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the SEN2VENµS Dataset: architecture, training2

strategy, performances assessment and3

application to Water Bodies Detection4

Aurélien Lac, Julien Michel, Vincent Poulain, Nafissa Sfaksi5

Abstract6

This paper presents training and validation strategies for the application of a Single Image Super-Resolution7

(SISR) architecture to Sentinel-2 imagery using the SEN2VENµS open dataset, in order to generate 5m resolution8

images from the initial 10m and 20m bands. Our approach focuses on preserving radiometry and geometry of the9

input images and avoiding the introduction of artifacts, and leverages a smaller ESRGAN generator network, as well10

as high and low spatial frequencies separation in loss calculation. Bands B11 and B12, which are missing in the11

SEN2VENµS dataset, are also process by means of the Wald protocol. We demonstrate that those adaptations allow12

to enhance the resolution of all Sentinel-2 bands to 5m without substantial loss in reliability. Benefits of the 5 meter13

super-resolved images are demonstrated through a water bodies detection use-case, allowing to significantly improve14

detection performances on smaller water bodies.15

Index Terms16

Sentinel-2, Super-Resolution, Water Bodies17

I. INTRODUCTION18

Sentinel-2 is probably one of the most famous source of optical satellite imagery along with Landsat-8. This is19

due to its unique combination of spectral bands, global coverage, systematic 5-days revisit and open-data policy.20

While the Landsat series also provide the same features, Sentinel-2 has the highest spatial resolution, with 421

spectral bands in visible and Near-Infra-Red provided at 10 meter resolution, and 6 bands in Red-Edge, Near and22

Short-Wavenlength Infra-Red provided at 20 meter resolution.23

Sentinel-2 data are therefore used in a wide range of applications where both revisit and resolution are important24

factors, such as vegetation monitoring [1], Land Cover and Land Use Mapping [2], European Common Agricultural25
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Policy control [3] and Water Bodies Monitoring [4]. However, as shown during the Sentinel-HR phase-0 study at26

CNES [5], the 10-meter spatial resolution - at best - of Sentinel-2 spectral bands can be a limiting factor for smaller27

objects, including small agricultural parcels, narrow landscape features such as hedges, and small water bodies. In28

order to overcome this limitation while still benefiting from the numerous advantages of the Sentinel-2 mission,29

Single Image Super-Resolution (SISR), which is the process of predicting a higher resolution version of an image30

using only this image at inference time, seems a natural choice.31

Indeed, driven by the deep-learning trend, several works in the literature address the Super-Resolution of Sentinel-32

2 image with a Single-Image approach [6]–[9]. In [10], the authors suggest that Sentinel-2 is especially well33

conditioned for SISR, because of its high Modulation Transfer Function (MTF) value at Nyquist rate combined34

with the small spatial shifts between detectors in the focal plane. Nevertheless, data-sets used in existing works are35

often gathered from a limited number scenes and geographical locations, they do not cover the full range of Sentinel-36

2 spectral bands, and most importantly they are not released to the public, which impairs any attempt to reproduce37

or consolidate their results. To overcome those limitations, the SEN2VENµS dataset [11] has been released under38

an open-data licence in 2021. Based on same-day occurrences of Venµs and Sentinel-2 data, SEN2VENµS offers39

more than 130k patches spread across 29 different locations, and covering all 10-meter and 20-meter spectral bands40

of Sentinel-2 (excluding SWIR bands) with a 5-meter target image acquired by the Venµs satellite at the exact same41

date.42

Water surfaces represent the largest part of the water resource available to societies and their various uses (food,43

agriculture, industry, etc.). Continuous monitoring of water surfaces is essential for water resource management, to44

ensure a fair distribution between the various uses. It is also an indicator of global and environmental change, and45

studying it helps to identify levers for action and adaptation to cope with the effects of climate change. Detailed46

knowledge and monitoring of water bodies over time is therefore paramount for water managers [12]. Small water47

bodies monitoring is a challenge, as a trade off must be found between noise and false detection on one hand and48

accuracy and integrity of water extraction [13] on the other. SISR super-resolution of Sentinel-2 images therefore49

represents an interesting solution for going beyond the current limits (0.5 ha) and offering complete monitoring of50

inland water resources.51

This paper presents the adaptation and performances assessment of the ESRGAN network trained using the52

SEN2VENµS dataset in the course of ESA ITT project ”Super-Resolution Enhanced Sentinel-2 Data for EO53

Applications and Services”1. The main contributions of this work are as follows. First, a network architecture54

based on ESRGAN that can jointly super-resolve 10-meter and 20-meter Sentinel-2 bands is proposed. Super-55

resolution of SWIR band is also achieved by means of the Wald protocol. Second, limitations of the SEN2VENµS56

dataset in terms of radiometric and spatial consistency are identified and mitigation strategies are proposed. Third,57

detailed performances assessment is presented. And Fourth, the benefit of the super-resolved data for Water Bodies58

Detection (WBD) is demonstrated.59

The remaining of the paper is organised as follows. Section II briefly summarizes the state-of-the art. Section III60

1https://eo4society.esa.int/projects/super-resolution-enhanced-data-for-eo-applications-and-services-topic-a-sentinel-2-super-resolution/
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presents materials and methods used in this work. Section IV-B presents the performances assessment, while61

section IV-D presents the application to WBD.62

II. STATE OF THE ART63

Deep learning has revolutionized the field of super-resolution by introducing various architectures that can64

effectively learn complex mappings between low-resolution (LR) and high-resolution (HR) images. Many training65

dataset are composed of HR images only, and the proper simulation of the LR degradation model is therefore66

paramount for model performances and good generalization to real data. For instance, in [14], the Pléiades NEO67

LR images are carefully simulated from the airborne HR reference images. In the current work however, the dataset68

consists of LR and HR pairs of real-world satellite data, which allows to focus on optimization paradigms and69

cost-effective architectures capable of producing sharp and reliable results in the context of SISR. Some of the70

most notable deep learning architectures for SISR are reviewed in the reamaining of this section.71

A. Convolutional Neural Networks (CNN)72

This family of models includes all architectures that learn a correspondence between LR and HR images, optimized73

from end to end and using a single classic CNN model. SRCNN [15] is recognized as the first successful use of74

a CNN applied to super-resolution. It uses a simple but pioneering 3-layers convolutional neural network with an75

early up-sampling scheme designed to learn the super resolution mapping. ESPCN [16], also uses a simple CNN76

architecture, but with a late up-sampling design. The authors also introduce up-sampling with a sub-pixel convolution77

layer, which has proved to be very efficient and is therefore used by many subsequent methods. Successive advances78

in neural networks were then applied to this type of architecture. For instance, EDSR [17] and CARN [18] are79

based on modified and improved versions of residual connections allowing increased depth of super-resolution80

networks. In the same way, skip connections are massively used in the DenseNet [19] architecture and subsequently81

applied to super-resolution in SRDenseNet [20]. As implemented in RDN [21], it is also possible and now common82

to combine residual connections and skip connections. In addition, architectures such as RCAN [22], [23] have83

successfully used channel attention mechanisms to adaptively rescale channel-level characteristics.84

B. Generative Adversial Networks (GAN)85

GANs were introduced in 2014 [24], paving the way for a whole new branch of generative model research, and86

have rapidly become the benchmark for image synthesis, including super-resolution. In general, a GAN consists87

of a generator that creates synthetic data and a discriminator (or a critic, in the WGAN [25] formulation) that88

distinguishes between real and generated data. They are trained together in a competitive manner to generate realistic89

data. SRGAN [26] was a pioneer in the use of GANs applied to super-resolution. The generator is a ResNet-type90

CNN, while the discriminator is a rather classical CNN ending with dense layers and using LeakyReLU activation91

functions. In addition, SRGAN is optimized using a combination of GAN loss and content loss calculated on feature92

maps of a VGG [27] network. ESRGAN [28] builds upon SRGAN, but removes the generator batch normalization93

layers, replaces the basic ResNet with residual in residual dense blocks (RRDB), and brings other improvements94
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such as residuals scaling. More recently, Real-ESRGAN [29] defined a new state of the art in blind super resolution,95

using the same generator architecture as ESRGAN but employing larger-scale training, a U-Net discriminator with96

spectral normalization [30], [31], and highly diverse image degradation model for training.97

C. Transformers98

The Transformer architecture [32] originated from Natural Language Processing (NLP). Its novelty lies in the99

intensive use of attention mechanism without the need of recurrence or convolution. This type of architecture100

recently appeared in computer vision with Vision Transfomers (ViT) [33], further improved with Shifted Windwos101

(Swin) Transformers [34], [35]. This latest architecture was quickly applied to super-resolution through SwinIR102

[36], [37], which surpasses Real-ESRGAN on real images when using the GAN loss.103

D. Diffusion models104

Diffusion models [38]–[40] are a family of probabilistic generative models that progressively destroy data by105

injecting noise, then learn to reverse this process for sample generation. These models very quickly demonstrated106

record-breaking results in many fields, including super-resolution. Several supervised approaches for SISR have107

been proposed, including SR3 [41], SRDiff [42], and LDM [43]. Although these methods seem to offer the best108

results, they are also considerably more expensive in terms of computing resources.109

III. MATERIALS AND METHODS110

A. Data preparation111

The SEN2VENµS dataset comprises 256x256 Venµs patches along with corresponding 128x128 (for 10 meter112

bands) and 64x64 (for 20 meter bands) Sentinel-2 patches. Venµs patches are pair-wised spatially registered to113

their corresponding Sentinel-2 patch, and their radiometry is linearly transformed so as to minimize discrepancies114

between both sensors [11]. It is noteworthy that despite this processing, spatial and spectral discrepancies are still115

present especially for Venµs sites with higher viewing angles. In the present work, the dataset has been further split116

by retaining a random selection of 119,915 patches for the training and 13,040 patches for validation. Sentinel-2117

tile T30TYP was then used to assess the benefits of super-resolved data for the WBD application, as presented in118

section IV-D. Patches of Sentinel-2 B11 and B12 bands are missing in the original SEN2VENµS dataset, and have119

been retrieved from the SentinelHub.120

B. Network architecture121

In this work, the generator and discriminator architectures are based on those presented in Real-ESRGAN [29].122

However, the proposed adaptations could be applied to other state-of-the-art architectures presented in section II as123

well. The generator is based on the ESRGAN generator architecture also adopted in Real-ESRGAN, with a suite124

of Residual in Residual Dense Blocks (RRDB), as described in figure 1. The number of BB initially proposed in125

ESRGAN is 16 or 23. However, we observed that such very deep network can learn the residual spatial distortion126

related to the parallax effects on rugged terrain for Venµs site with higher viewing angles. Since the super-resolution127

September 26, 2023 DRAFT



JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, SEPTEMBER 2023 5

factor is small in this work, the number of BB has been reduced to 6, which allows to limit the network ability to128

capture spatial distortion. The generator input has been adapted to integrate images of different resolution, namely129

Sentinel-2 10 and 20 meter bands (figure 1). Similar to what is done in [44], the 20-meter bands are concatenated130

with the 10-meter bands after going through a bicubic upsampling. The upsampling block used at the end of the131

architecture is a sub-pixel convolution, using Pytorch PixelShuffle function. In addition, we use the mirror padding132

mode in the convolution layers, so as to limit edge effects, which are particularly noticeable at the start of training.133

One important parameter in this architecture is the number of RRDB, which conditions the depth of the network.134

The discriminator used is a U-Net with spectral normalization used in [30], [31], which takes as input the predicted135

bands at 5-meter resolution. The relativistic discriminator formulation described in ESRGAN [28] is employed.136

Fig. 1. Overview of the proposed generator architecture. Basic blocks are Residual in Residual Dense Blocks (RRDB).

C. Proposed LR and HR loss functions137

ESRGAN uses the L1 = ∥ISR − IHR∥1 loss as the generator loss, with ISR the reconstructed image and IHR138

the HR target image), along with the GAN loss LGAN for the discriminator, as defined in equation 1:139

Lsimple = L1 + λLGAN (1)

However, during initial tests with Lsimple, λ = 5 × 10−3, and with a 18 BB network, radiometric distortions140

have been observed in the super-resolved images, which were closer to Venµs radiometry than to Sentinel-2 input141

radiometry. In order to overcome this issue, we designed a new loss term that separately ties the low spatial142

frequencies of the super-resolved image to the input Sentinel-2 patch and the high spatial frequencies to the Target143

Venµs patch, as defined in equations 2 and 2:144

Llowfreq
1 = ∥I lowfreq

SR − ILR∥1 (2)

Lhighfreq
1 = ∥IhighfreqSR − IhighfreqHR )∥1 (3)
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where I lowfreq
SR and IhighfreqSR are obtained by convolution with an isotropic gaussian kernel whose standard deviation145

is related to the Modulation Transfer Function (MTF) values at Nyquist rate for each Sentinel-2 spectral band.146

In addition, the GAN loss for discriminator is limited to the high frequencies of both the predicted and reference147

HR images, which gives the final loss function as defined in equation 4:148

Lfinal = Llowfreq
1 + µLhighfreq

1 + λLhighfreq
GAN (4)

This formulation allows GAN loss to be applied only to the high spatial frequencies of the images, and limits149

the hallucination potential in the low spatial frequencies domain. In addition, it enforces faithfulness to the input150

Sentinel-2 patch ILR.151

D. Processing of Sentinel-2 SWIR bands152

Since there is no Venµs equivalent for SWIR bands, a dedicated network has been trained by downsampling153

Sentinel-2 bands by a factor of 2 (Wald protocol). The model is therefore trained to reconstruct 20 meter Sentinel-2154

SWIR bands from 40 meters simulated ones, assuming scale invariance for inference. The same generator and155

U-Net discriminator were used. Similar to [44], low-resolution 40 meter images for training were generated by156

first applying a Gaussian blur followed by a downsampling. However, for more robust results, random parameters157

are used. We first apply a random Gaussian blur with σ ∼ U(1.7, 2.6), then a downsampling algorithm randomly158

chosen between Pytorch interpolate mode ”area”, ”bicubic” and ”bilinear”, and finally we apply Gaussian noise159

with σ ∼ U(0.1, 0.01). During inference, the generator input is the 10-meter bands and 20-meter bands (including160

B11 and B12) upscaled to 10 meters using bicubic interpolation.161

E. Performances assessment162

Performances assessment is a challenging task when training SISR network with dataset that rely on two different163

sensors for the HR and LR patches. Indeed, traditional metrics such as RMSE, PSNR or SSIM with respect to164

the HR testing patches will favor algorithms that compensate for spatial and radiometric discrepancies between the165

input LR Sentinel-2 patches and target HR Venµs patches. From the user point of view however, and especially166

in the remote sensing field, SISR should not incur any distortion of the input image that may impair downstream167

applications.168

In order to provide insight on the ability of the trained network to preserve the input Sentinel-2 image radiometry169

and geometry, while effectively injecting higher resolution details we perform a separate evaluation:170

• Standard image quality metrics are applied to the low pass filtered prediction, with respect to the input Sentinel-171

2 image, in order to assess radiometric faithfulness to the input LR image,172

• A block-matching algorithm is used to evaluate spatial distortion between low-pass filtered prediction and input173

LR images,174

• In the mean time, simulated input patches are generated from reference HR patches by mean of bicubic175

downsampling, and fed to the network. Those patches are perfectly consistent with the reference HR patches176

and standard image quality metrics are applied to measure the network super-resolution performances.177
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F. Water bodies Detection178

Numerous techniques and methods exist for studying and analysing inland water surfaces using different data179

sources: optical [12], [13], [45], radar [46]–[49] or both [50]–[53]. In this work, the assessment of the relevance180

of super-resolution data from a thematic point of view is carried out using a WBD algorithm initially designed181

for processing native resolution Sentinel-2 data, based on water-specific spectral indices [54]–[57] calculated from182

Green (B3), NIR (B8) and SWIR (B11 and B12) bands. Resampling to 10 meters is necessary to exploit the183

Sentinel-2 SWIR bands. A binary threshold is then applied to each of the water indices (table I) followed by a184

fusion by majority voting to obtain the final classification. The technique allows images to be segmented into two185

distinct regions, the areas in water (the class of interest) and the rest of the image. Simple thresholding has been186

chosen for its simplicity, speed, and limited computing power requirements [46], [50], [58]. The threshold applied187

in the present case has been chosen through the analysis of the original Sentinel-2 histogram over year 2020. In188

this work, the water detection algorithm is applied to the output of the SISR network without any modification.

Acronym Index Authors formula

NDMI Normalized Difference Moisture Index Gao 1996 B8−B11
B8+B11

MNDWI Modified Normalized Difference Water Index Xu 2006 B3−B11
B3+B11

NDPI Normalized Difference Pond Index Lacaux et al. 2006 B11−B3
B11+B3

NDWI-2 Normalized Difference Moisture Index-2 Gao 1996 B8−B12
B8+B12

TABLE I

SPECTRAL WATER INDICES USED BY THE WBD ALGORITHM.

189

This algorithm has been providing continuous temporal monitoring of water bodies larger than 0.5 ha over the190

french department of Gers since 2017, which is used as the testing area in this work (see section IV-D). The191

minimum surface area detected and monitored is 0.5 ha. Smaller objects below this limit are excluded from the192

monitoring, however their analysis is essential for understanding hydrological processes and monitoring water bodies193

capacities. There are therefore strong expectations from the land and water resource managers community regarding194

the improvement of monitoring performances.195

IV. EXPERIMENTS196

A. Experimental setup197

For all the experiments, the mini-batch size is set to 16. The training process is divided in two step [28]. The198

generator optimisation starts only with the L1 loss during 50k steps. Next, based on the observation that the199

abrupt introduction of the discriminator during training could introduce instability, we use (4) with µ = 1 and200

λ = tanh( i
I )λmax with i the number of steps since the introduction of the discriminator, I a scaling factor (set to201

10,000) and λmax = 5 × 10−3. The number of steps for this stage is 250k. The learning rate is set to 1 × 10−4
202

and halfed every 50k steps. We use Adam [59] with β1 = 0.9, β2 = 0.999. We alternate optimization between the203

generator and discriminator.204
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B. Image quality assessment205

1) Qualitative assessment: Figure 2 presents the result of the ERSGAN network with 6 BB on our validation206

dataset, both on 10-meter bands (B2, B3 and B4) and 20-meter bands (B5, B6 and B7). It can be observed that207

the predicted patches are very similar to the reference Venµs patches. The gain in spatial resolution is especially208

noticeable for the 20-meter bands. Though the benefits with respect to bicubic up-sampling is less noticeable for209

10-meter bands, the network seems to also perform denoising and de-aliasing, which can be observed on figure 3.210

Though denoising and de-aliasing is stronger when using a higher number of BB, it is already noticeable when211

using only 3 BB.212

Regarding B11 and B12 bands obtained using the Wald protocol, the spatial resolution seems to have improved213

visually 4. As no high resolution reference is available to assess the performances, the rest of the validation work214

on these bands relies on the application WBD presented in section IV-D. Furthermore, given that the dataset is215

simulated, there was no difficulties in preserving LR radiometry.216

Fig. 2. Example of results with the proposed method. The first line presents a color composition with B2, B3, B4 bands. The second represents

a color composition with B5, B6, B7 bands. The left column is Sentinel2 images upsampled with a bicubic algorithm. The middle column is

the output of our network. and the right column is the Venµs reference.

2) HR performances: Figure 5 presents the PSNR for each spectral bands, when applying the trained SISR217

network to LR patches simulated by downsampling the reference Venµs patches. While this only gives a proxy of218

the actual performances, it is the only mean to obtain HR metrics that are not biased by the dataset discrepancies.219

It can be observed that the proposed network performs similarly to bicubic up-sampling for 10-meters band, and220

provide a PSNR gain of between 2 and 3 dBs on the 20-meters bands. This is consistent with the qualitative221

assessment of section IV-B1, which shows that the benefits of the trained SR algorithm is more noticeable for222

20-meter bands. It must be stressed that the de-aliasing and denoising effects at 10-meter that can be observed in223
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Fig. 3. (PSNR/SSIM) and B2, B3, B4 color composition comparison between Venµs (right) and : Sentinel2 with a bicubic upsample (left),

ESRGAN (3 BB) output (2nd), ESRGAN (18 BB) output (3rd)

Fig. 4. Example of results with the proposed method using Wald protocol. The color composition used is with B11, B12, B12 bands. The left

image is Sentinel2 upsampled with a bicubic algorithm. The right image is the output of our network.

figure 3 are not well accounted for in the measured PSNR: not only will de-aliasing only marginally impact metrics224

based on global statistics such as PSNR, but the LR patches simulation process used in this experiment is very225

simple and will not generate realistic Sentinel-2 noise and aliasing. Therefore, PSNR values in figure 5 should be226

interpreted as a lower bound of the expected performances on real Sentinel-2 images.227

3) LR performances: Table II gives median and quantiles at 25% and 75% of differences between the initial228

Sentinel-2 image and the predicted HR image, downscaled back to the Sentinel-2 Resolution. It can be observed229

that all errors are very low, with a median value within 1e-3 surface reflectance order of magnitude for visible230

bands and 1e-2 surface reflectance order of magnitude for Near Infra-Red (NIR) bands. It should be noted that the231

latter have a higher dynamic range which may explain higher errors. In any case, given that the error budget of232

atmospheric corrections for L2A products is around 0.01 surface reflectance [60], it is safe to say that the SISR233

model does not incur radiometric distortion to the input Sentinel-2 image.234
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Fig. 5. Box plot of PSNR for each spectral band between Venµs and ESRGAN outputs (for different methods) with simuated Sentinel-2 inputs.

Band B2 B3 B4 B8 B5 B6 B7 B8A

Median 106.3 147.8 139.5 725.0 435.8 466.7 725.9 903.3

Q1 46.7 64.6 63.6 266.1 155.0 167.6 247.4 288.9

Q2 216.7 321.1 262.3 2373.9 2067.1 1998.0 2784.0 3529.2

TABLE II

MEDIAN AND QUANTILES AT 25% AND 75% OF ABSOLUTE DIFFERENCES BETWEEN THE INITIAL SENTINEL-2 IMAGE AND THE PREDICTED

HR IMAGE, DOWNSCALED BACK TO THE SENTINEL-2 RESOLUTION, WITH ESRGAN TRAINED WITH SEPARATED LOSS AND 6 RRDBS

(REFLECTANCE×106)

C. Ablation studies235

1) Impact of separate HR and LR loss functions: by comparing errors on the low frequencies between input236

Sentinel-2 and Venµs reference images on one hand, and between Sentinel-2 and HR prediction from the vanilla237

network (no separated loss, 18 RRDBs) on the other, we noticed that the magnitudes of errors are similar. This238

means that the network trained with the vanilla loss learned the residual radiometric bias present in the data239

set. Table III shows the median of absolute error between Sentinel-2 and the downscaled images generated with240

ESRGAN, with and without using the separate LR and HR loss functions. Median errors with respect to the input241

Sentinel-2 radiometric values are 2 times (for NIR and Red-Edge bands) to 4 times (for other visible) bands lower242

with the proposed separate HR and LR losses than with the vanilla loss. Figure 6 illustrates this trend.243

Band B2 B3 B4 B8 B5 B6 B7 B8A

Median (18 BB, separate HR and LR losses) 383.5 463.9 570.1 1670.8 1584.2 2725.4 3002.2 3435.2

Median (18 BB, vanilla loss) 2216.2 2423.5 2488.0 5268.0 3715.3 5816.2 6598.7 7387.0

TABLE III

MEDIAN OF ABSOLUTE ERROR BETWEEN SENTINEL-2 AND THE DOWNSCALED IMAGES GENERATED WITH ESRGAN, WITH AND WITHOUT

USING THE SEPARATE LR AND HR LOSS FUNCTIONS (REFLECTANCE×106).

2) Impact of network depth: In order to find the correct trade-off between network depth and level of geometric244

distortion, we tested networks with 3, 5, 6, 8, 10, 16 and 18 RDBBs. Geometric deformations become noticeable245
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Fig. 6. From left to right: RGB composite of Sentinel-2 patch up-sampled to 5 meter through bicubic zoom, prediction of ESRGAN with

vanilla loss, prediction of ESRGAN with separate HR and LR losses, and VEnµs reference.

starting at 8 RDBBs, and there is no difference between 10 and 16 RDBBs. The number of BB was therefore set246

to 6 RDBBs.247

To measure the geometric deformation between Sentinel-2, Venµs, and the super resolved images, we used248

the block matching algorithm implemented in Orfeo-ToolBox (OTB) [61]. Block matching is performed between249

the input Sentinel-2 patch and the predicted patch downsampled to 10 meters. Figure 7, illustrate the pixel-wise250

estimated Y-axis offset for one of the worst areas between Sentinel-2 and the Venµs reference, the predicted image251

with a 18 RDBBs network, and the predicted image with 6 RDBBs network. It can be observed that the 18 RDBBs252

network learns the existing deformation between the Sentinel-2 and reference Venµs patch, while the 6 RDBBs253

shows almost no deformation. Figure 8 shows the distribution of geometric offsets measured on the whole validation254

dataset, and shows that the 6 BB has far less geometric distortion than the 18 BB, with 90th percentile of absolute255

deformation evaluated at 0.115 pixels.256

Fig. 7. Y-axis deformation, measured by means of block matching, between Sentinel-2 and the downscaled Venµs reference (left), Sentinel-2

and the 18 RDBBs network prediction (center) and Sentinel-2 and the 6 RDBBs network prediction (right), for a sample patch in the validation

set.

D. Application to Water Bodies Detection257

The Gers district, France, has been chosen to evaluate the benefit of the super-resolved Sentinel-2 images of258

the standard ones. Gers is an intensive agricultural area in south-west France, with significant water requirements259
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Fig. 8. Distribution of absolute Y-offset between input Sentinel-2 image and prediction by the 6 RDBBs network (bottom) and 18 RDBBs

network (bottom), computed on the entire validation set.

and a dense network of water reservoirs of varying sizes, from a few hundred square meters to several hundred260

hectares. The perimeter covers almost 5,000 km² and includes about 2,000 water bodies. The data used for261

validation and quantitative assessment comes from a database provided by local users and partners in charge of land262

management and planning. The database is the result of photo-interpretation work based on Very High Resolution263

aerial photography (20 cm), corrected and completed by field campaigns, and includes 2,383 water bodies, of which264

1,025 are smaller than 0.5 ha (figure 9 ).265

The input satellite dataset comprises one clear Sentinel-2 image per month over tile T30TYP in 2020. The results266

have been evaluated against reference data, both for original Sentinel-2 images and super-resolved predictions at 5267

meters resolution, which allows to assess the benefits of proposed SISR for the detection and monitoring of water268

bodies. The main performances are shown in table IV.269

1) Global statistics: Overall, the results obtained from super-resolved Sentinel-2 images outperform those ob-270

tained from standard Sentinel-2 images at 10m resolution, with a 7-points gain in accuracy for the ”water” class,271

and a 11-points gain in kappa. More importantly, SISR allows to identify 2132 bodies of water, compared to the272

791 bodies detected with standard data, thus allowing for a gain of 160% in number of detected objects. Newly273

detected bodies include 1003 water bodies smaller than 0.5 ha.274

2) Detected areas and small water bodies: The 2132 water bodies identified with the super-resolved Sentinel-2275

images cover 2818.7 ha, compared with a cumulative 2062.6 ha for water bodies detected at at 10 m resolution,276

demonstrating an improvement of around 35% (+756 ha) in detected surfaces over the considered area. Smaller277

water bodies are much better identified, with 16 times more water bodies under 1 ha. In this category, the cumulative278
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Fig. 9. Local reference database, build from photo-interpretation of Very High Resolution aerial photography (20 cm), corrected and completed

by field campaigns, provided by local users of the Gers district, France.

Metrics Original Sentinel-2 (10m) SISR data (5m)

OA 98 99

UA 85 93

Kappa Index 0.74 0.85

F-Score 0.73 0.85

WBs objects number 791 2132

WBs cumulative area 2062.6 ha 2818.7 ha

Detection Threshold 0.5 ha 0.1 ha

TABLE IV

MAIN PERFORMANCE METRICS FOR WBD, EVALUATED AGAINST THE REFERENCE DATABASE, FOR STANDARD AND SUPER-RESOLVED

SENTINEL-2 IMAGES

surface area represents almost 260 ha in the super-resolved data, compared with 16 ha detected using Sentinel-2279

data at 10m. The average improvement ranges from 0.6 ha for small water bodies (less than 1.5 ha) to 1.2 ha for280

water bodies larger than 10 ha. This represents a significant improvement in performance directly driven by the281

use of the proposed super-resolved Sentinel-2 images. An improvement in contours is also observed on all water282

bodies, as shown in figure 11, and is inversely proportional to their size. Bodies of water smaller than 1.5 ha show283

the greatest increases, with an average improvement in detection of around 40% of their size.284
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Fig. 10. Average increase in the surface of water bodies between the 5 meter and 10 meter detection, by categories of areas in reference

database.

V. CONCLUSION285

In this work, the SEN2VENµS dataset [11] is leveraged to train a Single Image Super-Resolution network inspired286

from Real-SRGAN so as to predict all spectral bands of Sentinel-2 at 5-meter resolution. Proposed adaptations287

include the bicubic up-sampling of 20 meters bands to 10 meters, so that the network can work with the 8 bands288

(excluding B11 and B12) together, separate HR and LR loss terms that allows to enforce radiometric consistency289

with the input Sentinel-2 images, and a reduction of the number of RRDBs in the network, preventing it to290

learn residual geometric dis torsion from the input dataset. SWIR bands B11 and B12, which are missing in the291

SEN2VENµS dataset, are processed separately by the same architecture by means of the Wald protocol. Performance292

assessment shows a very good consistency with input Sentinel-2 surface reflectance, which a median error far below293

the precision of L2A atmospheric correction, and an improvement in PSNR higher than 2 to 3 dBs for the 20 meters294

input bands. Ablation studies demonstrate the usefulness of proposed network and losses adaptation.295

The benefits of the proposed super-resolved Sentinel-2 images were further assessed for Water Bodies Detection,296

over a district of France where a reference database is available. Super-resolved images allowed to detect 160%297

additional water bodies with respect to standard Sentinel-2 images, representing 756 additional ha of detected water298

surfaces. This benefit is especially high for small water bodies under 1 ha, as 16 times more of them were detected299

with the super-resolved images, accounting for 260 ha additional ha of detected water surfaces.300

This work provides the first SISR performances with the public SEN2VENµS dataset, setting the bar for future301

competitors and investigating how to fairly evaluate the super-resolved images on a real world dataset combining302
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Fig. 11. Improvement of WBD contours detected from the Super-Resolved Sentinel-2 images at 5 meters, with respect to the standard 10 meters

Sentinel-2 images, for a selection of water bodies. Red outlines denote the contour from the reference database.

two different sensors. We also hope that those promising results and the demonstrated benefits for an end-user use303

case will pave the way towards operational Super-Resolution as a standard processing for data providers.304
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Available: https://theses.hal.science/tel-01757083406

[51] S. Nativel, E. Ayari, N. Rodriguez-Fernandez, N. Baghdadi, R. Madelon, C. Albergel, and M. Zribi, “Hybrid methodology using407

sentinel-1/sentinel-2 for soil moisture estimation,” Remote Sensing, vol. 14, no. 10, 2022. [Online]. Available: https://www.mdpi.com/2072-408

4292/14/10/2434409

[52] Y. Bai, W. Wu, Z. Yang, J. Yu, B. Zhao, X. Liu, H. Yang, E. Mas, and S. Koshimura, “Enhancement of detecting410

permanent water and temporary water in flood disasters by fusing sentinel-1 and sentinel-2 imagery using deep learning411

algorithms: Demonstration of sen1floods11 benchmark datasets,” Remote Sensing, vol. 13, no. 11, 2021. [Online]. Available:412

https://www.mdpi.com/2072-4292/13/11/2220413

[53] S. Peña-Luque, S. Ferrant, M. C. R. Cordeiro, T. Ledauphin, J. Maxant, and J.-M. Martinez, “Sentinel-1amp;2 multitemporal water414

surface detection accuracies, evaluated at regional and reservoirs level,” Remote Sensing, vol. 13, no. 16, 2021. [Online]. Available:415

https://www.mdpi.com/2072-4292/13/16/3279416

September 26, 2023 DRAFT



JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, SEPTEMBER 2023 18

[54] F. Yao, C. Wang, D. Dong, J. Luo, Z. Shen, and K. Yang, “High-resolution mapping of urban surface water using zy-3 multi-spectral417

imagery,” Remote Sensing, vol. 7, no. 9, pp. 12 336–12 355, 2015. [Online]. Available: https://www.mdpi.com/2072-4292/7/9/12336418

[55] Y. Yang, D. Zhao, and B. Peng, “A real time mosaic method for remote sensing video images from uav,” Journal of Signal and Information419

Processing, vol. 04, pp. 168–172, 01 2013.420

[56] H. Xu, “Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery,” International421

Journal of Remote Sensing, vol. 27, no. 14, pp. 3025–3033, 2006. [Online]. Available: https://doi.org/10.1080/01431160600589179422
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