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Tests of the Constancy of Conditional 
Correlations of Unknown Functional 

Form in Multivariate GARCH Models
Anne Péguin-Feissolle Bilel Sanhaji
Aix-Marseille School of Economics,

CNRS and EHESS, France
Université Paris 8, LED, Paris, France

We introduce two tests for the constancy of conditional correlations of unknown functional 
form in multivariate GARCH models. The first test is based on artificial neural networks 
and the second on a Taylor expansion of each unknown conditional correlation. They can be 
seen as general misspecification tests for a large set of multivariate GARCH-type models. 
We investigate their size and their power through Monte Carlo experiments. Moreover, we 
study the robustness of these tests to nonnormality by simulating some models, such as the 
GARCH t−  and Beta t EGARCH− − . We give some illustrative empirical examples 
based on financial data.*

I.  Introduction

During the last decade, there has been a rapid increase in the amount of literature on theoretical 
and empirical developments of multivariate GARCH-type modeling (see, for example, the exten-
sive surveys in Bauwens, L., S. Laurent, and J. V. K. Rombouts [2006] and Silvennoinen, A., 
and T. Teräsvirta [2009a]). This is an important econometric modeling issue, particularly in 
finance where, for instance, the correlation structure among different national stock returns is 
one of the most useful instruments to evaluate the gains from international portfolio diversi-
fication. Estimating multivariate GARCH (MGARCH) models is time-consuming, therefore 
introducing new tests specific to multivariate models to check ex ante the properties of the data 
is important. For example, in the presence of constant conditional correlations some parame-
ters of multivariate GARCH-type models might not be identified, leading to estimation issues 
which could have been avoided by pretesting the constancy of the conditional correlations.

Most of the tests for the constancy of conditional correlations are based on the Lagrange 
Multiplier (LM) procedure. As noted by Tse, Y. K. [2000], computing the LM test statistics 
requires only the estimation of the constant correlation model and is thus generally compu-
tationally convenient (see, among others, the LM constant conditional correlation tests of 
Tse, Y. K. [2000]; Bera, A. K., and S. Kim [2002]; Berben, R. P., and W. J. Jansen [2005]; 
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Silvennoinen, A., and T. Teräsvirta [2009b] and Silvennoinen, A., and T. Teräsvirta [2015]; 
Harvey, A., and S. Thiele [2014]).

In this paper, we introduce two LM tests for constancy of the conditional correlations. 
The first test is based on artificial neural networks (ANN). This ANN-based test relies on 
a statistical technique proposed by Lee, T. H., H. White, and C. W. J. Granger [1993]. 
The ANN framework has already been used for some tests (see, for example, Lee, T. H ., 
H. White, and C. W. J. Granger [1993] and Teräsvirta, T., C. F. Lin, and C. W. J. Granger 
[1993] for linearity tests, Kamstra, M. [1993], Caulet, R., and A. Péguin-Feissolle [2000] 
and Péguin-Feissolle, A . [1999] for conditional heteroscedasticity tests, Lebreton, M ., 
and A.  Péguin-Feissolle [2007] for heteroscedasticity tests and Péguin-Feissolle, A., and 
T. Teräsvirta [1999] for causality tests).

The second test is based on the linearization by Taylor expansion of each unknown condi-
tional correlation around a given point in a sample space. This approach has already been 
applied to test causality (Péguin-Feissolle, A., and T. Teräsvirta [1999]; Péguin-Feissolle, A., 
B. Strikholm, and T. Teräsvirta [2013]), heteroscedasticity (Lebreton, M., and A. Péguin-
Feissolle [2007]) and conditional heteroscedasticity (Caulet, R., and A.  Péguin-Feissolle 
[2000]; Péguin-Feissolle, A. [1999]).

Both tests present similar fundamental characteristics; they require little knowledge of the 
functional relationship determining the correlations; they are easy to implement and perform 
well in our small-sample simulations; and they generalize well to a high number of endogenous 
series. Both the ANN and Taylor expansion permit the approximation of unknown relation-
ships, therefore a rejection of the null hypothesis of constancy of conditional correlations 
does not imply that the data have been generated from a model where the conditional correla-
tions are specified as neural functions or specific functions. These tests can be seen as general 
misspecification tests of very different multivariate GARCH-type models. It is also worth 
noting that the tests presented here can be applied easily to test partially constant correlations.

Finite-sample properties of these two new tests are examined using Monte Carlo methods 
by comparing them to two alternative conditional correlation tests: those of Tse, Y. K. [2000] 
and Silvennoinen, A., and T. Teräsvirta [2015]. Using a variety of different specifications for 
the MGARCH model, we show that they perform well in small-sample simulations, even in the 
nonnormality case. Empirical applications show that these tests reject the constant correlation 
hypothesis when the tests of both Tse, Y. K. [2000] and Silvennoinen, A., and T. Teräsvirta 
[2015] do not.

The paper is organized as follows. In Section II, we introduce the tests. Section III reports 
the results of the Monte Carlo simulation study. In Section IV, we study the robustness of the 
tests to nonnormality. Section V describes some illustrative examples based on financial data. 
Section VI contains some conclusions.

II.  Testing the Constancy of Conditional Correlation

We consider the following general MGARCH model:

	
y E y
Var y H

t Tt t t t

t t t

= [ | ]
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where yt is a N-dimensional vector process, E yt t[ | ]1Ω −  and Var yt t[ ]Ω −1  are respectively the 
conditional expectation and the conditional covariance of yt  with respect to Ωt −1 , the sigma-
field generated by all the information until time t − 1 . The process yt  is strictly stationary and 
ergodic. To simplify the discussion, we assume that E y E yt t t t− −1 1[ ] = [ | ] = 0Ω  or yt t= e  
where et is defined by e ηt t tH= 1/2  with ηt Niid I ( )0, . Note that the tests presented in this 
paper can be generalized easily to a large variety of time-varying structures of the conditional 
expectation of yt . We assume that the conditional variances follow a GARCH (1,1)  process:

	 h h i Niit i i i t i ii t= = 1,..., 1
2

, 1ζ a e b+ +− − 	 (2)

where the standard positivity and covariance stationarity constraints are imposed, i.e. ζi > 0 ,  
ai > 0 , bi  ≥ 0 , and a bi i+ < 1  for i N= 1,..., . Let Pt ijt i j N= , =1,...,( )ρ  be the N N×  condi-
tional correlation matrix for the et ; we can write H S PSt t t t=  where St is the N N×  matrix 
given by S diag h ht t NNt= ( ,..., )11 . We assume that the conditional correlation matrix Pt is 
positive definite at each t; this assumption guarantees the positive definiteness of Ht. Moreover, 
the conditional normality of et, et t tN H| 0,1Ω −  ( ) , implies that z N Pt t t| 0,1Ω −  ( )  with 
z St t t= 1− e .

II.1.    The ANN-Based Test

The first test we present is an ANN based LM–type test. In order to construct the statistic, 
we extend the ideas of the tests of constant correlation hypothesis from Tse, Y. K. [2000], 
Silvennoinen, A., and T. Teräsvirta [2015], Silvennoinen, A., and T. Teräsvirta [2009b] and 
Berben, R. P., and W. J. Jansen [2005] to a model where the conditional correlation ρijt  is a 
neural function. ANN models are useful in situations where the functional form of a potential 
relationship between two variables is not known in advance. As noted in Péguin-Feissolle, A. 
[1999], the use of ANN models in the present context is validated by the universal mapping 
theorem, which states that, under mild regularity conditions, ANN models provide arbi-
trarily accurate approximations to nonlinear mappings (see Hornik, K., M. Stinchcombe, 
and H. White [1989] and Hornik, K., M. Stinchcombe, and H. White [1990]; Hornik, K. 
[1991]; Stinchcombe, M., and H. White [1989]; Cybenko, G. [1989]; Carroll, S. M., and 
B. W. Dickinson [1989], among others).

We specify the time-varying structure of the conditional correlations as follows: we 
assume that the conditional correlations ρijt  are changing smoothly over time according to 
a neural function: 

	 ρ ρ d γijt ij
m

p

ijm ijt ijmw= (1 { })
=1

1+ + − ′∑ −exp 	 (3)

where 1 <≤ ≤i j N , p < ,∞  wijt  and γijm are ( )2 1 1q + ×  vectors. wijt  is given by 

	 w wijt ijt i t i t q j t j t q= (1, ) = (1, ,..., , ,..., ) ., 1 , , 1 ,

′ ′ ′− − − −e e e e 	 (4)

The conditional correlations ρijt  should satisfy ρijt ≤ 1 , 1 <≤ ≤i j N  and t T= 1,..., ,  
and the corresponding correlation matrix should be positive semidefinite. However, we need 
only to assume that these restrictions are satisfied in the neighborhood of the null hypothesis of 
constant conditional correlation, i.e. ρ ρijt ij= , as noted by Tse, Y. K. [2000], p. 111.
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For each pair of indices ( )i j, , the 2 1q +  input units of the network send signals, ampli-
fied or attenuated by weighting factors γijm , to p hidden units (or hidden nodes) that sum up 
the signals and generate a squashing function, which is assumed to be a logistic function. 
As previously mentioned, neural functions of the form (3) accurately approximate arbitrary 
functions, given a sufficiently large number p of hidden units and a suitable choice of the 
parameters dijm  and γijm .

Given (3), the null hypothesis of constant conditional correlation, i.e. ρ ρijt ij= , can be 
formulated as:

	 H i j N m pijm01 : = 0 1 < 1 .d , ,≤ ≤ ≤ ≤ 	 (5)

Under H01 , γijm , for i N= 1,..., 1− , j i N= 1,...,+  and m p= 1,..., , are not identified. 
For this reason, conventional maximum likelihood theory is not applicable to derive the test 
procedure, as noted in Lebreton, M., and A. Péguin-Feissolle [2007]. To solve this problem, 
we use the method given by Lee, T. H., H. White, and C. W. J. Granger [1993], i.e. we generate 
the hidden unit weights γijm  randomly from the uniform distribution on −[ ]µ µ,  with µ = 2 .

The null hypothesis can be tested using LM procedure. Let q be the vector of the 
parameters in the model, i.e. the conditional variances ω ζ a bi i i i= , ,( )′ , i N= 1,..., , the 
conditional correlations ρij  with 1 <≤ ≤i j N  and the parameters of the neural function, 
dijm  for 1 <≤ ≤i j N , 1 ≤ ≤m p  and p < ∞ . Under standard regularity conditions, the 
test statistic, denoted by NEURAL , is given by:

	 1 ( ) ( ) ( )

=1

1

=1T
l l

t

T
t

t

T
t∑ ∑∂

∂




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′
ℑ

∂
∂




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−q

q
q

q
q

	 (6)

where ℑ
∂

∂
∂
∂ ′







∑ −( ) = 1 ( ) ( )

=1
1q

q
q

q
qT

E l l

t

T

t
t t  and lt ( )q  is the log-likelihood for the observation t:

	 l N P h z P zt t
i

N

iit t t t( ) =
2

2 1
2

1
2

1
2=1

1q π− ( ) − ( ) − ( ) − ′∑ −ln ln ln .	 (7)

The NEURAL  statistic has an asymptotic χ2  distribution under the null with p N N( )− 1
2

 

degrees of freedom (see the Appendix for details of the technical derivations of the test statistic, 
and Péguin-Feissolle, A., and B. Sanhaji [2015]).

As Lee, T. H., H. White, and C. W. J. Granger [1993] and Péguin-Feissolle, A., and 
T. Teräsvirta [1999] point out, the elements of some matrices used to build the ANN-based 
test statistic can lead to collinearity problems when the number of hidden units p is large. 
Therefore, in our case, the p × 1  vectors gijt  defined as:

	 gijt

ijt

ijt p

ijt ijg

g

w

= =

(1 { })

(1 {

,1

,

1
1
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i j N p

ijt ijpγ })
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	 (8)
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tend to be collinear among themselves, especially when p is large. The conditional correlations 
ρijt  given by (3) can be written as 

	 ρ ρ dijt ij
m

p

ijm ijt mg= .
=1

,+ ∑

Let us define Gij the p T×  matrix given by: G g gij ij ijT= .1( ,..., )  To solve the collinearity 
problem, we conduct the test using the main principal components of each Gij matrix. We use 
only the largest principal components explaining together at least 90% of the variation in this 
matrix (see Péguin-Feissolle, A., and T. Teräsvirta [1999]; Lebreton, M., and A. Péguin-
Feissolle [2007]; Péguin-Feissolle, A., B. Strikholm, and T. Teräsvirta [2013]; see also 
Castle, J. L., and D. F. Hendry [2010] for discussions on using principal components to solve 
the collinearity problem). More precisely, instead of Gij , we build the p Tij

∗ ×  matrix Gij
∗  of 

the pij
∗  principal components chosen according to the preceding rule, i.e. G g gij ij ijT

∗ ∗ ∗= .1( ,..., )  
The null hypothesis is now that the parameters associated with the main principal components 
are equal to zero in the following specification of the conditional correlations:

	 ρ ρ dijt ij
m

pij

ijm ijt mg= .
=1

,+

∗

∗∑

The NEURAL  statistic will have in this case an asymptotic χ2  distribution under the null 

with 
i

N

j i

N

ijp
=1

1

= 1

−

+

∗∑ ∑  degrees of freedom.

II.2.    The Taylor Expansion-Based Test

We assume that the functional form fij  determining ρijt , for i j N, = 1,...,  and t T= 1,..., , is 
unknown and is adequately represented by the following equation:

	 ρ qijt ij ijt ijf w= ,( )

∗ 	 (9)

where, for each pair of indices (i, j), wijt  is a 2 1q ×  vector given by (4) and qij
∗  is a r

ijq* × 1 
unknown parameter vector. The conditional correlations ρijt  should fulfill the conditions 
ρijt ≤ 1 , 1 <≤ ≤i j N  and t T= 1,..., , and the corresponding correlation matrix has to be 

positive semidefinite; but, as in the ANN-based test, we will simply assume that these restric-
tions are verified in the neighborhood of the null hypothesis.

The test is based on a finite-order Taylor expansion. Following Péguin-Feissolle, A., and 
T. Teräsvirta [1999] and Péguin-Feissolle, A., B. Strikholm, and T. Teräsvirta [2013], we 
assume that all the functions fij  have a convergent Taylor expansion at any arbitrary point 
of the sample space for every qij ij

∗ ∈ Θ  (the parameter spaces). When the order of the Taylor 
expansion increases, the remainder of the Taylor expansion converges to zero, for each pair 
(i, j).

In order to linearize fij  in (9), we expand the function into a kth-order Taylor series 
around an arbitrary fixed point in the sample space. After approximating fij , merging terms 
and reparametrizing, we obtain:
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	 (10)

where Rt
k( )  is the remainder. In expansion (10), we find all possible combinations of lagged 

values of ei t,  and e j t,  up to order q.
The assumption that the conditional correlation ρijt  is constant means that all terms 

involving functions of elements of lagged values of ei t,  and e j t,  in (10) must have zero coef-
ficients, i.e. all the parameters except ρij  are equal to zero. Therefore, the null hypothesis of 
interest is: 

	 H

m q
m q
m q m m

m

m

m m

02

1 2 1
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= 0, = 1,...,
= 0, = 1,...,

= 0, = 1,..., , = ,.
1 2
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The number of parameters to be tested under the null hypothesis is: 

	 N
q r
r

q r
rr

k

r

k
∗ ∑ ∑+ −
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 −

+ −

















= 2

2 1 1
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The test is based on the LM procedure as for the NEURAL  statistic. Under standard 
regularity conditions, the test statistic, denoted TAYLOR , is given by formula (6) where θ is 
the vector of the parameters in the model, i.e. the conditional variances ω ζ a bi i i i= , ,( )′  for 
i N= 1,..., , ρij  with 1 <≤ ≤i j N  and the N∗ × 1  parameters equal to zero under the null 
hypothesis. If the remainder Rt

k( ) 0≡ , the TAYLOR  statistic has an asymptotic χ2  distribu-
tion with N∗  degrees of freedom under the null hypothesis (see the Appendix for details of the 
technical derivations of the test statistic).

Following Péguin-Feissolle, A., B. Strikholm, and T. Teräsvirta [2013], there are two 
practical difficulties when the order of the Taylor expansion k increases: the regressors tend 
to be highly collinear and the dimension of the null hypothesis may become large because the 
number of regressors increases rapidly with k. More precisely, the conditional correlations ρijt  
given by (10) can be written as (assuming Rt

k( ) 0≡ ) 
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	 ρ ρ dijt ij
m

N

ijm ijt md=
=1

,+
∗

∑

where the N∗ × 1  vectors dijt correspond to terms depending on lagged values of ei t,  and e j t, .  
We replace the matrix D d dij ij ijT= ( ,..., )1  for 1 <≤ ≤i j N  by its largest principal compo-
nents. As in the case of the ANN-based test, only the largest principal components explaining 
together at least 90% of the variation in the matrix are used. Instead of Dij we build the N Tij

∗ ×  
matrix Dij

∗  of the Nij
∗  chosen principal components: D d dij ij ijT

∗ ∗ ∗= ( ,..., )1 . The null hypothesis 
is that the parameters associated with the main principal components are equal to zero in the 
relationship determining ρijt :

	 ρ ρ dijt ij
m

Nij

ijm ijt md= .
=1

,+

∗

∗∑

Under the null, the TAYLOR  statistic follows an asymptotic χ2  distribution with 

i

N

j i

N

ijN
=1

1

= 1

−

+

∗∑ ∑  degrees of freedom.

III.  Monte Carlo Experiments

In this section, we investigate the small-sample performances of the two new tests. Using 
Monte Carlo experiments, we compare both the sizes and the powers of these tests to the 
tests of Tse, Y. K. [2000] and Silvennoinen, A., and T. Teräsvirta [2015] whose statistics 
are denoted TSE and STCC, respectively (see Tse, Y. K. [2000] and Silvennoinen, A., and 
T. Teräsvirta [2015] for further details).

The data generating process (DGP) is based on the general multivariate GARCH 
model introduced earlier where the N × 1 vector of residuals is given by e ηt t tH= 1/2  with 
ηt Nnid I ( )0, , t T= 1, , . We generate several MGARCH-type models commonly used 
in financial time series analysis under the normality assumption and relax this assumption in 
Section IV. The individual GARCH models considered in the simulations have to be (weakly) 
stationary.

For all the Monte Carlo simulations, we consider nominal sizes of 1%, 5% and 10%, sample 
sizes T = 1000 , 1500  and 2500  and N = 2  endogenous variables (see p. 27 and Table VI of 
Péguin-Feissolle, A., and B. Sanhaji [2015] for N > 2 ). Moreover, we remove the first obser-
vations in order to eliminate initialization effects. The number of replications is S = 2000 ,  
and in every replication the true values of the parameters are used as starting values for the 
iterations so that the rate of convergence is fast. For the ANN-based tests, following Lee, T. H., 
H. White, and C. W. J. Granger [1993], the number of hidden units is p = 20 . Moreover, for 
both new tests, we use the largest principal components-based statistics presented above, the 
number of principal components being determined automatically.

III.1.    Size Simulations

Based on simulations performed with different models (see p. 21 and Tables I and II of 
Péguin-Feissolle, A., and B. Sanhaji [2015], for details) we choose p = 20  hidden units and 
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q = 3  lagged residuals for the NEURAL  test statistic, and k = 3  for the order of the Taylor 
expansion and q = 2  lagged residuals for the TAYLOR  test statistic. Following Silven-
noinen, A., and T. Teräsvirta [2015], the transition variable for the STCC  test is generated 
from an exogenous GARCH (1,1)  process such that s h zt t t= 1/2  where z Nt  (0,1)  and 
h s ht t t= 0.02 0.03 0.941

2
1+ +− − .

We consider four models with constant conditional correlations. The first is an 
extended constant conditional correlations GARCH  model ( )ECCC GARCH−  defined by 
Jeantheau, T. [1998]. The individual conditional variance equations depend on the past squared 
returns and conditional variances of all the series. Therefore, the elements of the conditional 
variance matrix are characterized for N = 2  by:

	 = 3 =11
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	 (11)

and h h ht t t12 12 11 22= ρ  where ρ12  is the constant conditional correlation. This model will 
be denoted by ECCC . In the second model, called CCC , the off-diagonal parameters in (11) 
are equal to zero i.e. a a12 21= = 0  and b b12 21= = 0 . The third model, called GARCH ,  
will be composed of two univariate independent GARCH (1,1)  models, i.e. a a12 21= = 0 ,  
b b12 21= = 0  and ρ12 = 0  in (11). We also design an asymmetric model where (11) is 

completed by leverage terms 
γ
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t
 where ν e ei t i t i tI, , ,= ( < 0)  for i N= 1, ,  

and I () is the indicator function. This fourth model, denoted GJR , is composed of two univar-
iate independent GJR GARCH−  models, i.e. a a12 21= = 0 , b b12 21= = 0  and ρ12 = 0 .

Table  I shows the empirical sizes of the different tests, i.e. the rejection probabili-
ties under the null hypothesis of constant conditional correlations. We consider models 
with different constant correlations: ρ12 = 0.60  for the ECCC GARCH−  model, 
ρ12 = 0.30  for the CCC GARCH−  model, and ρ12 = 0  for the bivariate GARCH  and 
GJR GARCH−  models. The DGP models correspond to different persistences, for example 
a b a b11 11 22 22= = 0.99+ +  for the CCC GARCH−  model, and a b11 11 = 0.95+  and 
a b22 22 = 0.90+  in the bivariate GARCH  model.

We observe that the empirical sizes converge towards the nominal sizes when the number 
of observations T increases, for most of the tests. More specifically, in the ECCC , GARCH  
and GJR  cases, for the different sample sizes, the NEURAL , TAYLOR  and STCC  statistics 
show similar performances and clearly outperform the TSE  test, highlighting their good size 
properties by showing weak distortions. In the CCC  case, the empirical sizes are close to the 
nominal sizes for all the test statistics when the sample size reaches T = 2500 . Concerning the 
ECCC  and GJR GARCH−  models, the conditional variances are not exactly GARCH (1,1) . 
Nevertheless, we observe that the performances of the tests are similar for all the DGPs.

III.2.    Power Simulations

To evaluate the power of the tests, we generate four different time-varying conditional correla-
tions multivariate GARCH-type models, chosen to represent a variety of situations.
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Table I. – Small sample sizes of the different constant conditional correlation tests

T
1,000 1,500 2,500

1% 5% 10% 1% 5% 10% 1% 5% 10%

ECCC

NEURAL 0.008 0.052 0.087 0.009 0.049 0.085 0.011 0.054 0.105
TAYLOR 0.012 0.042 0.083 0.014 0.053 0.097 0.009 0.053 0.104
TSE 0.027 0.084 0.134 0.023 0.080 0.139 0.086 0.144 0.201
STCC 0.011 0.054 0.107 0.012 0.042 0.094 0.011 0.049 0.104

CCC

NEURAL 0.018 0.077 0.134 0.017 0.061 0.118 0.008 0.056 0.104
TAYLOR 0.021 0.083 0.141 0.017 0.070 0.133 0.010 0.046 0.105
TSE 0.018 0.060 0.117 0.015 0.062 0.107 0.017 0.052 0.105
STCC 0.015 0.059 0.112 0.013 0.059 0.106 0.008 0.047 0.098

GARCH

NEURAL 0.014 0.053 0.107 0.015 0.057 0.113 0.011 0.055 0.106
TAYLOR 0.013 0.053 0.105 0.015 0.056 0.103 0.013 0.058 0.111
TSE 0.093 0.193 0.264 0.089 0.189 0.265 0.089 0.192 0.264
STCC 0.006 0.045 0.101 0.011 0.046 0.095 0.008 0.054 0.105

GJR

NEURAL 0.013 0.061 0.119 0.008 0.052 0.099 0.010 0.061 0.109
TAYLOR 0.015 0.065 0.123 0.010 0.043 0.103 0.014 0.052 0.108
TSE 0.033 0.099 0.153 0.030 0.088 0.148 0.028 0.091 0.151
STCC 0.008 0.043 0.082 0.007 0.050 0.104 0.008 0.049 0.098

Note: The number of replications is S = 2000. For NEURAL the number of hidden units is p = 20 and the number of lags of residuals is q = 3, and 
for TAYLOR the order of the Taylor expansion is k = 3 and the number of lags of residuals is q = 2. The data-generating parameters are: 

ζ1 ζ2 a11 a12 a21 a22 b11 b12 b21 b22 g11 g22 ρ12

ECCC 0.02 0.02 0.01 0.02 0.02 0.01 0.85 0.02 0.02 0.85 – – 0.60
CCC 0.02 0.02 0.01 0.00 0.00 0.01 0.98 0.00 0.00 0.98 – – 0.30
GARCH 0.40 0.20 0.15 0.00 0.00 0.20 0.80 0.00 0.00 0.70 – – 0.00
GJR 0.02 0.01 0.05 0.00 0.00 0.04 0.91 0.00 0.00 0.93 0.02 0.01 0.00

The BEKK (1,1,1)  model (Engle, R. F., and F. Kroner [1995]) is defined by:

	 H Z Z A A B H Bt t t t= ′ + ′ ′e + ′− − −e 1 1 1 	 (12)

where Z, A and B are N N×  matrices and Z is upper triangular. With N = 2 , we have:

	 Z A B=
0

, = =11 12

22

11 12

21 22

11 12

21 22

ζ ζ
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a a
a a

b b
b b











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


and 



. 	 (13)

Note that the conditional covariance matrices Ht are positive definite by construction. This 
model will be denoted by BEKK.

An asymmetric scalar BEKK model is also tested (Ding, Z., and R. F. Engle [2001]). This 
model is a special case of the BEKK model (13) and will be denoted by ASBEKK: 

	 H Z Z Ht t t t t t= ,1 1 1 1 1′ + ′ + ′ +− − − − −ae e γν ν b 	 (14)
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where a , γ  and b  are scalars, ν e et t tI= ( < 0)   and   is the Hadamard product.
The third model is Engle, R. F. [2002] DCC GARCH−  model (denoted by DCC): Ht is 

defined by H S PSt t t t=  with Pt the N N×  conditional correlation matrix and St is the N N×  
matrix given by S diag h ht t NNt= ( ,..., )11 , with 

	 P diag q q Q diag q qt t NN t t t NN t= ,..., ,...,11,
1/2

,
1/2

11,
1/2

,( ) (− − − −−1/2 ) 	 (15)

where Q qt ij t= ,( )  is a symmetric positive definite N N×  matrix given by 

	 Q Q z z Qt t t t= 1 ;1 1 1( )− − + ′ +− − −a b a b 	 (16)

Q  is a N N×  constant and positive definite matrix (see Aielli, G. P. [2013] for more details 
on Q ), z St t t= 1− e  and a  and b  are nonnegative scalar parameters satisfying a b+ < 1 . 
Moreover, hiit  follows a simple GARCH (1,1)  model for i N= 1,..., .

The last model is the EDCC GARCH−  model (denoted by EDCC) which is the extended 
specification of the DCC GARCH−  model, allowing for volatility spillovers; i.e. the indi-
vidual conditional variance equations depend on the past squared returns and variances of all 
the series (see equation (11)). In the case N = 2 , we have for i j, = 1,2 : 

	 h h hiit ii ii i t ij j t ii ii t ij jj t= ., 1
2

, 1
2

, 1 , 1ζ a e a e b b+ + + +− − − − 	 (17)

We take different DGPs for three of these models ( BEKK1  and BEKK2 , DCC1  and 
DCC2 , EDCC1  and EDCC2 ), characterized by different data-generating parameters 
and different variabilities of conditional correlation coefficients. The performance of the 
STCC  test depends on the choice of the transition variable, but following Silvennoinen, A., 
and T. Teräsvirta [2015], we define it as a linear combination of lags of squared returns: 
st t t t t t= (0.2,0.2,0.2,0.2,0.2) , , , ,1

2
2

2
3

2
4

2
5

2× ′− − − − −( )e e e e e  where et
2  is the mean of et over N of 

its squared elementwise.
Table II shows the parameter values used to generate the different models. Following 

Tse, Y. K. [2000], in the second part of this Table, we give the variability of the conditional 
correlation coefficients by calculating the range (maximum – minimum) of these coefficients 
in each simulated sample. The variability is high with DCC2  and EDCC1 , moderate with 
BEKK2  and DCC1  and low with BEKK1 , ASBEKK  and EDCC2 . Table III summarizes the 
empirical powers of the tests by showing the rejection probabilities of the null hypothesis of 
constant conditional correlations. For all the tests, we can observe that these rejection proba-
bilities increase with the number of observations T.

For the three BEKK GARCH−  specifications, BEKK1 , BEKK2  and ASBEKK , the tests 
reject the null hypothesis of constancy of conditional correlation. Nevertheless, even if most 
of them present good properties with a rejection probability sometimes equal to 1, the power 
properties of the TSE  test are the worst, especially for T = 1000 . The DCC GARCH−  
models, DCC1  and DCC2 , are characterized by parameters implying very different ranges 
of variability of the conditional correlation coefficients. The intervals are very large in the 
case of the DCC2  model. The TAYLOR  test presents the best performances in both DGP 
models, followed by NEURAL  for DCC1  and TSE  for DCC2 . On the other hand, the tests 
performing worse than the others are TSE  and STCC  in the DCC1  model and NEURAL  
and STCC  in the DCC2  model. Concerning the extended DCC GARCH−  models, EDCC1  
and EDCC2 , the tests showing the best performances are TAYLOR  and TSE  in the EDCC1  
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case and NEURAL  in the EDCC2  case. In the first case, the NEURAL , TAYLOR  and TSE  
tests outperform STCC . In the second DGP model, the performances are disappointing for 
each test.

In terms of variability, NEURAL  has better power properties when the variability of the 
conditional correlation coefficients is low ( EDCC2 ), and in the latter case, NEURAL  is the 
only test that can detect the nonconstancy of conditional correlations. However, TAYLOR  
is better in the case where the variability of the conditional correlation coefficients is high  
(DCC2  and EDCC1 ). Therefore, we can conclude that even if one or the other of the new tests 
is not the best for all the DGPs, it is useful to apply them jointly because at least one of them 
detects the time-varying conditional correlations.

All the multivariate GARCH-type models have thus been tested satisfactorily using the 
ANN-based test and the Taylor expansion-based test compared to TSE  and STCC  tests. 
Simulation experiments with more than two endogenous variables give similar conclusions 
(see p. 27 and Table VI of Péguin-Feissolle, A., and B. Sanhaji [2015]). This finding suggests 
that whatever the GARCH-type model, both the tests developed in this paper have good size 
and power properties to identify time-varying conditional correlations.

Table II. – MGARCH data-generating parameters for small sample powers

BEKK1 BEKK2 DCC1 DCC2 EDCC1 EDCC2 ASBEKK

ζ11 0.20 0.20 0.01 0.01 0.01 0.01 0.7

ζ12 0.01 0.04 – – – – 0.3

ζ22 0.20 0.20 0.02 0.02 0.02 0.02 0.9

a11 0.10 0.30 0.001 0.001 0.01 0.02 –

a12 0.10 0.10 0.00 0.00 0.01 0.05 –

a21 0.10 0.10 0.00 0.00 0.01 0.05 –

a22 0.10 0.30 0.002 0.002 0.02 0.02 –

b11 0.70 0.30 0.98 0.98 0.80 0.75 –

b12 0.10 0.20 0.00 0.00 0.15 0.10 –

b21 0.10 0.20 0.00 0.00 0.15 0.10 –

b22 0.70 0.30 0.90 0.90 0.75 0.55 –

a – – 0.05 0.15 0.15 0.01 0.02

b – – 0.94 0.80 0.84 0.94 0.90

g – – – – – – 0.05

ρ12 – – 0.80 0.30 0.80 0.30 –
corrmin1000 0.33 0.18 0.26 –0.66 –0.65 0.21 0.49
corrmax1000 0.53 0.77 0.94 0.86 0.99 0.38 0.75
corrmin1500 0.33 0.17 0.19 –0.69 –0.75 0.21 0.49
corrmax1500 0.54 0.78 0.94 0.87 0.99 0.39 0.76
corrmin2500 0.33 0.15 0.11 –0.71 –0.81 0.20 0.49
corrmax2500 0.56 0.80 0.95 0.88 0.99 0.39 0.77
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Table III. – Small sample powers of the different constant conditional correlation tests

T
1,000 1,500 2,500

1% 5% 10% 1% 5% 10% 1% 5% 10%

BEKK1

NEURAL 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000
TAYLOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TSE 0.832 0.986 0.995 0.989 0.998 0.999 1.000 1.000 1.000
STCC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BEKK2

NEURAL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TAYLOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TSE 0.983 0.987 0.990 0.995 1.000 1.000 1.000 1.000 1.000
STCC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ASBEKK

NEURAL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TAYLOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TSE 0.406 0.578 0.666 0.5335 0.720 0.800 0.739 0.876 0.919
STCC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DCC1

NEURAL 0.392 0.536 0.612 0.410 0.546 0.619 0.433 0.585 0.659
TAYLOR 0.394 0.534 0.616 0.446 0.602 0.694 0.525 0.648 0.722
TSE 0.060 0.149 0.241 0.100 0.234 0.344 0.191 0.375 0.487
STCC 0.197 0.329 0.416 0.213 0.350 0.442 0.241 0.383 0.466

DCC2

NEURAL 0.144 0.265 0.359 0.163 0.303 0.397 0.243 0.409 0.501
TAYLOR 0.970 0.988 0.992 0.999 0.999 0.999 1.000 1.000 1.000
TSE 0.829 0.943 0.966 0.967 0.991 0.997 0.997 0.999 1.000
STCC 0.237 0.369 0.454 0.232 0.388 0.463 0.249 0.397 0.456

EDCC1

NEURAL 0.693 0.784 0.830 0.711 0.797 0.835 0.756 0.832 0.870
TAYLOR 0.923 0.956 0.969 0.969 0.981 0.986 0.994 0.996 0.996
TSE 0.799 0.865 0.895 0.874 0.909 0.986 0.911 0.917 0.929
STCC 0.454 0.566 0.631 0.509 0.604 0.654 0.615 0.708 0.747

EDCC2

NEURAL 0.410 0.512 0.573 0.418 0.527 0.593 0.503 0.605 0.676
TAYLOR 0.023 0.088 0.163 0.031 0.104 0.178 0.127 0.188 0.247
TSE 0.022 0.081 0.138 0.025 0.094 0.158 0.131 0.199 0.262
STCC 0.064 0.156 0.238 0.069 0.165 0.243 0.154 0.250 0.335

Note: The number of replications is S = 2000. For NEURAL the number of hidden units is p = 20 and the number of lags of residuals is q = 3, and 
for TAYLOR the order of the Taylor expansion is k = 3 and the number of lags of residuals is q = 2.
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IV.  Robustness to Nonnormality

In order to investigate the robustness of the different tests to nonnormality, we simulate some 
models with a nonnormal conditional distribution: the multivariate versions of GARCH t−  
model of Bollerslev, T. [1987] and Beta t EGARCH− −  model of Harvey, A ., and 
T. Chakravarty [2008], Harvey, A. C. [2013] and Harvey, A., and G. Sucarrat [2014] (which 
is an unrestricted version of the Generalised Autoregressive Score (GAS) model of Creal, D., 
S. J. Koopmans, and A. Lucas [2013]). The Beta t EGARCH− −  models are not traditional 
GARCH-type models in the sense that they do not nest GARCH  models, but it is interesting to 
compare the performance of the different tests in such cases. In the Monte Carlo simulations, 
the number of replications is S = 2000 , the sample sizes are T = 1000 , 1500 and 2500 and 
N = 2  endogenous variables; we consider nominal sizes of 1%, 5% and 10%.

IV.1.    Size Simulations

We first study the empirical sizes of the different tests when the following two GDP with 
zero correlations are considered. The first DGP corresponds to two independent univar-
iate t GARCH−  models which are characterized by a a12 21= = 0 , b b12 21= = 0  and 
ρ12 = 0  in (11), and thus h t12 = 0 . The second DGP consists of two independent univar-
iate Beta t EGARCH− −  models with and without a leverage effect. We use the same 
notations as Harvey, A., and G. Sucarrat [2014], who developed a more general framework 
than Harvey, A., and T. Chakravarty [2008]. Each Beta t EGARCH− −  model without a 
leverage effect is defined as:

	 y i t Tit i it i t t= , = 1,2, = 1, , ,, | 1µ e λ+ −exp( )  	 (18)

where eit  has a t
iν –distribution and is serially independent, and νi , the number of degrees of 

freedom, is positive. Let us define the conditional score 

	 u y
y

uit
i it i

i i t t it i
it i= ( 1)( )

(2 ) ( )
1, 1 ,

2

, | 1
2

ν µ
ν λ µ

ν+ −
+ −

− − ≤ ≤
−exp

ννi > 0. 	 (19)

We consider the first order model given by

	 λ d φ λ ki t t i i i t t i i tu, | 1 , 1| 2 , 1=− − − −+ + 	 (20)

with the stationarity condition φi < 1 . The first order Beta t EGARCH− −  with a leverage 
effect is defined in Harvey, A., and G. Sucarrat [2014] as follows 

	 λ d φ λ k k µi t t i i i t t i i t i i t i iu sign y u, | 1 , 1| 2 , 1 , 1= ( ( ))(− − − −
∗

−+ + + − − ,, 1 1),t− + 	 (21)

(see Harvey, A., and T. Chakravarty [2008] and Harvey, A., and G. Sucarrat [2014] for a 
complete definition of these models and their properties).

The data-generating parameters are given in Table IV. Table V shows the small sample 
sizes of t GARCH−  and Beta t EGARCH− − . When the DGP models are the t GARCH−  
and Beta t EGARCH− − , with or without leverage effects, the results highlight the relative 
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Table IV. – MGARCH data-generating parameters for small sample sizes and powers under nonnormality

t – GARCH Beta – t – 
EGARCH

DCC – t – 
GARCH

DCC – Beta –  
t – EGARCH

a – – 0.05 0.15
b – – 0.94 0.80

ρ12 0.00 0.00 0.70 0.60
ν 10 10 10 10
ζ1 0.40 – 0.30 –
ζ2 0.20 – 0.20 –
a11 0.15 – 0.10 –
a12 0.00 – 0.00 –
a21 0.00 – 0.00 –
a22 0.20 – 0.20 –
b11 0.80 – 0.70 –
b12 0.00 – 0.00 –
b21 0.00 – 0.00 –
b22 0.70 – 0.60 –
µ1 – 0.00 – 0.00
µ2 – 0.00 – 0.00
d1 – 0.007 – 0.02
d2 – 0.05 – 0.04
φ1 – 0.99 – 0.95
φ2 – 0.90 – 0.90
k1 – 0.05 – 0.05
k2 – 0.07 – 0.07
k1

* – 0.02* or 0.00 – 0.04* or 0.00

k2
* – 0.04* or 0.00 – 0.06* or 0.00

Note: * With leverage effect in the Beta – t – EGARCH and DCC – Beta – t – EGARCH.

robustness to nonnormality of the TAYLOR , NEURAL  and STCC  tests compared to the 
TSE  test, which tends to over-reject the null hypothesis of constant conditional correlations. 
In the Beta t EGARCH− − , the conditional variances do not follow GARCH  specification 
even if the conditional correlations are constant. Nevertheless, the test results are very similar 
in both DGPs.

IV.2.    Power Simulations

To study the empirical powers of the different tests, we use the same models as in Section IV.1 
except that the conditional correlations are no longer constant. The conditional expecta-
tion model can be written, for t T= 1, , ,  and i N= 1, , , y hit iit it= e  where for the 
GARCH (1,1)  models, hiit is given by (2) and for the Beta t EGARCH− −  models, 

	 hiit i t t= , | 1
2[exp( )]λ − 	 (22)
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as in equation (18); λi t t, | 1−  is determined as a first order model defined by (20) or (21) 
respectively without or with leverage effect. Moreover, et has a conditional multivariate  
tν–distribution with positive degrees of freedom ν : e νt t tt H| 0,1Ω −  ( ) .

We use the same notations as in the DCC GARCH−  model: H S PSt t t t= , the N N×  
conditional correlation matrix Pt is written as in (15) and S diagt t NN t= , ,11, ,( )σ σ� … � . To specify 
the different diagonal elements of St , we refer to Harvey, A., and T. Chakravarty [2008]: 
σii t iith, =∗  is the time-varying scale parameter, which is not necessarily equal to the condi- 
tional standard deviation. To ensure the existence of a unit variance we resample the variance of 
the residuals e σei t IID,

2(0, )∗
 *  such that σ σ σe ii t ii t, ,= * ∗ , where σ e ee� � �* ( ) ( )

2
,

2 1= 1∑ ∗ ∗ −− −i t i T .  
Q qt ij t= ,( )  is a symmetric positive definite N N×  matrix given by (16) with Q  a N N×  
constant and positive definite matrix.

The data-generating parameters are given in Table IV. Table VI shows the empirical 
powers of the different tests. In all cases, the two new tests show the best empirical powers, 
even for T = 1000  or 1500 , and TSE  again is the least powerful.

As expected, the rejection probabilities of the null hypothesis increase with the number 
of observations T. To conclude, the simulation results in the case of time-varying conditional 
correlation and nonnormality assumptions show that TAYLOR  and NEURAL  are the best 
performing tests out of the four. The poor performance of the TSE  test may be explained by 
the fact that the alternative hypothesis of this test is rather restrictive compared to that of the 
TAYLOR  and NEURAL  tests.

Table. V. – Small sample sizes of constant conditional correlation tests under nonnormality

T
1,000 1,500 2,500

1% 5% 10% 1% 5% 10% 1% 5% 10%

t – GARCH

NEURAL 0.014 0.058 0.116 0.016 0.059 0.102 0.016 0.056 0.102
TAYLOR 0.014 0.064 0.115 0.013 0.061 0.118 0.022 0.072 0.118
TSE 0.056 0.112 0.168 0.056 0.125 0.191 0.075 0.153 0.219
STCC 0.012 0.055 0.097 0.011 0.043 0.091 0.012 0.051 0.101

Beta – t – EGARCH

NEURAL 0.024 0.057 0.107 0.017 0.064 0.117 0.014 0.053 0.100
TAYLOR 0.026 0.070 0.116 0.018 0.071 0.125 0.014 0.056 0.100
TSE 0.088 0.154 0.215 0.072 0.156 0.220 0.077 0.152 0.220
STCC 0.015 0.053 0.101 0.017 0.061 0.110 0.011 0.049 0.107

Beta – t – EGARCH*

NEURAL 0.018 0.052 0.105 0.017 0.057 0.114 0.015 0.052 0.111
TAYLOR 0.024 0.063 0.119 0.015 0.063 0.117 0.015 0.055 0.107
TSE 0.064 0.133 0.189 0.061 0.138 0.211 0.065 0.141 0.195
STCC 0.012 0.052 0.103 0.012 0.058 0.102 0.011 0.048 0.099

Note: The number of replications is S = 2000. For NEURAL the number of hidden units is p = 20 and the number of lags of residuals is q = 3, and 
for TAYLOR the order of the Taylor expansion is k = 3 and the number of lags of residuals is q = 2. Beta – t – EGARCH and Beta – t – EGARCH* 
are the models respectively without and with leverage effect.
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V.  Empirical Application: Correlations between Three Asset Returns

We consider the asset returns of three “ blue-chip” US daily stocks included in the Dow Jones 
Industrial Average index: JPMorgan Chase & Co. (JPM), The Coca-Cola Company (KO) and 
Exxon Mobil Corporation (XOM), from January 03, 2000 to October 12, 2012 (T = 3217  
daily observations). The series correspond to closing prices adjusted for dividends and splits 
and are obtained from Yahoo Finance. We compute the daily returns as 100 ( / )1× −log p pt t ,  
where pt  represents the daily closing price at time t , t T= 1, , . To avoid the singularity 
issues of the Hessian matrix for multivariate optimization and in order to have a comparable 
metric between the four tests, we winsorized the few peaks in the returns at −10 . Panel A of 
Table VII presents the summary statistics of the winsorized asset returns; medians, means, 
standard deviations, skewness and kurtosis. The returns exhibit positive excess kurtosis.

We compute all the tests on the asset returns as bivariate and trivariate combinations in 
order to determine whether these series are conditionally correlated over time or not. We use 
the same values for p , q  and k  as in the simulation experiments. Following Silvennoinen, A., 
and T. Teräsvirta [2015], we use three different transition variables for the STCC  test: the 
lagged absolute S&P 500 index returns averaged over ten days ( STCC1 ), the lagged S&P 500 
index average return over twenty days ( STCC2 ) and the lagged S&P 500 index average return 
over two days ( STCC3 ). Therefore, not rejecting the null of constant correlations using the 
STCC  test indicates that there is not enough evidence of time-varying correlations given the 
chosen transition variable, but the conclusion may be different with another transition variable.

Panel B of Table VII shows the results of the tests. In the case of the relationship between 
JPM and KO, NEURAL  and TAYLOR  reject the null hypothesis of constant conditional 

Table VI. – Small sample powers of constant conditional correlation tests under nonnormality

T
1,000 1,500 2,500

1% 5% 10% 1% 5% 10% 1% 5% 10%

DCC – t – GARCH

NEURAL 0.283 0.450 0.536 0.374 0.526 0.619 0.490 0.643 0.727
TAYLOR 0.511 0.668 0.739 0.636 0.772 0.834 0.788 0.885 0.922
TSE 0.113 0.223 0.329 0.183 0.338 0.436 0.245 0.432 0.530
STCC 0.246 0.380 0.461 0.301 0.427 0.493 0.339 0.455 0.529

DCC – Beta – t – EGARCH

NEURAL 0.601 0.736 0.806 0.68 0.807 0.857 0.779 0.862 0.901
TAYLOR 0.792 0.886 0.928 0.878 0.942 0.961 0.965 0.986 0.994
TSE 0.107 0.256 0.376 0.188 0.349 0.471 0.284 0.463 0.567
STCC 0.459 0.548 0.595 0.594 0.663 0.704 0.591 0.669 0.720

DCC – Beta – t – EGARCH*

NEURAL 0.676 0.801 0.851 0.762 0.855 0.897 0.854 0.917 0.943
TAYLOR 0.856 0.931 0.959 0.917 0.967 0.978 0.982 0.994 0.997
TSE 0.156 0.251 0.342 0.193 0.292 0.386 0.224 0.338 0.430
STCC 0.569 0.643 0.690 0.658 0.729 0.759 0.753 0.813 0.842

Note: The number of replications is S = 2000. For NEURAL the number of hidden units is p = 20 and the number of lags of residuals is q = 3, 
and  for TAYLOR the order of the Taylor expansion is k = 3 and the number of lags of residuals is q = 2. DCC – Beta – t – EGARCH and 
DCC – Beta – t – EGARCH* are the models respectively without and with leverage effect.
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correlations at the 1% level, whereas TSE  rejects it only at the 10% level. STCC , whatever 
the transition variable ( STCC1 , STCC2  or STCC3 ) does not reject the null hypothesis of 
constancy of conditional correlations. For JPM and XOM returns, STCC1  and STCC2  do not 
reject the null hypothesis while the other statistics reject the null at different levels (1% for 
TAYLOR , 5% for TSE  and STCC3  and 10% for NEURAL ). When XOM and KO returns are 
considered, TAYLOR  rejects the null at the 1% level, whereas NEURAL , STCC1  and STCC3  
reject it at the 5% level. TSE  and STCC2  do not reject constancy. For the trivariate case 
(JPM-KO-XOM), all the tests reject the null hypothesis at the 1% or 5% level, except STCC1  
and STCC2  which do not reject constancy.

Therefore, if we consider only the STCC  test in the first case, STCC1  and STCC2  in the 
second and last cases, STCC2  and TSE  in the third case (the conclusions of the STCC  test 
being obviously constrained by the chosen transition variables), we do not reject the constancy 
of conditional correlations but do conclude that the conditional correlations are time-varying 
with NEURAL  and TAYLOR .

VI.  Concluding Remarks

In this paper, we propose two tests for the constancy of conditional correlations in MGARCH 
models. The main practical findings in this paper are that our new tests perform well in small-
sample simulations, even in the case of nonnormality. They show better performances than 
the STCC  and TSE  tests in most cases, probably because their original form is very general. 
Indeed, the first test is based on artificial neural networks that are universal approximators, 
and the second comes from the linearization of an unknown relationship determining each 
conditional correlation.

Table VII. – Summary statistics and constant conditional correlation tests of the daily asset returns

Panel A: Summary Statistics

Mean Med. Max. Min. S.D. Skew. Kurt.

JPM 0.01 –0.02 22.39 –41.13 2.75 0.91 8.08
KO 0.00 0.02 13.00 –69.56 1.46 0.01 8.12
XOM 0.02 0.06 15.86 –67.07 1.67 0.18 8.25

Panel B: Constant Conditional Correlation Tests

KO-JPM JPM-XOM XOM-KO JPM-KO-XOM

 Stat. p-v Stat. p-v Stat. p-v Stat. p-v

NEURAL 21.8 0.001 11.8 0.067 10.9 0.015 53.8 0.000
TAYLOR 39.7 0.005 73.7 0.000 63.8 0.000  126 0.000
TSE 3.48 0.062 4.36 0.037 0.00 0.985  16.8 0.000
STCC1 0.01 0.925 0.46 0.498 3.88 0.049   4.95 0.175
STCC2 0.57 0.448 2.19 0.139 0.05 0.829 4.47 0.215
STCC3 2.08 0.149 2.91 0.015 4.66 0.031 10.8 0.013

Note: Stat. and p-v represent respectively the value of the test statistic and the associated p-value. For NEURAL the number of hidden units is 
p = 20 and the number of lags of residuals is q = 3, and for TAYLOR the order of the Taylor expansion is k = 3 and the number of lags of residuals 
is q = 2. The transition variables used in STCC are the lagged absolute S&P 500 index returns averaged over ten days (STCC1), the lagged S&P 
500 index average return over twenty days (STCC2) and over two days (STCC3).
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Both tests should be applied jointly because they have different finite-sample properties, 
as shown by the small sample simulations and the financial application. When we consider 
their power, the NEURAL  test has better properties when the variability of the conditional 
correlation coefficients is low, whereas TAYLOR  has higher power when the variability is 
high. We recommend that a model with time-varying conditional correlations should be used 
if any one of the two tests rejects the null hypothesis of constant conditional correlations.
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Appendix

A.  �Derivation of the Statistics of the Artificial Neural Network Test  
and the Taylor Expansion-Based Test 

In order to compute the NEURAL  and the TAYLOR  statistics, we use broadly Abadir, K. M., 
and J. R. Magnus [2005], Anderson, T. W. [2003], Lütkepohl, H. [1996] and the Appendix 
of Silvennoinen, A., and T. Teräsvirta [2005] for the derivations based on the rules of 
matrix algebra. Let us call r∗  the number of parameters that are equal to zero under the null  
hypothesis, i.e. r p∗ =  for the NEURAL  statistic and r N∗ ∗=  for the TAYLOR  statistic.

Each test statistic can be written (we simplify by T ): 

	 STATISTIC l l

t

T
t

t

T
t= ( ) ( ) ( ) .

=1

1

=1
∑ ∑∂

∂






′
ℑ

∂
∂







−q

q
q

q
q

	 (A.1)

The vector q of all the parameters of the model is given by: q ω ρ d= , ,( )′ ′ ′ ′; ω ω ω= ,...,1( )′ ′N  
is composed by the 3 1×  parameter vector for the conditional variances ω ζ a bi i i i= , ,( )′  for 
i N= 1,..., , r is the vector of the conditional correlations ρij  with 1 <≤ ≤i j N  and d is the 
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vector of parameters that are equal to zero under the null hypothesis. Therefore, 
t

T
tl

=1

( )∑ ∂
∂

q
q

 is 

a 3 1 ( 1)
2

1N r N N+ + −



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×∗( )  vector as follows 
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and ℑ( )q  is a 3 1 ( 1)
2

3 1 ( 1)
2

N r N N N r N N+ + −
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
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So we can write:
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A.I.    Different Sub-Vectors of 
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and 
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where Vω , Vρ  and Vd  are respectively 3 1N × , N N( 1)
2

1− ×  and r
N N∗ −( ) ×

1
2

1  vectors. 

vecl  is an operator stacking the columns of the strict lower diagonal, i.e. excluding the diagonal 
elements of the matrix. Moreover, we have, for i N= 1,...,  and 1 <≤ ≤i j N : 
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where ∂
∂
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Moreover, z St t t= 1− e  and the matrix U is an N N N2 ( 1)
2

× −  matrix of zeros and ones whose 
columns are defined as 
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and the columns appear in the same order from left to right as the indices in vecl P( ) . The 
matrix Wijt  is an r N∗ × 2  matrix given by
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gijt is a r∗ × 1  vector defined in the NEURAL  test as
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and, in the TAYLOR  test, it is replaced by dijt, composed by all terms involving functions of 
elements of lagged values of ei t,  and e j t, . We have: 
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A.II.    Different Elements of the Matrix ℑ( )q  

—— Mωω  is the following 3 3N N×  matrix:
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where, for i N= 1,...,  and 1 <≤ ≤i j N , M iiωω,  and M ijωω,  are 3 3×  matrices defined as 
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where each 3 ( 1)
2

× −N N  matrix M iρω, , for i N= 1,..., , is:
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—— Mdρ  is a r N N N N∗ − × −( )1
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where each r N N∗ × −( 1)
2

 matrix M ijdρ,  is 
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—— Mdd  is the following r N N r N N∗ ∗− × −( ) ( )1
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with M i j n mdd ( , , , )  a r r∗ ∗×  matrix given by:
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for each couple ( , )i j  taken in the same order as for Vd , take the couple ( , )n m  in the same 
order.

—— Mdω  is a r
N N

N∗ −( ) ×
1

2
3  matrix given by:
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with M i j ndω ( ), ,  a r∗ × 3  matrix defined by:
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for each couple ( , )i j  taken in the same order as for Vd , take all the n N= 1,2,..., . 
For the computation of all these vectors and matrices, we have:
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with ν eit it iith= 1 ,2( , )′  for i N= 1,...,  (we compute recursively ∂
∂
hiit
iω

).

Following Silvennoinen, A., and T. Teräsvirta [2015], we have for a model with general 
correlation matrix Pt
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with K a N N2 2×  matrix defined as
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Following (A.4), and using the rules of the partitioned matrices and the null hypothesis, 
the test statistic can be written
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