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Abstract

We propose a numerical method to solve parameter-dependent scalar hyperbolic
partial differential equations (PDEs) with a moment approach, based on a pre-
vious work from Marx et al. (2020). This approach relies on a very weak notion
of solution of nonlinear equations, namely parametric entropy measure-valued
(MV) solutions, satisfying linear equations in the space of Borel measures. The
infinite-dimensional linear problem is approximated by a hierarchy of convex,
finite-dimensional, semidefinite programming problems, called Lasserre’s hierar-
chy. This gives us a sequence of approximations of the moments of the occupation
measure associated with the parametric entropy MV solution, which is proved
to converge. In the end, several post-treatments can be performed from this
approximate moments sequence. In particular, the graph of the solution can be
reconstructed from an optimization of the Christoffel-Darboux kernel associated
with the approximate measure, that is a powerful approximation tool able to
capture a large class of irregular functions. Also, for uncertainty quantification
problems, several quantities of interest can be estimated, sometimes directly such
as the expectation of smooth functionals of the solutions. The performance of
our approach is evaluated through numerical experiments on the inviscid Burgers
equation with parametrised initial conditions or parametrised flux function.
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1 Introduction

Non-linear hyperbolic conservation laws model numerous physical phenomena in fluid
mechanics, traffic flow or non-linear acoustics [1, 2]. The numerical computation of
such equations is often a challenge since their solutions may present discontinuities,
even if the initial data are smooth. Numerous numerical methods exist to approximate
them, amongst which we may cite finite volume or finite difference schemes [3] or
the front-tracking method [4]. We are interested in this paper in solving parameter-
dependent hyperbolic conservation laws, which are considered for various tasks in
data assimilation [5], uncertainty quantification [6–10], sensitivity analysis [11], or
error analysis [12]. The parameters in our context appear in the initial data and in
the flux function and are associated with a probability measure. The computation of
approximate solutions for many instances of the parameters is usually prohibitive and
require reduced order models.

Model order reduction methods aim at providing an approximation of the solution
u(z, ξ), depending on physical variables z and parameters ξ, that can be efficiently eval-
uated. They either rely on an explicit approximation of the solution map ξ 7→ u(·, ξ) or
an approximation of the solution manifold {u(·, ξ) : ξ ∈ Ξ} by some dimension reduc-
tion method. The main challenge for models driven by conservation laws is that the
solution maps and solution manifolds are highly nonlinear (in particular due to the
presence of discontinuities), that require the introduction of nonlinear approximation
or dimension reduction methods. Several model reduction methods based on com-
positions have been proposed, that include methods based on parameter-dependent
changes of variables [13, 14] or deep learning methods using neural networks [15].
These methods usually require high computational resources and huge training data
for the approximation of highly nonlinear solution maps.

Here, we follow a different approach and propose a new surrogate modelling
method. It is an extension of [16] to parameter-dependent or random conservation
laws. Whereas it is classical to seek entropy weak solutions to hyperbolic conservation
laws [1, 17], we are rather interested in so-called entropy measure-valued (MV) solu-
tions, an even weaker notion of solution, introduced by DiPerna in [18, 19]. To a MV
solution corresponds an occupation measure, whose marginal is the MV solution. Even
if this notion of solution is very weak, there is a correspondence with entropy weak
solution. The measure concentrated on the graph of the entropy weak solution is a MV
solution. It is worth noting that the formulation in the setting of MV solutions leads
to a linear problem, so that some efficient tools from convex analysis can be applied.

We start with a theoretical framework for parameter-dependent conservation laws
similar to the one of [20, 21]. However, in our case, we introduce a weak-parametric
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formulation of the problem, where the classical entropy weak formulation is also inte-
grated with respect to the parameter. The purpose of this formulation is to obtain an
equivalent definition of parameter-dependent entropy MV solutions using the moments
of the associated occupation measure with respect to all the variables, including the
parameters. Under the assumption that flux function is polynomial and that the initial
data can be described by semi-algebraic functions, the entropy formulation becomes a
set of linear constraints on the moments of the occupation measure and we can follow
the procedure initiated in [16]. Indeed, this allows us to consider the problem as a gen-
eralized moment problem (GMP), an infinite-dimensional optimization problem over
sequences of moments of measures, where both the cost and the constraints are lin-
ear with respect to the moments of the measures. Powerful results from real algebraic
geometry allow to reformulate the constraint that a sequence is a moment sequence
into tractable semi-definite constraints. This problem is then solved using Lasserre’s
(moment sum-of-squares) hierarchy [22], which consists in solving a sequence of convex
semi-definite programs of increasing size to approximate the moments of the occupa-
tion measure. Note that the use of Lasserre’s hierarchy for solving PDEs has been
also recently considered in [23], although with a different approach where the consid-
ered measure is defined on an infinite-dimensional function space, and assumed to be
concentrated on the solution of the PDE.

Obtaining an approximation of the moments can be costly, but once this offline
computation is performed, efficient online post-treatments are possible. First, we can
naturally obtain expectations of variables of interest that are functions of the moments
of the solution. Also, the graph of the entropy weak solution (for any parameter value)
can be recovered using a localization property of the Christoffel-Darboux kernel of the
approximate occupation measure, following the methodology proposed in [24]. This
powerful approximation method allows to capture efficiently discontinuities in the
solutions. Using the moment completion technique from [25], one can also have access
to other quantities of interest, such as statistical moments of point-wise evaluations
of the solution.

Outline

This paper is organized as follows. We first introduce some notations and the problem
considered. Section 2 introduces different notions of solutions for parametrised scalar
conservation laws and examines some links between these notions. Section 3 introduces
the moment-SOS hierarchy and indicates how to perform several post-treatments such
as retrieving the graph of the solution or estimating statistical moments of the solution.
Finally, Section 4 presents some numerical experiments.

1.1 Notations

For X ⊂ Rn, with n ∈ N, let C(X ), C0(X ) and C1
c (X ) denote the space of func-

tions on X that are continuous, continuous and vanishing at infinity and continuously
differentiable with compact support, respectively. The sets of signed Borel measures
and positive Borel measures are denoted M(X ) and M(X )+, respectively. The set of
probability measures on X is denoted by P(X ). The measure λX ∈ M(X )+ denotes
the Lebesgue measure on X , and for B ⊂ X a Borel set, |B| denotes its Lebesgue
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measure. Given a vector w = (w1, . . . , wn), we denote by R[w] the ring of real multi-
variate polynomials in the variable w1, . . . , wn, and for a multi-index α = (α1, . . . , αn),
wα := wα1

1 . . . wαn
n . Given a positive Borel measure µ, we denote by supp(µ) its

support, defined as the smallest closed set whose complement has measure zero.

1.2 Definition of the problem

We consider parameter-dependent scalar hyperbolic conservation laws that are
formulated as a Cauchy problem

∂tu(t,x, ξ) + divx f(u(t,x, ξ), ξ) = 0, (t,x, ξ) ∈ R+ × Rn ×Ξ, (1a)

u(0,x, ξ) = u0(x, ξ), (x, ξ) ∈ Rn ×Ξ, (1b)

where t ∈ R+ is the time variable, x ∈ Rn is the space variable, and where ξ is a
parameter in a parameter set Ξ ⊂ Rp, p ∈ N. Then data are the flux f : R×Ξ → Rn

and the initial condition u0 : Rn ×Ξ → R.
The parameter set Ξ is equipped with a probability measure ρ. We assume that Ξ

is compact and the initial condition u0 ∈ L∞(Ξ;L∞(Rn)). Moreover, we shall make
the following assumptions on f .
Assumption 1.1. For all K ⊂ R compact, there exists CK ∈ R such that for all
u ∈ K and ρ− a.e., ∥f(u, ξ)∥ ≤ CK . Moreover, ρ− a.e., f(·, ξ) ∈ C1(R;Rn).

This assumption is satisfied for a polynomial function f , that will be assumed in
the next section. Then for the sake of simplicity, we restrict our analysis to this setting.
A more general setting can be found in [21].

Note that the initial data u0 and the flux f may depend on distinct parameters
but for the sake of clarity, and without loss of generality, we indicate a dependence on
the same set of parameters ξ.

2 Notions of parameter-dependent solution

2.1 Parametric entropy solution

We start by introducing the notion of parametric entropy weak solution, that is defined
point-wise in the parameter domain. This may be considered as a strong-parametric
solution, that is a straightforward notion of solution when a parameter is considered,
see, e.g., [20] or [21].
Definition 2.1 (Entropy pairs). Let η be a locally Lipschitz and convex function from
R to R. Let q : R× Ξ → Rn such that ∂uq(u, ξ) = η′(u)∂uf(u, ξ) for ρ-almost ξ and
almost all u ∈ R. Then (η,q) is called an entropy pair associated with conservation
law (1a).

We may notice that for an entropy pair (η,q), for ρ-almost all ξ, q(·, ξ) is a locally
Lipschitz function.

We now introduce three specific families of entropy pairs, each of them having a
particular theoretical or numerical objective.
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Definition 2.2 (C1 family of entropy pairs). The C1 family of entropy pairs, denoted
EC , is defined as the set of entropy pairs (η,q) such that η ∈ C1(R) and for ρ-almost
all ξ, q(·, ξ) ∈ C1(R).

Note under assumption 1.1, if (η,q) is an entropy pair with η ∈ C1, then (η,q) ∈ EC .
The C1 family of entropy pairs is related to the (opposite of the) thermodynamic
entropy and to the second law of thermodynamics, for fluid dynamics models. The
conservation law (1a), for a fixed ξ, can be seen as a simplification of such models.
Definition 2.3 (Kruzhkov family of entropy pairs). The Kruzhkov family of entropy
pairs is defined by

EK := {(ηv,qv) : v ∈ R} ,
where for all v ∈ R, for all u ∈ R and for ρ-almost all ξ, ηv(u) := |u − v| and
qv(u, ξ) := sign(u− v)(f(u, ξ)− f(v, ξ)).

Compared to EC , the family EK has the advantage of being explicitly described and
of carrying strong results coming from Kruzhkov’s fundamental paper [17], allowing
to obtain some theoretical results, such as uniqueness and stability.
Definition 2.4 (Polynomial family of entropy pairs). The polynomial family of
entropy pairs EP is defined as the set of entropy pairs (η,q) such that η is a polyno-
mial function. If f is a polynomial function, then, for ρ-almost all ξ, q(·, ξ) is also a
polynomial function.

In the case of a uniformly convex flux function, a single polynomial entropy can
be sufficient to select the relevant solution (see e.g. [26, 27]). Actually, our motiva-
tion is different. In numerical experiments, we shall use subsets of the polynomial
family of entropy pairs. The SOS-moment (Lasserre’s) hierarchy, later exposed in this
paper, relies indeed on a polynomial setting. Although it is possible to implement our
numerical method with EK as in [16], it is easier to do so with subsets of EP when
possible.
Definition 2.5 (Parametric entropy solution). Consider a family of entropy pairs E .
Let u0 : Rn × Ξ → R such that u0(·, ξ) ∈ L∞(Rn) ρ-almost everywhere and f satisfy
Assumption 1.1. A function u : R+ × Rn × Ξ → R such that for ρ-almost all ξ,
u(·, ·, ξ) ∈ L∞(R+ × Rn) is a parametric entropy solution for E if, for all (η,q) ∈ E ,
for all non-negative test functions ψ ∈ C1

c (R+ × Rn) and ρ-almost all ξ, it satisfies∫
R+

∫
Rn

(∂tψη(u) +∇xψ · q(u, ξ)) dxdt+
∫
Rn

ψη(u0)dx ≥ 0. (2)

Proposition 2.6. A function u is a parametric entropy solution for EK if and only
if it is a parametric entropy solution for EC.
Proof. For the proof, see Lemma 4.1 in [28] and the discussion which follows.

Theorem 2.7. If, for ρ-almost all ξ, the initial data u0(·, ξ) ∈ L∞(Rn) and if f
satisfies Assumption 1.1, then problem (1) has a unique parametric entropy solution u
for EK , or equivalently, EC. Moreover it satisfies for all t ∈ R+ and for ρ-almost all ξ,

∥u(t, ·, ξ)∥L∞(Rn) ≤ ∥u0(·, ξ)∥L∞(Rn). (3)
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Proof. From [28, Theorem 5.2], we have that, for ρ-almost all ξ, there exists a unique
solution u(·, ·, ξ) ∈ L∞(R+ × Rn) for EC . Then, from Proposition 2.6, we have that,
for ρ-almost all ξ, there exists a unique solution u(·, ·, ξ) ∈ L∞(R+ ×Rn) for EK . The
stability property (3) is deduced from [1, Theorem 6.2.7].

Remark 2.8. Note that Theorem 2.7 does not provide any information on the mea-
surability of u. Under the assumption that Ξ ∋ ξ 7→ u(·, ·, ξ) ∈ L∞(R+ × Rn) is
Bochner measurable and that u0 ∈ L∞(Ξ;L∞(Rn)), Theorem 2.7 allows to deduce

∥u∥L∞(R+×Rn×Ξ) ≤ ∥u0∥L∞(Rn×Ξ).

We refer to [20, Theorem 3.3] that provides measurability properties of u under
additional assumptions on u0.
Remark 2.9. We might hope that imposing that u0 ∈ L∞(Ξ;L∞(Rn)) may be
sufficient to have that ξ 7→ u(·, ·, ξ) is Bochner measurable, but this has not been
proved yet.

2.2 Weak-parametric entropy solutions

The next notion of solution is weaker. While the parametric entropy solution adopts
a pointwise point of view in the parameter domain, the following notion of solution is
deduced by integration over the parameter domain.
Definition 2.10 (Weak-parametric entropy solution). Consider a family of entropy
pairs E . Let u0 ∈ L∞(Rn × Ξ) and f satisfy Assumption 1.1. A measurable function
u : R+×Rn×Ξ → R in L∞(R+×Rn×Ξ) is called a weak-parametric entropy solution
for E if, for all (η,q) ∈ E and all non-negative test functions ϕ ∈ C(Ξ; C1

c (R+ × Rn)),
it satisfies∫

R+

∫
Rn

∫
Ξ

(∂tϕη(u) +∇xϕ · q(u, ξ)) dρ(ξ)dxdt+
∫
Rn

∫
Ξ

ϕη(u0)dρ(ξ)dx ≥ 0. (4)

It is at first glance a weaker notion of solution, but we shall see that under cer-
tain assumptions, both notions of parametric entropy solution and weak-parametric
entropy solution coincide.
Theorem 2.11. Assume that u0 ∈ L∞(Ξ,L∞(Rn)) and f satisfies Assumption 1.1.
A function u, such that ξ 7→ u(·, ·, ξ) is Bochner measurable, is a parametric entropy
solution for EK if and only if it is a weak-parametric entropy solution for EK .

Proof. Let u be a parametric entropy solution for EK , and let v ∈ R and ϕ ∈
C(Ξ; C1

c (R+ × Rn)). From Remark 2.8, and since u0 ∈ L∞(Ξ,L∞(Rn)) and ξ 7→
u(·, ·, ξ) is Bochner measurable, we have that u ∈ L∞(R+×Rn×Ξ). For ρ-almost all ξ,
ϕ(·, ·, ξ) ∈ C1

c (R+ ×Rn), thus u verifies equation (2) for ψ = ϕ(·, ·, ξ). Let us integrate
equation (2) on Ξ. First, let us consider the terms where ηv appears. From Remark
2.8, u is essentially bounded. Since ηv is continuous, ηv ◦u is also essentially bounded.
Since ϕ and its derivative are continuous in ξ and Ξ is a compact set, the terms where
ηv appears are integrable in ξ. Recalling the definition of qv in Definition 2.3, we
have that, for all y ∈ R, ρ-almost everywhere, ∥qv(y, ξ)∥ ≤ ∥f(y, ξ)∥+ ∥f(v, ξ)∥. From
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Assumption 1.1, and since from the same argument as for the terms where ηv appears,
u is essentially bounded, there exists C,Cv ∈ R such that ∥qv(u, ξ)∥ ≤ C + Cv, ρ-
almost everywhere. Thus, ξ 7→

∫
R+

∫
Rn ∇xϕ · q(u, ξ)dxdt is integrable and integrating

on Ξ yields equation (4).
Conversely, let u ∈ L∞(R+ × R × Ξ) be a weak-parametric entropy solution, v ∈ R
and ϕ ∈ C(Ξ; C1

c (R+×Rn)) such that ϕ(t,x, ξ) := ψ(t,x)γ(ξ) where ψ ∈ C1
c (R+×Rn)

and γ ∈ C(Ξ). The function u then verifies (4) for our particular choice of ϕ. Inequal-
ity (4) can be rewritten as

∫
Ξ
I(ξ)γ(ξ)dρ(ξ) ≥ 0. Since I is ρ-measurable, 1I<0 is

ρ-measurable. Moreover, from [29, Theorem 12.7], since ρ is a finite Borel measure and
Ξ is a Polish space, we have that ρ is a regular measure. Thus, there exists a sequence
γn ∈ C(Ξ) such that ∥1I<0 − γn∥L1(Ξ) → 0 as n → ∞ and

∫
Ξ
I(ξ)1I<0(ξ)dρ(ξ) ≥ 0.

Yet, I1I<0 ≤ 0 ρ-almost everywhere. Thus, I ≥ 0 ρ-almost everywhere and it gives us
that u is a parametric entropy solution, which concludes the proof.

2.3 Measure-valued solutions

Following DiPerna [18], previous notions of solutions are extended to the weaker case
of measure-valued solutions thanks to the notion of Young measure.
Definition 2.12 (Young measure). A Young measure on a Euclidean space X is a
map µ : X → P(R), τ 7→ µτ such that for all g ∈ C0(R) the function τ 7→

∫
R g(y)µτ (dy)

is measurable.
From this, we can seek an even weaker notion of solution that is a Young measure

µ(t,x,ξ) which satisfies the following Cauchy problem:

∂t⟨µ(t,x,ξ), idR⟩+ divx⟨µ(t,x,ξ), f(·, ξ)⟩ = 0, (t,x, ξ) ∈ R+ × Rn ×Ξ, (5a)

µ(0,x,ξ) = σ0, (x, ξ) ∈ Rn ×Ξ, (5b)

where ⟨·, ·⟩ denotes the integration of a (vector-valued) function g ∈ C(R;Rk) against
a measure µ ∈ M(R), defined by

⟨µ, g⟩ :=
∫
R
g(y)µ(dy) ∈ Rk,

while σ0 = δu0
. Equation (5a) has to be understood in a weak entropy sense, as

explained in the following.
Definition 2.13 (Parametric entropy measure-valued (MV) solution). Consider a
family of entropy pairs E . Let σ0 be Young measure on Rn × Ξ, and let f satisfying
Assumption 1.1. A Young measure µ is a parametric entropy MV solution to (5) for E ,
if, for a family of entropy pairs E , for all (η,q) ∈ E and all non-negative test functions
ϕ ∈ C(Ξ; C1

c (R+ × Rn)), it satisfies∫
R+

∫
Rn

∫
Ξ

(
∂tϕ(t,x, ξ)⟨µ(t,x,ξ), ηv⟩+∇xϕ(t,x, ξ) · ⟨µ(t,x,ξ),qv⟩

)
dρ(ξ)dxdt
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+

∫
Rn

∫
Ξ

ϕ(0,x, ξ)⟨σ0, ηv⟩dρ(ξ)dx ≥ 0. (6)

With the injection

L∞(R+ × Rn ×Ξ) → (R+ × Rn ×Ξ → P(R))
u 7→

(
(t,x, ξ) 7→ δu(t,x,ξ)

)
,

we notice that, under the condition that σ0 = δu0 , weak-parametric entropy solutions
are parametric entropy MV solutions, but without further assumptions, parametric
entropy MV solutions are not necessarily weak-parametric entropy solutions. How-
ever, the following result shows that the parametric entropy MV solution can be
concentrated on the graph of the weak-parametric entropy solution.
Theorem 2.14. Let u0 ∈ L∞(Rn × Ξ) and f satisfy Assumption 1.1. Let u be the
unique weak parametric entropy solution for EK and µ be a parametric entropy MV
solution for EK . If ρ-almost everywhere σ0 = δu0(·), then ρ-almost everywhere µ =
δu(·).

Proof. First, we may note that from the same arguments that those presented in
the second part of the proof of Theorem 2.11, a parametric entropy MV solution µ
for EK verifies the following inequality, for all v ∈ R, all non-negative test functions
ψ ∈ C1

c (R+ × Rn) and ρ-almost all ξ:∫
R+

∫
Rn

(
∂tψ(t,x)⟨µ(t,x,ξ), ηv⟩+∇xψ(t,x) · ⟨µ(t,x,ξ),qv⟩

)
dxdt

+

∫
Rn

ψ(0,x)⟨σ0, ηv⟩dx ≥ 0. (7)

Then, for ρ-almost all ξ, µ(·, ·, ξ) is an entropy MV solution of the initial problem with
a fixed parameter ξ, that is a parameter-independent problem studied in [16]. Then,
from [16, Theorem 1] and [18], we have that ρ-almost everywhere, if (σ0)(·,ξ) = δu(·,ξ),
then µ(·,·,ξ) = δu(·,·,ξ), with u(·, ·, ξ) the weak parametric entropy solution.

2.4 Restrictions to compact hypercubes

In order to extend the strategy developed in [16], it is mandatory to work on compact
sets. Whereas introducing compact domains in time and in the parameter set is trivial,
the restriction to bounded space domains has to be carefully done. To simplify the
setting and to avoid the problem of introducing boundary conditions to conservation
laws, see for instance [19, 30, 31], we assume that the solution has no interaction with
its boundary, i.e. the solution is known on the boundary of the spatial domain at any
time. Let

T := [0, T ], X := [L1, R1]× · · · × [Ln, Rn], Ξ := [0, 1]p (8)
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be the respective domains of time t, space variable x and parameter ξ for fixed (but
arbitrary) constants T , (Li)

n
i=1 and (Ri)

n
i=1. The absence of interaction with the

boundary is translated as follows: initial data u0 that we consider are the restrictions to
X×Ξ of initial data defined on Rn×Ξ such that, considering the associated weak para-
metric entropy solution u, there exists ϵ > 0 such that in ∂Xϵ := (∂X+B(0, ϵ)) ∩X,
and for all t ∈ T and ρ-almost all ξ, u(t, ·, ξ) = u0(·, ξ), i.e. the weak parametric
entropy solution is stationary on ∂Xϵ. This framework is the one we shall use in the
following.

From (3), we can consider that u takes values in the following compact set

U := [u, u], (9)

where the bounds are u := ess infX,Ξ u0 and u := ess supX,Ξ u0.
This leads us to reformulate the problem on the restricted domain.

Proposition 2.15 (Parametric entropy measure-valued solution on compact hyper-
cubes). Consider a family of entropy pair E. Let µ : (t,x, ξ) ∈ R+×Rn×Ξ 7→ µ(t,x,ξ) ∈
M+(U) be a parametric entropy measure-valued solution for E. Then it satisfies for
all (η,q) ∈ E and for all non-negative test functions ϕ ∈ C(Ξ; C1(T×X)),∫

T

∫
X

∫
Ξ

(
∂tϕ(t,x, ξ)⟨µ(t,x,ξ), η⟩+∇xϕ(t,x, ξ) · ⟨µ(t,x,ξ),q⟩

)
dρ(ξ)dxdt

+

∫
X

∫
Ξ

ϕ(0,x, ξ)⟨σ0, η⟩dρ(ξ)dx−
∫
X

∫
Ξ

ϕ(T,x, ξ)⟨σT , η⟩dρ(ξ)dx

−
∫
T

∫
X

∫
Ξ

ϕ(t,x, ξ)⟨γ,q(·, ξ)⟩dρ(ξ)dxdt ≥ 0 (10)

where σ0 and σT are Young measures supported on X×Ξ, and where γ is such that∫
T

∫
X

∫
Ξ

ϕ(t,x, ξ)⟨γ,q(·, ξ)⟩dρ(ξ)dxdt =
n∑

i=1

∫
T

∫
X

∫
Ξ

ϕ(t,xL,i, ξ)⟨γL,i, qi(·, ξ)⟩dρ(ξ)δΓL,i
(dx)dt

−
n∑

i=1

∫
T

∫
X

∫
Ξ

ϕ(t,xR,i, ξ)⟨γR,i, qi(·, ξ)⟩dρ(ξ)δΓR,i
(dx)dt,

where for each 1 ≤ i ≤ n, γL,i and γR,i are boundary measures supported on T×ΓL,i×
Ξ and T×ΓR,i×Ξ respectively, with ΓL,i = {x ∈ ∂X : xi = Li} and ΓR,i = {x ∈ ∂X :
xi = Ri}, xB,i denotes the vector (x1, . . . , xi−1,ΓB,i, xi+1, . . . , xn) for B ∈ {L,R}.
Lemma 2.16. Consider a family of entropy pairs E such that either (id, f) ∈ E or
E = EK . Let µ be a parametric entropy MV solution for E. Then for all test functions
ϕ ∈ C(Ξ; C1(T×X)), it satisfies∫

T

∫
X

∫
Ξ

(
∂tϕ(t,x, ξ)⟨µ(t,x,ξ), id⟩+∇xϕ(t,x, ξ)⟨µ(t,x,ξ), f⟩

)
dρ(ξ)dxdt
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+

∫
X

∫
Ξ

ϕ(0,x, ξ)⟨σ0, id⟩dρ(ξ)dx−
∫
X

∫
Ξ

ϕ(T,x, ξ)⟨σT , id⟩dρ(ξ)dx

−
∫
T

∫
X

∫
Ξ

ϕ(t,x, ξ)⟨γ, f(·, ξ)⟩dρ(ξ)dxdt = 0. (11)

Proof. The proof of this lemma is discussed in [32], and the case of the Kruzhkov’s
entropies is retrieved thanks to the boundedness of U.

Remark 2.17. Our numerical method shall not use all inequalities (10). Therefore,
imposing (11) as an additional constraint may be beneficial in practice, see further
discussion in Section 3.
Remark 2.18 (Imposing constraints on the boundary). To ensure concentration of
µ(t,x,ξ), in addition to the condition σ0 = δu0(·), one may impose conditions on the
boundary measures (γL,i)

n
i=1 and (γR,i)

n
i=1. The choice of boundary condition allows

to ensure the absence of interaction with the boundary. We shall make the assumption
that the trace of u0 on ΓB,i, noted γB,i(u0) exists for all B ∈ {L,R} and all 1 ≤ i ≤ n,
and we at the same time notice that this trace does not depend on ξ ∈ Ξ. We then
want to impose that γB,i(x) = δγB,i(u0)(x) for almost all x ∈ X, for all 1 ≤ i ≤ n and
for B ∈ {L,R}.
Remark 2.19 (General Dirichlet boundary conditions). The first entropy weak for-
mulation with Dirichlet boundary conditions has been proposed by [33], but it requires
the existence of strong traces, so that it cannot be generalized to MV solutions. Later,
Otto introduced boundary entropy-flux pairs in his PhD thesis. A short presentation is
given in [34] while an extended analysis is available in [19]. This notion allowed Vovelle
in [35] to show that the Otto’s framework can be reformulated via Kruzhkov semi-
entropies and to extend the wellposedness theory of conservation laws on bounded
domains to entropy process solutions, which is a similar concept to MV solutions (see
also [36] for more results). Lastly, in order to express such a formulation as moment
contraints, it suffices to follow the approach of doubling the number of measures in
[16], recalled in Appendix B for the case of Kruzhkov entropies.

Let ν ∈ M(K)+ with K := T×X×Ξ×U defined by

dν(t,x, ξ, y) = dtdxdρ(ξ)µ(t,x,ξ)(dy) (12)

where µ is a parametric entropy MV solution. The measure ν, called occupation mea-
sure (see [37]), has λT⊗λX⊗ρ for marginal in (t,x, ξ), and µ(t,x,ξ) as the conditional
measure in y given (t,x, ξ). In the case where µ(t,x,ξ)(dy) = δu(t,x,ξ)(dy), ν is supported
on the graph of the function u. We also introduce the time boundary measures

dν0(t,x, ξ, y) := δ0(dt)dxdρ(ξ)σ0(dy), dνT (t,x, ξ, y) := δT (dt)dxdρ(ξ)σT (dy) (13)

whose supports are K0 := {0}×X×Ξ×U and KT := {T}×X×Ξ×U respectively.
Similarly, we introduce the space boundary measures

dνL,i(t,x, ξ, y) := dtδΓL,i
(dx)dρ(ξ)γL,i(dy), (14)

dνR,i(t,x, ξ, y) := dtδΓR,i
(dx)dρ(ξ)γR,i(dy) (15)

10



whose supports are given by KL,i := T×ΓL,i ×Ξ×U and KR,i := T×ΓR,i ×Ξ×U
respectively, for 1 ≤ i ≤ n. For conciseness, we shall define the collection of measures
ν := {ν, ν0, νT , (νL,i)

n
i=1, (νR,i)

n
i=1}.

It is known that measures with compact support are fully characterized by their
moments, see e.g. [22, p.52]. Thus, marginal constraints on occupation measures ν will
be imposed through their moments, see details in Appendix A.

The introduction of the measure ν allows us to rewrite the constraints (11) and
(10). The equation (11) can be put in the following form

F (ϕ,ν) :=

∫
K

(∂tϕ(t,x, ξ)y +∇xϕ(t,x, ξ) · f(y)) dν(t,x, ξ, y)

+

∫
K

ϕ(t,x, ξ)ydν0(t,x, ξ, y)−
∫
K

ϕ(t,x, ξ)ydνT (t,x, ξ, y)

+

n∑
i=1

(∫
K

ϕ(t,x, ξ)fi(y)dνL,i(t,x, ξ, y)−
∫
K

ϕ(t,x, ξ)fi(y)dνR,i(t,x, ξ, y)

)
= 0,

(16)

where ϕ ∈ C(Ξ; C1(T×X)), and the equation (10) can be written

G(ϕ,ν, η, q) :=

∫
K

(∂tϕ(t,x, ξ)η(y) +∇xϕ(t,x, ξ) · q(y)) dν(t,x, ξ, y)

+

∫
K

ϕ(t,x, ξ)η(y)dν0(t,x, ξ, y)−
∫
K

ϕ(t,x, ξ)η(y)dνT (t,x, ξ, y)

+

n∑
i=1

(∫
K

ϕ(t,x, ξ)qi(y)dνL,i(t,x, ξ, y)−
∫
K

ϕ(t,x, ξ)qi(y)dνR,i(t,x, ξ, y)

)
≥ 0,

(17)

for entropy pairs (η,q) in a family E and ϕ ∈ C(Ξ; C1(T × X)) non-negative test
functions.
Remark 2.20 (On systems of conservation laws). When studying systems of conser-
vation laws, the main difficulty is the lack of uniqueness theory. In particular, even if
entropy inequalities are available, there is no hope to identify entropy measure-valued
solutions with entropy weak solutions. Nevertheless, our method could be applied as
such to systems of conservation laws.

3 Moment-SOS method for measure-valued
solutions on compact sets

In the previous section, we introduced parametric measure-valued (MV) solutions for
scalar hyperbolic equations, that are defined by equations (16)-(17). The aim of this
section is to express these equations as constraints on the moments of the occupation
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measure and to explain how to approximate these moments based on the moment-
SOS (Lasserre’s) hierarchy [22]. For that, we require the assumption that f : R×Ξ is
a polynomial function.

We will see in the next section how to extract from these moments some information
on the solution u of the initial problem.

3.1 From weak formulations to moment constraints

The following lemma, derived from [16, Lemma 1], relies on density arguments,
together with the fact that we are working with compact sets.
Lemma 3.1. Let {ϕα}α∈Nn+p+1 be a polynomial basis on T×X×Ξ. Then equation
(16) is equivalent to

F (ϕα,ν) = 0 (18)

for all α ∈ Nn+p+1, where F is defined in (16).
For f a polynomial function, (18) provides constraints on linear combinations of

moments of measures ν. In the case of a family of polynomial entropy pairs E ⊆ EP ,
we can also express (17) as constraints on the moments of measures ν.
Lemma 3.2. Assume {ϕα}α∈F for F ⊂ Nn+p+1 is a countable family of polynomials
on T×X×Ξ such that any non-negative polynomial can be decomposed on this family,
with positive coefficients. Then, equation (17) is equivalent to

G(ϕα,ν, η,q) ≥ 0 (19)

for all α ∈ F and all (η,q) ∈ E.
Remark 3.3. Since, as stated in Lemma 2.16, equation (17) implies equation (16),
then equation (19) implies equation (18) with an appropriate family of entropy pairs.
It thus may seem redundant to enforce both, but, in the approximation method, the
family of polynomials in Lemma 3.2 will be reduced, so that this implication is no
more guaranteed and imposing (18) as additional constraints may be beneficial. An
illustration is provided in Appendix C for the numerical example studied in Section
4.1.

The case E = EK ensures concentration of the measure, as seen in Theorem 2.14,
but we are faced with two issues: first, taking into account an uncountable family of
functions parametrised by v ∈ U and, second, the absolute value function v 7→ |v| is
not a polynomial. To deal with the uncountable family of functions, we introduce v
as a new variable. To treat the absolute value, we double the number of measures.

More precisely, we introduce as new unknowns Borel measures ϑ+ and ϑ−, whose
supports are respectively defined by

supp(ϑ+) = K+ := {(t,x, ξ, y, v) ∈ K×U : y ≥ v},

supp(ϑ−) = K− := {(t,x, ξ, y, v) ∈ K×U : y ≤ v},
and impose the condition that ν ⊗ λU = ϑ+ + ϑ−, which can be expressed as con-
straints between moments of ν, ϑ+ and ϑ−. Similarly, we introduce time boundary
measures ϑ+0 , ϑ

−
0 , ϑ

+
T and ϑ−T , space boundary measures (ϑ+L,i)

n
i=1, (ϑ

−
L,i)

n
i=1, (ϑ

+
R,i)

n
i=1

12



and (ϑ−R,i)
n
i=1, and the corresponding constraints with measures ν. All those defini-

tions are plainly written in Appendix B. We shall once again introduce a collection of
measures

ϑ := (ϑ+, ϑ−, ϑ+0 , ϑ
−
0 , ϑ

+
T , ϑ

−
T , (ϑ

+
L,i)

n
i=1, (ϑ

−
L,i)

n
i=1, (ϑ

+
R,i)

n
i=1, (ϑ

−
R,i)

n
i=1).

From [16, Lemma 2], equation (17) is equivalent to

H(ϕ,ϑ) :=

∫
K

θ(v) (∂tϕ(t,x, ξ)(y − v) +∇xϕ(t,x, ξ) · (f(y)− f(v))) dϑ+

+

∫
K

θ(v) (∂tϕ(t,x, ξ)(v − y) +∇xϕ(t,x, ξ) · (f(v)− f(y))) dϑ−

+

∫
K

θ(v)ϕ(t,x, ξ)(y − v)dϑ+0 +

∫
K

θ(v)ϕ(t,x, ξ)(v − y)dϑ−0

−
∫
K

θ(v)ϕ(t,x, ξ)(y − v)dϑ+T −
∫
K

θ(v)ϕ(t,x, ξ)(v − y)dϑ−T

+

n∑
i=1

(∫
K

θ(v)ϕ(t,x, ξ)(fi(y)− fi(v))dϑ
+
L +

∫
K

θ(v)ϕ(t,x, ξ)(fi(v)− fi(y))dϑ
−
L

−
∫
K

θ(v)ϕ(t,x, ξ)(fi(y)− fi(v))dϑ
+
R −

∫
K

θ(v)ϕ(t,x, ξ)(fi(v)− fi(y))dϑ
−
R

)
≥ 0,

(20)

for all non-negative test functions ϕ ∈ C1(T × X) ⊗ C(Ξ) and all non-negative test
functions θ ∈ C(U).
Lemma 3.4. Assume {ϕα}α∈F is a countable family of polynomials on T×X×Ξ×U
such that any non-negative polynomial can be decomposed on this family with positive
coefficients. Then (20) is equivalent to

H(ϕα,ϑ) ≥ 0 (21)

for all α ∈ F .

Proof. The proof relies on density arguments.

A particular family {ϕα}α∈N2(n+p+2) satisfying the assumption that any non-
negative polynomial can be decomposed on this family with positive coefficients is
given by

ϕα(t,x, ξ, v) := tα1(T − t)α2

n∏
i=1

((xi − Li)
α2i+1(Ri − xi)

α2(i+1))

p∏
i=1

((ξi)
α2i+2n+1(1− ξi)

α2(i+n+1)) (v − u)α2n+2p+3(u− v)α2(n+p+2)

13



for α ∈ N2(n+p+2). The proof follows the one of the Lemma 3 in [16], and uses
Handelman’s Positivstellensatz [16].

3.2 Generalized Moment Problem

Roughly speaking, the Generalized Moment Problem (GMP) is an infinite-dimensional
linear optimization problem on finitely many Borel measures νi ∈ M(Ki)+, with
Ki ⊆ Rni , with i = 1, ..., N and ni ∈ N. That is, one is interested in finding mea-
sures whose moments satisfy (possibly countably many) linear constraints and which
minimize some criterion. In full generality, the GMP is intractable, but if all Ki are
basic semi-algebraic sets1 and the integrands are polynomials, then one may provide
an efficient numerical scheme to approximate as closely as desired any finite num-
ber of moments of optimal solutions of the GMP. It consists of solving a hierarchy
of semi-definite programs2 of increasing size. Convergence of this numerical scheme
is guaranteed by invoking powerful results from real algebraic geometry, essentially
positivity certificates, and further developed for many classical cases in [38, 39].

Let hi ∈ R[wi] and hi,k ∈ R[wi] be polynomials in the vector of indeterminates
wi ∈ Rni and let bk be real numbers, for finitely many i = 1, . . . , N and countably
many k = 1, 2, . . .. The GMP is the following optimization problem over measures:

inf
ν1,...,νN

N∑
i=1

∫
Ki

hidνi =: ρ∗

s.t.

N∑
i=1

∫
Ki

hi,kdνi ≤ bk, k = 1, 2, . . .

νi ∈ M(Ki)+, i = 1, . . . , N.

(22)

3.3 From measures to moments and their approximation

Instead of optimizing over the measures in problem (22), we optimize over their
moments. For simplicity and clarity of exposition, we describe the approach in the case
of a single unknown measure ν, but it easily extends to the case of several measures.
Let us consider the simplified GMP

inf
ν

∫
K

hdν := ρ∗

s.t.

∫
K

hkdν ≤ bk, k = 1, 2, . . .

ν ∈ M(K)+,

(23)

1A basic semi-algebraic set is defined by {x ∈ Rn : fi(x) ≥ 0, ∀i = 1, . . . ,m} where m ∈ N and f1, . . . , fm
are polynomials.

2A semidefinite program is a particular class of a convex conic optimization problem that can be solved
numerically efficiently.
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where K is a compact set in Rn, h ∈ R[w], hk ∈ R[w] and bk ∈ R for all k = 1, 2, . . . .
The moment sequence z = (zα)α∈Nn of a measure ν ∈ M(K)+ is defined by

zα =

∫
K

wαdν, α ∈ Nn. (24)

Similarly, given a sequence z = (zα)α∈Nn , if (24) holds for some ν ∈ M(K)+ we say
that the sequence has the representing measure ν. Recall that measures on compact
sets are uniquely characterized by their moments (see [22, p. 52]).
Remark 3.5. The use of canonical moments, i.e. associated with monomials, may be
critical from a numerical point of view. Other polynomial bases with more favorable
numerical properties could be considered. However, in the numerical experiments,
we restrain ourselves to domains included in the unit hypercube, which moderates
numerical instabilities.

Let Nn
d := {α ∈ Nn : |α| ≤ d}, where |α| := ∑n

i=1 αi, and nd :=
(
n+d
d

)
. A vector

p := (pα)α∈Nn
d
∈ Rnd is the coefficient vector (in the monomial basis) of a polynomial

p ∈ R[w] with degree d = deg(p) expressed as p =
∑

α∈Nn
d
pαw

α. Integrating p with

respect to a measure ν involves only finitely many moments:∫
K

pdν =

∫
K

∑
α∈Nn

d

pαw
αdν =

∑
α∈Nn

d

pα

∫
K

wαdν =
∑
α∈Nn

d

pαzα.

Next, we define a pseudo-integration with respect to an arbitrary sequence z ∈ RNn

by

ℓz(p) :=
∑
α∈Nn

pαzα (25)

and ℓz is called the Riesz functional.
Theorem 3.6 (Riesz-Haviland [22, Theorem 3.1]). Let K ⊆ Rn be closed. A real
sequence z ∈ RNn

is the moment sequence of some measure ν ∈ M(K)+, i.e. z
satisfies (24), if and only if ℓz(p) ≥ 0 for all p ∈ R[w] non-negative on K.

Assuming that K is closed, we can reformulate thanks to this result the GMP (23)
as a linear problem on moment sequences, namely

inf
z

ℓz(h) = ρ∗

s.t. ℓz(hk) ≤ bk, k = 1, 2, . . .

ℓz(p) ≥ 0, for all p ∈ R[w] non-negative on K.

(26)

Theorem 3.6 guarantees the equivalence between formulations (26) and (23). However,
the latter reformulation is still numerically intractable.
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From non-negative polynomials to sums of squares

Characterizing non-negativity of polynomials is an important issue in real algebraic
geometry. Let K be a basic semi-algebraic set, i.e.

K = {w ∈ Rn : g1(w) ≥ 0, . . . , gm(w) ≥ 0} (27)

for some polynomials g1, . . . , gm ∈ R[w], and assume that K is compact. In addition
assume that one of the polynomials, say the first one, is g1(w) := N − ∑n

i=1 w
2
i for

some N sufficiently large3. For notational convenience we let g0(w) := 1.
We say that a polynomial s ∈ R[w] is a sum of squares (SOS) if there are finitely

many polynomials q1, . . . , qr such that s(w) =
∑r

j=1 qj(w)2 for all w.
Theorem 3.7 (Putinar’s Positivstellensatz). If p > 0 on the basic semi-algebraic
compact set K defined by (27) with g1(w) := N −∑n

i=1 w
2
i , then p =

∑m
j=0 sjgj for

some SOS polynomials sj ∈ R[w], j = 0, 1, . . . ,m.
By a density argument, checking non-negativity of ℓz on polynomials non-negative

on K can be replaced by checking non-negativity only on polynomials that are strictly
positive on K and hence on those that have a SOS representation as in Theorem 3.7.

For a given integer d, denote by Σ[w]d ⊂ R[w] the set of SOS polynomials of degree
at most 2d, and define the cone Qd(g) ⊂ R[w] for g = (g0, . . . , gm) by

Qd(g) :=

{
m∑
j=0

σjgj : deg(σjgj) ≤ 2d, σj ∈ Σ[w]d, j = 0, 1, . . . ,m

}
(28)

and observe that Qd(g) consists of polynomials which are non-negative on K.
Let bd(w) := (wα)|α|≤d ∈ R[w]nd be the vector of monomials of degree at

most d. We recall that nd denotes the binomial number
(
n+d
n

)
. For j = 0, ...,m, let

dj = ⌈deg(gj)/2⌉, let Md−dj
(gjz) denote the real symmetric matrix linear in z cor-

responding to the entrywise application of ℓz to the matrix with polynomial entries
gjbd−dj

(w)bT
d−dj

(w). For j = 0 and g0 = 1, the matrix Md(z) = ℓz(bdb
T
d ) (where

ℓz is applied entrywise) is called the moment matrix. For any other value of j, it is
called a localizing matrix. It turns out that, for all j = 0, 1, . . . ,m, ℓz(gjq

2) ≥ 0 for all
q ∈ R[w]d if and only if Md−dj (gjz) ⪰ 0, which are convex linear matrix inequalities
in z and where ⪰ denotes the positive semi-definite (or Loewner) order.

3This condition is slightly stronger than asking K to be a basic semi-algebraic compact set. However, the
inequality N − ∑n

i=1 w2
i ≥ 0 can always be added as a redundant constraint to the description of a basic

semi-algebraic compact set. This condition has to be added because Putinar’s result applies to a family of
polynomials, and is not inherent to the set this family describes.
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Moment-SOS hierarchy

The following finite-dimensional semi-definite programming (SDP) problems are
relaxations of the moment problem (26):

inf
z∈Rn2d

ℓz(h) := ρ∗d

s.t. ℓz(hk) ≤ bk,deg(hk) ≤ 2d, k = 1, 2, . . .

Md−dj (gjz) ⪰ 0, j = 0, 1, . . . ,m

(29)

and they are parametrized by the relaxation degree d ≥ maxj=0,...,m dj .
Theorem 3.8 (Convergence of the moment-SOS hierarchy, [38, Theorem 7]). Suppose
that K is a basic semi-algebraic compact set. Further assume that there exists C > 0
such that for any d ∈ N, if zd ∈ Rn2d is solution of (29), then zd0 ≤ C, with C
independent of d. Finally assume that there exists a unique solution ν∗ ∈ M(K)+ to
problem (23). Then there exists a sequence (zd)d = ((zdα)α∈Nn2d )d such that ℓzd(h) =
ρ∗d and for all α ∈ Nn

zdα −→
d→∞

∫
K

wαdν(w). (30)

In particular, one has ρ∗d → ρ∗ as d→ ∞.

3.4 Application to our problem

Entropy MV solution as a GMP

In the scalar hyperbolic case, the measures νi under consideration are from the collec-
tion ν, or ν and ϑ when considering Kruzhkov’s entropies. The sets Ki all correspond
to K = T × X × Ξ × U. The polynomials hi,j are given in (18) (conservation law),
(19) when considering polynomial entropy pairs or (21) (and compatibility conditions
between ν and ϑ (47) and similar equations) when considering Kruzhkov entropy pairs
(entropy inequalities), and (38)-(41) (marginal constraints). For the sake of readibil-
ity, we shall only consider the case of polynomial entropies and a formulation only on
measures ν.

We may also define an objective functional

∫
K

hdν +

∫
K

h0dν0 +

∫
K

hT dνT +

n∑
i=1

(∫
K

hL,idνL,i +

∫
K

hR,idνR,i

)
, (31)

with h, h0, hT , (hL,i)
n
i=1, (hR,i)

n
i=1 ∈ R[t,x, ξ, y].

If the initial measure is concentrated on the graph of the initial condition and if, in
addition, one imposes suitable boundary measures as exposed in Remark 2.18, then the
choice of the objective functional is not crucial to recover the entropy MV solution of
scalar hyperbolic PDE. Indeed, as a consequence of Theorem 2.14, the corresponding
Young measure is concentrated: there is nothing to be optimized. However, our aim
is to approximate the GMP by a finite dimensional optimization problem in order to
solve it numerically and, then, the choice of the objective functional will impact the
convergence of the corresponding relaxations. From experimental observations, two
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objective functionals seem to produce interesting results: the maximum of the opposite
of the entropy constraints and the minimum of the trace of moment matrix. Choosing
the latter seems to be a good heuristic: minimizing the nuclear norm of a matrix leads
to reducing its rank (see [40]), which tends to favorise measures with localized support.
However, there is up to date still no proof of a general effective functional.

Finally, one is able to define a GMP:

inf
ν,νT

(31) (objective functional)

s.t. (18) (conservation law),

(19) (entropy inequality),

(38)− (41) (marginal constraints),

(32)

where the infimum is taken over measures ν ∈ M(K)+, νT ∈ M(KT )+.
Theorem 3.8 extends to the case of multiple measures, as discussed in [22] and

shown in [38]. Note that the compact sets T, X, Ξ and U as defined before can be
expressed as basic semi-algebraic compact sets, so that K is also a basic semi-algebraic
compact set:

T = {t ∈ R : t(T − t) ≥ 0},
X = {x ∈ R : (x1 − L1)(R1 − x1) ≥ 0, . . . , (xn − Ln)(Rn − xn) ≥ 0},
Ξ = {ξ ∈ Ξ : ξ1(1− ξ1) ≥ 0, . . . , ξp(1− ξp) ≥ 0},
U = {y ∈ R : (y − u)(u− y) ≥ 0}.

(33)

Moreover, the constraint for α = 0 (see equation (38) in Appendix A) yields the
relaxed linear constraint z0 = ℓz(1) =

∫
T×X×Ξ

dtdxdρ(ξ) ≤ |T||X|. Finally, supposing
that σ0 is concentrated on the graph of the weak-parametric entropy solution, (32)
admits a unique solution. Hence the hypotheses of Theorem 3.8 are satisfied.

Then, optimal solutions of the moment-SOS hierarchy (29) (adapted to the present
context) converge to optimal solutions of (32) as d goes to infinity. In particular, one
may extract the MV solution of (11), provided that σ0, γL,i and γR,j are concentrated
for 1 ≤ i ≤ n, as already discussed in Remark 2.18.

3.5 Post-processing quantities of interest

We have seen in the previous section how to obtain approximate sequences zd of
moments of the measure ν on K, such that dν(t,x, ξ, y) = dµt,x,ξ(y)dtdxdρ(ξ) where
µ is the measure-valued solution supported on the graph of the solution. In this
section, we present how to construct an approximation of the function u thanks to
the Christoffel-Darboux function and its ability to estimate the support of a measure
(see [41] for further details). Also, we show how to obtain approximations of statisti-
cal moments of variables of interest that are functions of the solution, possibly using
a moment completion technique and the Christoffel-Darboux function.
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3.5.1 Approximation of the graph of the solution

We consider that we have obtained an approximation zd of the moments of order
2d of the measure ν, which is a measure supported on the graph of the function
u(t,x, ξ). In order to approximate the function from the moments, we rely on an
approximate Christoffel-Darboux function associated with the measure (that has to be
carefully defined), which tends to take high values on the support of the measure. Thus,
finding the minimizers of the approximate inverse Christoffel-Darboux function for
given (t,x, ξ) ∈ T×X×Ξ gives an approximation of u(t,x, ξ). Forw = (t,x, ξ, y) ∈ K,
we let bd(w) be a basis of monomials of order up to d and Md(z

d) = ℓzd(bd(·)bd(·)T )
be the corresponding moment matrix, that is the Gram matrix of the basis bd(w) for
the measure νd corresponding to zd. WhenMd(z

d) is invertible, the inverse Christoffel-
Darboux function is defined by

qνd(w) = bd(w)TMd(z
d)−1bd(w) =

nd∑
i=1

λ−1
i (bd(w)Tvi)

2

where the (λi,vi) are eigenpairs of Md(z
d), and the polynomials pi(w) =

λ
−1/2
i bd(w)Tvi form an orthonormal basis of the space of polynomials of order d

in L2
νd(K). In the case where Md(z

d) is singular, a regularization is introduced by
considering the function

qνd,β(w) = bd(w)T (Md(z
d) + βI)−1bd(w) =

nd∑
i=1

(λi + β)−1(bd(w)Tpi)
2,

which turns out to be the inverse Christoffel-Darboux function of a measure νd+βν0,
where ν0 is the measure on K for which the monomials form an orthonormal family
(see [24]). Exploiting the fact that qνd+βν0

tends to take low values on the graph of u,
an approximation of u is defined by

fβ,d(t,x, ξ) ∈ argmin
y∈U

qνd+βν0
(t,x, ξ, y).

Further information can be found in [24].
Remark 3.9. In this paper, we consider polynomial moments of the occupation mea-
sure. This allows us to exploit the localization property of the associated Christoffel
functions and to estimate the graph of the solution a posteriori. The use of moments
associated with other functions, such as piecewise polynomials, could probably be
considered as well (see [42] for the use of piecewise polynomial moments and a short
review on the use of other types of moments).

3.5.2 Statistical moments of variables of interest

Considering ξ as a random parameter, one may be interested in computing the expec-
tation of some variable of interest Q(ξ) = F (u(·, ·, ξ); ξ), where F (·, ξ) is a real-valued
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function taking as input time-space functions. In some particular situations, it is possi-
ble to directly obtain an estimation of this quantity from the moments zd. In particular,
this is the case when

Q(ξ) =

∫
T×X

G(u(t,x, ξ), t,x, ξ)dtdx,

with G is polynomial since then

E(Q(ξ)) =

∫
T×X×Ξ

G(w)dν(w) ≈ ℓzd(G).

We may also be interested in obtaining statistical moments of the solution u(t,x, ξ)
at different points (t,x), which is not a variable of interest in the above format. Of
course, these quantities can be estimated from point-wise evaluations of u based on
the technique presented in the previous section. However, an alternative approach is
possible to estimate the statistical moments∫

Ξ

u(t,x, ξ)kdρ(ξ) := fk(t,x) (34)

for all (t,x) ∈ T × X, from the the approximate moments zd of the measure ν. We
know that the measure ν can be disintegrated into its marginal λT ⊗ λX and its
conditional measure dν(ξ, y|t,x), such that dν(t,x, ξ, y) = dν(ξ, y|t,x)dtdx.
We assume that fk(t,x) takes values in a compact set F := [F , F ] which can be
easily obtained in terms of U and k. We then let {g̃j}mj=1, m ∈ N, be polynomials
that describe the semi-algebraic compact set T×X×F. Letting z be the sequence of
moments of ν, we may notice that for all α = (α1, α2) ∈ Nn+1

2d−k,

zα1,α2,0,k =

∫
T

∫
X

tα1xα2fk(t,x)dxdt =

∫
T

∫
X

∫
F

tα1xα2yδfk(t,x)(dy)dxdt.

Our goal is then here to approximate the support of the measure δfk(t,x)(dy)dxdt

from its moments ω in order to recover the graph of fk(t,x). We are faced with the
issue that the information we have on the moments is incomplete, namely, we only
have the moments ωα,0 for α ∈ Nn+1

2d and ωα,1 for α ∈ Nn+1
2d−k. Following [25], we

introduce the following finite-dimensional semi-definite programming (SDP) problems
to recover the graph of fk(t,x) from incomplete moment information:

inf
ω∈R(n+2)d

Tr(Md(ω))

s.t. ωα,0 = zdα1,α2,0,0, ∀α ∈ Nn+1
2d

ωα,1 = zdα1,α2,0,k, ∀α ∈ Nn+1
2d−k

Md−dj
(g̃jω) ⪰ 0, j = 0, ...,m,

(35)
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where Tr(M) denotes the trace of a matrix M . We recall that Md(ω) denotes the
moment matrix of ω. From this, we can compute the corresponding Christoffel-
Darboux approximation of fk, following the approach of the previous section, see
[24, 25].

4 Numerical examples

For numerical illustration, we consider Burgers-type equations with parametrised
initial condition or parametrised flux.

The choice of entropy pairs is important to ensure uniqueness of the solution.
Implementing Kruzkhov’s entropy pairs is possible (as seen in Section 3.1), but compu-
tationally heavy since it requires a reformulation with measures in higher dimension.
It is known that the entropy η(y) = y2 provides sufficient constraints to ensure
uniqueness of the entropy solution for Burgers equation [26]. Then, instead of using
Kruzkhov’s pairs, we here rely on the following family of polynomial entropies:

ηl(y) = y2l, ∀l ∈ N

and the corresponding polynomial functions ql. As an objective function, we choose
the trace of the moment matrix (see discussion in section 3.4).

Numerical experiments are performed with the Matlab interface Gloptipoly3 [43].
In order to approximate the graph of solutions u, we use the method described

in Section 3.5.1. Numerically, the optimization of the Christoffel function is achieved
through a discretization of T, X, Ξ and U and the computation of the Christoffel
function at each point of the grid. We set the value of the regularization parameter β
to 10−7.

We shall in the following denote by ũd the Christoffel-Darboux approximation of
the solution using approximate moments from a degree d of the hierarchy, and by u
the exact solution of our Riemann problem.
Remark 4.1 (On computational complexity). In our numerical experiments, we used
an interior-point algorithm to solve SDP problems, whose complexity is analyzed
in [44]. Let qd be the number of unknown moments of a measure. Our SDP prob-
lem has semi-positive inequalities on matrices Md−dj

∈ Rri×ri , 0 ≤ j ≤ m, with
rj ≤ qd/2. Letting r =

∑m
j=0 rj , the complexity of the interior-point algorithm is

O(
√
r(q2d

∑m
j=0 rj + qd

∑m
j=0 r

3
j )). Thus, the complexity is O(q

9/2
d ).

Remark 4.2 (Curse of dimension). For a relaxation degree d, the number of unknown
moments of a measure is qd =

(
d+n+p+2

d

)
= O(dn+p+2). Thus from Remark 4.1,

we deduce that the complexity of the interior-point algorithm is O(d
9
2 (n+p+2)). To

circumvent the curse of dimension and address problems with high dimension n+p+2,
we should exploit low-dimensional structures in the set of moments, such as sparsity
[45] or low-rankness. This will be addressed in future works.
Remark 4.3. Mesh-based methods can be used to approximate solutions in terms of
the physical variables and the parameters, also facing the curse of dimension. Due to
the presence of discontinuities in terms of the physical variables and the parameters
(not necessarily aligned with the coordinates), adaptive mesh refinement methods are
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required, leading to prohibitive computational cost in high dimension. Our method is
mesh-free and seems to capture well discontinuities. Further comparisons need to be
performed in future works.
Remark 4.4 (Obtaining the moment constraints). We here consider problems with
polynomial or piecewise polynomial data, that allowed us to compute exactly the
moments of the given measures σ0, γL,i and γR,i, 1 ≤ i ≤ n. For more complicated
data and high dimensional problems, numerical integration methods could be required,
such as Monte Carlo methods.

4.1 Riemann problem for the Burgers equation with
parametrised initial condition

As a first example, we consider the classical one-dimensional Riemann problem (see
e.g., [46]) for a Burgers equation, with a parameter-independent flux

f(u) =
1

2
u2.

and where we parametrise the initial position of the shock, taking

u0(x, ξ) =


1 if x <

1

4
(ξ − 1),

0 if x ≥ 1

4
(ξ − 1).

with a parameter ξ taking values in Ξ = [0, 1]. We know that the solution takes values
in U = [0, 1]. The time-space window on which we consider the solution is T = [0, 12 ]
and X = [− 1

2 ,
1
2 ].

The unique solution is

u(t, x, ξ) =


1 if x <

1

4
(ξ − 1) +

t

2
,

0 if x ≥ 1

4
(ξ − 1) +

t

2
,

(36)

Equipping Ξ with the Lebesgue measure on [0, 1], it yields the following statistical
moments

fk(t, x) =

∫
Ξ

u(t, x, ξ)kdρ(ξ)

= 1−min(1,max(0, 1− 2t+ 4x)) + 0k min(1,max(0, 1− 2t+ 4x)),

for all k ∈ N, for all (t, x) ∈ T × X. We may notice that in this simple case, fk is
independent on k for k ≥ 1.

We recall that at relaxation degree d, the number of unknown moments 2qd ≤
2
(
d+n+p+2

d

)
. Indeed, each measure is expected to yield qd moments, and we optimize

over the two measures ν and νT . However, νT has less unknown moments, since it is
supported on KT and some of its moments are dependant.
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Retrieving the graph of the solution

Figure 1 shows the graphs of the approximate solution ũd(t, x, 0) for (t, x) ∈ T × X
(so that the shock is initially located at x = − 1

4 ), with hierarchy’s degree d = 2, 5, 8.

(a) d = 2 (b) d = 5

(c) d = 8

Fig. 1: Graphs of the approximate solution ũd(t, x, 0) for d = 2, 5, 8

Figure 2 shows the graphs of the approximate solution ũd(
1
4 , x, ξ) for x ∈ X and

ξ = 0, 1 (so that the shock is initially located at x = − 1
4 and x = 0 respectively), with

relaxation degree d = 2, 5, 8, superposed with the exact solution.
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Fig. 2: Graphs of the approximate solution ũd(
1
4 , x, ξ) for d = 2, 5, 8 superposed with

the exact solution

We see that our approximation is almost indistinguishable from the exact solution
for d = 5, and indistinguishable from the exact solution d = 8. We observe the same
results as in [16], where discontinuities are very well resolved as early as d = 5.

Error estimation

We choose to compute two different errors of our approximate solution.

l1(T×X×Ξ) error. We randomly pick 25 values in Ξ, and consider 25 equidistant
values in T and X. We denote the test sets Ξe, Te and Xe respectively. We study the
evolution of the relative l1 error with respect to the degree d of the hierarchy. Namely,
we are interested in

eg(d) :=
∥u− ũd∥l1(Te×Xe×Ξe)

∥u∥l1(Te×Xe×Ξe)
.

The results are presented in Table 1 and on Figure 3.

d 2 3 4 5 6 7 8
qd 140 420 990 2002 3640 6120 9690

eg(d) 0.0850 0.0267 0.0191 0.0168 0.0165 0.0167 0.0163

Table 1: Number of unknowns qd and error eg(d) for d = 2, . . . , 8

We observe a fast convergence of the error for small values of d. The convergence
is not monotone and rather slow for high values of d. It may thus seem interesting to
investigate where the errors are concentrated in our approximation. For illustrative
purpose, we plot the distributed error ε(t, x) = |ũ5(t, x, 0.2) − u(t, x, 0.2)| for (t, x) ∈
Te ×Xe on Figure 4. We observe that the errors are mostly concentrated around the
shock, but it is noticeable that the closer to the time boundaries, the worse they are.
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Fig. 3: Evolution of the error eg with relaxation degree d

(a) z axis from 0 to 1 (b) z axis from 0 to 6× 10−3

Fig. 4: Graph of the error ε(t, x) = |ũ5(t, x, 0.2)− u(t, x, 0.2)|

We observe similar results on other numerical tests, although for smaller values of
d we also observe large errors near spatial boundaries.
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Fig. 5: Graph of the error ε(t, x) = |ũ5(t, x, 0.2)− u(t, x, 0.2)|

l1(T ×X) error for different parameter values. We consider four different values of
the parameter ξ ∈ Ξe := (0, 0.2, 0.6, 1) (which correspond to a shock initially located
at x = −0.25, x = −0.2, x = −0.1 and x = 0), and 100 equidistant points in T and
X, denoting the test sets Te and Xe respectively. We then choose to study, for each
ξe ∈ Ξe, the evolution of the relative l1(Te ×Xe) error with respect to the degree d
of the hierarchy. We are thus interested in

epξe(d) :=
∥u(·, ·, ξe)− ũd(·, ·, ξe)∥l1(Te×Xe)

∥u(·, ·, ξe)∥l1(Te×Xe)
,

for all ξe ∈ Ξe. The results are presented in Table 2.

d 2 3 4 5 6 7 8
qd 140 420 990 2002 3640 6120 9690

ep0(d) 0.208 0.0616 0.0343 0.0314 0.0279 0.0276 0.0271
ep0.2(d) 0.0971 0.0286 0.0218 0.0193 0.0176 0.0171 0.0182
ep0.6(d) 0.0563 0.0207 0.0162 0.0162 0.0158 0.0161 0.0174
ep1(d) 0.104 0.0407 0.0244 0.0229 0.0208 0.0194 0.0184

Table 2: Number of unknowns qd and errors epξe(d) for d = 2, . . . , 8

We observe the same behaviour of the errors as in the previous paragraph.

Conservation condition

We here check the conservation condition, i.e. how far cd(t, ξ) :=
∫
X
(ũd(t, x, ξ) −

u(t, x, ξ))dx is from 0. We plot on Figure 6 the function t 7→ cd(t, 0.2) for 11 equidistant
points in T and for d = 2, 5, 8. In order to approximate the integral, we compute the
pointwise error for 1001 equidistant points in X and divide the sum by the number of
points. The conservation condition is rather well satisfied and it tends to improve as
d rises.
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Fig. 6: Conservation condition cd(t, 0.2) versus time t for d = 2, 5, 8

Retrieving statistical moments of the solution

Denote Te 100 equidistant points in T and Xe 100 equidistant points in X. We want
to approximate the expectation f1(x, t) of the solution for all (t, x) ∈ Te×Xe following

the method described in Section 3.5.2. Denoting f̃1d the approximated expected value
of the solution for degree of relaxation d of the hierarchy, we want to compute the
relative l1(Te × Xe) error of our approximation for d = 2, . . . , 8, namely, we are
interested in

es(d) :=
∥f1 − f̃1d∥l1(Te×Xe)

∥f1∥l1(Te×Xe)
,

for all d = 2, . . . , 8. The results are presented in Table 3.

d 2 3 4 5 6 7 8
qd 140 420 990 2002 3640 6120 9690

es(d) 0.358 0.102 0.0557 0.0451 0.0484 0.0574 0.0637

Table 3: Number of unknowns qd and error es(d) for d =
2, . . . , 8

We note here the same phenomenon as for the errors presented above occurring,
where the approximation rapidly improves as d rises until d = 5. The convergence is
then rather slow and not monotone.

4.2 Riemann problem for the Burgers equation with
parametrised flux

As a second illustration, we consider the classical one-dimensional Riemann problem
(see e.g., [46]) for a Burgers equation, where we parametrise the flux of the equation.
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In particular, we choose the flux

f(u, ξ) =
1

4
(ξ + 1)u2,

with a parameter ξ taking values in Ξ = [0, 1]. The Riemann problem to this conser-
vation law is a Cauchy problem with the following initial condition, piecewise constant
with one point of discontinuity:

u0(x) =

{
1 if x < 0,

0 if x ≥ 0.

The solution is known to take values in U = [0, 1]. The time-space window on which
we consider the solution is T = [0, 12 ] and X = [− 1

2 ,
1
2 ].

The unique analytical solution corresponding to the initial condition is

u(t, x, ξ) =


1 if x <

1

4
(ξ + 1)t,

0 if x ≥ 1

4
(ξ + 1)t,

(37)

We can note that the randomness in (36) was simply a translation of the solution,
whereas, here, the phenomenon is non-linear, since the speed of the shock depends on
ξ.

Providing Ξ with the Lebesgue measure on [0, 1], it comes that, for all k ∈ N,

fk(0, x) = u0(x)
k,

for all x ∈ X, and

fk(t, x) = 1−min(1,max(0,
4x

t
− 1)) + 0k min(1,max(0,

4x

t
− 1)),

for all (t, x) ∈ T×X. We may notice that in this simple case, for all t > 0, fk(t, ·) is
independent on k for k ≥ 1.

Retrieving the graph of the solution

Figure 7 shows the graphs of the approximate solution ũd(t, x, 0) for (t, x) ∈ T × X
(so that the speed of the shock is 1

4 ), with relaxation degree d = 2, 5, 8.
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(a) d = 2 (b) d = 5

(c) d = 8

Fig. 7: Graphs of the approximate solution ũd(t, x, 0) for d = 2, 5, 8

Figure 8 shows the graphs of the approximate solution ũd(
1
4 , x, ξ) for x ∈ X and

ξ = 0, 1 (so that the speed of the shock is 1
4 and 1

2 respectively), with hierarchy’s
degree d = 2, 5, 8, superposed with the exact solution. Once more, we see that our
approximation is very close to the exact solution for d = 5, and indistinguishable from
the exact solution for d = 8.
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Fig. 8: Graphs of the approximate solution ũd(
1
4 , x, ξ) for d = 2, 5, 8, superposed with

the exact solution

l1(T×X×Ξ) error

We pick at random 25 values in Ξ, and consider 25 equidistant values in T and X. We
denote the test sets Ξe, Te and Xe respectively. We study the evolution of the relative
l1 error with respect to the degree d of the hierarchy. Namely, we are interested in

eg(d) :=
∥u− ũd∥l1(Te×Xe×Ξe)

∥u∥l1(Te×Xe×Ξe)
.

The results are shown in Table 4 and on Figure 9.

d 2 3 4 5 6 7 8
qd 140 420 990 2002 3640 6120 9690

eg(d) 0.0738 0.0285 0.0142 0.00772 0.00780 0.00818 0.00963

Table 4: Number of unknowns qd and error eg(d) for d = 2, . . . , 8
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Fig. 9: Evolution of the error eg with relaxation degree d

We note here the same phenomenon as for the errors presented above occurring,
where the approximation improves as d rises until d = 5. Then the convergence is not
monotone and rather slow.

Conservation condition

We once more study the conservation condition by plotting the function t 7→ cd(t, ξ) =∫
X
(ũd(t, x, ξ) − u(t, x, ξ))dx for ξ = 0.2 for 11 equidistant points in T and d = 2, 5, 8

on Figure 10. The same remark as for the previous experiment holds: the conservation
condition is rather well satisfied and it tends to improve as d increases.
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Fig. 10: Conservation condition cd(t, 0.2) versus time t for d = 2, 5, 8 (left) and for
d = 5, 8 (right)
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Appendices

A Imposing marginal constraints of occupation
measures

First, to ensure that the marginal of ν with respect to t, x and ξ is the tensor product
of the Lebesgue measure on T×X and ρ, it suffices to impose that∫

K

tα1xα2ξα3dν(t,x, ξ, y) =

∫
T×X×Ξ

tα1xα2ξα3dtdxdρ(ξ), (38)

for all α ∈ Nn+p+1. In a similar manner, we impose the marginals of the time boundary
measures to be products of a Dirac measure, a Lebesgue measure and ρ as follows: for
all α ∈ Nn+p+1,∫

K

tα1xα2ξα3dν0(t,x, ξ, y) = 0α1

∫
X×Ξ

xα2ξα3dxdρ(ξ), (39)

∫
K

tα1xα2ξα3dνT (t,x, ξ, y) = Tα1

∫
X×Ξ

xα2ξα3dxdρ(ξ), (40)

and ∫
K

tα1xα2ξα3dνB,i(t,x, ξ, y) =

∫
T×ΓB,i×Ξ

tα1xα2ξα3dtdxdρ(ξ), (41)

for all 1 ≤ i ≤ n and B ∈ {L,R}.

B Split measures and corresponding moments
constraints

In addition to split measures ϑ+T and ϑ−T associated with ν, we introduce the time
boundary measures ϑ+0 , ϑ

−
0 , ϑ

+
T and ϑ−T , which are defined as

dϑ±0 (t,x, ξ, y, v) := 1{u∈U:±(y−u)≥0}(v)dν0(t,x, ξ, y)dv, (42a)

dϑ±T (t,x, ξ, y, v) := 1{u∈U:±(y−u)≥0}(v)dνT (t,x, ξ, y)dv, (42b)

with supports

K±
0 := supp(ϑ+0 ) = {(t,x, ξ, y, v) ∈ K0 ×U : ±(y − v) ≥ 0}, (43)

K±
T := supp(ϑ+T ) = {(t,x, ξ, y, v) ∈ KT ×U : ±(y − v) ≥ 0}, (44)

respectively. We only introduce the space boundary measures (ϑ+Li
)ni=1, (ϑ−Li

)ni=1,

(ϑ+Ri
)ni=1 and (ϑ−Ri

)ni=1, defined as

dϑ±B,i(t,x, ξ, y, v) := 1{u∈U:±(y−u)≥0}(v)dνLi
(t,x, ξ, y)dv, (45)
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for B ∈ {L,R} and 1 ≤ i ≤ n, with supports

K±
B,i := supp(ϑ±B,i) = {(t,x, ξ, y, v) ∈ KB,i ×U : ±(y − v) ≥ 0}. (46)

The relation between ν and split measures ϑ+ and ϑ− is imposed through moment
constraints ∫

K×U

wαvβ(dϑ+ + dϑ−)(w, v) =
∫
K×U

wαvβdν(w)dv, (47)

for all α ∈ Nn+p+2 and for all β ∈ N. Similar conditions are imposed between time
and boundary measures and their corresponding split measures.

C Not imposing (18) for the Burgers equation

For illustrative purposes, we solved the GMP and reconstructed the approximate solu-
tion without imposing (18) for the Riemann problem where the initial position of the
shock is parametrised. At relaxation degree d = 5 and for ξ = 0.6, which is equiva-
lent to a shock initially located at x = − 1

10 , it yields Figure 11. We observe here that
removing (18) from the constraints highly degrades the approximation.

Fig. 11: Graph of the approximate solution ũd(t, x, 0.6) for d = 5 without imposing
(18)
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