate the expected value of the unobserved or latent
variables given the current parameter estimates, and the M-step, where we
maximise the likelihood of the observed data based on the expected values
obtained in the E-step. This alternating process continues until convergence is
achieved, resulting in the optimal parameter estimates for the model. Let n be
the number of observations and zi the latent observations for all i = 1, . . . , n.
Denote by λ1 = P(zi = 1) the weight for the first component j = 1 and
λ2 = 1−λ1. In this paper we assume that we are in a two-component mixture.
Of course, this can be generalised to more than two components.

3.1 The proposed Expectation-Maximization algorithm

In this paper, we present an adapted Expectation-Maximisation algorithm by
incorporating the above parameter estimation tools, namely the ML estima-
tion method (by means of score functions and the False Position Algorithm)
and the estimation by means of the Empirical or Kernel (ECF) function, both
for the vector parameter Θ and for updating the E-step in the EM algorithm.
Such adjustments are important when selecting the appropriate parameter
estimation method in the EM algorithm. For simplicity, we consider two sub-
populations, say 1 and 2, and compute the values of the latent vector z as
follows. A sample value xi is assigned to population 1 with probability (the
probability that zi = 1, conditional on the observed value of xi), given by the
key equation

pi = P(zi = 1|Θ)

=
λ1f(xi|α1, β1, γ1, ζ1; 0)

λ1f(xi|α1, β1, γ1, ζ1; 0) + (1 − λ1)f(xi|α2, β2, γ2, ζ2; 0)
. (4)

These are the actual weights assigned to observation i when calculating the
expected log likelihood in the EM algorithm. Our proposed EM algorithm
is given as follows. The subscript ’t’ indicates the t-th iteration of the EM

algorithm to obtain the increment at each ’iteration’. We initialised λ
(0)
1 using
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the R software sample function noted sample() to draw a sample with attach
specific probability to assign elements to subpopulation 1 or 2 according to the
previous value in equation (4). We refer also to Remark 1 for other initialization
options.

Algorithm 1 EM algorithm for mixtures of α-stable distributions

1: Initialization of the model, with selection of a specific tolerance ϵ.
2: repeat
3: E-step: We compute the n values of the vector z.
4: for i = 1, . . . , n do
5: A sample value xi is assigned to the population 1 (and so we set

zi = 1) with probability

p
(t)
i =

λ
(t)
1 f(xi|α(t)

1 ,β
(t)
1 ,γ

(t)
1 ,ζ

(t)
1 ; 0)

λ(t)f(xi|α(t)
1 ,β

(t)
1 ,γ

(t)
1 ,ζ

(t)
1 ; 0)+(1−λ

(t)
1 )f(xi|α(t)

2 ,β
(t)
2 ,γ

(t)
2 ,ζ

(t)
2 ; 0)

6: end for
7: λ

(t+1)
1 = 1

n{#zi = 1}. So we use the expected log likelihood
or ECF to get the new parameters for instance from component 1:
Θ

(t+1)
1 =

(
α
(t+1)
1 , β

(t+1)
1 , γ

(t+1)
1 , ζ

(t+1)
1

)
8: M-step: We then independently maximise the new parameters for each

case, for instance from the component 1 in the expected log-likelihood,

which is denoted by Q(t+1) =
∑n

i=1 log
(
f(xi|α(t+1)

1 , β
(t+1)
1 , γ

(t+1)
1 , ζ

(t+1)
1 )

)
,

and the total log likelihood is the mean of the two cases.
9: until convergence has been achieved : |Q(t+1) −Q(t)| < ϵ.

Note that, for a mixture model of two α-stable distributions, it is identified
in most cases by specifying ζ1 < ζ2. The EM algorithm thus fixes on one
of the modes depending on its initialisation. In the Bayesian approach, one
could simply include this in the priors for the two location parameters. The E-
step is used to estimate and update the allocation parameter λ1 based on the
values of the previous iteration, and once this is done, we can apply the usual
estimation methods such as ML or ECF to the observations of each of the
two components. In the M-step, we also maximise the conditional expectation
for the well-chosen specific tolerance ϵ until convergence. Incorporating the
ECF method into the above EM algorithm has been shown to be a valid
approach for mixtures of α-stable distributions with suitable initialisation and
specific tolerance ϵ. Explicit and analytical studies for convergence by the ECF
approach in the EM algorithm will be addressed as a perspective work. Let us
now turn to another interesting method known for its flexibility, namely the
Bayesian estimation method.

Remark 1 As an initialization of our proposed algorithm, we could implement our
algorithm with a sufficient number of iterations and then cheek the convergence by
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plotting the values of the estimated parameters obtained at each iteration versus
the iterations. A more rigorous option, consisted in using the initialization which
maximize the likelihood.

3.2 The proposed Bayesian algorithm

As mentioned above, the Bayesian inference framework allows us to build a
hierarchical model in which the unknown quantities are estimated via addi-
tional information (objective or not very informative prior or non-informative)
or available data (informative priors) using Bayes’ rule. The Bayesian inference
has the advantage of providing credible intervals on the behaviour of the like-
lihood function, taking into account any given information on the parameters.
The priors chosen for this model are as follows. We consider non-informative
uniform priors for the exponent parameter α and the skewness parameter β
on their supports as in [29, 30]. Such choices are also discussed as being appro-
priate. An inverse gamma distribution with initial parameters (1, 1) is chosen
for the dispersion γ, and a normal prior with parameters (0, 5) is chosen for
the location parameter ζ, and these priors are conjugate priors in Bayesian
inference for the mean and variance [31]. Furthermore, in line with other work
in the literature on mixing problems [32], the Beta distribution (the familiar
2-way special case of the Dirichlet distribution) is used as a prior for binomial
proportions in Bayesian analysis [33]. We will consider the beta distribution
Beta(1, 1) as a conjugate prior for the weights. Although it could be useful
to use the information we know about the properties of the parameters of α-
stable distributions (e.g. they are bounded and as α tends towards 2, β has
less influence on asymmetry), the priors for α, β, γ, ζ were chosen inspired by
[18] and assumed to be independent of each other to ensure that our model
remains free of any unwanted biases. Speaking generally about other choices of
priors, we hope to develop future research work over time by considering differ-
ent choices of priors, such as Jeffrey’s priors (well defined for the parameters of
mixtures of distributions), which are a challenging task for α-stable distribu-
tions since they are not available in closed form, especially when investigating
the behaviour of the Fisher information matrix [3, 34, 35].

Note that computing the joint posterior distribution of the above param-
eters, given the data and priors, is often analytically intractable due to the
lack of a closed-form expression for α-stable densities. To overcome this prob-
lem, we will use Markov Chain Monte Carlo (MCMC) methods, more precisely
a combination of Gibbs sampling and Metropolis-Hastings algorithms (see
[18]), as illustrated in the following steps. The novelty of this latest approach,
compared to [18], is essentially the choice of rejection zones in the Metropolis-
Hastings algorithm, which can significantly affect the estimates in addition to
the updating of the parameters. The standard deviation σ of the normal distri-
bution used to select candidates in the Metropolis-Hastings procedure is 0.1.
Any given choice of hyper-parameters for the priors will be updated in the
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Metropolis-Hastings acceptance zone so that they are not significant for the
speed of convergence with this approach.

3.2.1 The weight distribution

We assume that the prior distribution of the weights follows a Beta(ξ) distri-
bution with initial parameters ξ = (1, 1). Since P(zi = 1) is equal to λ1 for
i = 1, . . . , N , where N is the number of observations, the full conditional dis-
tribution for λ = (λ1, λ2) is also a beta distribution, with updated parameters
ξ1 + n1 and ξ2 + n2, where for example ni is the frequency of observations
assigned to component i = 1, 2. Thus, the updated distribution for the weights
is Beta(λ1 + n1, λ2 + n2).

3.2.2 Updating the vector parameter Θ using MCMC

In this step we consider the Metropolis-Hastings sampling method. We gen-
erate a candidate parameter Θnew

j = (αnew
j , βnew

j , γnew
j , ζnewj ), for example

j = 1, from a proposal distribution q(.|.), and it is accepted with probability
AΘnew

j
, defined by:

AΘnew
j

= min

(
1,

N∏
i=1,zi=j

f(xi|αnew
j , βnew

j , γnew
j , ζnewj ; 0)

f(xi|αold
j , βold

j , γold
j , ζoldj ; 0)

×
p(Θnew

j )q(Θold
j |Θnew

j )

p(Θold
j )q(Θnew

j |Θold
j )

)
.

We also assume that the priors are independent. Then we get

p(Θj) = p(αj)p(βj)p(γj)p(ζj).

In this paper we choose a normal distribution for q(.|.). By symmetry we
conclude that

q
(
Θnew

j |Θold
j

)
= q
(
Θold

j |Θnew
j

)
.

Then AΘnew
j

become:

min

(
1,

N∏
i=1,zi=j

f(xi|αnew
j , βnew

j , δnewj , ωnew
j ; 0)

f(xi|αold
j , βold

j , δoldj , ωold
j ; 0)

×
IG(δnewj |α0, β0)N(ωnew

j |ϵ, k)

IG(δoldj |α0, β0)N(ωold
j |ϵ, k)

)
.

(5)

Now we sample a uniform variable u in [0, 1]. If AΘnew
j

> u, we accept the
new candidate variables, otherwise we keep those from the previous iteration.
The fact that we consider a single rejection zone associated with the vector
parameter Θ is possible because the priors are assumed to be independent.
Thus, the Markov chain Θ̃n = (αn, βn, γn, ζn), where n is the iteration index,
stationary, unlike [18], where the authors consider a multiple Markov chain for
each parameter without taking advantage of independence.
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3.2.3 Updating the allocation parameter

At each iteration, it is necessary to predict which subpopulation each obser-
vation belongs to. We do this by computing the conditional probability, for
example for j = 1 as in (4), which is the probability that the observation xi

belongs to the component j = 1. Note that this method requires ordered steps
to converge to the correct distribution, similar to the approach described in
[18], where reversible Markov chain Monte Carlo was used to determine the
number of components in the mixture model. However, unlike the approach in
[18], we consider equation (5) as the rejection zone in the Metropolis-Hastings
step for all parameters, which seems to be numerically more accurate (consid-
ering the bias generated) than considering rejection zones for each parameter
separately. We therefore summarise our adapted method in the following
algorithm:

Algorithm 2 Bayesian algorithm for mixtures of α-stable distributions

Require: Initialization of weight parameters.
Require: Number of iterations N and burn-in M .
1: for t = 1, . . . , N do
2: Obtain weights λ = (λ1, λ2) by drawing samples from a symmetric

beta distribution λ ∼ Beta(ξ1 + n1, ξ2 + n2) where n1 is the frequency of
observations assigned to the first component and n2 to the second.

3: Update the parameters of the proposal distribution q(.|.) = N(.|θ, σ),
setting θ to the value of the previous iteration and choosing a small value
for σ (the standard deviation).

4: Sample new candidates Θnew
j = (αnew

j , βnew
j , γnew

j , ζnewj ) from the
proposal distribution q(.|.) = N(.|θ, σ) for each component.

5: Accept Θnew
j according to equation (5) and set Θt

j = Θnew
j , otherwise

set Θt
j = Θt−1

j .
6: for each observation xi do
7: Obtain the allocation variable zi using equation (4).
8: end for
9: end for

10: Compute the mean parameters: Θj = 1
N−M

∑N
k=M Θ

(k)
j .

In the Bayesian algorithm above, we compute the mean of the posterior
rather than its median and confidence intervals. In fact, the parameter vector
of the mixture of α-stable distributions in the Bayesian method is a conver-
gent Markov chain. Taking the median as an approximation for the parameter
vector leads to numerical problems and there’s no guarantee that the chain
will converge. To numerically overcome such problems, we used Monte Carlo
methods to estimate the parameter vector, which proved its effectiveness in
the simulation part with well-selected burn-in period M .
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Now that we have established the main methodology of interest in this
paper, the next section will focus on assessing the effectiveness of each approach
using simulated data and then applying it to real data.

4 Simulations

Our primary objective in this section is to evaluate the effectiveness of these
approaches proposed in Sections 3.1 and 3.2 by using simulated data. We first
discuss the performance of our proposed estimator based on the ECF and ML
methods for estimating the parameters of single α-stable distributions. Sec-
ondly, we consider the case of mixture of α-stable distributions with different
parameters. Bold values indicate smallest values closed to the true value in
their respective rows when acessing the simulation performance. To have more
precisions about the simulation performance we use the Mean Square Error
(MSE) over the entire set of vector parameters Θ:

MSE =
1

dim(Θ)

dim(Θ)∑
i=1

(
Θ̂i − Θi

)2
.

4.1 The case of single α-stable distributions

We evaluate the performance through a simulation study of these methods
and assess the effect of the observation size n with varying parameter val-
ues. The results of these simulations are presented through Table 1 to ??. We
consider the Gaussian kernel in the ECF method (denoted by ECF-Kernel)
and the ECF method with empirical function is denoted by ECF-Empirical,
as presented above. In addition, we used the ML method (First and Second).
It is worth noting that when using the ML-Second method, one observes that
numerical convergence holds for the case α > 1 as mentioned in the method-
ology. For the case α < 1, we have not been able to show efficient results
because we had problems with the convergence of the special functions gd, hd,
g̃d and h̃d. This will be evaluated in more detail in further work. According to
Table 1 through Table 8, we find that the estimation methods demonstrated
satisfactory performance.
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Table 1 Comparison of parameter estimation methods - configuration 1. Bold values
indicate smallest values closed to the true value in their respective rows.

Parameter True value n ECF-Kernel ECF-Empirical ML-First ML-Second
α 1.6 500 1.6356 1.6023 1.6078 1.6151

750 1.6191 1.5484 1.5697 1.7641
1000 1.6075 1.5519 1.5443 1.6894

β -0.8 500 -0.7541 -0.7566 -0.6692 -0.3714
750 -0.8375 -0.7668 -0.7389 -0.8081
1000 -0.7696 -0.7337 -0.7781 -0.7756

γ 5 500 5.0124 4.8583 4.8791 5.0498
750 5.2009 4.9608 4.9314 5.4934
1000 5.1666 4.9888 4.9418 5.2904

ζ 12 500 11.8914 11.9563 11.8727 12.8558
750 12.2187 12.2930 12.2241 12.8333
1000 12.1193 12.1905 12.2968 12.5753

Table 2 Mean square error - configuration 1. Bold values indicate smallest values of MSE
in their respective rows

n ECF-Kernel ECF-Empirical ML-First ML-Second
500 0.0038 0.0059 0.0119 0.2296
750 0.0224 0.0227 0.0148 0.2412
1000 0.0107 0.0108 0.0237 0.1059

Table 3 Comparison of parameter estimation methods - configuration 2.

Parameter True value n ECF-Kernel ECF-Empirical ML-First ML-Second
α 1.4 500 1.3848 1.3243 1.3588 1.3605

750 1.3973 1.3613 1.3649 1.4420
1000 1.3329 1.2985 1.3210 1.3924

β 0.5 500 0.4304 0.4464 0.5150 0.5800
750 0.5173 0.5651 0.5523 0.6135
1000 0.5381 0.5542 0.5280 0.6106

γ 2 500 1.9819 1.8854 1.9495 1.9278
750 2.1368 2.0573 2.0668 2.2048
1000 2.0910 2.0162 2.0397 2.2395

ζ -10 500 -9.9746 -10.0041 -10.0032 -8.4292
750 -9.9876 -10.0300 -10.0021 -9.2277
1000 -10.0807 -10.1048 -10.0705 -10.8141

Table 4 Mean square error - configuration 2.

n ECF-Kernel ECF-Empirical ML-First ML-Second
500 0.0015 0.0054 0.0011 0.6201
750 0.0047 0.0024 0.0021 0.1632
1000 0.0051 0.0061 0.0033 0.1831

Table 7 Comparison of parameter estimation methods - configuration 4.

Parameter True value n ECF-Kernel ECF-Empirical ML-First
α 0.6 500 0.7295 0.6118 0.5932

750 0.7136 0.5949 0.5852
1000 0.6826 0.6447 0.5801

β -0.5 500 -0.3862 -0.5280 -0.5449
750 -0.3669 -0.4413 -0.4831
1000 -0.4074 -0.4941 -0.4436

γ 4 500 4.7518 4.0385 4.0950
750 4.3565 3.7984 3.8458
1000 4.4246 4.2515 3.7425

ζ 5 500 4.1715 4.4790 4.8560
750 4.5660 4.7277 5.1534
1000 4.7741 4.9808 5.1215
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Table 5 Comparison of parameter estimation methods - configuration 3.

Parameter True value n ECF-Kernel ECF-Empirical ML-First
α 0.8 500 0.9831 0.8523 0.7717

750 0.8601 0.7891 0.7730
1000 0.8614 0.7502 0.7510

β 0.8 500 0.7755 0.7249 0.8436
750 0.8903 0.9398 0.8166
1000 0.6330 0.7373 0.8056

γ 3 500 3.3389 3.1960 3.0887
750 3.2231 3.0899 3.0994
1000 3.0905 2.8824 2.9579

ζ -12 500 -11.5866 -11.6107 -11.9937
750 -12.0331 -12.1348 -12.0439
1000 -11.9651 -12.0894 -12.1991

Table 6 Mean square error - configuration 3.

n ECF-Kernel ECF-Empirical ML-First
500 0.0799 0.0495 0.0026
750 0.0156 0.0114 0.0032
1000 0.0102 0.0070 0.0109

Table 8 Mean square error - configuration 4.

n ECF-Kernel ECF-Empirical ML-First
500 0.3203 0.0684 0.0079
750 0.0865 0.0295 0.0119
1000 0.0616 0.0164 0.0211

4.2 The case of mixture of α-stable distributions

We consider here, the framework of mixture estimation of two α-stable dis-
tributions with different parameters. The aim is to evaluate the accuracy and
efficiency of the methods described above, namely our adapted EM algorithm
(including the use of ML-First, ML-Second, ECF-Kernel, ECF-Empirical)
to update the parameters in the M-step, and the Bayesian method. Let
Σ1 = (α1, β1, γ1, ζ1) and Σ2 = (α2, β2, γ2, ζ2); the density of the mixture model
is given by:

f(x, λ,Σ1,Σ2; 0) = λ× f(x,Σ1; 0) + (1 − λ) × f(x,Σ2; 0).

After applying the four methods, we obtain the following table of estimated
parameters:

According to Table 9 through Table ??, we find again that, all the esti-
mation methods demonstrated satisfactory performance. The corresponding
graphs to visualise the plots are presented through Figure 1 to 11.
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Table 9 Comparison of methods for estimating mixture model-configuration 0. Bold
values indicate smallest values in their respective rows.

Parameter True value Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.2 1.2032 1.2099 1.2886 1.1689
β1 0.5 0.5015 0.2977 0.4095 0.4906
γ1 1 0.9988 1.0338 1.0253 0.9638
ζ1 -4.25 −4.1939 -4.1146 -4.1474 -4.1906
λ1 0.6 0.6037 0.622 0.599 0.601
α2 1.2 1.1812 1.4926 1.1579 1.1434
β2 -0.5 -0.6354 -0.6280 -0.3839 −0.5497
γ2 0.5 0.5062 0.5155 0.5103 0.4887
ζ2 0.3 0.3043 0.2694 0.2808 0.3157

Table 10 Comparison of methods for estimating mixture model-configuration 1. Bold
values indicate smallest values in their respective rows.

Parameter True value Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.2 1.1206 1.1897 1.1804 1.1170
β1 0.5 0.4741 0.3107 0.4041 0.5095
γ1 1 0.9805 0.9959 1.0263 1.0309
ζ1 -2.5 −2.4334 -2.3928 -2.3867 -2.4098
λ1 0.6 0.6166 0.602 0.617 0.632
α2 1.7 1.6958 1.7426 1.7412 1.7488
β2 0.5 0.4871 0.9308 0.8949 0.9999
γ2 0.8 0.7604 0.8348 0.7400 0.7011
ζ2 3 2.9495 2.9409 2.9855 2.9730

Table 11 Comparison of methods for estimating mixture model-configuration 2. Bold
values indicate smallest values in their respective rows.

Parameter True value Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.4 1.4115 1.4655 1.4116 1.4969
β1 -0.5 −0.5134 -0.5944 -0.6479 -0.9999
γ1 0.8 0.8259 0.8302 0.7766 0.7787
ζ1 1.5 1.5957 1.6116 1.5991 1.6686
λ1 0.5 0.6072 0.6190 0.6080 0.6060
α2 1.8 1.7398 1.8292 1.8203 1.6979
β2 0.5 0.3467 1 1 0.9999
γ2 1.2 1.2296 1.1782 1.1437 1.0805
ζ2 5.3 5.4898 5.4519 5.3541 5.4004

Table 12 Mean square error for estimating mixture model-configuration 0.

Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
0.0054 0.0410 0.0107 0.0029

Table 13 Mean square error for estimating mixture model-configuration 1.

Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
0.0018 0.0266 0.0205 0.0310
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Table 14 Mean square error for estimating mixture model-configuration 2.

Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
0.0095 0.0350 0.0333 0.0648
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Fig. 12 EM-ECF-Empirical-configuration 2

The above simulation performance shows numerically accurate parame-
ter estimation for the mixture of α-stable distributions with a given two
components, which can be extended to more than two components.

5 Applications and conclusions

Let us now propose an application of the methods described above to real
data, namely the serial interval (SI) in epidemiology, which is the time interval
between the onset of symptoms in the infector and the onset of symptoms in
the infectee. The generation time interval is then derived as the time interval
from the infection of the infector to infection of the infectee. Thus, it is the
time lag between infection in a primary case and a secondary case; and should
be obtained from the time lag between all infectee/infector pairs [36]. As it
cannot be observed directly, it is often replaced by the SI. Estimating the SI
generation time and effective reproductive number [27] is an important task in
understanding and developing an epidemic. In the previous paper [27] we only
consider non-negative SI from the serial interval dataset of [37]. However, this
dataset also contains negative serial intervals, because a suspected infector
may show symptoms (infection) only after the infected person does. We also
consider a data set related to the distribution of caffeine as a probe drug to
determine the genetic status of two subpopulations of fast and slow acetyla-
tors. Acetylator status was determined from the urinary metabolic ratio for
an enzymatic activity in the blood involved in the metabolism of carcinogenic
substances, available in [38] for 245 unrelated individuals. Mixture models
have been applied to the distribution of the above Acetylator status dataset as
it contains two subpopulations of slow and fast metabolizers within the pop-
ulation. In the case of the above SI dataset, although the histogram in Figure
17 shows a mode in the last bin around 18, the K-means method confirms
the choice of a two-component mixture. We perform a goodness-of-fit test to
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determine whether or not our sample data fits a normal distribution. As not
all points lie approximately on the reference line in Figure 18, we can assume
that the distribution of our data sets is not normaly distributed (see also
Table 19 for the Shapiro-Wilk or Anderson-Darling or Kolmorogov-Smirnov
tests). In addition, we use skewness and kurtosis, which are two important
measures in statistics; skewness refers to the lack of symmetry and kurtosis is
a measure of whether or not a distribution is heavy-tailed. To calculate the
skewness and kurtosis of our data sets, we use the skewness() and kurtosis()
functions from the moments library in R software. This allows us to see that
our dataset distributions are skewed and not symmetric (see Table 20). Using
the Kurtosis, we see that the distribution is leptokurtic showing heavy tails.
We notice that the distributions of our data sets are skewed, not symmet-
ric, and have heavy tails. Therefore, we proposed to fit the above real data
distributions with α-stable (mixture) distributions. Note, however, that some
statistical goodness-of-fit tests designed for α-stable distributions are avail-
able in the literature and require large sample sizes [39–41]. In particular, the
recent work of [42] proposes a novel goodness-offit method based on quantile
(trimmed) conditional variances.

Tables and comparisons of AIC and BIC criteria are provided to enhance
understanding of the estimated parameters. The COVID-19 pandemic has
caused considerable damage worldwide, disrupting productivity and causing
widespread panic. In the French region of Mayotte, the regional health author-
ity has made significant efforts to collect and monitor the spread of COVID-19,
as documented in [27], by estimating the time-varying reproduction number,
which is a non-pharmaceutical monitoring tool. The reported temporal daily
cases of COVID-19 from 13 March 2020 to 11 January 2022 are shown in
Figure 16.

We found that the EM-ML method performed well in our analysis due to
the small size of the data set, the peaked distribution and, the fact that the
assignment vector changes at each iteration, which can affect the estimation
of model parameters. This is also consistent with the work of [13]. To validate
our decision, we calculated the AIC and BIC criteria for all four methods that
led to this optimal choice. Although the AIC and BIC values were relatively
close, we visually confirmed this choice in Figure 4.2. The tables associated
with these methods are presented in Tables 15 and 16.

The estimated curves obtained by combining each method are shown in
Figure 13. It can be seen that the mixture of two α-stable distributions using
the EM-ML method provides the best fit of the serial interval.
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Table 15 Estimated parameters for the serial interval distribution above

Parameter Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.7140 2 2 1.9614
β1 0.4010 1 1 -0.8793
γ1 1.6734 1.7524 1.3736 2.0038
ζ1 3.6323 3.8096 3.4368 4.2990
µ1 3.9558 3.8096 3.4368 4.2990
λ 0.7111 0.5974 0.5064 0.8311
µ = λµ1 + (1− λ)µ2 5.7253 5.9183 5.7112 5.8660
α2 1.7625 2 2 2
β2 -0.6113 -1 -1 0
γ2 3.2759 4.7511 3.8474 2.2267
ζ2 10.8648 9.0474 8.0447 13.5769
µ2 10.08101 9.0474 8.0447 13.5769

Table 16 Comparison table between the selection criteria for the serial interval
distribution above

Methods EM-ML EM-ECF-Kernel EM-ECF-Empirical Bayesian
AIC 455.2616 457.9891 455.935 456.9538
BIC 476.3558 479.0833 477.0293 478.048
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Fig. 13 Mixture estimation of the serial interval distribution

5.1 The effective reproduction number

The basic reproduction number R0 at the start of an epidemic and the time
varying (effective) reproduction numbers during an outbreak are important
tools. Historically, it has been defined as the average number of new infections
generated by an individual during a period of infectivity (see [43]). There are
several methods to calculate this parameter. We consider a non-parametric
approach [44] based on the generation time function associated with the
serial interval distribution (see [45, 46]). In the previous paper [27] we have
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only considered non-negative SI subset data from the [37] dataset and looked
for SI estimation models such as Gamma, Lognormal and Weibull. Here we
consider the entire dataset, including negative SI values, and deal with the
α-stable mixture modelling framework. This is not a new dataset, but an
original dataset from [37].

Let p be the probability distribution of the transmissibility of an infec-
tious individual at age of infection τ , assuming that the entire population is
susceptible. Let Γ(t) be the number of new infections during the time inter-
val ]t; t + dt[. For discrete time t ̸= 0, we have the following non-parametric
formula for the effective reproduction number:

R0(t) =
Γ(t)∑

τ≤t p(τ)Γ(t− τ)
. (6)

Other improved methods of estimating the effective reproductive number exist
in the literature, see [47, 48] and references therein. In this work, using the
epidemic incidence curve in Mayotte (between 13 March 2020 and 11 January
2022), we derive a generation time distribution to estimate the effective repro-
duction number R0(t) using the non-parametric formula in equation (6) and
the best fit of the SI in a α-stable mixture modelling framework. The following
plots in Figure 14 show the evolution of the time-varying reproduction number
R0(t); we smooth the curve using estimated values.
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Fig. 14 Evolution of the effective reproductive number in Mayotte from 13 March 2020 to
11 January 2022 with a mixture of α-stable distributions with a serial interval estimated by
EM-ML (A) and estimated by EM-ECF-Empirical (B).

If we look at the graphs of Figure 14, we see a complete similarity between
them, and for both we can see that the effective reproduction number starts
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at a value of around 2.5, indicating that each infected individual infects, on
average, 2−3 other people. Over time, we see a sharp increase in the reproduc-
tion number, peaking at around 4.5, indicating that the disease is spreading
rapidly. This could be due to a number of factors, such as increased travel,
relaxed social distancing measures, or a new variant of the disease that is more
transmissible. After the peak, we see a decline in the number of reproductive
cases, indicating that the disease is spreading more slowly. This could be due
to interventions such as increased vaccination rates, stricter social distancing
measures, or natural immunity acquired by those who have recovered from the
disease. The reproduction number will eventually fall below 1, indicating that
the disease is no longer spreading and can be considered to be under control.
Eventually, however, the reproduction number will suddenly increase due to
the effect of the new omicron variant.

5.2 The distribution of N-acetyltransferase activity data

Here we consider a dataset relating to the distribution of N-acetyltransferase
activity in the blood of n = 245 unrelated individuals for a caffeine urine
metabolite test for an enzyme involved in the metabolism of carcinogens avail-
able in Bethtel et al. [19]. This data set has been used in the past to test
mixture models as it contains two subpopulations of slow and fast metabolisers
within the population.

Table 17 Table of estimated parameters for the above distribution of N-acetyltransferase
activity data

Parameter Bayesian EM-ECF-Kernel EM-ECF-Empirical EM-ML
α1 1.5936 1.9857 2 1.6939
β1 0.8501 1 1 0.9999
γ1 0.0549 0.0565 0.0499 0.0525
ζ1 0.1756 0.1726 0.1741 0.1752
µ1 0.2102 0.1738 0.1741 0.2025
λ 0.6188 0.5918 0.5755 0.6244
µ = λµ1 + (1− λ)µ2 0.6273 0.5939 0.6059 0.6801
α2 1.7175 1.8921 1.8864 1.3883
β2 0.6134 1 1 0.9964
γ2 0.2885 0.3409 0.3458 0.2273
ζ2 1.2204 1.1447 1.1292 1.1502
µ2 1.3045 1.2030 1.1915 1.4742

Table 18 Table comparing the selection criteria for the above distribution of
N-acetyltransferase activity data

Methods EM-ML EM-ECF-Kernel EM-ECF-Empirical Bayesian
AIC 109.2265 129.2364 129.3528 116.7802
BIC 140.7378 160.7478 160.8641 148.2916
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We observe that almost all the estimated parameters are similar, except for
the stability index α, see Table 17. The EM-ML model is the most effective,
as shown in Table 18, with the lowest AIC and BIC values. In addition, the
corresponding figure for the four methods is shown in Figure 15.
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Fig. 15 Mixture methods applied to the distribution of N-acetyltransferase activity data
in the blood of 245 unrelated individuals in Bethtel et al. [19].

The EM-ML method provides a better fit to the distribution of N-
acetyltransferase activity in the blood data than the other approaches. This is
because the other methods, particularly EM-ECF, are sensitive to changes in
the assignment vector at each iteration. Furthermore, the Bayesian approach
still has the advantage of using any prior information on the parameters, which
explains its efficiency on simulated data. However, it also requires certain
conditions, such as the length of the observations, to ensure accurate results.

5.3 Conclusion and perspectives

In this paper, we consider the parameter estimation of univariate α-stable dis-
tributions and their mixture. We introduce some new techniques, such as the
Gaussian kernel estimator in the characteristic function for the case α ≥ 1,
which has shown more efficient performance than the empirical characteristic
function in the simulation study. We also perform another estimation proce-
dure in the ML framework based on the False position algorithm method to
find the root of the log-likelihood through the score functions established in [2].

In the case of estimating the mixture of α-stable distributions, although
we have limited our analysis to two components, the proposed methods can
be generalised to multiple components. The EM algorithm was adapted to
estimate the parameters of each subpopulation to convergence by combining
the ECF and ML methods in the M-step. Integrating the ECF into the M
stage has proved to be a valuable practical approach.
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The Bayesian method, which is more flexible but requires many steps to
perform the estimation, has also been adapted to the parameter estimation of
a given mixture model of α-stable distributions. Finally, we consider two types
of applications of our estimation methods on real data, namely the estimation
of the reproduction number of the COVID-19 in Mayotte and the Acetylator
status dataset.

In terms of future research, an immediate practical study is the imple-
mentation of an R package for parameter estimation of a mixture of α-stable
distributions as well as a focus on statistical goodness-of-fit tests designed for
mixture of α-stable distributions. We also plan to implement a more efficient
approach to overcome the long burn-in period in the MCMC method using
importance sampling [49]. Again, a future research direction would be to
extend our study to the case of non symmetric α-stable distributions using
Gibbs sampling [50].

We also aim to study some identity representations for α-stable distribu-
tions that incorporate a Weibull location scale mixture model, as stated in [26]
in the symmetric case. In this way, our goal is to develop a stochastic algo-
rithm that can account for the additional computational complexity [51] of the
Weibull distribution.

Supplementary information

Additional supporting information on the original papers presented in the
study and the R codes including datasets are available from the corresponding
author on reasonable request.
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6 Appendix: Additional tables and figures

We performs some goodness-of-fit test that determines whether or not sample
data have skewness and kurtosis that matches a normal distribution.

Fig. 16 Daily reported cases from 13 March 2020 to 11 January 2022

Fig. 17 Serial interval data distribution from 77 infector-infectee transmission pairs [37]

Table 19 Goodness-of-fit test (p-value) of the Shapiro Wilk, Jarque-Bera,
Kolmogorov-Smirnov and Anderson-Darling Normality Tests

Dataset Shapiro Wilk Jarque-Bera Kolmogorov-Smirnov Anderson-Darling
SI data 0.0005387 0.006 < 2.2e−16 9.297e−5

N-acetyltransferase data < 2.2e−16 2.776e−14 < 2.776e−16 < 2.776e−16
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(A) (B)

Fig. 18 QQ-Plot of the SI data set distrubution (A) and the distribution of the
N-acetyltransferase activity data set (B).

Table 20 Skewness and Kurtosis measures

Dataset Skewness Kurtosis
SI dataset 0.8401043 3.57987

N-acetyltransferase data 1.197951 3.612564
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