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FIXED-POINT STATISTICS FROM SPECTRAL MEASURES ON
TENSOR ENVELOPE CATEGORIES

ARTHUR FOREY, JAVIER FRESÁN, AND EMMANUEL KOWALSKI

Abstract. We prove some old and new convergence statements for fixed-points statis-
tics and characters of the symmetric groups using tensor envelope categories, such as the
Deligne–Knop category of representations of the “symmetric group” St for an indetermi-
nate t. We also discuss some arithmetic speculations related to Chebotarev’s density theo-
rem.

1. Spectral measures in monoidal categories

Spectral measures associated to operators on Hilbert spaces are key tools in functional
analysis and its applications, for instance to quantum mechanics and ergodic theory. Recall
that a continuous normal linear operator u : E → E has a compact spectrum and that, for
each vector x ∈ E, there exists a unique bounded positive Radon measure µx onC, supported
on the spectrum of u, such that the equality∫

C

f dµx = ⟨x|f(u)x⟩

holds for all continuous functions f : C → C. This measure is called the spectral measure
of u relative to x. In particular, we then have∫

C

zaz̄b dµx(z) = ⟨x|ua(u∗)b(x)⟩

for all non-negative integers a and b. In this paper, we consider an analogue of this last rela-
tion for objects in symmetric monoidal categories, in the sense of [9, Def. 2.1.1,Def. 8.1.12].

Definition 1.1 (Spectral measure). Let C be a symmetric monoidal category with an end-
ofunctor D, and let i be a complex-valued invariant of C , by which we mean a map from
isomorphism classes of objects of C to C. Let M be an object of C . A positive measure µ
on C is called a spectral measure of M relative to i if the equality∫

C

za z̄b dµ(z) = i(M⊗a ⊗D(M)⊗b)

holds for all non-negative integers a and b.

We will think of D as a duality functor on C , although no extra condition is required for
this general definition. The basic motivation is provided by the following example.
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Example 1.2. Let r ⩾ 1 be an integer, and let G ⊂ GLr(C) be a compact group with
probability Haar measure ν. Let C be the category of finite-dimensional continuous complex
representations of G, and D the contragredient endofunctor of C . By representation theory
of compact groups, the direct image of ν by the trace µ = Tr∗(ν) is a spectral measure of
the “tautological” object of C corresponding to the inclusion of G in GLr(C), relative to
the invariant i(ϱ) = dim(ϱG) for a representation ϱ. In number theory, measures of this type
are often called “Sato–Tate measures”, the original example being that of SU2(C).

Our first main result is a new proof of a statement which goes back to the very early studies
of probability theory through the analysis of card games and the like (see the historical paper
of Takács [20] for references). Interestingly, the tensor categories that will arise in the proof
are the categories of representations of the “symmetric group” St of Deligne [7], in the version
given by Knop [15], which is more amenable to generalizations1.

Theorem 1.3 (“Problème des rencontres”; Montmort [5]; N. Bernoulli I; de Moivre [4]).
Let (Xn)n⩾1 be a sequence of random variables with Xn a uniformly chosen random permu-
tation in the symmetric group Sn. The sequence (|Fix(Xn)|)n⩾1, where Fix(σ) denotes the
set of fixed points of σ ∈ Sn, converges in law to a Poisson distribution with parameter 1.

Recall that the Poisson distribution with parameter λ is the measure ϖλ supported on
non-negative integers with

ϖλ({k}) = e−λλ
k

k!
for all integers k ⩾ 0. The meaning of the statement (and how it was originally proved) is
therefore that the formula

lim
n→+∞

1

n!
|{σ ∈ Sn with |Fix(σ)| = k}| = 1

e

1

k!

holds for all integers k ⩾ 0. Neither categories nor spectral measures appear in the statement;
the link is that the limit Poisson distribution will arise as the spectral measure of a suitable
object in the Deligne–Knop category Rep(St) for an indeterminate t. From that point of view,
an interesting feature is that we show how the Poisson distribution (maybe the most natural
measure on non-negative integers) is an analogue of a Sato–Tate measure. In Remark 3.8,
we will see a similar statement for the complex gaussian distribution, and in Section 5, we
will discuss some arithmetic speculations related to Chebotarev’s Density Theorem.

Our second main result is the following new result.

Theorem 1.4. Let m ⩾ 1 be an integer and let λ be a partition of m with parts

λ1 ⩾ λ2 ⩾ · · · .

For n ⩾ m+ λ1, let πλ,n be the representation of Sn corresponding to the partition

λ(n) = (n−m,λ1, λ2, . . .),

and let χλ,n : Sn → C be its character.

1 Another, rather different, construction of this category has recently been given by Harman and Snow-
den [12, § 15]; we have not investigated in depth how this construction interacts with our results.
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The sequence of measures (χλ,n(Xn)), where as before Xn is uniformly distributed on Sn,
converges in law as n → +∞, and its limit is a spectral measure of the simple object xλ,t

of Ct = Rep(St) associated to λ, relative to the invariant i defined by

i(M) = dimC(t) Hom(1Ct ,M).

This second result has a corollary which relates it to the theory of FI-modules of Church,
Ellenberg and Farb [?cef].

Corollary 1.5. Let M = (Mn)n⩾1 be a finitely-generated FI-module over C. For n ⩾ 1,
let ξn be the character of Mn as an Sn-representation. The sequence (ξn(Xn)) converges in
law. and its limit is a combination of spectral measures for Ct relative to the invariant i.

Proof. A fundamental result of the theory of FI-modules [?cef, Prop. 3.3.3] implies that
there exists a polynomial Q ∈ C[(Tλ)λ] (in indeterminates parameterized by all partitions
of all integers m ⩾ 1) such that

ξn = Q((χλ,n)λ),

for all n large enough, and hence the corollary follows immediately from Theorem 1.4. □

Remark 1.6. We refer to the introduction of [?cef] for a list of examples of (finitely-
generated) FI-modules arising in algebra, geometry and topology.

Finally, we note that this paper is excerpted from a longer work in progress [10], whose
status and evolution are however unpredictable. We hope that the simple example of an
application of spectral measures to classical problems will motivate the reader’s interest in
this notion.

2. Existence and uniqueness of spectral measures

From now on, we only consider k-linear tensor categories, for some field k, in the sense
of [6, 1.2]. We always use the duality functor of such a category as the endofunctor D in
Definition 1.1. An object M is called self-dual if there exists an isomorphism M ≃ D(M).

Proposition 2.1 (Spectral measures for self-dual objects). Let C be a tensor category in
which every object is self-dual, and let i be an R-valued additive invariant of C . If

(2.1) 2i(M⊗ N) ⩽ i(M⊗M) + i(N⊗ N)

holds for all objects M and N of C , then every object of C admits a spectral measure relative
to i which is supported on R.

Proof. By the solution of the Hamburger moment problem (see, e.g., [19, Th. 3.8]), a se-
quence (µa)a⩾0 of real numbers is the sequence of moments of a positive Borel measure µ
on R if and only if the inequality

(2.2)
∑

1⩽a,b⩽A

αaαbµa+b ⩾ 0

holds for all integers A ⩾ 1 and all real numbers αa. Therefore, M admits a spectral measure
relative to i if and only if the values µa = i(M⊗a) satisfy this condition.
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We first consider the case where αa are integers. Setting

P =
⊕
αa⩾0

αaM
⊗a and N =

⊕
αa⩽−1

(−αa)M
⊗a,

we then get ∑
1⩽a,b⩽A

αaαbµa+b = i(P⊗ P) + i(N⊗ N)− 2i(P⊗ N),

and hence the assumption (2.1) implies the inequality∑
1⩽a,b⩽A

αaαbµa+b ⩾ 0.

This extends to Q by homogeneity, and to R by continuity. □

If not all objects are self-dual (as often happens), the situation is more subtle, because
the moment problem on C is more challenging than on R: the analogue of the positivity
condition above is not sufficient to ensure the existence of a positive measure on C with
given moments. However, under an extra growth condition, one obtains both existence and
uniqueness of the spectral measure.

Proposition 2.2 (Spectral measures for general objects). Let C be a tensor category. Let i
be a C-valued additive invariant of C . Suppose that the inequality

(2.3) i(M⊗D(N)) + i(D(M)⊗ N) ⩽ i(M⊗D(M)) + i(N⊗D(N))

holds for all objects M and N of C . Let M be an object of C satisfying the Carleman condition

(2.4)
∑
a⩾1

i((M⊗D(M))⊗a)−1/(2a) = +∞.

Then there exists a unique spectral measure for M relative to i.

Proof. This follows as above (mutatis mutandis using complexification) using the fact (due
to Nussbaum) that the Carleman condition (2.4) combined with the analogue of (2.2), is a
sufficient condition for the existence and uniqueness of a measure on C with given moments;
see for instance [19, Th. 15.11]. □

Remark 2.3. The Carleman condition holds in particular if there exist c ⩾ 0 and r ⩾ 0
such that the inequality i((M⊗D(M))⊗n) ⩽ crn holds for all non-negative integers n. This is
a frequent occurrence, but it corresponds to measures with compact support (compare with
Deligne’s “subexponential growth theorem”, see [9, Th. 9.11.4]).

Definition 2.4 (Positive and complete invariants). An additive invariant i on C is called a
positive invariant if it satisfies (2.3) for all objects M and N of C . If, in addition, all objects
of C admit a spectral measure, then we say that i is a complete positive invariant.

The following result gives a usable criterion to check that certain invariants are positive.

Proposition 2.5. Let C be an essentially small tensor category. Let Ĉ be a set of objects

of C such that every object of C is isomorphic to a finite direct sum of objects from Ĉ . Let i
be an additive invariant of C . Then i is positive if the bilinear form

b(n,m) =
∑

V,W∈Ĉ

nVmW i(V ⊗D(W))
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on Z(Ĉ ) is positive, i.e., b(n, n) ⩾ 0 for all functions n : Ĉ → Z with finite support.

Proof. Let M and N be objects of C , and represent them as direct sums

M =
⊕
V∈Ĉ

mVV, N =
⊕
W∈Ĉ

nWW

with only finitely many non-zero integers mV, nW. By additivity, we obtain the formulas

i(M⊗D(N)) + i(D(M)⊗ N) =
∑
V,W

mVnW i(V ⊗D(W)) +
∑
V,W

mVnW i(D(V)⊗W),

i(M⊗D(M)) + i(N⊗D(N)) =
∑
V,W

mVmW i(V ⊗D(W)) +
∑
V,W

nVnW i(V ⊗D(W))

so that we get(
i(M⊗D(M)) + i(N⊗D(N))

)
−
(
i(M⊗D(N)) + i(D(M)⊗ N)

)
= b(m− n,m− n),

and the result then follows from Proposition 2.2. □

As a special case, we deduce:

Corollary 2.6. Let k be a field. Let C be any essentially small k-linear semisimple tensor
category with unit object 1C . The formula

i(M) = dimk Hom(1C ,M)

defines a positive invariant on C .

Proof. We apply Proposition 2.5 to the set Ĉ of isomorphism classes of simple objects of C .

Then i(V⊗D(W)) = 0 for V and W in Ĉ , unless V is equal to W, so that the bilinear form b

in the statement is diagonal in the canonical basis of Z(Ĉ ), with diagonal coefficients equal
to i(V ⊗D(V)) = dimk Hom(1C ,V ⊗D(V)) ⩾ 0. □

Remark 2.7. (1) We emphasize that it is essential to impose the positivity of the spectral
measure in Definition 1.1: it is known (due to Boas and Pólya, independently; see, e.g., [2])
that any sequence of complex numbers is the sequence of moments of infinitely many complex
measures on R.

(2) In general, spectral measures are not uniquely determined given the object of interest,
and only their moments are unambiguously known (see the conclusion of Remark 3.8 for a
simple example where the spectral measure is not unique). One can hope that (at least for
certain categories or invariants) that some additional condition or property might “fix” the
spectral measure.

3. Tensor envelopes and fixed-point statistics

Let t ∈ C be a complex number. Deligne [7, Th. 2.18] defined a rigid semisimple C-linear
monoidal category Rep(St), which “interpolates” the categories of finite-dimensional repre-
sentations of the symmetric groups Sn when n ⩾ 0 is an integer. Knop [15] discovered an
alternative approach to constructing new rigid symmetric monoidal categories which is a pri-
ori independent of ideas of interpolating other categories; this leads to many more examples,
and happens to recover in a special case the categories of Deligne.
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The input data in Knop’s construction is a base category A satisfying some regularity
conditions, a ring k and a degree function δ which associates to every surjective morphism e
in A an element δ(e) of k, again subject to some conditions. The resulting category is
denoted T (A , δ) by Knop, and is called the tensor envelope of A with respect to δ. For
the moment, it is sufficient for us to recall that every object x of A defines an object [x]
of T (A , δ), which is always self-dual, and that the k-linear space of morphisms from [x]
to [y] admits as a basis the set of all relations from x to y, i.e., the set of all subobjects
of the product x × y. In Appendix A, to give some context, we spell out the construction
of T (A , δ) in the special case relevant to Theorem 1.3, namely when A is the opposite of
the category of finite sets.

Outline of proof of Theorem 1.3. Thanks to the method of moments, it suffices to prove the
convergence of the sequence (E(|Fix(Xn)|k))n⩾1 to the corresponding Poissonian moment for
all integers k ⩾ 0 (see, e.g., [1, Th. 30.2, Th. 30.1]).

The first observation is that |Fix(Xn)| = χn(Xn), where χn is the character of the “stan-
dard” permutation representation Stdn of Sn acting on Cn. By basic representation theory
of finite groups, we then get the expression

E(|Fix(Xn)|k) =
1

n!

∑
σ∈Sn

χn(σ)
k = dimC HomSn(1n, Std

⊗k
n ),

where 1n is the trivial one-dimensional representation of Sn.

We will then appeal to the Deligne–Knop category Ct = Rep(St) for t the “indeterminate”
in the field C(t). It is known that Ct is a semisimple C(t)-linear tensor category. Moreover,
if we “specialize” the indeterminate t to an integer n ∈ N, then we recover (in a way made
precise below) the category of finite-dimensional complex representations of Sn.

Let 1t (resp. Stdt) denote the unit object of Rep(St) (resp. the natural object with “dimen-
sion” t). By Corollary 2.6, the assignment i(M) = dimC(t) HomCt(1t,M) defines a positive
invariant on Ct.

The object Stdt is self-dual. For k and n ∈ N, we will show in Lemma 3.3 below that the
inequality

dimC HomSn(1n, Std
⊗k
n ) ⩽ dimC(t) HomSt(1t, Std

⊗k
t ) = i(Std⊗k

t )

holds, with equality if n ⩾ k. Thus we deduce the limit

lim
n→+∞

E(|Fix(Xn)|k) = i(Std⊗k
t ),

since the left-hand side is constant and equal to the right-hand side for all large enough n.

Moreover, we will see that Stdt admits a spectral measure with respect to i2, so this formula
implies a priori that (|Fix(Xn)|)n⩾1 converges in law to that measure for the object Stdt,
as soon as we know that its moments are small enough to ensure uniqueness of the spectral
measure.

We will also see that i(Std⊗k
t ) is the number of partitions of a set with k elements3 (see

Lemma 3.2 below). By the so-called Dobiński’s Formula (see, e.g., [18]), this is known to

2 In fact, one can show similarly that i is a complete positive invariant.
3 Not to be mistaken with the partition number p(k).
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be the k-th moment of the Poisson distribution with parameter 1, and to be small enough,
which concludes the proof. □

Remark 3.1. (1) In comparison with other proofs, this abstract argument has the advantage
of explaining (to some extent) “where the Poisson distribution comes from”.

(2) It is natural to ask if similar ideas can be used for some other related asymptotic
problems (e.g., for counting 2-cycles, etc, in random permutations, or more ambitiously, for
counting the number of cycles in a random permutation).

(3) To the best of our knowledge, the fact that the first moments of Fix(Xn) coincide with
those of the Poisson distribution first appears in the work of Diaconis–Shashahani [8, Th. 7].

We now fill up the outline above. For t either an indeterminate or a complex number, we
denote by Ct Knop’s k-linear tensor envelope of the category Setopp opposite of the category
of finite sets, relative to the degree function δ(e : x → y) = t|y e(x)| (see [15, § 2]). If t is an
indeterminate, we use the base field k = C(t) in the construction, otherwise k = C. This is
a symmetric rigid k-linear monoidal category [15, § 3].

For any objects x and y of Ct, we denote by Nt(x, y) the tensor radical of Ct [15, § 4.1];
the quotient category C t = Ct/Nt is semisimple and abelian by [15, Th. 6.1], and is hence
a tensor category.4 For integer values t = n, this quotient category is equivalent (as tensor
category) to the category of representations of Sn, an equivalence being given by a functor
that maps an object of the form [x], for x a finite set, to the permutation representation
of Sn on the set {1, . . . , n}x (see [15, Th. 9.8, Example 1, p. 606]). In particular, this functor
sends the object [{1}] to the standard permutation representation Stdn on Cn.

Lemma 3.2. Let t be an indeterminate. The category Ct contains an object Stdt such that,
for any integer k ⩾ 0, the space HomSt(1t, Std

⊗k
t ) has dimension equal to the number of set

partitions of a finite set with k elements. In particular, i(Stdk
t ) ⩽ kk, and therefore Stdt

admits a unique spectral measure relative to i.

Proof. We consider Stdt = [{1}] as above. By construction, a basis of the vector space
HomSt(1t, Std

⊗k
t ) is given by all “relations” from ∅ (because 1t = [∅]) to Std⊗k

t . Since
Std⊗k

t = [{1, . . . , k}] in Ct, this basis is the set of all subobjects of {1, . . . , k} in the base
category Setopp, i.e., the set of all isomorphism classes of quotients of the finite set {1, . . . , k}.
But this set can be identified with the set of all partitions of {1, . . . , k}. □

Lemma 3.3. Let t be an indeterminate and n an integer. For each integer k ⩾ 0, we have

dimC HomSn(1n, Std
⊗k
n ) ⩽ dimC(t) HomSt(1t, Std

⊗k
t )

holds, with equality if n ⩾ k.

Proof. We denote by Cn the C-linear tensor envelope of Setopp for the degree function δn
defined as δn(e : x → y) = n|y e(x)|.

Let x and y be arbitrary finite sets; they define the objects [x] and [y] of Ct as well as
of Cn, and the corresponding spaces HomCt([x], [y]) and HomCn([x], [y]) have the same basis

4 Knop uses a different definition of “tensor category” (namely rigid, symmetric, monoidal category).
7



(as C(t) or C-vector spaces, respectively), namely the “relations” from x to y in Setopp. Thus
we have a specialization isomorphism

HomCt([x], [y])⊗C[t] C → HomCn([x], [y]).

Now recall that Cn is not equivalent to the categoryg of representations of Sn, but only
its quotient C n, as described above. By definition, the objects of C n are the same as those
of Cn, and the morphisms between representations Vx and Vy of Sn associated to [x] and [y]
by the equivalence of categories, are given by

HomSn(Vx,Vy) = HomCn
([x], [y]) = HomCn([x], [y])/N ([x], [y]).

Therefore, we obtain an inequality

dimC(t) HomCt([x], [y]) = dimC HomCn([x], [y])

⩾ dimC(HomCn([x], [y])/N ([x], [y]))) = dimC HomSn(Vx,Vy).

Besides, the proof of the previous lemma indicates that for x = ∅ and y = {1, . . . , k}, we have
[x] = 1t and [y] = Std⊗k

t in the category Ct, and Vx = 1n and Vy = Std⊗k
n as representations

of Sn, whence the desired inequality.

It remains to see when equality holds. By the above, this is the case if and only if
N (1n, Std

⊗k
n ) = {0}. By a result of Knop [15, Cor. 8.5], this holds if certain invariants ωe

in C are non-zero for all indecomposable surjective morphisms u → v (in the base category
Setopp) such that u is a subquotient of 1t ⊗ Std⊗k

t = Std⊗k
t . By [15, Example 1, p. 596], for

such morphisms, we have ωe = n − |v|; since indecomposable surjective morphisms u → v
in Setopp are injective maps of sets v ↪→ u with |v| = |u| − 1, and u is a subquotient of
Std⊗k

n = [{1, . . . , k}], we have |v| ⩽ k − 1, hence ωe = n− |v| ⩾ 1 if k ⩽ n. □

Knop’s approach constructs many more instances of tensor categories, and the principles
above are then applicable. As an example, we recover a result of Fulman (proved in his 1997
unpublished thesis) which appears in a paper of Fulman and Stanton [11, Th. 4.1].

Proposition 3.4 (Fulman). Let E be a finite field and let (Xn) be a sequence of random
variables with Xn uniformly distributed in GLn(E). The sequence (|Fix(Xn)|)n⩾1, where
Fix(g) is the 1-eigenspace of g ∈ GLn(E), converges in law as n → +∞. For k ⩾ 0, the
k-th moment of the limiting distribution is equal to the number of vector subspaces of Ek.

Moreover, the k-th moment of |Fix(Xn)| is equal to the limiting moment for n ⩾ k.

Proof. We argue as in the proof of Theorem 1.3, using instead the base category Vec(E) of
finite-dimensional E-vector spaces and the degree function δ(e : U → V) = tdimE(ker(e)) for a
surjective E-linear map to construct Knop’s category Ct. We use as before the unit object
1t = [{0}] and the standard object Stdt = [E], which is self-dual.

Specializing to t = |E|n for some integer n ⩾ 1, the quotient C |E|n is naturally equivalent
to the category of finite-dimensional complex representations of GLn(E) (see [15, Exam-
ple 5, p. 606]). We obtain

dimC HomGLn(E)(1n, Std
⊗k
n ) ⩽ dimC(t) HomCt(1t, Std

⊗k
t ),

where Stdn is the |E|n-dimensional permutation representation of GLn(E) associated to its
natural action on En. As before, there is equality if the numerical invariants ωe are non-zero
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for indecomposable surjective E-linear maps e : U → V where U is a subquotient of Std⊗k
n

in C|E|n . We have ω(e) = |E|n − |V|, and hence there is equality if n ⩾ k (note that in C|E|n ,
the tensor product is defined using the direct sum of finite-dimensional E-vector spaces).

We then note, on the one hand, that for all n ⩾ 1, the function g 7→ |Fix(g)| is the
character of the standard representation, and on the other hand that, by Knop’s construction,
the dimension

dimC(t) HomCt(1t, Std
⊗k
t )

is the number of subspaces of Ek. Thus, E(|Fix(Xn)|k) converges to this number. To
conclude, we need however to apply Lemma 3.5 below, since in this case the size of the
moments do not satisfy the Carleman condition, but it is known that

|{subspaces of Ek}| ≪ |E|k(k+1)/4. □

Lemma 3.5 (Heath–Brown). Let q ⩾ 1 be an integer, and let (mk)k⩾0 be a sequence of real
numbers such that mk ≪ qk(k+1)/4 for k ⩾ 0. Let (Zn) be a sequence of random variables
such that

(1) For all n, the support of Zn is contained in the set of powers qk for k ⩾ 0.

(2) For all k ⩾ 0, we have E(Zk
n) → mk.

Then (Zn) converges in law to a random variable Z supported on powers of q with moments mk

for all k ⩾ 0.

Proof. This is implicit in [13, Lemmas 17, 18]. More precisely, it follows from standard results
in the method of moments that the second assumption implies that any subsequence of (Zn)
which converges in law has a limit with moments mk, and it is elementary from the first
assumption that all such limits are supported on powers of q. Heath–Brown’s result (proved
in [13] in the case q = 4, but with immediate generalization) is that there is a unique
probability measure on R with these two properties. Since moreover the convergence of
moments implies uniform integrability (or tightness), this means that the sequence (Zn) is
relatively compact and has a unique limit point, hence converges. The stated properties of
the limit are then clear. □

Remark 3.6. A result of Christiansen [3] (also cited by Fulman and Stanton) shows that the
limiting measure of Proposition 3.4, as a measure on R, is not characterized by its moments.
Thus, some extra condition is necessary to ensure uniqueness, and this is provided by the
assumption that the support is restricted to powers of q.

Considering another example of Knop leads by the same method to a similar result which
is new, to the best of our knowledge.

Proposition 3.7. Let E be a finite field and let (Xn) be a sequence of random variables
with Xn uniformly distributed in the affine-linear group Affn(E) of E

n.

The sequence (|Fix(Xn)|)n⩾1, where Fix(g) is the set of fixed points of g ∈ Affn(E),
converges in law as n → +∞. For k ⩾ 0, the k-th moment of the limiting distribution is
equal to the number of affine subspaces of Ek−1.

Moreover, the k-th moment of |Fix(Xn)| is equal to the limiting moment for n ⩾ k.
9



Proof. We argue as above with the base category A of (non-empty) affine spaces over E
(see [15, p. 597, Ex. 6; p. 607, Ex. 7]). □

Remark 3.8. It is also natural to consider the category Ct = Rep(GLt) of Deligne and Milne
(see [7, § 10,Déf. 10.2]), interpolating for t ∈ C the representations of GLn(C). Indeed,
the argument applies rather similarly, and leads to the analogue of Theorem 1.3 in this
context, namely: the direct image under the trace of the probability Haar measure on the
unitary group Un(C) converges as n → +∞ to a standard complex gaussian (see Diaconis–
Shashahani [8], or the paper [17] of Larsen, in the case of the symplectic groups and real
gaussians).

First, by Corollary 2.6, the assignment i(M) = dimHomCt(1Ct ,M) defines a positive in-
variant on Ct. One can then show that there is an object Stdt corresponding to the standard
representation, and for which

i(Std⊗a
t ⊗D(Stdt)

⊗b) = dimHom(1C , Std
⊗a
t ⊗D(Stdt)

⊗b) =

{
0 if a ̸= b,

a! if a = b.

More precisely, with the notation of [7, Déf. 10.2], the object Stdt corresponds to the pair
of finite sets ({1}, ∅) and is denoted X⊗1

0 ; thus, Std⊗
t ⊗D(Stdt)

⊗b corresponds to the pair
({1, . . . , a}, {1, . . . , b}) and the value of i(Std⊗

t ⊗D(Stdt)
⊗b) is the dimension of the space

Hom((∅, ∅), ({1, . . . , a}, {1, . . . , b})),
which is by definition the number of bijections {1, . . . , b} → {1, . . . , a}.
These values are the moments

1

π

∫
C

zaz̄be−|z|2dz

of a standard complex gaussian random variable, which is therefore the spectral measure
associated to Stdt. Using a stabilization property of the corresponding invariants forGLn(C)
when n > a+ b, one gets convergence as before (see [7, Prop. 10.6]).

This proof is not as satisfactory as that of Theorem 1.3, because Deligne and Milne’s
definition of Rep(GLt) involves some a priori knowledge of the representations and linear
invariants of GLn(C) (especially stability properties). The argument does show, however,
that the convergence to the gaussian can be interpreted in terms of spectral measures, and
that the standard gaussian can also be interpreted as a “generalized” Sato–Tate measure.
Moreover, it suggests the question: what are the spectral measures for other objects of
Rep(GLt)?

We note also that since it is known that the third power of a gaussian is not determined
by its moments (due to Berg [?berg]), the third tensor power of the standard object of
Rep(GLt) gives an example of an object whose spectral measure is not unique.5

4. Proof of Theorem 1.4

Let m ⩾ 1 be an integer and let λ be a partition of m. Recall that the statement concerns
the limiting behavior of the measures (χλ,n(Xn)) described in the statement.

The argument will consist of two stages:

5 Attention, car Berg parle de gaussiennes réelles, vérifier le cas complexe.
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– We prove a priori that the sequence of measures (χλ,n(Xn)), where as before Xn is
uniformly distributed on Sn, converges in law as n → +∞ to some measure.

– We compute the moments of the limiting measure and show that they coincide with
those of a spectral measure.

Remark 4.1. In general, the moments of the limiting measure are too large to deduce the
convergence in law directly from the second step. However, one may speculate that it might
be possible to do so using the recent results of Sawin and Wood [?sawin-wood, Prop. 6.24].

Lemma 4.2. The measures (χλ,n(Xn)) converge in law as n → +∞.

Proof. For i ⩾ 1, n ⩾ 1 and σ ∈ Sn, we denote by ℓi(σ) the number of i-cycles (fixed points
if i = 1) in the representation of σ as a product of disjoint cycles. It is known from the
theory of symmetric functions that there exists a polynomial qλ ∈ Q[(Li)i⩾1] such that, for
all n large enough, the equality

χλ,n(σ) = qλ(ℓ1(σ), . . . , ℓi(σ), . . .)

holds for all σ ∈ Sn (see for instance [?macdonald, Ex. I.7.14]; these are the so-called “char-
acter polynomials”).

Since is also known that the sequences (ℓi(Xn))i⩾1 converge in law as n → +∞ to a
sequence (ϖ1/i)i⩾1 of independent Poisson random variables with parameters 1/i (see, e.g., [8,
Th. 7]), the result follows by composition, with the limit being qλ(ϖ1, . . . , ϖn, . . .). □

We now begin the second step, where spectral measures are involved. The goal is to prove
that the moments of χλ,n(Xn) converge to those of a spectral measure of a simple object of
the Deligne–Knop category.

The proof will use Deligne’s construction of the categories Ct and Cn, since some necessary
properties are not explicitly established by Knop (although the could undoubtedly be gener-
alized to more general tensor envelopes). Note that since Theorem 1.4 is new, the fact that
Deligne’s definition involves some a priori knowledge of representations of the symmetric
groups is not an instance of circular reasoning.

To avoid confusion, we denote byRep(St) andRep(Sn) the categories Ct and Cn according
to Deligne’s definition. In addition, when A is a commutative ring and t ∈ A, we use the
A-linear category Rep(St,A) of Deligne [7, Déf. 2.17]. Further, for any integer N ⩾ 0, we
consider the full subcategories Rep(St)

(N) and Rep(St,A)
(N) (see [7, § 4.1]). The objects

of these subcategories are the direct factors of sums of certain objects [U] associated to
finite sets of size ⩽ N; Deligne proved that the category Rep(St)

(N) is a semisimple abelian
category if t is not an integer between 0 and 2N− 2 (see [7, Prop. 5.1]).

Remark 4.3. Deligne’s basic generators [U] and their morphism spaces are introduced
in [7, Déf. 2.12]. Note that these [U] are not the same as the basic objects in Knop’s definition,
but the precise relation between them is explained by Knop in [?knop2, Remark 1.2].

Fix the ring A, the element t ∈ A and some integer N ⩾ 0. We assume that

(4.1) t− k ∈ A× for 0 ⩽ k ⩽ 2N− 2, N! ∈ A×.

Under these assumptions, Deligne [7, Prop. 5.1, Remarque 5.6] has associated to any pair
(y, ϱ) consisting of a finite set y with |y| ⩽ 2N and an irreducible representation ϱ of the

11



symmetric group Sy, an object xy,ϱ,A of Rep(St,A)
(N). (This object is independent, up to

isomorphism, of the choice of N, provided the above conditions hold, hence the value of N is
omitted from the notation.)

These objects are functorial with respect to A under the natural base-change functor

TA,B : Rep(St,A) → Rep(St,B)

when B is an A-algebra (see [7, Déf. 2.17]), i.e., there are isomorphisms

xy,ϱ,B ≃ TA,B(xy,ϱ,A).

If B is a field of characteristic zero, then the full category Rep(St,B) is a semisimple
abelian category and xy,ϱ,B is one of its simple objects. In fact, conversely, all simple objects
are of this form for a unique pair (y, ϱ), up to isomorphism.

From now on, we consider N as given and we consider the case where A is the ring defined
by

A = C[t]
[( 1

t− k

)
0⩽k⩽2N−2

]
for some integer N ⩾ 1. This satisfies the assumption (4.1).

Let m ⩾ 1 be an integer and λ a partition of m. We then denote xλ,A = xy,ϱ,A, where
y = {1, . . . ,m} and ϱ is the irreducible representation of Sm associated to the partition λ.
We denote by xλ,t the base change of xλ,A to Rep(St). Furthermore, if n > 2N− 2, then we
denote by xλ,n the base change of xλ,A to Rep(Sn) under the morphism such that t 7→ n.

We begin with a lemma generalizing the first step of the proof of Lemma 3.3 (in the
sense that it shows that certain hom-spaces have the same dimension in all Deligne–Knop
categories Rep(St), even when t is a non-negative integer, provided it is “large enough”).

Lemma 4.4. Let λ be a partition of an integer m ⩾ 1. Let a ⩾ 0 be an integer. For any
integer n large enough, depending only on a and λ, the equality

dimHomRep(St)(1t, x
⊗a
λ,t) = dimHomRep(Sn)(1n, x

⊗a
λ,n)

holds.

Proof. We apply the previous remarks with an integer N ⩾ 1 such that N ⩾ 2a|λ|. Then xλ,A

is defined inRep(St,A)
(N), and furthermore the object x⊗a

λ,A is also an object ofRep(St,A)
(N)

(this follows from the fact that the tensor product of two basic objects [U] and [V] is a direct
sum of objects [W] with |W| ⩽ |U|+|V|, see [7, § 5.10]). Consequently, by [7, Remarque 5.6],
there is a decomposition

x⊗a
λ,A ≃

⊕
|µ|⩽N

v(µ)xµ,A

for some non-negative integers v(µ), where the sum is over partitions of integers ⩽ N, and
we have used the fact that the ring A is a principal ideal domain. Assume n > 2N − 2.
Applying base-change to C(t) and to C with t 7→ n, we obtain also decompositions

x⊗a
λ,t ≃

⊕
|µ|⩽N

v(µ)xµ,t x⊗a
λ,n ≃

⊕
|µ|⩽N

v(µ)xµ,n.

The objects xµ,A have the property that

Hom(xµ,A,xν,A) = 0 if µ ̸= ν,
12



whereas Hom(xµ,A,xµ,A) ≃ A (see [7, Remarque 5.6]). Since the unit object of Rep(St)
(resp. of Rep(Sn)) is xµ,t (resp. xµ,n) for the partitition µ = (m) (corresponding to the
trivial representation of Sm), we therefore deduce from these decompositions the equalities

dimHom(1t, x
⊗a
λ,t) = v((m)) = dimHom(1n, x

⊗a
λ,n),

which concludes the proof. □

Remark 4.5. A combinatorial formula for

dimHomRep(St)(1t, x
⊗a
λ,t)

has been obtained (in the generality of tensor envelopes) by Knop, see [?knop3, Cor. 5.4, Ex. 5.6].

We can now conclude the proof. Let a ⩾ 0 be an integer. By Lemma 4.4, we have the
equalities

i(x⊗a
λ,t) = dimC(t)HomRep(St)(1t, x

⊗a
λ,t) = dimC HomRep(Sn)(1n, x

⊗a
λ,n)

for all n large enough, depending on a and λ.

Deligne [7, Prop. 6.4] has shown that, provided n > 2|λ|, the functor

Rep(Sn) → Rep(Sn)/N = Rep(Sn)

maps xλ,n to the representation πλ,n of Sn. Thus, we obtain the lower bound

i(x⊗a
λ,t) = dimC HomRep(Sn)(1n, x

⊗a
λ,n) ⩾ dimC HomSn(1n, π

⊗a
λ,n),

with equality if and only if N (1n, x
⊗a
n,λ) = 0. For all n large enough (depending on a and λ),

we have N (1n, x
⊗a
λ,n) = 0 (e.g., by Knop’s criterion), and hence for such n, we obtain∫

R

xaµλ(x) = i(x⊗a
λ,t) = dimC HomSn(1n, π

⊗a
λ,n) =

1

n!

∑
σ∈Sn

χλ,n(σ)
a.

5. Arithmetic speculations

The distribution of the number of fixed points of random permutations in Sn for a fixed
integer n ⩾ 1 occurs naturally in number theory as a limiting distribution for the number of
zeros modulo a prime number p of a fixed polynomial with integer coefficients f ∈ Z[X] with
Galois group Sn. Indeed, let ϱf (p) be this number. A special case of Chebotarev’s density
theorem states in that case6 that the limit formula

lim
x→+∞

1

π(x)

∣∣{p ⩽ x | ϱf (p) = k}
∣∣ = P(|Fix(Xn)| = k)

holds for all integers k ⩾ 0, where π(x) denotes the number of primes p ⩽ x.

One may ask if a similar framework can give rise to the Poisson distribution, viewed as
the number of fixed points of a “random element” of St for an indeterminate t. Some work
of Kowalski and Soundararajan [16, § 2.4] involving pseudopolynomials might be related.
Indeed, they have formulated the following conjecture:

6 For an arbitrary polynomial f , irreducible over Q, the corresponding limit would be the number of fixed
points of uniformly distributed random elements of the Galois group of the splitting field of f , viewed as
permutations of the roots of f in C.
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Conjecture 5.1 (Kowalski–Soundararajan). Let F(n) = ⌊en!⌋ for integers n ⩾ 0. For any
prime p, let ϱF(p) be the number of integers x satisfying 0 ⩽ x ⩽ p−1 and F(x) ≡ 0 (mod p).
Then, for each integer k ⩾ 0, the following limit formula holds:

lim
x→+∞

1

π(x)

∣∣{p ⩽ x | ϱF(p) = k}
∣∣ = 1

e

1

k!
.

Recall that a pseudopolynomial in the sense of Hall is a sequence (an)n⩾0 of integers such
that m − n divides am − an for all m > n. Setting F(n) = an, this condition guarantees
that the value F(x) (mod p) is well-defined for x ∈ Z/pZ, independently of the choice of a
representative to compute it. Besides the sequences (f(n))n of values of a polynomial with
integer coefficients f ∈ Z[X], a standard example is F(n) = ⌊en!⌋ as above.

Numerical evidence is favour of Conjecture 5.1 is quite convincing (loc. cit.). We speculate
that, if true, this limiting behaviour might be explained by appealing to the properties of St

and some avatar of Chebotarev’s density theorem.

Another tantalizing experimental parallel observation is the following. It results from
Deligne’s equidistribution theorem and from work of Katz (see [14, Th. 7.10.6]) that, given
a polynomial f ∈ Z[X] of degree n ⩾ 6 such that the derivative f ′ has Galois group Sn−1,
the exponential sums

Wf (a; p) =
1
√
p

∑
x (mod p)

exp
(
2πi

af(x)

p

)
for a ∈ (Z/pZ)× become equidistributed as p → +∞ like the traces of random matrices in
a compact group K ⊂ Un(C) which contains SUn(C).

By analogy and comparison with the results of Diaconis–Shashahani and Larsen, we are
then led to expect the following:

Conjecture 5.2. Let F(n) = ⌊en!⌋ for integers n ⩾ 0. For p prime and a ∈ (Z/pZ)×, let

WF(a; p) =
1
√
p

∑
x (mod p)

exp
(
2πi

aF(x)

p

)
.

Then the values (WF(a; p))a∈(Z/pZ)× become equidistributed as p → +∞ like a standard com-
plex gaussian, i.e., for any continuous bounded function φ : C → C, the following holds:

lim
p→+∞

1

p− 1

∑
a∈(Z/pZ)×

φ(WF(a; p)) =
1

π

∫
C

φ(z)e−|z|2dz.

Numerical evidence is again very convincing here. A potential link suggests itself with the
representations of GLt, and even more tantalizing is the suggestion of arithmetic connections
between St and GLt.

Appendix A. Knop’s construction of the category Rep(St)

In this section, we will recall the steps of Knop’s construction of tensor envelopes, special-
ized to the case which leads to Deligne’s category of representations of St.

Given sets X, Y and Z with maps f : Y → X and g : Y → Z, we define the gluing X ⊔Y Z
to be the quotient of the disjoint union X ⊔ Z by the equivalence relation such that f(y) is
identified with g(y) for all y ∈ Y.
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Recall that a partition of a set X is defined here7 to be a set of subsets of X, pairwise
disjoint and with union equal to X; we can, and will, identify these with equivalence relations
on X.

Given sets X, Y and Z and partitions α of X ⊔ Y and β of Y ⊔ Z, one defines a partition
β ⊙ α of X ⊔ Z as follows:

– the equivalence class of an element x ∈ X is the union of the α-equivalence class of x
and of the set of z ∈ Z such that there exists y ∈ Y which is α-equivalent to x and
β-equivalent to z.

– the equivalence class of an element z ∈ Z is the union of the β-equivalence class of z
and of the set of x ∈ X such that there exists y ∈ Y which is α-equivalent to x and
β-equivalent to z.

Using the quotient maps

Y → (X ⊔ Y)/α, Y → (Y ⊔ Z)/β,

we can define the gluing (X ⊔ Y)/α ⊔Y (Y ⊔ Z)/β. There is an injective map

j : (X ⊔ Z)/β ⊙ α → (X ⊔ Y)/α ⊔Y (Y ⊔ Z)/β,

and we define γ(α, β) to be the cardinality of the complement of the image of j. This is the
number of equivalence classes of elements of Y which are not equivalent to either an element
of X or an element of Z.

We fix a ring k and an element t of k. The category Ct is constructed in three steps.

One first defines a k-linear category C 0
t : its objects are finite sets, and the morphism

space HomC 0
t
(X,Y) is the free k-module generated by partitions of the finite set X ⊔ Y. The

composition maps
HomC 0

t
(Y,Z)× HomC 0

t
(X,Y) → HomC 0

t
(X,Z)

are given by
(β, α) 7→ β ◦ α = tγ(α,β)β ⊙ α.

The associativity of the composition is not obvious, and relates to basic properties of the
function γ.

If f : X → Y is a map of finite sets, there is an associated morphism Y → X in C 0
t given

by the equivalence relation αf on Y ⊔ X with classes {x, f(x)} for x ∈ X. This construction
gives a contravariant functor from the category of finite sets to the category C 0

t (because
it is elementary that γ(β, α) = 0 whenever α and β are equivalence relations associated to
maps); this functor is faithful.

From C 0
t , a category C ′

t is constructed as the category of formal finite direct sums of
objects of C 0

t , with morphisms given by matrices in the obvious way. Finally, Knop’s tensor
envelope category Ct is defined by “adding images of projectors”: an object is a pair (X, p)
of an object X of C ′

t and an endomorphism p of X such that p ◦ p = p, and

HomCt((X, p), (Y, q)) = q ◦ HomC ′
t
(X,Y) ◦ p ⊂ HomC ′

t
(X,Y).

The category C 0
t admits a monoidal structure ([9, Def. 2.1.1]). The tensor product bifunc-

tor is defined on objects by X⊗Y = X ⊔ Y for finite sets X and Y. As for morphisms, given

7 Contrast with, e.g., Bourbaki’s definition, where a partition is a family of subsets.
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α ∈ HomC 0
t
(X,X′) and β ∈ HomC 0

t
(Y,Y′), the tensor product α⊗β ∈ HomC 0

t
(X⊗Y,X′⊗Y′)

is the equivalence relation on

(X⊗ Y) ⊔ (X′ ⊗ Y′) = (X ⊔ Y) ⊔ (X′ ⊔ Y′)

which “coincides” with α on X ⊔ X′ and with β on Y ⊔ Y′. The associativity isomorphism
(X⊗Y)⊗Z → X⊗ (Y⊗Z) is given by the morphism associated to the obvious identification
(X ⊔ Y) ⊔ Z = X ⊔ (Y ⊔ Z), and the unit object 1 is the empty set, with the unique
morphism 1⊗ 1 → 1.

It is then elementary that if p and q are projectors, then p⊗ q is also one, so the rules

(X, p)⊗ (Y, q) = (X⊗ Y, p⊗ q)

and bilinearity define a monoidal structure on Ct. This monoidal structure is clearly sym-
metric.

The monoidal category C 0
t is rigid ([9, Def. 2.10.1]). Indeed, the dual of a finite set X is

defined to be D(X) = X itself, and the evaluation and coevaluation morphisms

evX : D(X)⊗ X → 1, coevX : 1 → X⊗D(X)

are both identified with the equivalence relation on X ⊔ X associated to the identity map
on X. For a morphism α ∈ HomC 0

t
(X,Y), the transpose tα ∈ HomC 0

t
(Y,X) is defined as the

composition

D(Y) = Y = Y ⊗ 1
id⊗coev−→ Y ⊗ (X⊗ X) ≃ (Y ⊗ X)⊗ X

(id⊗α)⊗id−→ (D(Y)⊗ Y)⊗ X
ev⊗id−→ 1⊗ X = X = D(X),

and corresponds to the obvious equivalence relation on X ⊔ Y which is “the same” as α
on Y ⊔ X.

The duality functor thus defined extends by linearity to C ′
t , and finally to Ct: we have

D(X, p) = (D(X), IdD(X) − tp)

for an object (X, p) of Ct, and
t(q ◦ α ◦ p) = tp ◦ tα ◦ tq for q ◦ α ◦ p ∈ HomCt((X, p), (Y, q)).

Thus Ct has the structure of a rigid symmetric monoidal k-linear category.

Suppose that the ring k is a field of characteristic 0 and t /∈ N. Then Knop [15, Th. 6.1,
Ex. 1, p. 596] proved that Ct is a semisimple tensor category.

Let A be a fixed finite set and G = Aut(A) the corresponding symmetric group. The
functor

hA(X) = HomSet(A,X)

from the opposite of the category of finite sets to the category SetG of finite sets with
a G-action can be extended to a tensor functor TA : Ct → Repk(G) of finite-dimensional
k-representations of G so that the diagram

Setopp SetG

Ct Repk(G)

hA

TA
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commutes [15, Th. 9.4, (9.23)], where the right-hand functor SetG → Repk(G) associates to
a finite set X with a G-action the permutation k-representation of G on X.
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