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Abstract

We propose a numerical method to solve parameter-dependent hyper-
bolic partial differential equations (PDEs) with a moment approach, based
on a previous work from Marx et al. (2020). This approach relies on a
very weak notion of solution of nonlinear equations, namely parametric
entropy measure-valued (MV) solutions, satisfying linear equations in the
space of Borel measures. The infinite-dimensional linear problem is ap-
proximated by a hierarchy of convex, finite-dimensional, semidefinite pro-
gramming problems, called Lasserre’s hierarchy. This gives us a sequence
of approximations of the moments of the occupation measure associated
with the parametric entropy MV solution, which is proved to converge.
In the end, several post-treatments can be performed from this approx-
imate moments sequence. In particular, the graph of the solution can
be reconstructed from an optimization of the Christoffel-Darboux kernel
associated with the approximate measure, that is a powerful approxima-
tion tool able to capture a large class of irregular functions. Also, for
uncertainty quantification problems, several quantities of interest can be
estimated, sometimes directly such as the expectation of smooth function-
als of the solutions. The performance of our approach is evaluated through
numerical experiments on the inviscid Burgers equation with parametrised
initial conditions or parametrised flux function.
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1 Introduction

Non-linear hyperbolic conservation laws model numerous physical phenomena
in fluid mechanics, traffic flow or non-linear acoustics [8, 38]. The numeri-
cal computation of such equations is often a challenge since their solutions may
present discontinuities, even if the initial data are smooth. Numerous numerical
methods exist to approximate them, amongst which we may cite finite volume
or finite difference schemes [27] or the front-tracking method [19]. We are in-
terested in this paper in solving parameter-dependent hyperbolic conservation
laws, which are considered for various tasks in data assimilation [6], uncertainty
quantification [1, 34, 5, 39, 3], sensitivity analysis [7], or error analysis [13]. The
parameters in our context appear in the initial data and in the flux function
and are associated with a probability measure. The computation of approxi-
mate solutions for many instances of the parameters is usually prohibitive and
require reduced order models.

Model order reduction methods aim at providing an approximation of the
solution u(z, £), depending on physical variables z and parameters £, that can be
efficiently evaluated. They either rely on an explicit approximation of the solu-
tion map & — u(-,£) or an approximation of the solution manifold {u(-,£): € €
=} by some dimension reduction method. The main challenge for models driven
by conservation laws is that the solution maps and solution manifolds are highly
nonlinear (in particular due to the presence of discontinuities), that require the
introduction of nonlinear approximation or dimension reduction methods. Sev-
eral model reduction methods based on compositions have been proposed, that
include methods based on parameter-dependent changes of variables [36, 15]
or deep learning methods using neural networks [23]. These methods usually
require high computational resources and huge training data for the approxi-
mation of highly nonlinear solution maps.

Here, we follow a different approach and propose a new surrogate mod-
elling method. It is an extension of [29] to parameter-dependent or random
conservation laws. Whereas it is classical to seek entropy weak solutions to hy-
perbolic conservation laws [8, 22], we are rather interested in so-called entropy
measure-valued (MV) solutions, an even weaker notion of solution, introduced
by DiPerna in [10, 32]. To a MV solution corresponds an occupation measure,
whose marginal is the MV solution. Even if this notion of solution is very weak,
there is a correspondence with entropy weak solution. The measure concen-
trated on the graph of the entropy weak solution is a MV solution. It is worth
noting that the formulation in the setting of MV solutions leads to a linear
problem, so that some efficient tools from convex analysis can be applied.

We start with a theoretical framework for parameter-dependent conserva-
tion laws similar to the one of [31, 30]. However, in our case, we introduce a
weak-parametric formulation of the problem, where the classical entropy weak
formulation is also integrated with respect to the parameter. The purpose of
this formulation is to obtain an equivalent definition of parameter-dependent
entropy MV solutions using the moments of the associated occupation mea-
sure with respect to all the variables, including the parameters. Under the
assumption that flux function is polynomial and that the initial data can be
described by semi-algebraic functions, the entropy formulation becomes a set of
linear constraints on the moments of the occupation measure and we can follow
the procedure initiated in [29]. Indeed, this allows us to consider the problem



as a generalized moment problem (GMP), an infinite-dimensional optimization
problem over sequences of moments of measures, where both the cost and the
constraints are linear with respect to the moments of the measures. Powerful
results from real algebraic geometry allow to reformulate the constraint that
a sequence is a moment sequence into tractable semi-definite constraints. This
problem is then solved using Lasserre’s (moment sum-of-squares) hierarchy [24],
which consists in solving a sequence of convex semi-definite programs of increas-
ing size to approximate the moments of the occupation measure. Note that the
use of Lasserre’s hierarchy for solving PDEs has been also recently considered in
[16], although with a different approach where the considered measure is defined
on an infinite-dimensional function space, and assumed to be concentrated on
the solution of the PDE.

Obtaining an approximation of the moments can be costly, but once this
offline computation is performed, efficient online post-treatments are possible.
First, we can naturally obtain expectations of variables of interest that are
functions of the moments of the solution. Also, the graph of the entropy weak
solution (for any parameter value) can be recovered using a localization property
of the Christoffel-Darboux kernel of the approximate occupation measure, fol-
lowing the methodology proposed in [28]. This powerful approximation method
allows to capture efficiently discontinuities in the solutions. Using the moment
completion technique from [18], one can also have access to other quantities of
interest, such as statistical moments of point-wise evaluations of the solution.

Outline This paper is organized as follows. We first introduce some notations
and the problem considered. Section 2 introduces different notions of solutions
for parametrised scalar conservation laws and examines some links between these
notions. Section 3 introduces the moment-SOS hierarchy and indicates how to
perform several post-treatments such as retrieving the graph of the solution or
estimating statistical moments of the solution. Finally, Section 4 presents some
numerical experiments.

1.1 Notations

For X C R", with n € N, let C(X), Co(X) and CL(X) denote the space of func-
tions on X that are continuous, continuous and vanishing at infinity and con-
tinuously differentiable with compact support, respectively. The sets of signed
Borel measures and positive Borel measures are denoted M(X) and M(X)4,
respectively. The set of probability measures on X is denoted by P(X). The
measure Ay € M(X) denotes the Lebesgue measure on X, and for B C X a

Borel set, |B| denotes its Lebesgue measure. Given a vector w = (wy, ..., wy),
we denote by R[w] the ring of real multivariate polynomials in the variable
W1, ..., Wy, and for a multi-index o = (ay,...,q,), w* := w* ... w. Given

a positive Borel measure p, we denote by supp(u) its support, defined as the
smallest closed set whose complement has measure zero.



1.2 Definition of the problem

We consider parameter-dependent scalar hyperbolic conservation laws that are
formulated as a Cauchy problem

Opu(t,x, &) + divy f(u(t,x,£),€) =0, (t,x,€) e Ry XxR" x5, (1a)
u(0,x,€) = up(x,€), (x,€) €eR™ x E, (1b)

where ¢ € R is the time variable, x € R" is the space variable, and where
£ is a parameter in a parameter set 2 C RP, p € N. Then data are the flux
f:R x E — R™ and the initial condition ug : R™ x E — R.

The parameter set = is equipped with a probability measure p. We assume
that E is compact and the initial condition ug € L£L°(E; L>(R™)). Moreover,
we shall make the following assumptions on f.

Assumption 1.1. For all K C R compact, there exists Cx € R such that for
allu € K and p— a.e., |f(u,&)|| < Ck. Moreover, p— a.c., £(-,€) € C*(R;R™).

This assumption is satisfied for a polynomial function f, that will be assumed
in the next section. Then for the sake of simplicity, we restrict our analysis to
this setting. A more general setting can be found in [30].

Note that the initial data ug and the flux f may depend on distinct param-
eters but for the sake of clarity, and without loss of generality, we indicate a
dependence on the same set of parameters &.

2 Notions of parameter-dependent solution

2.1 Parametric entropy solution

We start by introducing the notion of parametric entropy weak solution, that
is defined point-wise in the parameter domain. This may be considered as a
strong-parametric solution, that is a straightforward notion of solution when a
parameter is considered, see, e.g., [31] or [30].

Definition 2.1 (Entropy pairs). Let n be a locally Lipschitz and convex func-
tion from R to R. Let q : R x 2 — R" such that d,q(u, &) = n'(u)0,f(u, &) for
p-almost &€ and almost all u € R. Then (7, q) is called an entropy pair associated
with conservation law (la).

We may notice that for an entropy pair (7, q), for p-almost all &, (-, &) is a
locally Lipschitz function.

We now introduce three specific families of entropy pairs, each of them having
a particular theoretical or numerical objective.

Definition 2.2 (C! family of entropy pairs). The C! family of entropy pairs,
denoted &, is defined as the set of entropy pairs (1, q) such that n € C1(R) and
for p-almost all &, q(-, &) € C1(R).

Note under assumption 1.1, if (1,q) is an entropy pair with n € C', then
(n,q) € E. The C! family of entropy pairs is related to the (opposite of the)
thermodynamic entropy and to the second law of thermodynamics, for fluid
dynamics models. The conservation law (la), for a fixed &, can be seen as a
simplification of such models.



Definition 2.3 (Kruzhkov family of entropy pairs). The Kruzhkov family of
entropy pairs is defined by

Ek = {(771;,01@) ve R}v

where for all v € R, for all u € R and for p-almost all &, n,(u) := |u — v| and

v (u, &) :=sign(u — v)(f(u, &) — £(v, £)).

Compared to &, the family £k has the advantage of being explicitly de-
scribed and of carrying strong results coming from Kruzhkov’s fundamental
paper [22], allowing to obtain some theoretical results, such as uniqueness and
stability.

Definition 2.4 (Polynomial family of entropy pairs). The polynomial family
of entropy pairs Ep is defined as the set of entropy pairs (1, q) such that 7 is
a polynomial function. If f is a polynomial function, then, for p-almost all &,
q(+, &) is also a polynomial function.

In the case of a uniformly convex flux function, a single polynomial entropy
can be sufficient to select the relevant solution (see e.g. [9, 21]). Actually, our
motivation is different. In numerical experiments, we shall use subsets of the
polynomial family of entropy pairs. The SOS-moment (Lasserre’s) hierarchy,
later exposed in this paper, relies indeed on a polynomial setting. Although it
is possible to implement our numerical method with £k as in [29], it is easier
to do so with subsets of £p when possible.

Definition 2.5 (Parametric entropy solution). Consider a family of entropy
pairs €. Let up : R” x E — R such that ug(-, &) € L>*(R™) p-almost everywhere
and f satisfy Assumption 1.1. A function u : Ry x R® x 2 — R such that for
p-almost all &, u(-,-, &) € L>®(R; x R™) is a parametric entropy solution for £
if, for all (n,q) € &, for all non-negative test functions ¢ € C}(Ry x R™) and
p-almost all £, it satisfies

R”
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Proposition 2.6. A function u is a parametric entropy solution for Ex if and
only if it is a parametric entropy solution for &Ec.

Proof. For the proof, see Lemma 4.1 in [14] and the discussion which follows. [

Theorem 2.7. If, for p-almost all €, the initial data ug(-,&) € L>(R™) and if
f satisfies Assumption 1.1, then problem (1) has a unique parametric entropy
solution u for Ex, or equivalently, Ec. Moreover it satisfies for all t € Ry and
for p-almost all &,

lu(t, -, &)l zoomny < lluo(-, &)l zoo rn)- (3)

Proof. From [14, Theorem 5.2], we have that, for p-almost all &, there exists
a unique solution u(-,-,€) € L>®(Ry x R™) for &. Then, from Proposition
2.6, we have that, for p-almost all &, there exists a unique solution u(-,-, &) €
L>®(R4 x R™) for Ek. The stability property (3) is deduced from [8, Theorem
6.2.7). O



Remark 2.8. Note that Theorem 2.7 does not provide any information on the
measurability of u. Under the assumption that E 3 & — u(-,-, &) € L®(R; x
R™) is Bochner measurable and that ug € L (E; L>(R"™)), Theorem 2.7 allows
to deduce

l[ull oo (ry xRr x=) < U0l coe ®n x=)-

We refer to [31, Theorem 3.3] that provides measurability properties of u under
additional assumptions on uyg.

Remark 2.9. We might hope that imposing that ug € L>(E; L>(R™)) may
be sufficient to have that &€ — u(-, -, &) is Bochner measurable, but this has not
been proved yet.

2.2 Weak-parametric entropy solutions

The next notion of solution is weaker. While the parametric entropy solution
adopts a pointwise point of view in the parameter domain, the following notion
of solution is deduced by integration over the parameter domain.

Definition 2.10 (Weak-parametric entropy solution). Consider a family of en-
tropy pairs €. Let ug € L2(R"xE) and f satisfy Assumption 1.1. A measurable
function v : Ry x R" x 2 — Rin L>®(R; x R™ x B) is called a weak-parametric
entropy solution for £ if, for all (n,q) € £ and all non-negative test functions
¢ € C(E;CLR, x R")), it satisfies

/R+ / . /E(at¢’7(“)+Vx¢-q(u,£))dp(£)dxdt+ /]R ) /E on(uo)dp(€)dx > 0.
(4)

It is at first glance a weaker notion of solution, but we shall see that under
certain assumptions, both notions of parametric entropy solution and weak-
parametric entropy solution coincide.

Theorem 2.11. Assume that ug € L>®(E, L>(R™)) and f satisfies Assumption
1.1. A function u, such that & — u(-, -, &) is Bochner measurable, is a parametric

entropy solution for Ex if and only if it is a weak-parametric entropy solution
for Ek.

Proof. Let u be a parametric entropy solution for £k, and let v € R and ¢ €
C(E;CH(RL x R™)). From Remark 2.8, and since ug € L>®(E, L>*(R")) and
& — u(-, -, &) is Bochner measurable, we have that u € L>*(R; xR™ x E). For p-
almost all &, ¢(, -, &) € CL(R, xR™), thus u verifies equation (2) for ¢» = ¢(-, -, &).
Let us integrate equation (2) on E. First, let us consider the terms where 7,
appears. From Remark 2.8, u is essentially bounded. Since 7, is continuous,
1Ny o u is also essentially bounded. Since ¢ and its derivative are continuous
in £ and E is a compact set, the terms where 7, appears are integrable in &.
Recalling the definition of q, in Definition 2.3, we have that, for all y € R,
p-almost everywhere, ||q,(y, €)|| < [[f(y,&)|| + |[f(v,&)||. From Assumption 1.1,
and since from the same argument as for the terms where 7, appears, u is
essentially bounded, there exists C,C, € R such that ||q,(u,§&)|| < C + C,,
p-almost everywhere. Thus, & — fR+ Jzn V& - q(u, §)dxdt is integrable and

integrating on = yields equation (4).



Conversely, let u € L2(R; x R x E) be a weak-parametric entropy solution,
v € R and ¢ € C(E;CH(R; x R™)) such that ¢(t,x,&) := 9(¢,x)y(&) where
b € CH(Ry x R") and v € C(E). The function u then verifies (4) for our
particular choice of ¢. Inequality (4) can be rewritten as [g I(€)y(£)dp(§) > 0.
Since I is p-measurable, 1;.o is p-measurable. Moreover, from [2, Theorem
12.7], since p is a finite Borel measure and = is a Polish space, we have that
p is a regular measure. Thus, there exists a sequence v, € C(E) such that
[17<0 = Ynllzim) = 0 as n — oo and [2 I(§)11<o(&)dp(§) > 0. Yet, [1;.9 <0
p-almost everywhere. Thus, I > 0 p-almost everywhere and it gives us that u

is a parametric entropy solution, which concludes the proof.
O

2.3 Measure-valued solutions

Following DiPerna [10], previous notions of solutions are extended to the weaker
case of measure-valued solutions thanks to the notion of Young measure.

Definition 2.12 (Young measure). A Young measure on a Euclidean space
X isamap p: X - PR),7 — p, such that for all g € Co(R) the function
7= [z 9()pr (dy) is measurable.

From this, we can seek an even weaker notion of solution that is a Young
measure fi(; x,¢) Which satisfies the following Cauchy problem:

at <M(t,x,§)aidR> + divx<u(t,x,£)7f('a€)> =0, (t7Xa€) € RJr x R™ x E‘a (5&)
H(0,x,6) = 00, (Xa E) € R" x Ev (5b)

where (-,-) denotes the integration of a (vector-valued) function g € C(R;R¥)
against a measure u € M(R), defined by

) :=/Rg(y)u(dy) €RF,

while o9 = d,,. Equation (5a) has to be understood in a weak entropy sense,
as explained in the following.

Definition 2.13 (Parametric entropy measure-valued (MV) solution). Con-
sider a family of entropy pairs €. Let og be Young measure on R” x E, and let
f satisfying Assumption 1.1. A Young measure p is a parametric entropy MV
solution to (5) for &, if, for a family of entropy pairs &, for all (n,q) € £ and all
non-negative test functions ¢ € C(E;CL(Ry x R™)), it satisfies

L] L @00x€) ) + Tt x.€) - aameyoct)) dpl e

+/R/ $(0,x,€)(00,n0)dp(§)dx > 0. (6)

=

1

With the injection

LRy xR" x E) —» (Ry x R x 2 — P(R))
u— ((t,X,&) = 5u(t,x,§)) ’



we notice that, under the condition that oy = 4,,,, weak-parametric entropy so-
lutions are parametric entropy MV solutions, but without further assumptions,
parametric entropy MV solutions are not necessarily weak-parametric entropy
solutions. However, the following result shows that the parametric entropy MV
solution can be concentrated on the graph of the weak-parametric entropy so-
lution.

Theorem 2.14. Let ug € L2(R™ x ) and f satisfy Assumption 1.1. Let u
be the unique weak parametric entropy solution for Ex and p be a parametric
entropy MV solution for Ex . If p-almost everywhere oo = dy,(.), then p-almost
everywhere j1 = dy.)-

Proof. First, we may note that from the same arguments that those presented
in the second part of the proof of Theorem 2.11, a parametric entropy MV
solution u for £ verifies the following inequality, for all v € R, all non-negative
test functions ¢ € C}(R; x R™) and p-almost all &:

L] @t 30 ey ) + Tlt.x) (e ) d

+ w(OaX)<007T/U>dX 2 0. (7)
Rn

Then, for p-almost all &, u(-, -, €) is an entropy MV solution of the initial problem
with a fixed parameter £, that is a parameter-independent problem studied in
[29]. Then, from [29, Theorem 1] and [10], we have that p-almost everywhere,
if (00)(.¢) = Ou(.e), then p( . ¢) = 0y, ¢), with u(-,-, &) the weak parametric
entropy solution. O

2.4 Restrictions to compact hypercubes

In order to extend the strategy developed in [29], it is mandatory to work
on compact sets. Whereas introducing compact domains in time and in the
parameter set is trivial, the restriction to bounded space domains has to be
carefully done. To simplify the setting and to avoid the problem of introducing
boundary conditions to conservation laws, see for instance [4, 33, 32], we assume
that the solution has no interaction with its boundary, i.e. the solution is known
on the boundary of the spatial domain at any time. Let

T:=[0,7), X:=[L,R]x - x[Lp,Ryn], E:=]01] (8)

be the respective domains of time ¢, space variable x and parameter £ for fixed
(but arbitrary) constants T', (L;)"; and (R;)"_;. The absence of interaction
with the boundary is translated as follows: initial data uy that we consider
are the restrictions to X x E of initial data defined on R™ x E such that,
considering the associated weak parametric entropy solution u, there exists e > 0
such that in 90X, := (0X + B(0,¢)) N X, and for all ¢ € T and p-almost all
& ult,, &) =ug(-, &), i.e. the weak parametric entropy solution is stationary on
0X.. This framework is the one we shall use in the following.

From (3), we can consider that u takes values in the following compact set

U= [@7 ﬂ]’ (9)



where the bounds are u := essinfx = up and u := ess Supx = Uo-
This leads us to reformulate the problem on the restricted domain.

Proposition 2.15 (Parametric entropy measure-valued solution on compact
hypercubes). Consider a family of entropy pair €. Let i : (t,%x,€) € Ry x R™ x
E = pixe € My(U) be a parametric entropy measure-valued solution for
E. Then it satisfies for all (n,q) € £ and for all non-negative test functions
6 € C(Z;C}(T x X)),

/r/x/= (O (. %, &) (itx.e), M) + Vxd(t, X, &) - (1t x.6), Q) dp(€)dxdt
+ /X /: 9(0,%,€) (00, n)dp(€)dx - /X /: O(T, x, €){or,n)dp(€)dx
_/F/X/w¢(t73Xa€)<%Q(w€)>dp(£)dxdt >0 (10)

where og and o are Young measures supported on X x 2, and where 7y is such
that

/T /x /E ¢(t, 8%, €) (v, al", €))dp(€)d(x)dt =
i /T /r /: St %10, €) (vri» ai(-, €))dp(€)dxdt

_i/r/rm/E¢(t’XR,i7£)<7L,¢7qz‘('7E))dp(ﬁ)dxdt,

where for each 1 < ¢ < n, vr; and yr,; are boundary measures supported on T x
'L x2 and TxT g ; xE respectively, withT'p ; = {x € 0X :x; = L;} andTr,; =
{x € 0X : x; = R;}, xp,; denotes the vector (x1,...,%i—1,TBi, Tit1,---,Tn)
for B € {L,R}.

Lemma 2.16. Consider a family of entropy pairs € such that either (id,f) € £
or & =Ek. Let i be a parametric entropy MV solution for £. Then for all test
functions ¢ € C(E;CH(T x X)), it satisfies

/T /X /_ (0066, %, ) (e id) + Vet %, €) (1) £)) dp(€)dxdt

“k

6(0, %, €) (00, id)dp(€)dx — /X /_ (T, x, &) (o7, id) dp(€)dx

m

- / / / o(t, %, €) (v, £( €))dp(€)dxdt = 0. (11)
TJ/XJE

Proof. The proof of this lemma is discussed in [12], and the case of the Kruzhkov’s
entropies is retrieved thanks to the boundedness of U. O

Remark 2.17. Our numerical method shall not use all inequalities (10). There-
fore, imposing (11) as an additional constraint may be beneficial in practice, see
further discussion in Section 3.



Remark 2.18 (Imposing constraints on the boundary). To ensure concentra-
tion of p(; »¢), in addition to the condition oo = d,,(.), one may impose condi-
tions on the boundary measures (v,;)7; and (yg,;)i—;. The choice of boundary
condition allows to ensure the absence of interaction with the boundary. We
shall make the assumption that the trace of uyp on I'p ;, noted vp ;(ug) exists for
all B € {L,R} and all 1 < i < n, and we at the same time notice that this trace
does not depend on £ € E. We then want to impose that vzi(X) = 055 , (uo)(x)
for almost all x € X, for all 1 <4 <n and for B € {L, R}.

Let v € M(K); with K := T x X x 2 x U defined by

dv(t,x,&,y) = dtdxdp(&)i(t,x,¢) (dY) (12)

where p is a parametric entropy MV solution. The measure v, called occupation
measure (see [26]), has At ® Ax ® p for marginal in (¢,x,§), and p x¢) as
the conditional measure in y given (£,x,§). In the case where g x ¢ (dy) =
du(t,x,¢)(dy), v is supported on the graph of the function u. We also introduce
the time boundary measures

dVO(tv x, €, y) = 50(dt)dXdp(€)00(dy)a dVT(tv x,§, y) = 0r (dt)dXdp(E)JT(dy)

(13)

whose supports are Ko := {0} x X x Ex U and Ky := {T} x X xEx U
respectively. Similarly, we introduce the space boundary measures

dVL,i(ta X, 57 y) = dt(srL,i (dx)dp(g)'yfaﬂ (dy>7 (14)

dvg,i(t,x,§,y) = dtdr, ,(dx)dp(§)Vr.:(dy) (15)

whose supports are given by Ky ; ;=T xI'p ; x Ex U and Kg; := T xI'p; x

= x U respectively, for 1 < i < n. For conciseness, we shall define the collection

of measures v := {v, vy, v, (v i) 1, (VR }-

It is known that measures with compact support are fully characterized by

their moments, see e.g. [24, p.52]. Thus, marginal constraints on occupation

measures v will be imposed through their moments, see details in Appendix A.

The introduction of the measure v allows us to rewrite the constraints (11)
and (10). The equation (11) can be put in the following form

Fiow) = [ (@uotx, €y + Vxolt.x.) - £(0)) dv(tx.€.1)
+/ ¢(t,X,£)de0(t7X,£,y)—/ ¢(tvxvé)deT<t7X7£7y)
K K

+; </K (b(t,X,ﬁ)fi(y)dl/[,}i(LX,E,y) - ~/1(¢(t7X7 £)fi(y)dVR,i(t,X,£,y)> =0,
(16)

10



where ¢ € C(E;C'(T x X)), and the equation (10) can be written

G(6,w,m,q) == /K (Br(t,%, €)1(y) + Vd(t, %, £) - aly)) di(t, . £,1)
+ /K ot %, €)n(y)dvo(t, %, €. ) — /K ot %, E)n(y)dvr(t, %, £.1)

+; (/K (b(tﬂXv&)qi(y)dVL,i(t7X7£7y) - A¢(tvxﬂ E)qi(y)dyR»i(LX?an)) >0,
(17)

for entropy pairs (1, q) in a family £ and ¢ € C(E;C*(T x X)) non-negative test
functions.

3 Moment-SOS method for measure-valued so-
lutions on compact sets

In the previous section, we introduced parametric measure-valued (MV) solu-
tions for scalar hyperbolic equations, that are defined by equations (16)-(17).
The aim of this section is to express these equations as constraints on the mo-
ments of the occupation measure and to explain how to approximate these
moments based on the moment-SOS (Lasserre’s) hierarchy [24]. For that, we
require the assumption that f : R x E is a polynomial function.

We will see in the next section how to extract from these moments some
information on the solution u of the initial problem.

3.1 From weak formulations to moment constraints

The following lemma, derived from [29, Lemma 1], relies on density arguments,
together with the fact that we are working with compact sets.

Lemma 3.1. Let {¢*} cynini1 be a polynomial basis on T x X x . Then
equation (16) is equivalent to

F(¢*,v)=0 (18)
for all o € NP+ where F is defined in (16).

For f a polynomial function, (18) provides constraints on linear combinations
of moments of measures v. In the case of a family of polynomial entropy pairs
& C Ep, we can also express (17) as constraints on the moments of measures v.

Lemma 3.2. Assume {¢™},cx for F C N"*PFL is a countable family of poly-
nomials on T x X X B such that any non-negative polynomial can be decomposed
on this family, with positive coefficients. Then, equation (17) is equivalent to

G(¢™,v,n,q9) >0 (19)

for alla € F and all (n,q) € £.

11



Remark 3.3. Since, as stated in Lemma 2.16, equation (17) implies equation
(16), then equation (19) implies equation (18) with an appropriate family of
entropy pairs. It thus may seem redundant to enforce both, but, in the ap-
proximation method, the family of polynomials in Lemma 3.2 will be reduced,
so that this implication is no more guaranteed and imposing (18) as additional
constraints may be beneficial.

The case £ = £k ensures concentration of the measure, as seen in Theorem
2.14, but we are faced with two issues: first, taking into account an uncountable
family of functions parametrised by v € U and, second, the absolute value
function v + |v] is not a polynomial. To deal with the uncountable family of
functions, we introduce v as a new variable. To treat the absolute value, we
double the number of measures.

More precisely, we introduce as new unknowns Borel measures 97 and 9,
whose supports are respectively defined by

supp(9F) = K := {(t,x,£,9,v) e Kx U:y >0},

supp(V7) = K™ :={(t,x,€,y,v) e Kx U :y < v},
and impose the condition that ¥ ® Ay = 9+ + 9¥~, which can be expressed as
constraints between moments of v, 9% and 9~. Similarly, we introduce time
boundary measures 93, 9y, ¥4 and 97, space boundary measures (95 )1
(VL )it (19;%1.)?:1 and (V3 )iz, and the corresponding constraints with mea-
sures v. All those definitions are plainly written in Appendix B. We shall once
again introduce a collection of measures

9 o= (0F,97,95 0y, 97,97, (97 3)imas (97 )imrs 9k )imas (DR, 0)imn)-

From [29, Lemma 2], equation (17) is equivalent to
H(6.0) = [ 60 @d(t.x.€)(y ~ ) + Tablt.%,8) - (£(s) ~ £0))) d0*
+ [ 000) @160, €)(0 =)+ Vudlt,%.6) - (£(0) = (1)) 49~
+ [ 0wt x, &) — v + [ oot x.€)w - n)as;
- [ oot x. &)= ot~ [ oot x.e)0 - i

K

K

Jr; (/K 0(v)o(t,x,&)(fi(y) — f:(v))dvE +/ 0(v)(t,x,€)(fi(v) — fi(y))dIL

B()o(t, %, €)(fi(v) — fi(y))dﬁ,}> >0,
(20)

- [ 0wt xo0) - o - [
K

K

for all non-negative test functions ¢ € C*(T x X) ® C(E) and all non-negative
test functions 6 € C(U).

Lemma 3.4. Assume {¢®} .7 is a countable family of polynomials on T x
X x B x U such that any non-negative polynomial can be decomposed on this
family with positive coefficients. Then (20) is equivalent to

H(¢™*,9) >0 (21)
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foralla € F.
Proof. The proof relies on density arguments. O

A particular family {¢™}, cy2cnipt2) satisfying the assumption that any non-
negative polynomial can be decomposed on this family with positive coefficients
is given by

O (1%, 8,0) o= 1% (T = 1) [ (@ = L™ (Re — i) *2ee)

=1

p
H (&) 2i+ant1 (1 — &)@ 20tntD) (y — ) ¥2n+20+3 (T — p) @2 (ntpt2)
i=1

for a € N2("+P+2) The proof follows the one of the Lemma 3 in [29], and uses
Handelman’s Positivstellensatz [29].

3.2 Generalized Moment Problem

Roughly speaking, the Generalized Moment Problem (GMP) is an infinite-
dimensional linear optimization problem on finitely many Borel measures v; €
M(K;)1, with K; € R™, with ¢ = 1,..., N and n; € N. That is, one is in-
terested in finding measures whose moments satisfy (possibly countably many)
linear constraints and which minimize some criterion. In full generality, the
GMP is intractable, but if all K; are basic semi-algebraic sets! and the inte-
grands are polynomials, then one may provide an efficient numerical scheme to
approximate as closely as desired any finite number of moments of optimal solu-
tions of the GMP. It consists of solving a hierarchy of semi-definite programs? of
increasing size. Convergence of this numerical scheme is guaranteed by invoking
powerful results from real algebraic geometry, essentially positivity certificates,
and further developed for many classical cases in [37, 20].

Let h; € R[w'] and h; ; € R[w'] be polynomials in the vector of indetermi-
nates w' € R™ and let by be real numbers, for finitely many i = 1,..., N and
countably many k = 1,2,.... The GMP is the following optimization problem
over measures:

N
inf Z/ hidy; =: p*
=1 i

Vi, ,UN £
i=

N

s.t.Z/ higdvi <bg, k=1,2,...
i=1 K
V; GM(Kl')_;,_, iil,...,N.

3.3 From measures to moments and their approximation

Instead of optimizing over the measures in problem (22), we optimize over their
moments. For simplicity and clarity of exposition, we describe the approach in

LA basic semi-algebraic set is defined by {x € R" : f;(x) > 0,Vi =1,...,m} where m € N
and f1,..., fm are polynomials.

2A semidefinite program is a particular class of a convex conic optimization problem that
can be solved numerically efficiently.
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the case of a single unknown measure v, but it easily extends to the case of
several measures. Let us consider the simplified GMP

inf/ hdv = p*
v JK

s.t./ hedv < be, k=1,2,... (23)
K

Ve M(K)-i-a
where K is a compact set in R, h € R[w]|, hy € R[w] and b, € R for all
k=1,2,.... The moment sequence z = (Zg)aecn Of & measure v € M(K), is
defined by

Zo, :/ w*dy, aeN". (24)

K

Similarly, given a sequence z = (Zq)aenn, if (24) holds for some v € M(K) 4
we say that the sequence has the representing measure v. Recall that measures
on compact sets are uniquely characterized by their moments (see [24, p. 52]).

Let N := {a € N" : |a| < d}, where |a| := > | oy, and ng := (”;d). A
vector p := (Pa)aeny € R™ is the coefficient vector (in the monomial basis) of
a polynomial p € R[w| with degree d = deg(p) expressed as p = ZaeNg PaW®.
Integrating p with respect to a measure v involves only finitely many moments:

/KpdV:/K Z PaW™dy = Z pa/KWadVZ Z PaZq-

aeNy aeNy aeNy
Next, we define a pseudo-integration with respect to an arbitrary sequence z €
RN" by
lz(p) == Y PaZa (25)

acNn
and /¢, is called the Riesz functional.

Theorem 3.5 (Riesz-Haviland [24, Theorem 3.1]). Let K C R™ be closed. A
real sequence z € RY" is the moment sequence of some measure v € M(K) g4,
i.e. z satisfies (24), if and only if £,(p) > 0 for all p € R[w| non-negative on
K.

Assuming that K is closed, we can reformulate thanks to this result the
GMP (23) as a linear problem on moment sequences, namely

inf £,(h) =p*
st Lp(hg) <bp, k=1,2,... (26)
2,(p) > 0, for all p € R[w] non-negative on K.
Theorem 3.5 guarantees the equivalence between formulations (26) and (23).

However, the latter reformulation is still numerically intractable.

From non-negative polynomials to sums of squares. Characterizing
non-negativity of polynomials is an important issue in real algebraic geometry.
Let K be a basic semi-algebraic set, i.e.

K={weR":g1(w)>0,...,9m(w) >0} (27)
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for some polynomials gi,...,g, € R[w], and assume that K is compact. In
addition assume that one of the polynomials, say the first one, is g1(w) =
N — 3", w? for some N sufficiently large®. For notational convenience we let
go(w) := 1.

We say that a polynomial s € R[w] is a sum of squares (SOS) if there are
finitely many polynomials ¢1, ..., ¢, such that s(w) = Z;Zl q;(w)? for all w.

Theorem 3.6 (Putinar’s Positivstellensatz). Ifp > 0 on the basic semi-algebraic
compact set K defined by (27) with gi(w) := N =31 w?, thenp = 3" 559,
for some SOS polynomials s; € Rlw],j =0,1,...,m.

By a density argument, checking non-negativity of ¢, on polynomials non-
negative on K can be replaced by checking non-negativity only on polynomials
that are strictly positive on K and hence on those that have a SOS representation
as in Theorem 3.6.

For a given integer d, denote by X[w]y C R[w] the set of SOS polynomials
of degree at most 2d, and define the cone Q4(g) C R[w] for g = (go, .-, 9m) by

Qalg) = Zojgj sdeg(ojg;) <2d,0; € X[wlq,j=0,1,...,m (28)
=0

and observe that @4(g) consists of polynomials which are non-negative on K.

Let by(w) := (W¥)|aj<a € R[w]™ be the vector of monomials of degree
at most d. We recall that ny denotes the binomial number ("). For j =
0,...,m, let d; = [deg(g;)/2], let M4_4,(g;2) denote the real symmetric matrix
linear in z corresponding to the entrywise application of ¢, to the matrix with
polynomial entries g;jby g, (w)bg_dj (w). For j = 0 and go = 1, the matrix
My(z) = £,(bgb]) (where £, is applied entrywise) is called the moment matrix.
For any other value of j, it is called a localizing matrix. It turns out that, for
all j =0,1,...,m, £;(g;¢*) > 0 for all ¢ € R[w]y if and only if My_q,(g;2) = 0,
which are convex linear matrix inequalities in z and where > denotes the positive
semi-definite (or Loewner) order.

Moment-SOS hierarchy. The following finite-dimensional semi-definite pro-
gramming (SDP) problems are relaxations of the moment problem (26):

inf  4,(h) = pj

zER™2d
st Ly(hg) < by, deg(hy) < 2d,k=1,2,... (29)
Mga—q,(g;2) = 0,5 =0,1,...,m

and they are parametrized by the relaxation order d > max;_q, .. m d;.

Theorem 3.7 (Convergence of the moment-SOS hierarchy, [37, Theorem 5]).
Suppose that there exists C > 0 such that for any d € N, if z% € R4 is solution

3This condition is slightly stronger than asking K to be a basic semi-algebraic compact set.
However, the inequality N — Y ; w? > 0 can always be added as a redundant constraint to
the description of a basic semi-algebraic compact set. This condition has to be added because
Putinar’s result applies to a family of polynomials, and is not inherent to the set this family
describes.
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of (29), then 23 < C, with C independent of d. Then there exists a sequence
(z9)g = ((zda)aeNnZd)d such that £,a(h) = p}; and for all o € N™

zd — wdv(w). (30)
d—o0 K

In particular, one has pj; — p* as d — oo.

3.4 Application to our problem

Entropy MYV solution as a GMP. In the scalar hyperbolic case, the mea-
sures v; under consideration are from the collection v, or v and 1 when consid-
ering Kruzhkov’s entropies. The sets K; all correspond to K =T x X x E x U.
The polynomials h; ; are given in (18) (conservation law), (19) when considering
polynomial entropy pairs or (21) (and compatibility conditions between v and 9
(47) and similar equations) when considering Kruzhkov entropy pairs (entropy
inequalities), and (38)-(41) (marginal constraints). For the sake of readibility,
we shall only consider the case of polynomial entropies and a formulation only
on measures v
We may also define an objective functional

/ hdv + / hodvo + / thuT+Z< / hiidvr,; + / hR,iduR,i) (31)
K K K o1 WK K

with h, hg, hr, (hL,i)?:p (hR,i)?:1 S R[t,x,{,y].

If the initial measure is concentrated on the graph of the initial condition
and if, in addition, one imposes suitable boundary measures as exposed in Re-
mark 2.18, then the choice of the objective functional is not crucial to recover
the entropy MV solution of scalar hyperbolic PDE. Indeed, as a consequence
of Theorem 2.14, the corresponding Young measure is concentrated: there is
nothing to be optimized. However, our aim is to approximate the GMP by a
finite dimensional optimization problem in order to solve it numerically and,
then, the choice of the objective functional will impact the convergence of the
corresponding relaxations. From experimental observations, two objective func-
tionals seem to produce interesting results: the maximum of the opposite of the
entropy constraints and the minimum of the trace of moment matrix. Choos-
ing the latter seems to be a good heuristic: minimizing the nuclear norm of a
matrix leads to reducing its rank (see [35]), which tends to favorise measures
with localized support. However, there is up to date still no proof of a general
effective functional.

Finally, one is able to define a GMP:

inf  (31) (objective functional)

v,vr

s.t.  (18) (conservation law), (32)
(19) (entropy inequality),
(38) — (41) (marginal constraints),

where the infimum is taken over measures v € M(K),,vr € M(Kr)4.
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Remark 3.8. Note that the compact sets T, X, 2 and U as defined before
can be expressed as basic semi-algebraic compact sets:

T={teR:¢(T-1t) >0},

X={xeR:(x1—L1)(R1 —2x1) >0,...,(xn — Ln)(Rn — z,) > 0}, (33)
E={tcB:601-6)>0,....6(1-¢) >0,

U={yeR: (y—u)(@—y) >0}

Theorem 3.7 extends to the case of multiple measures, as discussed in [24]
and shown in [37]. Moreover, the constraint for & = 0 (see equation (38) in Ap-
pendix) yields the relaxed linear constraint zg = €;(1) = [, x = dtdzdp(§) <
|T||X|. Hence the hypothesis of Theorem 3.7 is verified.

Then, optimal solutions of the moment-SOS hierarchy (29) (adapted to the
present context) converge to optimal solutions of (32) as d goes to infinity. In
particular, one may extract the MV solution of (11), provided that og, vz ; and
YR,; are concentrated for 1 < i < n, as already discussed in Remark 2.18.

3.5 Post-processing quantities of interest

We have seen in the previous section how to obtain approximate sequences z% of
moments of the measure v on K, such that dv(t,x,&,y) = dpu x,¢(y)dtdxdp(£)
where p is the measure-valued solution supported on the graph of the solution.
In this section, we present how to construct an approximation of the function u
thanks to the Christoffel-Darboux function and its ability to estimate the sup-
port of a measure (see [25] for further details). Also, we show how to obtain
approximations of statistical moments of variables of interest that are func-
tions of the solution, possibly using a moment completion technique and the
Christoffel-Darboux function.

3.5.1 Approximation of the graph of the solution

We consider that we have obtained an approximation z? of the moments of
order 2d of the measure v, which is a measure supported on the graph of the
function u(t,x,€). In order to approximate the function from the moments,
we rely on an approximate Christoffel-Darboux function associated with the
measure (that has to be carefully defined), which tends to take high values on
the support of the measure. Thus, finding the minimizers of the approximate
inverse Christoffel-Darboux function for given (¢,x,€) € T x X x E gives an
approximation of u(t,x,&). For w = (¢,x,&,y) € K, we let bg(w) be a basis of
monomials of order up to d and My(z?) = £,4(bg(-)ba(-)T) be the corresponding
moment matrix, that is the Gram matrix of the basis by(w) for the measure %
corresponding to z¢. When M(z?) is invertible, the inverse Christoffel-Darboux
function is defined by

Qyi(w) = ba(w)" My(z) " 'by(w) = Z A (ba(w)Tv)?

where the (\;,v;) are eigenpairs of My(z?), and the polynomials p;(w) =
)\i_l/ 2bd(w)Tvi form an orthonormal basis of the space of polynomials of order
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din L?,(K). In the case where My(z?) is singular, a regularization is introduced
by considering the function

nd

Ga,5(W) = ba(w)" (Ma(z%) + BT) 'ba(w) =Y _(A; + 8) " (ba(w)"p:)?,

i=1

which turns out to be the inverse Christoffel-Darboux function of a measure
v¢ + Buy, where vy is the measure on K for which the monomials form an
orthonormal family. Exploiting the fact that g4, g, tends to take low values
on the graph of u, an approximation of u is defined by

fp.a(t,x,€) € arg N gy 4 i (t,x,&,y).
Further information can be found in [28].

3.5.2 Statistical moments of variables of interest

Considering € as a random parameter, one may be interested in computing the
expectation of some variable of interest Q(&) = F(u(-,-,&); &), where F(-,&) is
a real-valued function taking as input time-space functions. In some particular
situations, it is possible to directly obtain an estimation of this quantity from
the moments z%. In particular, this is the case when

QO = [ Glult,x.€).t.x, €)dtix,
TxX
with G is polynomial since then
BQE) = [ Glwdv(w) = £(G).
TXXXE

We may also be interested in obtaining statistical moments of the solution
u(t,x, &) at different points (¢, x), which is not a variable of interest in the above
format. Of course, these quantities can be estimated from point-wise evalua-
tions of u based on the technique presented in the previous section. However,
an alternative approach is possible to estimate the statistical moments

/: u(t, %, £)Fdp(€) = fi(t, ) (34)

for all (t,x) € T x X, from the the approximate moments z¢ of the measure v.
We know that the measure v can be disintegrated into its marginal A\ ® Ax and
its conditional measure dv(€, y|t,x), such that dv(t,x, &,y) = dv(€, y|t, x)dtdx.

We assume that fi(¢,x) takes values in a compact set F := [F, F| which can be
easily obtained in terms of U and k. We then let {g;}72,, m € N, be polynomials

that describe the semi-algebraic compact set T x X x F. Letting z be the
sequence of moments of v, we may notice that for all & = (a1, a2) € Ny,

Zal,aQ,O,k:/ / talxa2fk(t,x)dxdt:/ / /talxa2y5fk(t7x)(dy)dxdt.
T JX TJXJF

Our goal is then here to approximate the support of the measure d, (¢ x) (dy)dxdt
from its moments w in order to recover the graph of f*(¢,x). We are faced with
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the issue that the information we have on the moments is incomplete, namely, we
only have the moments wq ¢ for o € N;‘dﬂ and wq,1 for a0 € Ngj_lk. Following
[18], we introduce the following finite-dimensional semi-definite programming
(SDP) problems to recover the graph of fi(t,x) from incomplete moment infor-

mation:
inf Tr(Mg(w))

weR(+2)g

_ ,d n+1
s.t. Wa,0 = Zay,a0,0,00 Vo € Noj

(35)
_.d n+1
Wa,1 = Zay 0,0,k VO € Nyjy

Md*dj (g/;w) = 0, .7 =0,..,m,

where Tr(M) denotes the trace of a matrix M. We recall that My(w) denotes the
moment matrix of w. From this, we can compute the corresponding Christoffel-
Darboux approximation of f, following the approach of the previous section,
see [28, 18].

4 Numerical examples

For numerical illustration, we consider Burgers-type equations with parametrised
initial condition or parametrised flux.

The choice of entropy pairs is important to ensure uniqueness of the solution.
Implementing Kruzkhov’s entropy pairs is possible (as seen in Section 3.1),
but computationally heavy since it requires a reformulation with measures in
higher dimension. It is known that the entropy 7(y) = %? provides sufficient
constraints to ensure uniqueness of the entropy solution for Burgers equation [9].
Then, instead of using Kruzkhov’s pairs, we here rely on the following family of
polynomial entropies:

m(y) =y*, VIeN

and the corresponding polynomial functions q;. As an objective function, we
choose the trace of the moment matrix (see discussion in section 3.4).

Numerical experiments are performed with the Matlab interface Gloptipoly3
[17].

In order to approximate the graph of solutions u, we use the method de-
scribed in Section 3.5.1. Numerically, the optimization of the Christoffel func-
tion is achieved through a discretization of T, X, E and U and the computation
of the Christoffel function at each point of the grid.

We shall in the following denote by ug the Christoffel-Darboux approxima-
tion of the solution using approximate moments from a degree d of the hierarchy,
and by u the exact solution of our Riemann problem.

4.1 Riemann problem for the Burgers equation with parametrised
initial condition

As a first example, we consider the classical one-dimensional Riemann problem
(see e.g., [11]) for a Burgers equation, with a parameter-independent flux

f(u) = %uQ.
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and where we parametrise the initial position of the shock, taking

1ifx<i(§—1),
UO($7§): 1
0if z > Z(f—l)

with a parameter £ taking values in = = [0, 1]. We know that the solution takes
values in U = [0,1]. The time-space window on which we consider the solution
isT=1[0,%] and X = [-3,4].

The unique solution is

1

u(t, z, &) =

¢
2’
t (36)

1
Oifx>—-(£-1
ite > 3(€—1)+3,
Equipping E with the Lebesgue measure on [0, 1], it yields the following statis-
tical moments

h@w%=/u@w£V@@)

=1 — min(1, max(0,1 — 2t + 4z)) 4 0¥ min(1, max(0, 1 — 2t + 4x)),

for all k € N, for all (¢,z2) € T x X. We may notice that in this simple case, fj
is independent on k for k£ > 1.

Retrieving the graph of the solution. Figure 1 shows the graphs of the
approximate solution uq (¢, z,0) for (¢,2) € T x X (so that the shock is initially
located at = = —%), with hierarchy’s degree d = 2,5, 8.

Figure 2 shows the graphs of the approximate solution uq(t, x,1) for (¢, z) €
T x X (so that the shock is initially located at « = 0), with hierarchy’s degree
d=2,58.

We observe the same results as in [29], where discontinuities are very well
resolved as early as d = 5.

Error estimation. We choose to compute two different errors of our approx-
imate solution.

IM(T x X x B) error. We randomly pick 25 values in =, and consider
25 equidistant values in T and X. We denote the test sets E., T. and X,
respectively. We study the evolution of the relative [! error with respect to the
degree d of the hierarchy. Namely, we are interested in

HU - UNdHll(TExXCxEC)

eq(d) ==

Jwllin (T, xx. x=.)

The results are presented in Table 1.
We observe a fast convergence of the error for small values of d. The con-
vergence is not monotone and rather slow for high values of d.
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Figure 1: Graphs of the approximate solution ug4(t, z,0) obtained with our ap-
proach for d = 2,5,8
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Figure 2: Graphs of the approximate solution ug4(t, z,0) obtained with our ap-
proach for d = 2,5,8
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d | 2 3 4 5 6 7 8
¢y(d) | 0.0850 0.0267 0.0191 0.0168 0.0165 0.0167 0.0163

Table 1: e4(d) for d=12,...,8

I*(T x X) error for different parameter values. We consider four dif-
ferent values of the parameter £ € B, := (0,0.2,0.6,1) (which correspond to
a shock initially located at x = —0.25, = —0.2, z = —0.1 and z = 0), and
100 equidistant points in T and X, denoting the test sets T, and X, respec-
tively. We then choose to study, for each £, € E., the evolution of the relative
I*(T, x X,) error with respect to the degree d of the hierarchy. We are thus
interested in
_ Hu(7 K 56) - ZL\d/(v K ge)Hll(TcXXe)

[Jul-, - &) ||l1(Te xXe

Epe, (d) :

for all £, € E.. The results are presented in Table 2.

d 2 3 4 5 6 7 8
epg(d) 0.208 0.0616 0.0343 0.0314 0.0279 0.0276 0.0271
(d) | 0.0971 0.0286 0.0218 0.0193 0.0176 0.0171 0.0182
epgg(d) | 0.0563 0.0207 0.0162 0.0162 0.0158 0.0161 0.0174
ep, (d) 0.104 0.0407 0.0244 0.0229 0.0208 0.0194 0.0184

Table 2: €,, (d) ford=2,...,8
We observe the same behaviour of the errors as in the previous paragraph.

Retrieving statistical moments of the solution. Denote T, 100 equidis-
tant points in T and X, 100 equidistant points in X. We want to approximate
the expectation fi(xz,t) of the solution for all (¢,x) € T x X, following the
method described in Section 3.5.2. Denoting ]/”rd the approximated expected
value of the solution for degree of relaxation d of the hierarchy, we want to
compute the relative [*(T. x X,.) error of our approximation for d = 2,...,8,

namely, we are interested in

(d) == If1 = frallneroxx.)
) 2l ez, xx.)

for all d = 2,...,8. The results are presented in Table 3.

d | 2 3 4 5 6 7 8
es(d) [ 0.358 0.102 0.0557 0.0451 0.0484 0.0574 0.0637

Table 3: es(d) ford =2,...,8

We note here the same phenomenon as for the errors presented above oc-
curring, where the approximation rapidly improves as d rises until d = 5. The
convergence is then rather slow and not monotone.
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4.2 Riemann problem for the Burgers equation with parametrised
flux

As a second illustration, we consider the classical one-dimensional Riemann
problem (see e.g., [11]) for a Burgers equation, where we parametrise the flux
of the equation. In particular, we choose the flux

Flus€) = {6+ D,

with a parameter ¢ taking values in 2 = [0,1]. The Riemann problem to
this conservation law is a Cauchy problem with the following initial condition,
piecewise constant with one point of discontinuity:

B lifx <0,
@) =104 > 0.

The solution is known to take values in U = [0,1]. The time-space window on
which we consider the solution is T = [0, 3] and X = [-3, 3].
The unique analytical solution corresponding to the initial condition is

lifz < 1(/5+ 1)t,
u(t,z,€) = 4 (37)

1

We can note that the randomness in (36) was simply a translation of the solu-
tion, whereas, here, the phenomenon is non-linear, since the speed of the shock
depends on &.

Providing = with the Lebesgue measure on [0, 1], it comes that, for all £ € N,

fk(O,x) = uo(x)k7

for all x € X, and
. 451: k . 4.’:5
fi(t,z) =1 — min(1, max(0, - 1)) + 0% min(1, max(0, - 1)),

for all (¢,2) € T x X. We may notice that in this simple case, for all ¢ > 0,
fx(t,+) is independent on k for k > 1.

Retrieving the graph of the solution. Figure 3 shows the graphs of the
approximate solution ug(t,x,0) for (t,z) € T x X (so that the speed of the
shock is i), with hierarchy’s degree d = 2,5, 8.

Figure 4 shows the graphs of the approximate solution uy(t, z, 1) for (¢,z) €
T x X (so that the speed of the shock is %), with hierarchy’s degree d = 2,5, 8.

I*(T x X x E) error of the method. We pick at random 25 values in Z, and
consider 25 equidistant values in T and X. We denote the test sets E., T, and
X, respectively. We study the evolution of the relative ! error with respect to
the degree d of the hierarchy. Namely, we are interested in

_Nu—ugllner, xx. x=.)

eq(d) :=

Jwllir (T, xx. x=.)
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Figure 3: Graphs of the approximate solution ug4(t, z,0) obtained with our ap-
proach for d = 2,5,8
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Figure 4: Graphs of the approximate solution ug4(t, z, 1) obtained with our ap-
proach for d = 2,5,8
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d | 2 3 4 5 6 7 8
¢y(d) | 0.0738 0.0285 0.0142 0.00772 0.00780 0.00818 0.00963

Table 4: e4(d) for d=2,...,8

The results are shown in Table 4.

We note here the same phenomenon as for the errors presented above oc-
curring, where the approximation improves as d rises until d = 5. Then the
convergence is not monotone and rather slow.
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Appendices

A Imposing marginal constraints of occupation
measures

First, to ensure that the marginal of v with respect to ¢, x and £ is the tensor
product of the Lebesgue measure on T x X and p, it suffices to impose that

/ 1 X2 €5 du(t, %, €, y) = / trx2 g% dtdxdp(€),  (38)
K TXxXXE

for all &« € N**P*+1  In a similar manner, we impose the marginals of the time
boundary measures to be products of a Dirac measure, a Lebesgue measure and
p as follows: for all a € NP +L

/ tMx2E¥ duy (1, %, €, y) = 07 / x*? €% dxdp(§), (39)
K Xx=
/ tUx*2 €% dvr(t,x, €, y) :Tm/ x*2€* dxdp(§), (40)
K Xx=E
and
/ talxaQ&aadVB,i(ta)gE)y) :/ talxa2€a3dthdp(€)? (41)
K TxIp,;xE

forall 1 <i<nand B € {L, R}.
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B Split measures and corresponding moments
constraints

In addition to split measures 19} and ¥ associated with v, we introduce the
time boundary measures 9, 9, , 95 and ¥ , which are defined as

dﬁg: (ta X, 67 Y, U) = ]l{ueU::t(yfu)ZO} (’U)dl/o (t> X, £a y)dv7 (423‘)

dﬂ% (ta X, 67 Y, U) = ]]-{uEU::I:(y—u)ZO} (v)dVT(ta X, 67 y)d% (42b)
with supports

KT :=supp(9]) = {(t,x,&,9,v) € Ko x U: £(y —v) > 0}, (43)
K7 :=supp(¥7) = {(t:x,&,5,0) €Ky x Ui k(y—v) >0}, (44)

respectively. We only introduce the space boundary measures (1921 i1, (V7,1

(1921_)?:1 and (V5. )i, defined as

i

dﬂﬁﬂ (ta X, E) Y, ’U) = 1{u€U::t(y7u)ZO} (U)dyLi (t7 X, 57 y)d% (45)
for B € {L,R} and 1 < i < n, with supports
K;i = supp(ﬁgi) ={(t,x,&,y,v) e Kp; xU:+x(y —v) > 0}. (46)

The relation between v and split measures 9 and 9~ is imposed through mo-
ment constraints

/ wP (9T +97)(w,v) = / wv? dv(w)dv, (47)
KxU KxU

for all & € N**P+2 and for all 8 € N. Similar conditions are imposed between
time and boundary measures and their corresponding split measures.
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