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Reconstruction of obstacles in a Stokes flow as a shape-from-moments

problem

Alexandre Munnier∗

Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

September 26, 2023

Abstract

We address the classical inverse problem of recovering the position and shape of obstacles immersed in
a planar Stokes flow using boundary measurements. We prove that this problem can be transformed into a
shape-from-moments problem to which ad hoc reconstruction methods can be applied. The effectiveness of
this approach is confirmed by numerical tests that show significant improvements over those available in the
literature to date.

Keywords— Geometric inverse problem, Stokes equations, non-primitive variables, shape-from-moments problem, bi-
harmonic single-layer potential, Prony’s system, partial balayage.

1 Introduction

A shape-from-moments problem is a geometric inverse problem consisting in recovering the shape of an unknown (possibly
multi-connected) domain O from a finite section of its complex moments:

ˆ
O
zmzn dm(z) (n,m ∈ N).

In some cases, only the harmonic moments (i.e. for which m = 0 in the identity above) are available. The 2D inverse
gravimetric problem is inherently a shape-from-moments problem and can therefore be handled with tools developed
for this type of problem as it is explained in the recent article [7]. More surprisingly, the geometric Calderón inverse
problem has also been shown in [16] to be equivalent to a shape-from-moments problem, leading to an original and
efficient reconstruction method.

In this work, we are going to show that the problem of detecting (and reconstructing) obstacles immersed in a Stokes
flow from boundary measurements can be seen (and dealt with) as a shape-from-moments problem as well. Let us go
into more detail and start by making precise the geometric parameters and the problem under consideration:

Let Ω and Oj (j = 1, . . . , N) be open Jordan domains of class C1,1 such that Oj ⊂ Ω and Oj ∩ Ok = ∅ for every
indices j, k = 1, . . . , N , j ̸= k. The boundaries of Ω and Oj are denoted by Γ0 and Γj respectively and we also denote:

O = ∪N
j=1Oj and Γ = ∪N

j=1Γj .

The unit normal vector field n defined on Γ and on Γ0 is always assumed to be pointing towards the interior of the
domain enclosed by the Jordan curves (see Fig. 1). We assume that the domain F = Ω \ ∪N

j=1Oj is filled with a fluid
whose flow is governed by the Stokes equations. Thus, the velocity and pressure fields u and p verify:

−ν∆u+∇p = 0 in F ,
div u = 0 in F ,

u = 0 on Γ,

u = v on Γ0,

(1a)

(1b)

(1c)

(1d)

where ν > 0 stands for the kinematic viscosity of the fluid and v is a prescribed velocity on Γ0 satisfying the flux
condition: ˆ

Γ0

v · nds = 0. (1e)
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Figure 1: F and Oj are respectively the fluid and obstacle domains, and Ω is the union of F and Oj (j =
1, . . . , N). The boundaries of the domains are C1,1 Jordan curves. At every point of the boundaries, the unit
normal vector n is directed towards the interior of the domain enclosed by the curve.

The Cauchy stress tensor is defined in F by:

T (u, p) = ν
[
∇u+ (∇u)t

]
− p Id. (2)

The classical reconstruction problem we focus on in this article consists in determining the shape and position of the
obstacles Oj by observing the Cauchy force T (u, p)n along Γ0. More precisely, introducing the Sobolev space:

H̃1/2(Γ0;R2) =
{
v ∈ H1/2(Γ0;R2) :

ˆ
Γ0

v · nds = 0
}
,

and denoting by H−1/2(Γ0;R2) its dual space (using L2(Γ0;R2) as pivot space), we define the operator:

Λ̃Γ : H̃1/2(Γ0;R2) −→ H−1/2(Γ0;R2)
v 7−→ T (u, p)n,

where (u, p) is the solution of System (1). We can now state:

Problem 1. Reconstruct the multi-connected domain O from Λ̃Γ .

In [1] it is established that Λ̃Γ uniquely determines the multi-connected domain O. Relevant references on this
problem can be found in [5]. As far as reconstruction methods are concerned, most are based on the minimization of a
cost functional using shape sensitivity analysis techniques. However, as explained in [4], the problem is severely ill-posed
and generally these methods, although capable of roughly capturing the position and shape of the obstacles, give mixed
results. To achieve a satisfactory reconstruction, the obstacles generally have to satisfy certain constraints: they must be
close to the outer boundary (where the measurements are made), sometimes sufficiently small, sometimes their number
must be known a priori.

The new approach we propose in this paper includes the following steps: first, we will show that Problem 1 can
be equivalently reformulated in terms of vorticity and stream function (the so-called “non-primitive variables”), leading
to an inverse problem for the biharmonic operator. This problem will then be transformed into a system of integral
equations involving biharmonic single-layer potentials. Following an idea initially introduced in [15], we will explain
how the formulation can be modified so that only integrals on the obstacles boundaries appear and this will allow us to
compute, for any harmonic functions h1, h2 in Ω, the quantities:

ˆ
O
h1h2 dm.

By choosing harmonic monomials for h1 and h2, we will be able to deduce the complex moments of the obstacles:
ˆ
O
zmzn dm(z) for all n,m ∈ N, (3)

thus transforming the initial reconstruction problem into a classical shape-from-moments problem. At this point, two
algorithms of reconstruction can be used. The first one, described in [11] requires a finite section of all the complex
moments. The boundaries of the obstacles are obtained as the zero level line of a function constructed from the orthogonal
polynomials on O. The second requires only a finite section of the harmonic moments. The obstacles are first considered
as Dirac masses whose locations and weights are obtained by solving a so-called Prony’s system (a non-linear system
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associated to a Vandermonde matrix). Then, the shapes of the obstacles are deduced by applying a “partial-balayage”
operator (derived from the theory of “balayage” of measures). This method was successfully applied to solve inverse
gravimetric problems in [7] and will be seen to provide fairly accurate results regardless of the size, number and location
of the obstacles.

It should be noted that one of the original features of the proposed algorithms is that they are not iterative, unlike
most of those available to date. They require a finite number of measurements and provide a direct approximation of
the target domains.

2 The problem in non-primitive variables

For any vector x = (x1, x2) in R2, x⊥ is the vector rotated counter-clockwise, i.e. x⊥ = (−x2, x1). The velocity field u in
System (1) satisfies div u = 0 in F and

´
C
u · nds = 0 for any Jordan curve C included in F . This ensures the existence

of a stream function ψ such that ∇⊥ψ = u in F . From (1a), we deduce that:

−ν∇⊥ω +∇p = 0 in F , (4)

where ω = ∆ψ is the vorticity field. This implies (by taking the rotational of the identity above) that ω is harmonic in
F and that: ˆ

Γj

∂nω ds = 0 for all j = 1, . . . , N.

From the prescribed velocity field v in (1d), we define a function fd on Γ0 such that ∂τf
d = v·n, where τ is the unit

tangent vector field on Γ0 oriented such that τ⊥ = n. The existence of fd is guaranteed by the flux condition (1e). Let
also introduce fn = −v · τ on Γ0. The boundary value problem (1) can be restated in terms of non-primitive variables
(ψ, ω) as follows: 

∆ω = 0 in F ,
∆ψ = ω in F ,(

ψ, ∂nψ
)
= (cj , 0) on Γj for j = 1, . . . , N,(

ψ, ∂nψ
)
= (fd, fn) on Γ0,

(5a)

(5b)

(5c)

(5d)

where the cj (j = 1, . . . , N) are real constants such that:

ˆ
Γj

∂nω ds = 0 for all j = 1, . . . , N. (5e)

Extending the stream function ψ by cj in Oj , it can be assumed to be defined in the whole domain Ω. In a similar way,
the vorticity field ω is assumed to be defined in Ω, extended by 0 in the obstacles. In the sequel, we shall also require
the functions ξj (j = 0, 1, . . . , N) solving:

∆ωj = 0 in F
∆ξj = ωj in F(

ξj , ∂nξj
)
= (1, 0) on Γj ,(

ξj , ∂nξj
)
= (0, 0) on Γk, (k = 0, 1, . . . , N, k ̸= j).

(6a)

(6b)

(6c)

(6d)

The proof of the existence and uniqueness of the functions ξj in H2(F) is classical (see [8, Proposition 1.3]). Once
extended by suitable contants in the obstacles they can be considered as functions of the space H2

0 (Ω). For every function
u ∈ H2(Ω), we can define the Dirichlet and Neumann traces on any curve Γk (k = 0, . . . , N) denoted respectively by
γd
Γk
u and γn

Γk
u (the Neumann trace is defined taking into account the orientation of n). The total trace operator is next

given by:
γΓk : H2(Ω) −→ H3/2(Γk)×H1/2(Γk)

u 7−→
(
γd
Γk
u, γn

Γk
u
)
.

In the sequel we denote by H(Γk) the space H3/2(Γk) × H1/2(Γk) and by H ′(Γk) = H−3/2(Γk) × H−1/2(Γk) its dual
space, using L2(Γk)× L2(Γk) as pivot space.

Proposition 2.1. For any f = (fd, fn) ∈ H(Γ0), there exists a unique function ψ in H2(Ω) constant in every Oj

(j = 1, . . . , N) and such that its restriction to F solves System (5). It is obtained as the unique function achieving:

min
{
∥∆u∥L2(Ω) : γΓ0u = f, γΓju = (cj , 0), cj ∈ R, (j = 1, . . . , N), u ∈ H2(Ω)

}
. (7)

Proof. Let uf be a function in H2(Ω) such that γΓ0uf = f and uf = 0 in O. The space H2(Ω) is provided with the
scalar product: (

θ1, θ2)Ω =
(
∆θ1,∆θ2)L2(Ω) +

(
γΓ0θ1, γΓ0θ2

)
H(Γ0)

, θ1, θ2 ∈ H2
0 (Ω),
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where (·, ·)H(Γ0) stands for the scalar product in H(Γ0). Identifying H2
0 (F) with the subspace of H2

0 (Ω) consisting in
the functions that vanishe in O, we define the subspace of H2(Ω):

B(Ω) =
(
H2

0 (F)⊕ ⟨ξ1, . . . , ξN ⟩
)⊥
.

It is classical to verify that the function achieving (7) is the orthogonal projection of uf on B(Ω) in H2(Ω) and that it
is unique.

From identities (4) and (5a), we deduce that ω and p are conjugate harmonic functions, or equivalently that the
complex function νω+ ip is holomorphic in F . It means that (up to a constant) p can be deduced from ω (see [14, §7.1]).
We denote by D2ψ the Hessian matrix of ψ and by (⊥) the rotation matrix of angle π/2 counter-clockwise. The Cauchy
stress tensor (2) reads:

T (ψ, ω) = ν
[
(⊥)D2ψ −D2ψ(⊥)

]
− p Id.

Introducing s, the arc length parameterization on Γ0, we recall the relations:

∂sn(s) = −κ(s)τ(s) and ∂sτ(s) = κ(s)n(s),

where the function κ is the curvature of Γ0. Forming the scalar product of T (ψ, ω)n with n and τ on Γ0 we obtain:

T (ψ, ω)n · n = 2νD2ψn · τ − p and T (ψ, ω)n · τ = ν
[
−D2ψτ · τ +D2ψn · n

]
.

Using the identities ∂s(∇ψ · n) = D2ψτ · n− κ∂τψ, ω = D2ψτ · τ +D2ψn · n and ∂s(∇ψ · τ) = D2ψτ · τ + κ∂nψ we end
up with:

T (ψ, ω)n · n = 2ν κ ∂τψ + 2 ν ∂s(∂nψ)− p and T (ψ, ω)n · τ = −2ν κ ∂nψ + 2ν ∂s(∂τψ)− ν ω.

Because of (4), we have on Γ0, ∂sp = −ν∂nω, and hence p is an antiderivative of −ν∂nω on Γ0 so we denote p = −ν
´
∂nω.

Summarizing, taking into account (5d), we obtain eventually:

T (ψ, ω)n · n = ν
[
2κ∂sf

d + 2∂sf
n +

ˆ
∂nω

]
and T (ψ, ω)n · τ = ν

[
2∂2

ssf
d − 2κfn − ω

]
.

So, for prescribed fd and fn, it is equivalent to measure the Cauchy force exerted by the fluid on Γ0 and to measure the
pair (ω, ∂nω) on this boundary. The function ω in System (5) is harmonic and square-integrable on Ω, so it admits a
Dirichlet and a Neumann trace on Γ0 and we can define:

ΛΓ : H(Γ0) −→ H ′(Γ0)

(fd, fn) 7−→ (∂nω|Γ0 ,−ω|Γ0).
(8)

From now on, we shall focus on the following problem:

Problem 2. Reconstruct the multi-connected domain O from ΛΓ .

3 Identifiability for the biharmonic inverse problem

Identifiability results for Problem 1 are given in [1, Theorem 3.1] and in [2, Theorem 2.1] and can probably be adapted
to Problem 2. We prefer to provide an original proof directly for the biharmonic inverse problem.

Theorem 3.1. Let O and O′ be two sets of obstacles as described in Section 1. Assume that there exists f = (fd, fn) ∈
H(Γ0) and an open set U in R2 such that U ∩ Γ0 ̸= ∅, U ∩

(
O ∪O′) = ∅, fd non-constant in U ∩ Γ0 and:

⟨ΛΓ f, γΓ0θ⟩Γ0 = ⟨ΛΓ ′f, γΓ0θ⟩Γ0 for all θ ∈ D(U ).

Then O = O′.

In this statement, the bracket ⟨·, ·⟩Γ0 stands for the duality pairing in H ′(Γ0)×H(Γ0) that extends the scalar product
of L2(Γ0)× L2(Γ0).

Proof. Denote by ψ and ψ′ the solutions to System (5) corresponding respectively to the obstacles O and O′ and the
same right hand side f = (fd, fn) in identity (5d). As already explained earlier, these functions extended by suitable
constants in the obstacles are in H2(Ω). The function φ = ψ − ψ′ is furthermore extended by zero outside Ω and since
γΓ0φ = 0, this function is in H2(R2) and is biharmonic in R2 \

(
Γ0 ∪ Γ ∪ Γ ′). For every θ ∈ D(U ), an integration by

parts yields: (
∆φ,∆θ

)
L2(R2)

= ⟨ΛΓ f − ΛΓ ′f, γΓ0θ⟩Γ0 = 0,

which means that ∆φ is harmonic in U . But since φ = 0 in the open set U \Ω, the unique continuation principle entails
that the function φ vanishes in the whole set R2 \

(
O ∪O′

)
.
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For every j = 1, . . . , N , we can decompose the boundary Γj into two parts:

Γj =
(
Γj ∩ O′

)
∪
(
Γj ∩ (R2 \ O′)

)
.

On Γj∩O′, ψ′ is piecewise constant by definition and this is also true on Γj∩(R2\O′) because ψ′ = ψ on this set. Since ψ′ is
continuous, ψ′ is constant on every curve Γj . According the Proposition 2.1, this implies that ∥∆ψ′∥L2(Ω) ⩽ ∥∆ψ∥L2(Ω).
The role played by ψ and ψ′ being symmetric, it turns out that ∥∆ψ′∥L2(Ω) = ∥∆ψ∥L2(Ω) and then ψ = ψ′ by uniqueness

of the minimum in Proposition 2.1. If there were an index j ∈ {1, . . . , N} such that the open set O′
j \O were non-empty,

the function ψ would be constant on this set (because ψ′ is) and therefore constant on the whole set Ω \ O. This would
imply that fd is constant, which is excluded by hypothesis. We deduce that O ⊂ O′ and, because O and O′ play
symmetric roles, that O = O′.

4 Biharmonic single-layer potential

This section is devoted to establishing (and recalling) some results on the biharmonic single-layer potential. So we leave
aside for a moment the inverse problem we are dealing with and we consider a general framework in which Γ represents a
finite, disjoint union of C1,1 Jordan curves. Sticking to our convention, the unit normal vector n on Γ is directed towards
the interior of the domain enclosed by the curves. If u is a function defined on both sides of Γ and admitting one-sided
Dirichlet and Neumann traces on Γ , we can define the jump of these traces across the curve:[

∂nu
]
Γ
= γn

Γu
+ − γn

Γu
− and

[
u
]
Γ
= γd

Γu
+ − γd

Γu
−.

These quantities are defined piecewise on each connected component of Γ and each component is by definition a Jordan
curve. The notation u− represents the restriction of u to the domain bounded by the curve, while u+ designates the
part of the function u outside the curve.

The fundamental solution of the Bilaplacian is defined by:

G(x) =
1

8π

[
|x|2 ln |x|

κ0
+ κ1

]
for all x ∈ R2, (9)

where κ0 and κ1 are real constants that will be fixed later on. Using the usual abuse of notation to identify G(x − y)
with a two-variables function G(x, y), the biharmonic single-layer potential is defined for every q = (qn, qd) ∈ H ′(Γ ) by:

SΓ q(x) =

ˆ
Γ

G(x, y)qn(y) + ∂n(y)G(x, y)qd(y) ds(y) for all x ∈ R2. (10)

The operator SΓ : H ′(Γ ) −→ H2
ℓoc(R2) is bounded so the same conclusion applies to the operator:

SΓ : H ′(Γ ) −→ H(Γ )
q 7−→ γΓ ◦ SΓ q.

(11)

The results presented without proof in this section are borrowed from [17]:

Theorem 4.1. Let R > 0 be the radius of a circle CR that enclosed Γ . If we choose κ0 > eR and κ1 > R2 in the
definition (9), then the operator SΓ is strongly elliptic on H ′(Γ ) and therefore invertible.

The so-called jump relations allow recovering q = (qn, qd) from the function SΓ q:

qn = −
[
∂n∆SΓ q

]
Γ
= −

(
∂n∆S +

Γ q − ∂n∆S −
Γ q

)
(12a)

qd =
[
∆SΓ q

]
Γ
= ∆S +

Γ q −∆S −
Γ q. (12b)

Under the hypotheses of Theorem 4.1, the spaces H ′(Γ ) and H(Γ ) can be provided with the scalar products:(
q, q′)H′(Γ ) =

〈
q, SΓ q

′〉
Γ
, for all q, q′ ∈ H ′(Γ ),(

p, p′)H(Γ ) =
〈
S−1
Γ p, p′

〉
Γ
, for all p, p′ ∈ H(Γ ),

where ⟨·, ·⟩Γ stands for the duality pairing on H ′(Γ )×H(Γ ) that extends the scalar product on L2(Γ )×L2(Γ ). All the
inclusions below are continuous and dense:

H(Γ ) ⊂ L2(Γ )× L2(Γ ) ⊂ H ′(Γ ),

and SΓ is an isometric operator from H ′(Γ ) onto H(Γ ). In the following, for every p ∈ H(Γ ), we denote p̂ = S−1
Γ p so

that γΓ ◦ SΓ p̂ = p and ∥p∥H(Γ ) = ∥p̂∥H′(Γ ).

Lemma 4.1. Let A be the three-dimensional subspace of H(Γ ) spanned by the total traces of the affine functions in R2.
Then, for every p, p′ ∈ A ⊥, SΓ p̂ and SΓ p̂

′ are in L2(R2) and:(
p, p′)H(Γ ) =

ˆ
R2

∆
(
SΓ p̂

)
∆
(
SΓ p̂

′)dm. (13)
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Lemma 4.2. Let Γ and Γ ′ be two sets of non-intersecting C1,1 Jordan curves. Then for every pΓ ∈ H(Γ ) and pΓ ′ ∈
H(Γ ′), we have: (

γΓ ◦ SΓ ′ p̂Γ ′ , SΓ p̂Γ
)
H(Γ )

=
(
SΓ ′ p̂Γ ′ , γΓ ′ ◦ SΓ p̂Γ

)
H(Γ ′)

.

Proof. Let p̂Γ = (p̂nΓ , p̂
d
Γ ) ∈ L2(Γ )× L2(Γ ) and p̂Γ ′ = (p̂nΓ ′ , p̂dΓ ′) ∈ L2(Γ ′)× L2(Γ ′). Then:

(
γΓ ◦ SΓ ′ p̂Γ ′ , SΓ p̂Γ

)
H(Γ )

=

ˆ
Γ

(ˆ
Γ ′
G(x, y)p̂nΓ ′(y) + ∂n(y)G(x, y)p̂dΓ ′(y) ds(y)

)
p̂nΓ (x)

+

(ˆ
Γ ′
∂n(x)G(x, y)p̂nΓ ′(y) + ∂n(x)∂n(y)G(x, y)p̂dΓ ′(y) dy

)
p̂dΓ (x) ds(x).

Since Γ and Γ ′ do not intersect, neither kernel is singular. So, we can reverse the order of integration and conclude with
a density argument.

5 The reconstruction problem as a shape-from-moments problem

We return now to Problem 2 with the notation introduced in Section 2. In Definition 9, we choose the constants κ0 and
κ1 in such a way that the operators SΓ0 and SΓ be strongly elliptic as explained in Theorem 4.1. The solution ψ to
System 5 can therefore be represented as a sum of biharmonic single-layer potentials:

ψ = SΓ0 p̂Γ0 + SΓ p̂Γ .

The densities p̂Γ0 = (p̂nΓ0
, p̂dΓ0

) ∈ H ′(Γ0) and p̂Γ = (p̂nΓ , p̂
d
Γ ) ∈ H ′(Γ ) satisfy the system:{

SΓ0 p̂Γ0 + γΓ0 ◦ SΓ p̂Γ = f in H(Γ0)

γΓ ◦ SΓ0 p̂Γ0 + SΓ p̂Γ = (c, 0) in H(Γ ).

(14a)

(14b)

In the second identity, c is a function equal to a real constant cj on each connected component Γj (j = 1, . . . , N) of Γ .
These constants are uniquely determined by the conditions:

ˆ
Γj

p̂nΓ ds = 0, (j = 1, . . . , N). (14c)

For every j = 1, . . . , N , let 1Γj be the piecewise constant function in H(Γ ), equal to (1, 0) on Γj and (0, 0) on Γk for
k ̸= j and define the subspaces of H ′(Γ ) and H(Γ ) of codimension N :

H′(Γ ) =
{
q ∈ H ′(Γ ) : ⟨q,1Γj ⟩Γ = 0, ∀ j = 1, . . . , N

}
and H(Γ ) =

{
p ∈ H(Γ ) : ⟨1̂Γj , p⟩ = 0, ∀ j = 1, . . . , N

}
.

Notice that identities (14c) mean that p̂Γ belongs to H′(Γ ) and that the operator SΓ isometrically maps H′(Γ ) onto
H(Γ ). We introduce the operators:

KΓ
Γ0

: H(Γ0) −→ H(Γ )
p 7−→ γΓ ◦ SΓ0 p̂

and
KΓ0

Γ : H(Γ ) −→ H(Γ0)
p 7−→ γΓ0 ◦ SΓ p̂,

(15)

and we deduce from Lemma 4.2 that:(
KΓ

Γ0
pΓ0 , pΓ

)
H(Γ )

=
(
pΓ0 ,K

Γ0
Γ pΓ

)
H(Γ0)

for all pΓ ∈ H(Γ ), pΓ0 ∈ H(Γ0). (16)

We denote by ΠΓ the orthogonal projection from H(Γ ) onto H(Γ ) and we apply this operator to equation (14b).
Rewriting System (14) in terms of traces instead of densities we obtain:{

pΓ0 +KΓ0
Γ pΓ = f in H(Γ0)

ΠΓ ◦KΓ
Γ0
pΓ0 + pΓ = 0 in H(Γ ).

(17a)

(17b)

From the identity (16), specifying that pΓ0 is equal to 1Γ0 , we deduce that if pΓ is in H(Γ ), then KΓ0
Γ pΓ is in H(Γ0).

It follows from equation (17a) that if f belongs to H(Γ0), pΓ0 belongs to H(Γ0) as well. We conclude that for every
f ∈ H(Γ0), there exists (pΓ0 , pΓ ) ∈ H(Γ0)×H(Γ ) such that:{

pΓ0 +KΓ0
Γ pΓ = f in H(Γ0)

ΠΓ ◦KΓ
Γ0
pΓ0 + pΓ = 0 in H(Γ ).

(18a)

(18b)

We now rewrite the measurement function (8) in terms of biharmonic single-layer potentials:

ΛΓ : H(Γ0) −→ H′(Γ0)

f 7−→
(
γn
Γ0

(
∆S +

Γ p̂Γ +∆S −
Γ0
p̂Γ0

)
,−γd

Γ0

(
∆S +

Γ p̂Γ +∆S −
Γ0
p̂Γ0

))
,

(19a)
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where (pΓ0 , pΓ ) is the solution of System (18). Defining also:

Λ0 : H(Γ0) −→ H′(Γ0)

f 7−→
(
γn
Γ0

(
∆S −

Γ0
◦ f̂

)
,−γd

Γ0

(
∆S −

Γ0
f̂
))
,

(19b)

and using the identity S +
Γ0
f̂ = S +

Γ p̂Γ + S +
Γ0
p̂Γ0 , we first establish that, for every f ∈ H(Γ0):(

ΛΓ − Λ0

)
f =

(
−

[
∂n∆SΓ0 p̂Γ0

]
Γ0

+
[
∂n∆SΓ0 f̂

]
Γ0
,
[
∆SΓ0 p̂Γ0

]
Γ0

−
[
∆SΓ0 f̂

]
Γ0

)
.

Then, from the relations (12), we deduce that SΓ0 ◦
(
ΛΓ − Λ0

)
f = pΓ0 − f and therefore, denoting by RΓ the operator

SΓ0 ◦
(
ΛΓ − Λ0

)
, we finally obtain that: (

Id +RΓ )f = pΓ0 . (20a)

On the other hand, according to (18a), we have pΓ0 = f − KΓ0
Γ pΓ and applying the operator KΓ0

Γ to (18b) yields
KΓ0

Γ pΓ = −KΓ0
Γ ◦ΠΓ ◦KΓ

Γ0
pΓ0 . Therefore, denoting KΓ = KΓ0

Γ ◦ΠΓ ◦KΓ
Γ0

we get:(
Id−KΓ

)
pΓ0 = f. (20b)

The theorem below follows directly from the identities (20a) and (20b):

Theorem 5.1. The operators
(
Id + RΓ ) : H(Γ0) −→ H(Γ0) and

(
Id −KΓ

)
: H(Γ0) −→ H(Γ0) are invertible and they

are each other’s inverse. Moreover:
KΓ = RΓ ◦

(
Id +RΓ

)−1
. (21)

From the point of view of solving the inverse problem we are dealing with, it is important to note that the right-hand
member in the identity (21) can be computed from ΛΓ and Λ0, two operators we assume to be known. We now turn our
attention to the operator KΓ . From equality (16), we deduce straightforwardly:

Theorem 5.2. For every f, g ∈ H(Γ0):(
KΓ f, g

)
H(Γ0)

=
(
ΠΓ ◦KΓ

Γ0
f,KΓ

Γ0
g
)
H(Γ )

. (22)

This theorem is the keystone of the reconstruction method. Indeed, let F et G be biharmonic functions in H2(Ω),
denote fΓ0 = γΓ0F and gΓ0 = γΓ0G and assume that fΓ0 and gΓ0 are in H(Γ0) (simply add an appropriate constant to

F and G to satisfy this assumption). Since SΓ0 f̂Γ0 = F and SΓ0 ĝΓ0 = G in Ω, we deduce from (22) that:(
KΓ fΓ0 , gΓ0

)
H(Γ0)

=
(
ΠΓ fΓ , gΓ

)
H(Γ )

, (23)

where fΓ = γΓF and gΓ = γΓG. In other words, we have access to the scalar product in H(Γ ) of the traces (up to an
additive constant because of the projector ΠΓ ) of any two functions F and G that are biharmonic in Ω. This will enable
us to calculate the complex moments of O.

Let us denote by H (Ω) the space of the harmonic functions in H2(Ω).

Lemma 5.1. Let p be in H(Γ ) such that
(
KΓ0

Γ p, γΓ0h
)
H(Γ0)

= 0 for every function h in H (Ω). Then SΓ p̂ is harmonic

outside O.

Proof. Let DΩ stands for the Dirichlet-to-Neumann operator on Γ0 (see Section A in the Appendix), let p be in H(Γ )
as in the statement of the Lemma and denote gΓ0 = KΓ0

Γ p. The hypothesis means that:

−
〈[
∂n∆SΓ0 ĝΓ0

]
Γ0
, q
〉
− 3

2
, 3
2
+

〈[
∆SΓ0 ĝΓ0

]
Γ0
, DΩq

〉
− 1

2
, 1
2
= 0 for all q ∈ H3/2(Γ0).

The operator DΩ being self-adjoint (see Proposition A.1), it follows that:〈
γn
Γ0
∆S −

Γ0
ĝΓ0 −DΩ∆S −

Γ0
ĝΓ0 , q

〉
− 3

2
, 3
2
−

〈
γn
Γ0
∆S +

Γ0
ĝΓ0 −DΩ∆S +

Γ0
ĝΓ0 , q

〉
− 1

2
, 1
2
= 0 for all q ∈ H3/2(Γ0).

The first term vanishes by definition of DΩ , which allows us to deduce that γn
Γ0
∆S +

Γ0
ĝΓ0 = DΩ∆S +

Γ0
ĝΓ0 . Let uΩ be the

function in L2(Ω), harmonic and such that γd
Γ0
uΩ = γd

Γ0
∆S +

Γ0
ĝΓ0 (existence and uniqueness of such a function is asserted

in Proposition B.1). The function u defined by u = uΩ in Ω and u = ∆S +
Γ0
ĝΓ0 in R2 \ Ω is therefore harmonic in R2.

According to [17, Lemma 4.1], u(x) = O(ln |x|) as |x| goes to +∞, which together with [3, Theorem 9.10] (generalized
Liouville Theorem) implies that u is constant in R2. Referring again to [17, Lemma 4.1], the only possible constant is
zero. Since S +

Γ p = S +
Γ0
ĝΓ0 in R2 \Ω, we conclude that ∆S +

Γ p = 0 in R2 \ O.

Theorem 5.3. Let h be a harmonic function in L2(Ω). For every ε > 0 there exists fε
Γ0

in H(Γ0) such that∣∣∣∣(KΓ f
ε
Γ0
, fε

Γ0

)
H(Γ0)

−
ˆ
O
h2dm

∣∣∣∣ < ε.
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Proof. Let gΓ0 be in H(Γ0) such that ∆S −
Γ0
ĝΓ0 = h (for instance choose gΓ0 = γΓ0u with u such that ∆u = h in

H2(Ω)∩H1
0 (Ω)). Let ghΓ be the orthogonal projection in H(Γ ) of KΓ

Γ0
gΓ0 onto KΓ

Γ0
H (Ω). Thus, for every ε > 0, there

exists hε ∈ H (Ω) such that

∥ghΓ −KΓ
Γ0

◦ γΓ0h
ε∥H(Γ0) < ε

[
1 + 2

∥∥KΓ
Γ0
gΓ0 − ghΓ

∥∥
H(Γ )

]−1
. (24)

Define fε
Γ0

= ΠΓ0

(
gΓ0 − γΓ0h

ε
)
where ΠΓ0 is the orthogonal projection onto H(Γ0) in H(Γ0). We have:(

KΓ f
ε
Γ0
, fε

Γ0

)
H(Γ0)

=
(
ΠΓ ◦KΓ

Γ0
fε
Γ0
,KΓ

Γ0
fε
Γ0

)
H(Γ )

=
(
ΠΓ ◦KΓ

Γ0
fε
Γ0
,ΠΓ ◦KΓ

Γ0
fε
Γ0

)
H(Γ )

.

Notice that, for every p ∈ H(Γ0), ΠΓ ◦KΓ
Γ0

◦ΠΓ0p = ΠΓ ◦KΓ
Γ0
p because the functions SΓ0p and SΓ0 ◦ΠΓ0p differ only

up to a constant in Ω. This implies that:(
KΓ f

ε
Γ0
, fε

Γ0

)
H(Γ0)

=
∥∥ΠΓ ◦KΓ

Γ0

(
gΓ0 − γΓ0h

ε)∥∥2

H(Γ )
. (25a)

On the other hand, observing that ΠΓ

(
KΓ

Γ0
gΓ0 − ghΓ

)
= KΓ

Γ0
gΓ0 − ghΓ , we get:∣∣∣∥∥ΠΓ ◦KΓ

Γ0

(
gΓ0 − γΓ0h

ε)∥∥2

H(Γ )
−

∥∥KΓ
Γ0
gΓ0 − ghΓ

∥∥2

H(Γ )

∣∣∣ ⩽∥∥ΠΓ

(
ghΓ −KΓ

Γ0
◦ γΓ0h

ε)∥∥
H(Γ )

[∥∥ΠΓ

(
ghΓ −KΓ

Γ0
◦ γΓ0h

ε)∥∥
H(Γ )

+ 2
∥∥KΓ

Γ0
gΓ0 − ghΓ

∥∥
H(Γ )

]
,

which, with the estimate (24) gives for every ε < 1:∣∣∣∥∥ΠΓ ◦KΓ
Γ0

(
gΓ0 − γΓ0h

ε)∥∥2

H(Γ )
−

∥∥KΓ
Γ0
gΓ0 − ghΓ

∥∥2

H(Γ )

∣∣∣ < ε. (25b)

By construction: (
KΓ

Γ0
gΓ0 − ghΓ ,K

Γ
Γ0

◦ γΓ0h
)
H(Γ )

= 0,

but also, according to (16), for every h ∈ H (Ω):(
KΓ

Γ0
gΓ0 − ghΓ ,K

Γ
Γ0

◦ γΓ0h
)
H(Γ )

=
(
KΓ0

Γ

(
KΓ

Γ0
gΓ0 − ghΓ

)
, γΓ0h

)
H(Γ0)

.

This implies, with Lemma 5.1 that SΓ

(
KΓ

Γ0
gΓ0−ghΓ

)
is harmonic outside O. On the other hand, inside O, SΓ ◦KΓ

Γ0
gΓ0 =

SΓ0gΓ0 and SΓ g
h
Γ is harmonic (because ghΓ is in the space KΓ

Γ0
H (Ω)) and therefore ∆SΓ

(
KΓ

Γ0
gΓ0 −gΓ

)
= h. According

to (13), we have: ∥∥KΓ
Γ0
gΓ0 − ghΓ

∥∥2

H(Γ )
=

ˆ
O
h2 dm. (25c)

Combining the equations (25) leads to the conclusion.

Using the polarization identity, we prove:

Corollary 5.1. For every ε > 0 and every k,m ∈ N, there exist fε
k and fε

m in the complex space H(Γ0) + iH(Γ0) such
that: ∣∣∣∣(KΓ f

ε
k , f

ε
m

)
H(Γ0)

−
ˆ
O
zkzm dm(z)

∣∣∣∣ < ε.

We have now reached our goal: turning the reconstruction problem 2 into a shape-from-moments problem. Indeed,
Theorem 5.1 explains how to compute the operator KΓ from the measurement operator ΛΓ and Corollary 5.1 shows that
a suitable choice of inputs can be used to calculate with an arbitrary precision the complex moments of the obstacles.

6 Using a finite section of all the complex moments

For a positive integer n we assume known the complex moments of O:ˆ
O
zkzℓ dm(z) for all k ⩽ n, ℓ ⩽ n.

Applying a Gram-Schmidt process to the family of monomials {1, z, z2, . . . zn} we can compute from these moments the
so-called Bergman polynomials P0, P1, . . . , Pn, i.e. the polynomials orthonormalized for the scalar product of L2(O) and
such that Pk is of degree k for every k = 0, . . . , n. Following the ideas developed in [11], we introduce the function Θn

defined by:

Θn(z) =
1√

π
∑n

j=0 |Pj(z)|2
for all z ∈ C. (26)

When all the curves Γj (j = 1, . . . , n) are analytic, this function is shown to approximate the distance to Γ in O while
it decays to zero at certain rates, as n goes to +∞ on Γ and in C \ O. More precisely, dist(z, Γ ) ⩽ Θn(z) for z ∈ O
and there exists two positive constants C1 and C2 such that C1/n ⩽ Θn(z) ⩽ C2/n for z ∈ Γ . We will see in Section 8
that plotting the level sets {z ∈ C : Θn(z) = λ/n} for certain values of λ gives a pretty good approximation of the
boundaries of the obstacles.
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7 Using a finite section of the harmonic moments only

For a positive integer n we assume known the harmonic moments:

τℓ =

ˆ
O
zℓ dm(z) for all ℓ = 0, . . . , 2n− 1.

An algorithm of reconstruction of O from the τℓ is detailed in [7]. The key idea is to approximate O by so-called
quadrature domains. The method consists of two stages:

1. Determine complex weights cj and complex nodes zj (j = 1, . . . , n) such that

n∑
j=0

cjz
ℓ
j = τj for all ℓ = 0, . . . , 2n− 1. (27a)

Such a system of equations is called a Prony’s system.

2. Determine a domain On satisfying the quadrature identity:

ˆ
On

zℓ dm(z) =

n∑
j=0

cjz
ℓ
j for all ℓ ∈ N. (27b)

By construction, O satisfies the identities above for ℓ = 0, . . . , 2n − 1 but we emphasize that On is required to
satisfy these identities for all the integers ℓ. Such a domain is called a quadrature domain.

Regarding the first stage, we introduce the polynomial:

Pn(z) =

∣∣∣∣∣∣∣∣∣∣∣

τ0 τ1 · · · τn−1 τn
τ1 τ2 · · · τn τn+1

...
...

...
...

τn−1 τn · · · τ2n−2 τ2n−1

1 z · · · zn−1 zn

∣∣∣∣∣∣∣∣∣∣∣
,

which enters the statement of the following result proved in [7]:

Theorem 7.1. Equations (27a) admit a solution if and only if the polynomial Pn admits n simple roots. In this case,
this solution is unique and the nodes z1, . . . , zn are the roots of Pn.

The explicit determination of the nodes zj and weights cj (j = 1, . . . , n) is carried out by means of the matrix pencil
method described in [9]. Introducing the Hankel matrices:

H(n)
0 =


τ0 τ1 . . . τn−1

τ1 τ2 . . . τn
...

...
. . .

...
τn−1 τn . . . τ2n−2

 and H(n)
1 =


τ1 τ2 . . . τn
τ2 τ3 . . . τn+1

...
...

. . .
...

τn τn+1 . . . τ2n−1

 , (28a)

the nodes zj are the solutions of the following generalized eigenvalue problem:

∃ ξ ∈ Cn \ {0} , H(n)
0 ξ = zH(n)

1 ξ. (28b)

If the zj are pairwise distinct, the weights cj are obtained by solving the Vandermonde linear system:
1 1 . . . 1
z1 z2 . . . zn
z21 z22 . . . z2n
...

...
. . .

...
zn−1
1 zn−1

2 . . . zn−1
n




c1
c2
c3
...
cn

 =


τ0
τ1
τ2
...

τn−1

 . (28c)

One can verify that z1, . . . , zn and c1, . . . , cn solve (27a) (see [9, Section 3]). Since the inverse problem we are dealing
with is ill-posed, it is not surprising that it leads to a numerical method requiring the solution of two ill-conditioned
problems: a generalized eigenvalue problem with Hankel matrices and a Vandermonde system. It is worth mentioning
also that numerical instabilities increase with n.

We now turn our attention to the second step of the reconstruction method. Disks are the simplest examples of
quadrature domains, and can be shown to be the only ones for which n = 1. Rather counter-intuitively, there are many
quadrature domains. Actually, every domain whose boundary consists in non-intersecting C∞ Jordan curves is arbitrarily
close to a quadrature domain.
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Given a set of nodes and weights, existence of a quadrature domain satisfying (27b) is asserted in [10, Theorem 2.4,
(vi)], providing that the weights are real and positive (uniqueness does not hold in general). The construction of this
domain is strongly related to partial balayage of measures (see [12]) and free boundary problems (see [13]). In summary,
if the weights cj (j = 1, . . . , n) are positive in (27b), a quadrature domain On satisfying (27b) can be obtained by means
of the following identity:

1On = −∆V n, (29a)

where V n is the unique function achieving:

min
v∈Kn

1

2

ˆ
Ω

|∇v|2 dm−
ˆ
Ω

v dm, (29b)

with:

Un = − 1

2π

n∑
j=1

cj ln | · −zj | and Kn =
{
v ∈ H1(Ω) : γd

Γ0
v = γd

Γ0
Un and v ⩽ Un in Ω

}
. (29c)

The function that associates to any set of nodes and weights the corresponding quadrature domain (by means of the
steps (29)) is called the partial balayage operator.

8 Algorithm and numerical tests

In this section we describe an algorithm derived from the results of Sections 6 and 7 and we provide some numerical
tests to illustrate the efficiency of the reconstruction methods.

Generation of the measurements

Fix a positive integer m ⩾ 3, denote m′ = 2m− 1 and for k = 1, . . . ,m′ define the functions:

Fk(z) =

{
zk if k = 1, . . . ,m

zzk−m/(4(k −m)) if k = m+ 1, . . . ,m′ for all z ∈ C.

Notice that ∆zzj/(4j) = zj−1 for every j ⩾ 1 and hence ∆2Fk = 0 for every k = 1, . . . ,m′. Our first objective is to
generate measurements corresponding to the boundary data fk = γ̃Γ0Fk where γ̃Γ0 = ΠΓ0 ◦ γΓ0 .

Computations are based on a BEM involving biharmonic single-layer potentials. For every k = 1, . . . ,m′, we compute
the complex densities qkj (j = 0, . . . , n) that solve the system of integral equations:

γΓ0

[
SΓ0q

k
0 + SΓ1q

k
1 + . . .+ SΓN q

k
N

]
= γΓ0Fk on Γ0 (30a)

γΓj

[
SΓ0q

k
0 + SΓ1q

k
1 + . . .+ SΓN q

k
N

]
= 0 on Γj (j = 1, . . . , N). (30b)

The function ψk =
∑N

j=0 SΓj q
k
j is not the solution we are looking for as it satisfies neither the conditions γΓ0ψ = fk nor

the boundary condition (5c) (such that (5e) holds). So, we compute for every j, k = 0, . . . , N , the densities pkj such that:

γΓj

[
SΓ0p

k
0 + SΓ1p

k
1 + . . .+ SΓN p

k
N

]
= (δjk, 0) on Γj (j = 0, 1, . . . , N).

It follows that ξk =
∑N

j=0 SΓjp
k
j is the function introduced in Section 2 and that solves System (6). Then, we determine

the constants αj,k (j = 0, . . . , N , k = 1, . . . ,m′) by inverting the linear system:[〈
1̂Γj , q

k
j

〉]
0⩽j⩽N
1⩽k⩽m′

=
[〈
1̂Γj , p

k
j

〉]
0⩽j⩽N
0⩽k⩽N

[
αj,k

]
0⩽j⩽N
1⩽k⩽m′

,

and we define q̃kj = qkj −
∑N

i=0 αi,kp
i
j . This time, the function ψ̃k =

∑N
j=0 SΓj q̃

k
j satisfies all the conditions mentioned

above. Recall that we assume we have the operator ΛΓ (defined in (8)) at our disposal. Since the definition of the operator
Λ0 depends only on the boundary Γ0, we have access, as already mentioned, to the operator RΓ = SΓ0 ◦

(
ΛΓ −Λ0

)
(see

Theorem 5.1) and then also to the operator VΓ = Id +RΓ . We easily verify that:

VΓ fk = q̃k0 for all k = 1, . . . ,m′,

and this will be the measurements we shall use for the reconstruction.
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Computing the scalar product on Γ

The objective of this subsection is to explain how to compute the scalar products:(
γ̃ΓFj , γ̃ΓFk

)
H(Γ )

for all j, k = 1, . . . ,m′.

According to Theorem 5.1, KΓ = Id− V −1
Γ and it follows that:(

KΓ fj , fk
)
H(Γ0)

=
(
fj , fk

)
H(Γ0)

−
(
V −1
Γ fj , fk

)
H(Γ0)

for all j, k = 1, . . . ,m′. (31)

Notice that, by definition (
fj , fk

)
H(Γ0)

=
(
γ̃Γ0Fj , γ̃Γ0Fk

)
H(Γ0)

,

and according to Theorem 5.2, for every j, k = 1, . . . ,m′ we have:(
KΓ fj , fk

)
H(Γ0)

=
(
ΠΓ ◦KΓ

Γ0
fj ,K

Γ
Γ0
fk

)
H(Γ )

=
(
γ̃ΓFj , γ̃ΓFk

)
H(Γ )

.

We define the positive-definite symmetric matrices:

QΓ0
m =

[
(fj , fk)H(Γ0)

]
1⩽j⩽m′
1⩽k⩽m′

and QΓ
m =

[
(KΓ fj , fk)H(Γ )

]
1⩽j⩽m′
1⩽k⩽m′

,

and also:
Vm =

[
(VΓ fj , fk)H(Γ0)

]
1⩽j⩽m′
1⩽k⩽m′

and Wm =
[
(V −1

Γ fj , fk)H(Γ0)

]
1⩽j⩽m′
1⩽k⩽m′

.

The matrix Wm is approximated by the matrix QΓ0
m V −1

m QΓ0
m so that (31) can be rewritten in matrix form:

QΓ
m = QΓ0

m −QΓ0
m V −1

m QΓ0
m .

Computing the complex moments of the obstacles

According to Lemma 5.1, if p is in H(Γ ) and satisfies (p,KΓ
Γ0

◦ γΓ0h)H(Γ ) = 0 for every h ∈ H (Ω), then ∆S +
Γ p̂ = 0 and

in this case:
∥SΓ p̂∥2H(Γ ) = ∥∆SΓ p̂∥2L2(O).

To put these principles into practice, let us denote Gk = Fm+k and recall that ∆Gk = zk−1 for k = 1, . . . ,m − 1. We
decompose the matrix QΓ

m into 4 sub-matrices:

QΓ
m =

[
Xm Ym

Y ∗
m Zm

]
,

where, by construction:

Xm =
[
(γ̃Γ zj , γ̃Γ z

k)H(Γ )

]
1⩽j⩽m
1⩽k⩽m

, Ym =
[
(γ̃Γ zj , γ̃ΓGk)H(Γ )

]
1⩽j⩽m

1⩽k⩽m−1

and Zm =
[
(γ̃ΓGj , γ̃ΓGk)H(Γ )

]
1⩽j⩽m−1
1⩽k⩽m−1

.

It follows that the entries of the matrix MΓ
m = Zm − Y ∗

mX
−1
m Ym are(

Πm ◦ γΓGj ,Πm ◦ γΓGk

)
H(Γ )

for all j, k = 1, . . . ,m− 1,

where Πm is the orthogonal projection in H(Γ ) onto the orthogonal of the subspace spanned by {1, z, z2, . . . , zm}. As a
conclusion, for m large enough, the entries of the matrix MΓ

m are such that:(
Πm ◦ γΓGj ,Πm ◦ γΓGk

)
H(Γ )

≃
ˆ
O
zj−1zk−1 dm(z) for all j, k = 1, . . . ,m− 1.

Reconstruction with a finite section of all the complex moments

Let Lm be the upper triangular matrix entering the Cholevsky factorization of MΓ
m i.e. MΓ

m = L∗
mLm. Then, it is easy

to verify that the columns of Lm are the coefficients of the Bergman polynomials. It is then possible to evaluate the
function Θm−2 (defined in (26)) at any point of Ω and draw the set corresponding to Θm−2 = λ/(m− 2) for some values
of λ.

Reconstruction with a finite section of the harmonic moments only

With this approach, we use only the first row of the matrix MΓ
m. We fix an integer n ⩽ (m − 1)/2 and we apply the

method described in Section 7. As explained there, to solve the Prony’s system (27a) we construct the Hankel matrices
(28a) and solve the generalized eigenvalue problem (28b) which provides the values of the nodes zj . The weights cj are
obtained by solving the linear system (28c). We replace cj by Re(cj) when Im(cj) is non-zero and we solve the convex
minimization problem (29) (partial balayage process) to obtain (hopefully) approximations of the obstacles.
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Numerical tests

For all the tests, the domain Ω is a disk centered at the origin and of radius 1.

Example 1. We consider a single cross-shaped obstacle whose boundary is parameterized as:(
x1(θ)
x2(θ)

)
=

[
0.25(1 + 0.4 cos(4θ))

(
cos(θ)
sin(θ)

)
+ 0.2

(
1
1

)]
, (θ ∈ [0, 2π[).

Note that this is a non-trivial example (neither small, nor too close to the boundary Γ0, nor a ball, nor even convex).
The reconstruction is performed with m = 13 (corresponding to 2m− 1 = 25 measurements). It means that we have at
our disposal the moments: ˆ

O
z̄kzn dm(z) for all k, n = 0, . . . , 11.

Numerical instabilities make it difficult to increase m much further in this case (for larger m the matrix MΓ
m exhibits

spurious negative eigenvalues). First we apply the method described in Section 6. Several level lines corresponding to
Θ11 = λ/(m−2) for λ = 0, 2, 0, 4, 0.6, 0.8 and 1 are plotted on Fig. 2. The position of the obstacle is accurately found and
the level lines outline clearly its convex hull. However, the details of the branches are not captured by the reconstruction.
This would probably require m to be larger.

Figure 2: Reconstruction of a single cross-shaped obstacle using the method described in Section 6 (borrowed
from [11]) with 25 measurements (i.e. m = 13). The image on the right is a close-up of the obstacle and its
reconstruction.

We apply now the method explained in Section 7 and for which only the harmonic moments:
ˆ
O
zk dm(z) for all k = 0, . . . , 10,

are involved. We solve the related Prony’s system (27a) for n = 1, 2, . . . , 5 and for each case, we represent in Fig. 3
the disks centered at the nodes zj and of radii

√
Re(cj)/π. Indeed, when these disk are pairwise disjoint, the mean

value property for harmonic functions ensures that their union is a quadrature domain that satisfies equality (27b). For
n = 1, 2, 3, only one weight is non zero and hence only one disk is non-degenerated (obviously no partial balayage step
is needed). For n = 4, we obtain four disjoint disks, so no partial balayage step is necessary either in this case. On the
other hand, the disks overlap for n = 5, so we solve the convex minimization problem (29). The resulting quadrature
domain is represented on Fig. 4. The reconstruction is much better than on Fig. 2, as the outline of the cross can be
clearly seen. Such reconstruction accuracy is remarkable for this type of problem.

Example 2. We consider now two obstacles. The cross-shaped obstacle is retained but slightly translated and is now set
as follows: (

x1(θ)
x2(θ)

)
=

[
0.25(1 + 0.4 cos(4θ))

(
cos(θ)
sin(θ)

)
+ 0.35

(
1
1

)]
, (θ ∈ [0, 2π[).

We add an ellipse-shaped obstacle parameterized as:(
x1(θ)
x2(θ)

)
=

[(
0.25 cos(θ)
0.1 sin(θ)

)
− 0.45

(
1
1

)]
, (θ ∈ [0, 2π[).

In this case, we can increase the parameter m to m = 19 (corresponding to 37 measurements). Some level lines of the
function Θ17 (corresponding to values of order 1/17) are displayed in Fig. 5. Obstacle positions and sizes are recovered

12



Figure 3: Reconstruction of a single obstacle with disks obtained by solving the Prony’s system corresponding
to the harmonic moments for n = 1, 2, 3 (first picture), n = 4 (second picture) and n = 5 (third picture).

Figure 4: Reconstruction of the cross-shaped obstacle after applying the partial balayage operator to the case
n = 5.

satisfactorily. Reconstruction quality is better for the ellipse than for the crosse (convexity seems to play a role for this
method).

Using the first 18 harmonic moments only, we apply now the method of Section 7 and plot the corresponding disks
(as explained for the first example) for n = 2, 5 and 8 in Fig 6. For n = 2 and n = 5, no partial balayage step is needed
as the disks do not overlap. For n = 8, we apply the partial balayage operator by solving the convex minimization
problem (29), which provides the quadrature domains represented in Fig. 7 (the two small spurious disks are neglected).
Two branches of the cross can be identified and the shape of the ellipse is correctly recovered. Once again, this is a very
satisfactory reconstruction for this demanding example.

Example 3. The last case we consider is borrowed from [5]. The obstacles are two squares centered at (−0.6, 0.3) and
(0.6, 0.3) with a distance between the center and the vertices equal to 0.2. The interest of studying this case is twofold:
the obstacle boundaries are not smooth (unlike examples 1 and 2), and results can be compared with those provided in [5]
where the obstacles are a priori assumed to be star-shaped. The parameter m is set to m = 18 (35 measurements). The
results obtained with the method of Section 6 are displayed in Fig. 8 and those obtained with the method of Section 7
in Fig. 9 (no partial balayage step is applied). Both methods deliver highly satisfactory reconstructions.

9 Conclusion

By transforming the classical inverse problem of reconstructing immersed obstacles using boundary measurements into
a shape-from-moment problem, we have been able to develop algorithms leading to remarkably accurate reconstructions
in this context. The methods we propose are not iterative and require no a priori information about the obstacles. A
number of legitimate points remain to be addressed in a future paper:

1. Stability issues. The use of noisy data has not been rigorously tested in this work, but some simple principles
can nevertheless be stated. The reconstruction methods are based on a certain number of measurements. The
higher the number, the more accurate the reconstruction, but also the more sensitive to noise. For example, the
reconstruction of Fig. 6 with only two disks can be achieved with 9 measurements, and the reconstruction is quite
stable. However, this needs to be precisely quantified.
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Figure 5: Reconstruction of two obstacles using the method described in Section 6. Some level lines of the
function Θ17 are represented.

Figure 6: Reconstruction with 2, 5 and 8 disks. Two small spurious disks are observed in the case n = 8. They
are neglected for the partial balayage step.

2. Incomplete data. One may want to take measurements only along part of the outer boundary Γ0 and Theorem 3.1
states that this is theoretically sufficient to identify the obstacles. This additional difficulty has not been taken
into account in this work and deserves to be studied further.

A The Dirichlet-to-Neumann operator

Let Ω be a C0,1 bounded domain and denote by Γ its boundary. For every p ∈ H1/2(Γ ), let up be the unique function
achieving:

min
{
∥∇θ∥L2(Ω) : θ ∈ H1(Ω), γd

Γ θ = p
}
.

The Dirichlet-to-Neumann operator is the operator DΩ : H1/2(Γ ) −→ H−1/2(Γ ), DΩp = γn
Γup. Since, for every

p, q ∈ H1/2(Γ ):
⟨DΩp, q⟩ = −

(
∇up,∇uq

)
L2(Ω)

,

the operator DΩ is self-adjoint.
If Ω is C1,1, by elliptic regularity, DΩ maps continuously H3/2(Ω) into H1/2(Ω). We deduce:

Proposition A.1. The operator DΩ extends by density as a self-adjoint operator from H−1/2(Γ ) to H−3/2(Γ ), i.e. for
every p ∈ H−1/2(Γ ) and every q ∈ H3/2(Γ ) (with obvious notations):

⟨DΩp, q⟩− 3
2
, 3
2
= ⟨p,DΩq⟩− 1

2
, 1
2
.
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Figure 7: Quadrature domains obtained by applying the partial balayage operator to the case n = 8 of Fig. 6.

Figure 8: Reconstruction of two squares using the method described in Section 6. Some level lines of the
function Θ16 are represented. The picture on the right is a close-up of the right square and its reconstruction.

B The harmonic Dirichlet problem in L2

Let Ω be a C1,1 bounded domain, denote by Γ its boundary and define V = H2(Ω) ∩ H1
0 (Ω). For any q ∈ H1/2(Γ )

define uq as the unique function in V achieving:

min
{
∥∆θ∥L2(Ω) : γn

Γ θ = q
}
.

Then define the operator T : H1/2(Γ ) −→ H−1/2(Γ ), Tq = γd
Γ∆uq. For every q, p ∈ H1/2(Γ ), we have:

⟨Tq, p⟩− 1
2
, 1
2
= −

(
∆uq,∆up

)
L2(Ω)

,

and therefore T is an isomorphism from H1/2(Γ ) onto H−1/2(Γ ).

Proposition B.1. For every p ∈ H−1/2(Γ ), there exists a unique function v in L2(Ω), harmonic in Ω and such that
γd
Γ v = p.

Proof. The function v = ∆uT−1p satisfies the conditions. To prove uniqueness, assume that v is in L2(Ω), harmonic in

Ω and such that γd
Γ v = 0. Let u be the unique solution in H1

0 (Ω) to the problem ∆u = v. By elliptic regularity, u is in
V and, integrating by parts, ∥∆u∥2L2(Ω) = 0. The conclusion follows.

Note that in a C0,1 domain, uniqueness is not guaranteed (an example of square integrable non-zero harmonic function
with vanishing Dirichlet boundary conditions in a C0,1 bounded domain is provided in [6]).
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